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Abstract. Numerical issues in the implementation of spectral reduction, a new method for
the computation of statistical moments of homogeneous turbulence, are examined. The method
implements a coarse graining in Fourier space and exploits the fact that statistical moments are
much smoother functions of wave number than the underlying fluctuating velocities. A notable
feature of this turbulence model is the existence of a control parameter (bin size) that can be varied
to increase the accuracy of the approximation. The inviscid version of spectral reduction satisfies
a Liouville theorem and yields statistical equipartition solutions. However, if the wavenumber bins
are of nonuniform size (as is desirable for efficiency), an additional bin-dependent rescaling of time
by the relative bin area must be introduced to obtain the correct equipartition. This rescaling of
the time derivative term drastically increases the stiffness of the spectrally reduced equations. The
prospect of developing an implicit nonlinear integrator for this highly stiffened convection problem
is examined.
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1. Introduction. Over the past forty years, much effort has been devoted to the
development of a satisfactory statistical theory of turbulence. For example, statistical
closures were developed in an attempt to find closed expressions for the unknown
triplet correlation function that arises upon averaging the Navier–Stokes equation.
Familiar examples include Kraichnan’s direct-interaction approximation [10, 11] and
Lagrangian-history direct-interaction approximation [12]. Unfortunately, there is con-
siderable arbitrariness in the formulation of statistical closures. Moreover, it is gener-
ally believed that low-order statistical theories are not capable of capturing the effects
of coherent structures [9, 15]. But probably the greatest weakness of these methods is
that there exists neither an error estimate nor a control parameter that can be varied
to increase the accuracy of the approximation.

Recently, a method called spectral reduction [5] has been proposed for calculat-
ing statistical moments of turbulent quantities by implementing a coarse-graining in
Fourier space. The bin size serves as a control parameter that can be varied to increase
the accuracy of the approximation. The method exploits the fact that statistical mo-
ments are much smoother functions of wave number than are the underlying stochastic
amplitudes. Collections of Fourier amplitudes are represented by nonuniformly spaced
sample modes that interact via enhanced coupling coefficients. By assigning most of
these sample modes to the scales of greatest physical interest, the technique makes
optimal use of limited computational resources. The approximation reduces to the
exact Navier–Stokes equation as the number of fundamental wave numbers associ-
ated with each sample mode tends to one. Even at large values of this parameter, the
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statistics of the full dynamics may be accurately recovered from the time-averaged
predictions of the theory.

2. Spectral Reduction. Let us restrict our attention to homogeneous and
isotropic incompressible turbulence in two dimensions, for which the Fourier-transformed
Navier–Stokes vorticity equation takes the form

∂ωk

∂t
+ νkωk =

∫

D

dp

∫
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dq
εkpq

q2
ω∗
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where ∗ denotes complex conjugation. Here νk models time-independent linear dissi-
pation and the interaction coefficient εkpq

.
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under permutation of any two indices, where ẑ is the unit normal to the plane of
motion (

.
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the antisymmetry of εkpq, (2.1) conserves in the inviscid limit νk = 0 both the en-

ergy 1

2

∫
D

dk |ωk|
2
/k2 and the enstrophy 1

2

∫
D

dk |ωk|
2
.

We introduce an arbitrary coarse-grained grid on D, to which we associate new
variables ΩK
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ωk dk, where ∆K is the area of bin K. The exact evolution
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where 〈·〉K denotes a bin average and the operator

〈f〉KP Q
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depends only on the bin geometry. The geometric factors 〈f〉KP Q can be efficiently
computed using a combination of analytical and numerical methods [1, 2, 3]; being
independent of both time and initial conditions, they need only be computed once
for each new wave-number partition. The reality condition1 ΩK = Ω∗

−K , where −K

denotes the inversion of bin K through the origin, will be respected for partitions
that possess inversion symmetry.

Equation (2.2) is unfortunately not closed. If ωk were naively approximated by
its bin-averaged value ΩK , one would obtain

∂ΩK

∂t
+ 〈νk〉K ΩK =
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In the inviscid limit, (2.4) conserves the coarse-grained enstrophy 1

2

∑
K |ΩK |

2
∆K

since
〈
εkpq/q2

〉
KP Q

is antisymmetric in K ↔ P . However, the coarse-grained energy
1

2

∑
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2
∆K/K2 is not conserved since

〈
εkpq/q2

〉
KP Q

/K2 is not antisymmetric

in K ↔ Q (here K denotes the magnitude of some characteristic wave number in bin
K). However, both of these desired symmetries can be reinstated by replacing the
factor

〈
εkpq/q2

〉
KP Q

in (2.4) with the slightly modified coefficient 〈εkpq〉KP Q
/Q2.

The relative error introduced by this modification is negligible in the limit of small bin

1The reality condition ωk = ω∗
−k

guarantees that the inverse Fourier transform of ωk be real.



STATISTICAL EQUIPARTITION AND THE METHOD OF SPECTRAL REDUCTION 3

size, being on the order of the squared relative variation in the wavenumber magnitude
over a bin. The result,

∂ΩK

∂t
+ 〈νk〉K ΩK =

∑
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∆P ∆Q

〈εkpq〉KP Q

Q2
Ω∗
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Q,(2.5)

is a more acceptable alternative as an approximation of (2.2) since it conserves both
energy and enstrophy. Moreover, the time-averaged (or ensemble-averaged) moments
of (2.5) satisfy equations that closely approximate the equations governing the exact
bin-averaged statistics, even when each bin contains many statistically independent
modes. That is, spectral reduction can provide an accurate statistical description of
turbulence, even if the assumptions leading to (2.5) are themselves violated.

Let us justify the above claim. A time average (denoted by an over-bar) of the
bin-averaged enstrophy equation derived from (2.1) leads to
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If the true vorticity is a continuous function of wave number, there will exist a wave
number κ in bin K such that ωκ = ΩK . Furthermore, time-averaged quantities such

as |ωk|
2 are generally smooth functions of the wave number k. We thus deduce that

|ΩK |
2

= |ωκ|
2
≈ |ωk|

2
for all k in bin K. Similarly, the triplet correlation ω∗

kω∗
pω∗

q

is a smooth function of k, p, q when restricted to the surface defined by the triad
condition k + p + q = 0.

To good accuracy the statistical averages in (2.6) may therefore be evaluated at
the characteristic wave numbers K, P , Q of each bin. Hence, to the extent that
the wave-number magnitudes vary slowly over a bin, (2.6) may be reduced to the
(nonlinearly conservative) approximation
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which is precisely the evolution equation for the time-averaged enstrophy obtained
from (2.5). Similar arguments for the higher-order statistical moments can also be
made, suggesting that spectral reduction can indeed provide an accurate statistical
description of turbulence, even when each bin contains many statistically independent
modes. As the partition is refined, one expects the solutions of (2.7) to converge to the
those of (2.6). Note that spectral reduction does not make a closure assumption on the
triplet correlation Ω∗

KΩ∗

P Ω∗

Q appearing in (2.7); it circumvents the closure problem
entirely by reducing the number of triplet correlations to a tractable number, instead
of eliminating them in favor of lower-order statistical variables. Unlike statistical
closures, spectral reduction thus does not destroy the phase information embodied in
the triplet correlation.

In Fig. 2.1, we demonstrate the excellent agreement obtained in comparison with
a forced-dissipative pseudospectral simulation for a two-dimensional fluid containing
coherent structures. We also compare to the predictions of the realizable test-field
model [3]. In Fig. 2.2 we illustrate the scaling with distance r of the angular average

S10(r) of the tenth moment of velocity increments |v(r) − v(0)|10. Slight variations
in the predicted large-scale velocities are evident as overall vertical offsets.
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Fig. 2.1. Comparison of the energy spectra obtained with several (radial × angular) wave-
number partitions, the realizable test-field model, and a 683×683 dealiased pseudospectral simulation.

Fig. 2.2. Angle-averaged structure function S10(r).
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3. Statistical Equipartition. In the inviscid limit, spectral reduction has been
shown to satisfy a Liouville theorem [5]. If the dynamics is mixing, the inviscid
system will then evolve toward a state of equipartition [6, 8, 14, 16]. Unlike in three
dimensions, where there is an equipartition of the modal energies, one obtains in
two dimensions an equipartition of a linear combination of the modal energies and
enstrophies [13], as shown in Fig. 3.1.

When applying the method of spectral reduction with nonuniform bins it is nec-
essary to account for additional internal statistical degrees of freedom by rescaling the
time derivative ∂/∂t in (2.5) to (∆0/∆K)∂/∂t, where ∆0 is the minimum bin area:

∆0

∆K

∂ΩK

∂t
+ 〈νk〉K ΩK =

∑

P ,Q

∆P ∆Q

〈εkpq〉KP Q

Q2
Ω∗

P Ω∗

Q.(3.1)

Equation (3.1) correctly leads to an equipartition of a linear combination of the modal
(instead of bin) invariants, as illustrated in Fig. 3.1 numerically, using a specially
designed fifth-order conservative Runge–Kutta integration algorithm that conserves
quadratic invariants to all orders in the time step [4, 18].

Fig. 3.1. Statistical equipartition by spectral reduction with 16×8 (radial × angular) nonuniform
polar bins. The dotted curve is the equipartition solution.

While this rescaling of time by the relative bin area does not change the steady-
state moment equations, it does affect the statistical trajectory of the nonlinear system
of equations and consequently can affect the resulting statistical solution, even in the
presence of forcing and dissipation. In particular, the use of the rescaled formulation
(3.1) appears to be necessary to obtain the theoretically expected k−5/3 scaling of the
two-dimensional energy inverse cascade illustrated in Fig. 3.2.
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Fig. 3.2. The inverse energy cascade obtained using rectangular wave-number partitions and
a 341× 341 dealiased pseudospectral simulation.

4. Implicit Integration Algorithm. Unfortunately, the introduction of the
factor ∆0/∆K in (3.1) greatly increases the stiffness of the spectrally reduced equa-
tions. Let us rewrite (2.5) in the form

dy

dt
= F (y),(4.1)

where F represents both the linear and nonlinear terms in (2.5). We are faced with
the following problem: although there are many efficient explicit (e.g. Runge–Kutta)
schemes for evolving (4.1), these methods do not necessarily provide efficient algo-
rithms for the rescaled system

dy

dt
= ΛF (y)

.
= S,(4.2)

where Λ is a constant real diagonal matrix. The diagonal elements of Λ are the
relative areas of the wavenumber bins. In a practical application of spectral reduction,
it is desirable to use wavenumber bins that become larger as the length scale (and
hence time scale) decreases. Consequently, the effect of introducing the Λ factor is to
increase the stiffness of the problem drastically.

In this work, we examined the prospect of developing an implicit nonlinear inte-
grator for this highly stiffened convection problem. We tried to solve (4.2) with the
implicit midpoint rule (implicit second-order Runge–Kutta algorithm)

y(t + τ) = y(t) + τS

(
y(t) + y(t + τ)

2

)
.(4.3)
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This algorithm can be easily be shown to conserve all invariants that are quadratic in
y (which, for simulating a turbulent cascade, is a desirable property). However, it is
difficult to find solutions to the nonlinear system of equations (4.3) when τ is large.
One might try the Newton iteration

(
1 −

1

2
τ∇S

∣∣∣
ỹi

)
yi+1 = y(t) + τS(ỹi) −

1

2
τ∇S

∣∣∣
ỹi

yi,(4.4)

where ỹi
.
= [yi + y(t)]/2, for i = 1, 2, . . .. Line-searching (backtracking) does not

appear to be effective for this problem since the local search direction specified by the
gradient of the squared error is not adequate for finding an initial guess y1 inside the
basin of attraction. We found that one solution to this problem was to start with a
small value of τ and increase it geometrically each iteration, re-evaluating the Jacobian
at every iteration. Convergence was then obtained with time steps approximately 10
times larger than that possible with conventional Newton iteration.

However, a more elegant solution to the problem of divergence of the Newton
iteration is to use an adaptive time-step. If the Newton iterator does not converge after
a specified number of iterations, the time step is automatically reduced. Otherwise
the time step can be adjusted using an error estimate based on the effect of a single
implicit fourth-order Runge–Kutta iteration on the converged solution of (4.4). With
this scheme, we found that it was then no longer necessary to increase the time step
geometrically from a small starting value, as described above. The adaptive scheme
effectively accomplished the same behavior automatically. In the end we were able
to use a time step that was about 500 times larger than the stability limit of an
explicit second-order Runge–Kutta method. However, with such a large time step we
observed that the implicit method introduced significant error in the high-wavenumber
energy spectrum. Given the higher cost per time step of an implicit method, the
explicit Runge–Kutta methods still seem to be the most suitable integrators that we
have found for (3.1). We therefore used these explicit methods for all of the results
presented in this paper. The prospect of developing a better implicit integrator for
(3.1) remains a difficult, unsolved problem. Perhaps it is possible to develop an
alternative algorithm that exploits the fact that we seek only moments to (3.1) and
not the instantaneous values of the solution.

Although a practical numerical method has not yet been developed to solve the
rescaled spectrally reduced equations, the rescaling can be shown to be unnecessary to
obtain the correct small-scale statistical relaxation in the two-dimensional enstrophy
inertial range. The unscaled formulation (2.5), which is numerically tractable, may
thus be sufficient for describing (e.g. as a subgrid model) the small-scale dynamics of
two-dimensional fluid and plasma turbulence.

5. Discussion. Spectral reduction appears to be a promising candidate as a sta-
tistical description of turbulence, although for some applications, a better numerical
scheme to solve (3.1) has yet to be devised. The method affords a dramatic reduction
in the number of degrees of freedom that must be explicitly evolved in turbulence
simulations. It has been successfully applied to confirm the existence of logarithmic
corrections to the velocity structure functions in the enstrophy cascade and to lend
numerical support to recent theoretical and experimental claims [7, 17] that there are
no intermittency corrections in the 2D enstrophy cascade in the absence of an energy
cascade. We propose that spectral reduction could be used to assess the effect of
various dissipation mechanisms in large-eddy simulations, as a subgrid model, or even
as a substitute for full simulation of high-Reynolds number turbulence.
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