
13TH EUROPEAN TURBULENCE CONFERENCE, 12–15 SEPTEMBER 2011, WARSAW, POLAND

DEALIASED CONVOLUTIONS FOR PSEUDOSPECTRAL SIMULATIONS

Malcolm Roberts & John C. Bowman
Department of Mathematical and Statistical Sciences, University of Alberta, Canada

Summary Efficient algorithms have recently been developed for calculating dealiased linear convolution sums without the expense
of conventional zero-padding or phase-shift techniques. For one-dimensional in-place convolutions, the memory requirements are
identical with the zero-padding technique, with the important distinction that the additional work memory need not be contiguous with
the input data. This decoupling of data and work arrays dramatically reduces the memory and computation time required to evaluate
higher-dimensional in-place convolutions. The memory savings is achieved by computing the in-place Fourier transform of the data
in blocks, rather than all at once. The technique also allows one to dealias the n-ary convolutions that arise on Fourier transforming
cubic and higher powers. Implicitly dealiased convolutions can be built on top of state-of-the-art adaptive fast Fourier transform
libraries like FFTW. Vectorized multidimensional implementations for the complex and centered Hermitian (pseudospectral) cases
have already been implemented in the open-source software FFTW++. With the advent of this library, writing a high-performance
dealiased pseudospectral code for solving nonlinear partial differential equations has now become a relatively straightforward exercise.
New theoretical estimates of computational complexity and memory use are provided, including corrected timing results for 3D pruned
convolutions and further consideration of higher-order convolutions.

ONE-DIMENSIONAL CONVOLUTIONS

A discrete non-centered convolution is a binary operation on two sequences Fk and Gk, k = 0, . . . ,m− 1, and is defined
as

(F ∗G)k
.
=

m−1∑
p=0

FpGk−p, k = 0, . . . ,m− 1.

Non-centered convolutions appear in many areas, notably image processing, statistical analysis, and primality tests.
Computing a convolution as a direct sum requires O(m2) operations. This can be reduced to 3Km log2m operations
(with K = 34/9 [6, 7]) by using fast Fourier transforms (FFTs). However, FFTs transform periodic data to periodic
data; an FFT-based convolution is therefore a discrete cyclic convolution, where all the indices are considered equivalent
modm. The difference between linear and cyclic convolutions is called the aliasing error.
A centered convolution, which takes input arrays Fk, Gk, k = −m+ 1, . . . ,m− 1, and has output

(F ∗G)k
.
=

m−1∑
p=k−m+1

FpGk−p, k = −m+ 1, . . . ,m− 1,

appears in pseudospectral simulations of the Navier–Stokes equations and other non-linear differential equations.

Explicit zero-padding and phase-shift dealiasing
One way to eliminate the aliasing error (i.e. dealias the convolution) is to extend the input arrays by adding an appropriate
number of zeroes. Arrays must be padded to twice their length for non-centered convolutions, but need only be extended
by 50% [8] for centered convolutions. The resulting multiplications by zero remove the aliasing error. Explicit zero
padding increases the memory footprint by 100% (or 50% for centered convolutions) over a cyclic convolution, and the
computational effort increases to 6Km log2m (or 9

2Km log2m for the centered Hermitian case).
An alternative method is phase-shift dealiasing [9, 4], which allows one to calculate a linear convolution by calculating two
cyclic convolutions with opposite aliasing error. This method is rarely used in one dimension, as phase-shift dealiasing
increases the memory footprint by 100% and the computational cost is 6Km log2m for both centered and non-centered
convolutions.

Implicit zero padding
The key idea behind implicitly padding FFT-based convolutions is that the zero-padded input array can be transformed
without having to store or process the zero padding [3]. For the non-centered case with 100% padding, the inverse Fourier
transform fj =

∑2m−1
j=0 ζkj2mFk, where ζN = e2πi/N and Fk = 0 if k ≥ m, can be written as

f2` =
2m−1∑
k=0

ζ2`k2mFk =
m−1∑
k=0

ζ`kmFk, f2`+1 =
2m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk.

Thus, data with even and odd indices can be stored in separate, non-contiguous arrays. These calculations can be done
with existing FFT libraries such as FFTW [5]. After using the same algorithm to compute g2j and g2j+1, the (scaled)
convolution is the forward transform of f2`g2` and f2`+1g2`+1:

2m(F ∗G)k =
2m−1∑
j=0

ζ−kj2m fjgj =
m−1∑
`=0

ζ−k`m f2`g2` + ζ−k2m

m−1∑
`=0

ζ−k`m f2`+1g2`+1, k = 0, . . . ,m− 1.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 072037 doi:10.1088/1742-6596/318/7/072037

Published under licence by IOP Publishing Ltd 1



Method Complexity Memory Footprint

Explicit Zero Padding 6Km logm 4m

Implicit Zero Padding 6Km logm 4m

Table 1. Comparison of methods for dealiasing one-dimensional non-centered complex binary convolutions of length m.

Method Complexity Memory Footprint
Phase-Shift

6Km logm 4mDealiasing

Explicit Zero Padding 9
2 Km logm 3m

Implicit Zero Padding 9
2 Km logm 3m

Table 2. Comparison of methods for dealiasing one-dimensional centered Hermitian convolutions of length m.

The centered case works similarly, except that we divide the output into three arrays of length m.

Comparison of dealiasing techniques for one-dimensional convolutions
Explicitly and implicitly padded convolutions have similar computational complexities and memory use, as shown in
Tables 1–2, and similar run times, as shown in Figures 1–2.

5

10

15

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit

implicit

Figure 1. Comparison of computation times for explicitly and im-
plicitly dealiased non-centered complex in-place 1D convolutions
of length m.

5

10

15

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit

implicit

Figure 2. Comparison of computation times for explicitly and im-
plicitly dealiased centered Hermitian in-place 1D convolutions of
length m.

While implicit zero padding allows one to perform convolutions without having to allocate memory contiguously, the
memory use and computation time are effectively identical to those for the explicitly padded case. The true advantage of
this method only becomes apparent when one considers convolutions in higher dimensions.

MULTI-DIMENSIONAL CONVOLUTIONS

Two-dimensional convolutions can be calculated by applying an inverse Fourier transform first in the x direction and then
in the y direction, multiplying the output, and taking the forward transform in the y and x directions. Using explicit
padding, this would require allocating a contiguous array of size 2m × 2m for each input array f and g. Since a large
part of this array is zero, one seemingly straightforward optimization is to skip or “prune” FFTs when the output is known
a priori to be zero. While generally useful, this can be more time-consuming than taking transforms of the entire block
because of the lack of FFT routines specifically optimized for pruned transforms.
To implicitly pad non-centered data, one first performs a discontiguous transform in the x direction, producing two

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 072037 doi:10.1088/1742-6596/318/7/072037

2



Method Complexity Memory Footprint
Explicit Zero Padding

3 · 2ddKmd logm 2d+1md

without Pruning
Explicit Zero Padding

6
(
2d − 1

)
Kmd logm 2d+1md

with Pruning

Implicit Zero Padding 6
(
2d − 1

)
Kmd logm 4md

Table 3. Comparison of methods for dealiasing d-dimensional non-centered complex binary convolutions of size md.

discontiguous arrays of size m×m per input array. Then, one performs a convolution on the x-transformed arrays using
a 1D implicit convolution, requiring only 2m words of extra storage. Since the x-transforms can be done one at a time,
these 2m words of storage need only be allocated once. Consequently, an implicitly padded non-centered 2D convolution
uses half of the memory required for an explicitly padded 2D convolution.
Dealiasing a convolution of centered data using implicit padding is performed similarly, except that the input arrays of
length 2m−1 are discontiguously expanded to length 3m. An implicitly padded centered 2D convolution uses two-thirds
of the memory needed for an explicitly padded convolution.
Implicit padding can be extended to d dimensions, with an implicitly padded non-centered convolution requiring 1/2d−1

of the memory needed for its explicitly padded counterpart, and an implicitly padded centered convolution requiring
(2/3)d−1 of the memory needed for an explicitly padded version. The numerical error for implicit padding is similar to
that for explicit padding. Skipping Fourier transforms on arrays of zeroes and decreased memory bandwidth requirements
provides a speed-up by a factor of approximately two over explicit padding.

Comparison of dealiasing techniques for multi-dimensional convolutions
Implicitly padded multi-dimensional convolutions have the same computational complexity as explicit zero-padded con-
volutions, but require much less memory, as shown in Tables 3–4. Moreover, they are, in practice, faster than explicitly
padded convolutions, as may be seen in Figures 3–5. If one requires all components of the convolution, then zero padding
is superior to phase-shift dealiasing. If one does not require that all the modes be recovered, an alternative is to use a
combination of phase-shift dealiasing and explicit zero padding, which allows one to recover approximately 44% of the
modes for centered 3D convolutions. However, this technique still requires more memory and is computationally more
complex than implicit zero padding. Unlike the corresponding figure in [3], Figure 4 depicts fully pruned convolutions.

10

20

30

40

50

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit

y-pruned

implicit

Figure 3. Comparison of computation times for explicitly and im-
plicitly dealiased non-centered complex in-place 2D convolutions
of size m2.

20

30

40

50

60

ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

101 102
m

explicit

xz-pruned

implicit

Figure 4. Comparison of computation times for explicitly and im-
plicitly dealiased non-centered complex in-place 3D convolutions
of size m3.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 072037 doi:10.1088/1742-6596/318/7/072037

3



20

30
ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit

y-pruned

implicit

Figure 5. Comparison of computation times for explicitly and implicitly dealiased centered Hermitian in-place 2D convolutions of size
(2m− 1)×m.

Method Complexity Memory Footprint
Phase-Shift

3 · 22d−1dKmd logm 22dmd

Dealiasing
Partial Phase-Shift

3 · 2ddKmd logm 2d+1md

Dealiasing
Explicit Zero Padding 3d+1

2 dKmd logm 3dmd

without Pruning
Explicit Zero Padding 9

2

(
3d − 2d

)
Kmd logm 3dmd

with Pruning

Implicit Zero Padding 9
2

(
3d − 2d

)
Kmd logm 3 · 2d−1md

Table 4. Comparison of methods for dealiasing d-dimensional centered Hermitian convolutions of size (2m− 1)d−1 ×m.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 072037 doi:10.1088/1742-6596/318/7/072037

4



Method Complexity Memory
Footprint

Explicit padding (n+ 1)nddKmd log nm nd+1md

Explicit padding
n(n+ 1)n

d−1
n−1 Km

d log nm nd+1md

with pruning

Implicit padding n(n+ 1)n
d−1
n−1 Km

d log nm n2md

Table 5. Comparison of methods for dealiasing d-dimensional n-ary non-centered complex convolutions on data of size md.

Method Complexity Memory
Footprint

Explicit padding 1
2 (n+ 1)d+1dKmd log nm n(n+1)d

2 md

Explicit padding 1
2 (n+ 1)2 (n+1)d−2d

n−1 Kmd log nm n(n+1)d

2 md
with pruning

Implicit padding 1
2 (n+ 1)2 (n+1)d−2d

n−1 Kmd log nm n(n+ 1)2d−2md

Table 6. Comparison of methods for dealiasing d-dimensional n-ary centered Hermitian convolutions on data of size (2m−1)d−1×m.

HIGHER-ORDER CONVOLUTIONS

The `th component of the non-centered n-ary convolution of n vectors f1k , . . . , f
n
k , for k = 0, . . . ,m− 1, is defined as

∗
(
f1, . . . , fn

)
`

.
=

m−1∑
`1,...,`n=0

f1`1 . . . f
n
`nδ`1+...+`n,`, ` = 0, . . . ,m− 1.

The `th component of the centered n-ary convolution of n vectors f1k , . . . , f
n
k , for k = −m+ 1, . . . ,m− 1, is defined as

∗
(
f1, . . . , fn

)
`

.
=

m−1∑
`1,...,`n=−m+1

f1`1 . . . f
n
`nδ`1+...+`n,`, ` = −m+ 1, . . . ,m− 1.

Such higher-order convolutions arise when performing simulations of the compressible Navier–Stokes equations or when
considering high-order Casimir invariants in pseudo-spectral simulations [1].
If the input vectors are of infinite length, then an n-ary convolution can be computed via n − 1 binary convolutions.
However, it is important to note that this is not the case for convolutions of finite-length vectors of fixed length. If we
consider the ternary convolution of f , g, and h, with data for each mode in the range −m+ 1, . . . ,m− 1, the (m− 1)st

component of the ternary convolution will include the term fm−1gm−1h−m+1. However, if one computes (f ∗ g) ∗h, one
excludes this term, as fm−1gm−1 would not contribute to f ∗ g.
In order to remove aliasing errors, one must zero pad ternary convolutions twice as much as binary convolutions, and
quaternary convolutions three times as much, and so on. The computational complexity and memory requirements for
implicitly padded n-ary multi-dimensional convolutions are given in Tables 5–6. Implicitly dealiased convolutions have
the same computational complexity as pruned explicitly dealiased convolutions but require significantly less memory.

CONCLUSION

As dimension, order of convolution, and problem size increase, the advantage of implicit padding becomes more and
more apparent. The algorithms described above are available in the open-source software package FFTW++ [2], including
algorithms for non-centered, non-Hermitian data in one, two, and three dimensions; centered Hermitian data in one, two,
and three dimensions; and centered, Hermitian ternary convolutions in one and two dimensions. These algorithms will
allow researchers to create faster, less memory-intensive pseudo-spectral codes with minimal effort. We expect implicitly
padded convolutions to become standard tools in computational fluid dynamics.

References

[1] John C. Bowman. Casimir cascades in two-dimensional turbulence. J. Fluid Mech, 2011. To be submitted.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 072037 doi:10.1088/1742-6596/318/7/072037

5



[2] John C. Bowman and Malcolm Roberts. FFTW++: A fast Fourier transform C++ header class for the FFTW3 library. http://fftwpp.
sourceforge.net, 2010.

[3] John C. Bowman and Malcolm Roberts. Efficient dealiased convolutions without padding. SIAM J. Sci. Comput., 33(1):386–406, 2011.
[4] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods: Fundamentals in Single Domains. Scientific Computation. Springer,

Berlin, 2006.
[5] Matteo Frigo and Steven G. Johnson. The design and implementation of FFTW3. Proceedings of the IEEE, 93(2):216–231, 2005.
[6] S.G. Johnson and M. Frigo. A modified split-radix FFT with fewer arithmetic operations. IEEE Transactions on Signal Processing, 55(1):111,

2007.
[7] T. Lundy and J. Van Buskirk. A new matrix approach to real FFTs and convolutions of length 2k. Computing, 80(1):23–45, 2007.
[8] Steven A. Orszag. Elimination of aliasing in finite-difference schemes by filtering high-wavenumber components. Journal of the Atmospheric

Sciences, 28:1074, 1971.
[9] G. S. Patterson Jr and Steven A. Orszag. Spectral calculations of isotropic turbulence: Efficient removal of aliasing interactions. Physics of Fluids,

14:2538, 1971.

13th European Turbulence Conference (ETC13) IOP Publishing
Journal of Physics: Conference Series 318 (2011) 072037 doi:10.1088/1742-6596/318/7/072037

6


