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Summary. The Kraichnan–Leith–Batchelor theory of two-dimensional turbulence
is based on the fact that the nonlinear terms of the two-dimensional Navier–Stokes
equation conserve both energy and enstrophy. In an infinite domain and in the limit
of infinite Reynolds number, the net energy and enstrophy transfers out of a low-
wavenumber forcing region must consequently be independent of wavenumber. The
resulting dual cascade of energy to larger scales and enstrophy to smaller scales is
readily observed in numerical simulations of two-dimensional turbulence in a finite
domain.

While it is well known that the nonlinearity also conserves the global integral
of any arbitrary C1 function of the scalar vorticity field, the direction of transfer
of these quantities in wavenumber space remains unclear. Numerical investigations
of this problem are hampered by the fact that pseudospectral simulations, which
necessarily truncate the wavenumber domain, do not conserve these higher-order
Casimir invariants.

A fundamental question is whether these invariants also play an underlying role
in the turbulent cascade, in addition to the rugged quadratic (energy and enstrophy)
invariants, which do survive spectral truncation. Polyakov’s minimal conformal field
theory model [1] has suggested that the higher-order Casimir invariants cascade to
large scales, while Eyink [2] suggests that they might instead cascade to small scales.

In this work we develop estimates for the degree of nonconservation of the
Casimir invariants and demonstrate, using sufficiently well-resolved simulations, that
the fourth power of the vorticity cascades to small scales.

1 Two-Dimensional Turbulence

We begin with the 2D incompressible Navier–Stokes equation for the vorticity

ω
.
= ẑ·∇×u:

∂ω

∂t
+ u·∇ω = −ν∇2ω + f, (1)

where the constant ν is the kinematic viscosity and f is an external stirring
force. In the inviscid unforced limit ν = f = 0, both the energy E

.
= 1

2

∫
u2 dx

and enstrophy Z
.
= 1

2

∫
ω2 dx are conserved.
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However, as is well known, inviscid unforced 2D turbulence has uncountably
many other Casimir invariants: any continuously differentiable function g of
the (scalar) vorticity is conserved by the nonlinearity:

d

dt

∫
g(ω) dx =

∫
g′(ω)

∂ω

∂t
dx = −

∫
g′(ω)u·∇ω dx

= −

∫
u·∇g(ω) dx =

∫
g(ω)∇·u dx = 0.

Do these invariants also play a fundamental role in the turbulent dynamics,
in addition to the quadratic (energy and enstrophy) invariants? In particular,
do they exhibit cascades? In the theoretical literature, this remains an open
question: Polyakov [1] has predicted that the higher-order Casimir invariants
cascade to large scales, while Eyink [2] suggests that they might cascade to
small scales. What is certain is that only the quadratic invariants are rugged ,
meaning that their conservation, being a consequence of detailed triadic
balance, survives high-wavenumber truncation. To see this, let us express (1)
in Fourier space:

∂ωk

∂t
+ νk2ωk =

∑

p,q

ǫkpq

q2
ω∗

p ω∗

q + fk, (2)

where ǫkpq
.
= (ẑ·p×q) δ(k+p+q) is antisymmetric under interchange of any

two indices. When ν = fk = 0, the enstrophy is readily seen to be conserved:

d

dt

∑

k

|ωk|
2

=
∑

k,p,q

ǫkpq

q2
ω∗

kω∗

p ω∗

q = 0.

In the absence of high-wavenumber truncation, the invariance of Z3

.
=

∫
ω3 dx

also arises from a product of antisymmetric and symmetric tensors:

0 =
∑

k,r,s

[ ∑

p,q

ǫkpq

q2
ω∗

p ω∗

qω∗

rω∗

s + 2 other similar terms

]
.

However, the absence of an explicit ωk in the first term means that setting
ωℓ = 0 for ℓ > K breaks the symmetry in the summations. Nevertheless, since
the missing terms involve ωp and ωq for p and q higher than the truncation
wavenumber K, one might expect that a very well-resolved simulation would
lead to almost exact invariance of Z3. Indeed, we will see that this is the case.

In terms of the nonlinearity Sk
.
=

∑
p,q

ǫkpq

q2 ω∗

p ω∗

q, the enstrophy spectrum

Z(k) is seen to satisfy a balance equation of the form

∂

∂t
Z(k) + 2νk2Z(k) = 2T (k) + G(k),

where T (k) and G(k) are the angular averages of Re 〈Skω∗

k〉 and Re 〈fkω∗

k〉,
respectively. It is convenient to define the nonlinear enstrophy transfer func-

tion Π(k), which measures the cumulative nonlinear transfer of enstrophy
into [k,∞):
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Π(k) = 2

∫
∞

k

T (p) dp.

On integrating from k to ∞, we find

d

dt

∫
∞

k

Z(p) dp = Π(k) − ǫ(k),

where ǫ(k)
.
= 2ν

∫
∞

k

p2Z(p) dp −

∫
∞

k

G(p) dp is the total enstrophy transfer,

via dissipation and forcing, out of wavenumbers higher than k. A positive
(negative) value for Π(k) represents a flow of enstrophy to wavenumbers
higher (lower) than k. When ν = fk = 0 enstrophy conservation implies
that

0 =
d

dt

∫
∞

0

Z(p) dp = 2

∫
∞

0

T (p) dp,

so that

Π(k) = 2

∫
∞

k

T (p) dp = −2

∫ k

0

T (p) dp. (3)

We note that Π(0) = Π(∞) = 0. Moreover, in a steady state, Π(k) = ǫ(k);
this provides an excellent numerical diagnostic for validating a steady state.

The cumulative nonlinear enstrophy transfer Π3 for the globally integrated
invariant Z3 =

∫
ω3 dx can be defined similarly and measured numerically.

However, we found no systematic cascade: Z3 appears to slosh back and forth
between the large and small scales. In hindsight, this should be expected
since ω3 is not a sign-definite quantity.

Of much more interest is the determination from a pseudospectral code of
the cascade direction of a sign-definite quantity like the fourth-order Casimir
invariant Z4

.
=

∫
ω4 dx. If we Fourier decompose Z4 = N3

∑
j ω4(xj) in terms

of N spatial collocation points xj , we find

Z4 =
∑

k,p

ωk ωp ωq ω−k−p−q.

In terms of the nonlinear source term Sk, the evolution of Z4 follows

d

dt
Z4 =

∑

k

[
Sk

∑

p,q

ωp ωq ω−k−p−q + 3ωk

∑

p,q

Sp ωq ω−k−p−q

]

= N2
∑

k



Sk

∑

j

ω3(xj)e
2πij·k/N + 3ωk

∑

j

S(xj)ω
2(xj)e

2πij·k/N





.
=

∑

k

T4(k). (4)

To determine the cascade direction of Z4, we considered a double-periodic
pseudospectral simulation forced at wavenumber 2, with the dissipation
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Fig. 1. Downscale nonlinear transfer Π4 of Z4 averaged over t ∈ [200, 450].

term νk2 replaced by νk2H(k − kH), where H is the Heaviside step function.
A positive cutoff kH mimics a pristine inertial range, à la Kolmogorov. In
Fig. 1, we see that the time-averaged nonlinear transfer Π4 of Z4 exhibits the
clear signature of a downward cascade (positive Π4 in the enstrophy inertial
range) at small scales. As a check that sufficient numerical resolution has
been used to resolve the contribution of the nonlinear terms to the evolution
of Z4, we note that Π(0) = Π(∞) = 0, as desired. An important point
to emphasize in computing Z4 is that (4) requires the computation of a
double convolution, in terms of the Fourier transform of the cubic quantity ω3.
Correctly dealiasing therefore requires a 2/4 zero padding rule (instead of the
usual 2/3 rule for a quadratic convolution). This means that even though
a 2048 × 2048 pseudospectral simulation was used, the maximum physical
wavenumber retained in each direction was 512.

We also point out an important distinction between nonlinear enstrophy
transfer and flux. The mean rate of enstrophy transfer to [k,∞) is given by (3).
In a steady state, Π(k) will thus trivially be constant throughout an inertial
range. In contrast, the enstrophy flux through a wavenumber k, as considered
by Kolmogorov, is the amount of enstrophy transferred to small scales via

triad interactions involving mode k. Independence of the flux on k is highly
nontrivial, based on the conjectured self-similarity of the inertial range.

Even though higher-order Casimir invariants do not survive wavenumber
truncation, it is appears possible, with sufficiently well-resolved simulations,
to check whether they cascade to large or small scales. In this work, we
computed the transfer function of the globally integrated ω4 inviscid invariant
and provided strong numerical evidence supporting Eyink’s conjecture that
in the enstrophy inertial range there is a direct cascade of (positive-definite)
high-order invariants to small scales.
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