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Abstract. A numerical model for electro-osmotic flow is described. Theadvecting velocity field is com-
puted by solving the incompressible Navier–Stokes equation. The method uses a semi-implicit multigrid
algorithm to compute the divergence-free velocity at each grid point. The finite differences are second-order
accurate and centered in space; however, the traditional second-order compact finite differencing of the
Poisson equation for the pressure field is shown not to conserve energy in the inviscid limit. We have de-
signed a non-compact finite differencing for the Laplacian in the pressure equation that allows exact energy
conservation and affords second-order accuracy. The modelalso incorporates a new numerical method for
passive scalar advection, called parcel advection, which accurately predicts the evolution of a passively
traveling scalar pulse without requiring the addition of any artificial diffusion. The algorithm is used to
confirm the experimentally observed asymmetric concentration profile that arises when an external pressure
drop is imposed on electro-osmotic flow.

1. Introduction

Extensive experimental studies of the application of an electric field to a mixture of charged species in
solution have been performed in microfluidic experiments and in chemical analyses of biological fluids
(Jorgenson & Lukacs, 1981; Culbertson & Jorgenson, 1994; Seiler et al., 1994; Culbertsonet al., 1998)—
for example, for protein separation and DNA sequencing. In laboratory experiments, the solvent flow can be
directed along a specified microchannel by the application of appropriate voltages (Harrisonet al., 1992).
In most of these experiments, the sample was injected with anelectro-osmotic flow driven by an applied
potential along the channel (Harrisonet al., 1993; Seileret al., 1994). In the field of analytical sciences,
particularly in the area of DNA diagnostics or protein separation, the technique of electrokinetic injection
has advanced very rapidly during the last few decades. The fundamental principles of microflow injection
are based on the double-layer theory developed by von Helmholtz (1879) and the linearized ion energy
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distribution of Debye & Hückel (1923). The fact that the application of an electric field can induce a fluid
flow through a microchannel was observed as far back as the beginning of the19th century (Ruess, 1809).
Microfluidic devices composed of a network of channels are being used in the chemical and biochemical
industries in order to reduce both the time and cost of analytical procedures. Computer simulations can be
used along with empirical studies to investigate the efficiency of such microfluidic devices.

The phenomena that we deal with throughout this study are theeffects associated with the distribution of
charged substances that are dissolved in a fluid near an interface with constant electric charge (Morrison &
Stukel, 1970). They play an important role in many diverse natural and technological processes, such as in
the biotechnology industry and in biochemical and biological research. When a charged interface is brought
in contact with an ionized fluid, the electrical charges on the interface will attract ions in the fluid that have
opposite sign; hence there is a layer of fluid near the chargedinterface where the counter-ion concentration
is much higher than the co-ion concentration (Arulanandam &Li, 2000). In other words, there is a layer,
known as the Debye sheath, next to the charged interface, which has a net electrical charge concentrated
in a small volume. The Debye–Hückel approximation (Debye &Hückel, 1923) can be used to show that
the thicknessλD of this layer depends on the ion densityn of the fluid and is given byλ2

D = kT ǫ/(e2n),
wherek is the Boltzmann constant,T is the absolute temperature,e is the elementary charge, andǫ is the
electrical permittivity of the fluid. Typical experimentalvalues ofλD lie between1 nm and100 nm. When
an electrical field is applied to the liquid, the excess counter-ions in the Debye layer will move under the
applied electric field. These ions will migrate to the electrode that has opposite sign.

We consider an electro-osmotic device consisting of a channel with a rectangular cross section filled
with a buffering medium across which a voltage is applied. A schematic diagram of the electric double
layer that develops at the charged interface is shown in Figure 1. Suppose that the wall of the channel is
negatively charged and a positive voltage is applied at the input reservoir on one end of the channel. Since
the interface is negatively charged, the positive charges in the solution are concentrated near the wall. These
charges will move toward the negative electrode (Reed & Morrison, 1976), interact frictionally with the
surrounding fluid, pulling it with them and generating a fluidflow. This is the so-called electro-osmotic flow.
The bulk behavior of a solution of charged particles is complicated by the dynamics of the diffuse space
charge that arises from the response of the ions to the charged interface (Levine & Neale, 1976). However,
if this complication is ignored, the dynamics of an ionic solution near a charged interface can be understood
from a description of the electric fields and forces operating in the fluid (Ermakovet al., 2000). The overall
dynamics can be modeled mathematically using the conservation of mass and momentum, together with
the theory of Debye and Hückel.

Chemical separation procedures of various species, including the separation of small ions in solution,
have been investigated both theoretically and experimentally. As well, mathematical models and computer-
aided tools have been developed. The details of the mathematical models can be found in Babskiiet al.
(1983, and refs. therein) and in Mosheret al. (1992, and refs. therein). Because these mathematical models
consist of nonlinear partial differential equations, an exact analytical solution of a model cannot normally be
obtained for arbitrary initial and boundary conditions unless the model is linearized. Numerical computation
can provide approximate solutions to the fully nonlinear model. Jorgenson & Lukacs (1981) developed a
one-dimensional model of capillary electrophoresis. These authors demonstrated electrophoretic separation
efficiency of chemical and biological substances in open-tubular glass capillaries of75 µm inside diameter.
An analytical attempt to investigate electro-osmotic flow in a single long uniform capillary can be found
in Rice & Whitehead (1965), Burgreen & Nakache (1964), and Andreev & Lisin (1993). Two-dimensional
computer simulations of electrokinetic injection and transport phenomena in a cross-channel device (see
Figure 2) are described in Ermakovet al. (1998, 2000). A steady-state three-dimensional simulation was
performed by Patankar & Hu (1998) to study the electro-osmotic flow in a cross-channel microfluidic
device. Fletcheret al. (1999) described electro-osmotic flows and electrophoretic separation procedures
and solved the one-dimensional electrophoresis equation numerically using a Crank–Nicholson scheme,
where the chemical reaction terms were resolved. They foundthat the numerical scheme loses accuracy
if the reaction is much faster than the diffusion process andproposed a fully implicit method. Major
numerical difficulties associated with electro-osmosis and electrophoresis are well known to numerical
analysts in this area. Particularly important issues in simulating microchannel flows are (i) complicated
computational geometries, (ii) the solenoidal nature of the velocity field, (iii) the formation of shock and
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Figure 1. A schematic diagram of the electric double layer that develops at the charged interface.

Computational domain

Figure 2. A cross-channel microfluidic device.

contact discontinuities because of the slowly diffusing nature of the chemical species, and (iv) resolving the
Debye layer in the numerical grid. We have ignored the first issue by restricting our simulation to a simple
geometry. Since the typical value of the Debye layer thickness is in the nanometer range, Patankar & Hu
(1998) and others have adopted higher values of this parameter and/or used a finer grid near the Debye region.
It has been demonstrated analytically (Rice & Whitehead, 1965) and numerically (e.g., see Alam (2000))
that increasing the non-dimensional value of the Debye layer thickness may change the gross characteristics
of the electro-osmotic flow. However, at a sufficiently low ion concentration, the thickness of the Debye
layer is large enough to be readily modeled with a uniform grid.

Electro-osmosis is associated with substances that diffuse very slowly when dissolved in a buffering
medium. Experiments show that the typical value of the diffusion coefficient of the concentration field is in
the range of10−12 m2/s to 10−8 m2/s. Thus the dissolved sample primarily experiences advection by the
fluid and electrophoretic velocities. Eulerian schemes foradvection are unconditionally unstable and can
produce spurious wiggles and even negative values of the concentration. We have therefore developed a
fully Lagrangian algorithm to simulate passive advection (Bowmanet al., 2002). We have also developed a
numerical algorithm to simulate two-dimensional incompressible electro-osmotic flow such that the solenoidal
nature of the velocity field is preserved and, in the inviscidand unforced limit, the kinetic energy of the
fluid is exactly conserved.

One of the primary aims of this study is to develop and optimize numerical techniques to study electro-
osmosis and electrophoresis. For simplicity, we restrict the computational domain to a two-dimensional
rectangular channel. While the restriction to two dimensions is thought to be a good approximation to
describe passive transport by electro-osmotic flow (Patankar & Hu, 1998), our numerical code has been
designed so that it can be readily generalized to three dimensions.

In the following sections we describe the fundamental partial differential equations that model the
phenomena of electro-osmosis and electrophoresis, the numerical algorithm that preserves the solenoidal
nature of the flow field, and some results of our numerical simulations.
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2. Governing Equations

We assume that the buffer inside the channel is a fluid that is incompressible and Newtonian with uniform
physical properties, the thickness of the Debye layer is small compared with the characteristic length scale,
and the concentration of the dissolved species is dilute anddoes not affect other physical properties of
the fluid such as its density. This assumption does not necessarily require that the density of the fluid be
constant; it only requires that the density be independent of the concentration field. In other words, the
concentration field is a passive scalar quantity (e.g., see Leslie (1973)).

The fluid densityρ(x, t) and fluid velocityv(x, t) satisfy the equations for incompressibility,

∂ρ

∂t
+ v · ∇ρ = 0, (1)

and conservation of mass,
∂ρ

∂t
+ ∇ · (vρ) = 0. (2)

These two equations can be combined together to yield the solenoidal condition

∇ · v = 0, (3)

regardless of whether the density is uniform or not.
The buffer can often be assumed to be of uniform density, so for the rest of this study we assume thatρ

is constant everywhere in the domain. The flow field will then satisfy

∂v

∂t
+ (v · ∇)v = −

1

ρ
∇P + ν∇2v + F , (4)

whereP (x, t) is the pressure,ν is the kinematic viscosity of the fluid, andF (x, t) is the electric force per
unit mass. The concentrationC(x, t) of the species dissolved in the buffer will then satisfy

∂C

∂t
+ ∇ · Γ = D∇2C, (5)

whereΓ is the flux ofC per unit volume andD is the diffusion coefficient. The concentration fluxΓ is
given by (Saville, 1977)

Γ = (v + µE)C, (6)

whereµ is the electrophoretic mobility (assumed to be a constant, proportional to the sign of the elementary
chargeqe of the species), andE is the electric field intensity. Note thatvC is the electro-osmotic flux, due
to the bulk fluid flow, andµEC is the flux due to electrophoresis.

Thus we have two partial differential equations, (4) and (5), to be solved subject to the constraint (3), for
the vectorv and two scalarsP andC. The body forceF is calculated using the electrical properties of the
fluid. The advected species is dilute, so that the fluid properties are independent of the concentration field.
The concentration field thus does not appear in the momentum balance; that is, (4) is decoupled from (5).
Once the velocity field has been computed from (3) and (4), coupled with the equations for the electrical
field, the concentration distribution can then be determined from (5).

2.1. Pressure Field

The solution of this system of partial differential equations is complicated by the absence of a dynamic
equation for the pressure field. The pressure field is determined in such a way that a divergence-free velocity
field is achieved. On taking the divergence of (4),

∇ ·

(

∂v

∂t
+ v · ∇v

)

= ∇ ·

(

−
1

ρ
∇P + ν∇2v + F

)

, (7)

and using (3), we obtain a Poisson equation that can be solvedfor P ,

∇2P = ρ∇ · (F − v · ∇v) . (8)
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Equation (8) is an elliptic partial differential equation that can be solved numerically forP using an iterative
technique, such as a multigrid Poisson solver (e.g., see Bowmanet al. (2000)). The velocity and the pressure
fields are related in such a way that the pressure field will self-consistently adjust to maintain the solenoidal
nature of the velocity field. In a numerical computation, thevelocity field should be computed such that (3)
is satisfied at each time step. Although no time derivative appears in (8), it has to be solved at each time
step to find the pressure distribution required to maintain the solenoidal nature of the velocity field.

2.2. Body Force

The body forceF in (4) can be related to the electric field intensityE and the space-charge densityρe = qeC,
whereqe is the elementary charge of the species, by

ρF = ρeE, (9)

whereE is related to the total potentialΦ via E = −∇Φ. Using Maxwell’s equations, one obtains a Poisson
equation for the potential,

∇2Φ = −
ρe

ǫ
. (10)

The potential fieldΦ thus arises due to the space charge densityρe. In the case of electro-osmosis, the total
potentialΦ has a contribution from the externally applied electric field and another contribution due to the
charge at the walls and in the interior of the computational domain. It is thus convenient to decompose
Φ = ϕ+ ψ, whereϕ is the potential due to the externally applied electric fieldandψ is the potential due
to the space charges in the computational domain. Since the applied potential arises only from external
charges, it satisfies Laplace’s equation within the domain,

∇2ϕ = 0. (11)

Using (10) and (11), it follows that the potentialψ also satisfies Poisson’s equation,∇2ψ = −ρe/ǫ, relatingψ
to ρe. The charge distribution in the solution is governed by the potential at the interface. The Debye–Hückel
approximation leads to the Helmholtz equation

∇2ψ =
1

λ2
D

ψ. (12)

Equation (9) then yieldsF = ǫψ∇(ϕ + ψ)/(ρλ2
D). The concentration fluxΓ given by (6) can also be

written in terms of the potential fields asΓ = [v − µ∇(ϕ+ ψ)]C.
One can now write down the model equations in a closed solvable form, as described in the following

subsection.

2.3. Model Equations

Using a tilde to denote dimensional quantities, and using the fact that away from the wall the derivatives
of ψ are negligible compared with those ofϕ, the governing equations can be written as

∂ṽ

∂t̃
+ ṽ · ∇̃ṽ = −

1

ρ
∇̃P̃ + ν̃∇̃2ṽ +

ǫ

ρλ2
D

ψ̃∇̃ϕ̃, (13)

∂C̃

∂t̃
+ ∇̃ ·

(

ṽ − µ̃∇̃ϕ̃
)

C̃ = D̃∇̃2C̃, (14)

∇̃2P̃ = ρ∇̃·

(

ǫ

ρλ2
D

ψ̃∇̃ϕ̃− ṽ · ∇̃ṽ

)

, (15)

∇̃2ψ̃ =
1

λ2
D

ψ̃, (16)

∇̃2ϕ̃ = 0. (17)
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These equations form a closed system that can be non-dimensionalizedby defining a characteristic length scale
and a characteristic velocity scale. For electro-osmotic flow associated with micro- and nano-technology, the
typical length scales are10−6 m and10−9 m, respectively. Since the flow characteristics in electro-osmotic
pumping are dynamically similar to a channel flow, we chose the widthh of the device used in the laboratory
experiments as our characteristic length scale. A typical velocity U of the fluid due to electro-osmosis is
taken as a characteristic velocity scale. Accordingly, we introduce the non-dimensional variables

x =
x̃

h
, v =

ṽ

U
, t =

Ut̃

h
, P =

P̃

ρU2
, ϕ =

ϕ̃

Φ∗

, ψ =
ψ̃

Φ∗

. (18)

Here the pressure is scaled byρU2 and a typical valueΦ∗ is used to normalize the external and internal
potentials.

The governing equations can now be written in a flux-conservative form using the solenoidal nature of
the velocity field. In dimensionless variables, the equations take the form

∂v

∂t
+ ∇ · (vv) = −∇P + νv∇

2v + αψ∇ϕ, (19)

∂C

∂t
+ ∇ · (v − µ∇ϕ)C = νc∇

2C, (20)

∇2P = ∇ · (αψ∇ϕ− v · ∇v) , (21)

∇2ψ = κ2ψ, (22)

∇2ϕ = 0, (23)

where

α =
Φ2
∗
ǫ

ρU2λ2
D

=
Φ2
∗
e2n

ρU2kT
, νv =

ν̃

Uh
, νc =

D̃

Uh
, µ =

µ̃Φ∗

Uh
, κ2 =

h2

λ2
D

=
h2e2n

kT ǫ
. (24)

The values of the dimensionless constants here determine the underlying physics and nature of the flow
field. In order to realize the relative significance of the inertial force over the viscous force, we can use
typical values of the dimensional quantities to estimateνv and νc, as listed in Table 1 (Harrisonet al.,
1992; Crabtreeet al., 2001). Using these typical values, we find thatνv ≈ 20 andνc ∼ 10−3. Hence the
velocity field is dominated by viscosity and the concentration field is dominated by advection. However,
the diffusion term cannot be neglected from (20) when the duration of an electrophoretic experiment is
comparable with the diffusion time scale. The smallness of the non-dimensional numberνc indicates only
that diffusion is slower than advection. Equations (19)–(23) need to be solved for one vector and four scalar
quantities. With suitable initial and boundary conditions, they constitute a closed system. The fact that (22)
and (23) are time independent can be exploited in a numericalimplementation of this system of equations.

3. Geometry and Boundary Conditions

3.1. Computational Geometry

In this work we restrict our attention to two-dimensional flow in a rectangular domainΩ = {(x, y) : xmin ≤
x ≤ xmax, ymin ≤ y ≤ ymax} that represents a horizontal cross section of a single long capillary, as
illustrated in Figure 3. The domain has an input boundary atx = xmin, an output boundary atx = xmax,
and two wall boundaries aty = ymin andy = ymax. In a numerical simulation, the boundary conditions
must be consistent with one another to avoid numerical instability. The behavior of the field variables at
the boundary of the computational domain determines the corresponding boundary conditions.

3.2. Boundary Conditions

We now describe the boundary conditions used for different fieldsϕ , ψ , P , v , C , andΓ. For the external
potential fieldϕ, a Dirichlet boundary condition at the input and output boundaries and a Neumann boundary
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Figure 3. Computational domain representing the horizontal cross section of an electrophoretic microchannel.

condition at the walls (Levine & Neale, 1976) are used. We usethe non-dimensional valueϕ0 at the input
boundary andϕ1 at the output boundary forϕ :

ϕ(xmin, y) = ϕ0, ϕ(xmax, y) = ϕ1,
∂ϕ

∂y
(x, ymin) = 0,

∂ϕ

∂y
(x, ymax) = 0.

For the potential due to the charges in the fluid, we use a Dirichlet boundary condition on the walls. To
model a solid–liquid interface that has a negative charge, we use the non-dimensional value−ζ for ψ at
the walls. We use a Neumann boundary condition forψ at the inlet and outlet boundaries:

∂ψ

∂x
(xmin, y) = 0,

∂ψ

∂x
(xmax, y) = 0, ψ(x, ymin) = −ζ, ψ(x, ymax) = −ζ.

Using a Dirichlet boundary condition, we specify the dimensionless pressure values at the input and output
boundaries. A Neumann boundary condition is used for the pressure at the walls. Thus, the boundary
conditions onP are similar to those used by Sidilkover & Ascher (1995):

P (xmin, y) = P0, P (xmax, y) = P1,
∂P

∂y
(x, ymin) = 0 and

∂P

∂y
(x, ymax) = 0,

whereP0 andP1 are the non-dimensional pressure values at the input and output boundaries, respectively.
For the velocity field, no-slip boundary condition on the walls are used. Assuming that the channel is very
long, we model only a small section of its length and adopt Neumann boundary conditions at the input and
output boundaries,

∂v

∂x
(xmin, y) = 0,

∂v

∂x
(xmax, y) = 0, v(x, ymin) = 0 and v(x, ymax) = 0.

For the concentration field, we adopt a Neumann boundary condition on the walls and a Dirichlet boundary
condition at the input and output:

C(xmin, y) = C0, C(xmax, y) = C1,
∂C

∂y
(x, ymin) = 0 and

∂C

∂y
(x, ymax) = 0,

whereC0 andC1 are the concentrations in the input and output reservoirs, respectively. It is also necessary
to impose an additional boundary condition for the fluxes in order to finite difference the momentum and
concentration equations. A Neumann boundary condition is used onΓx at the inlet and outlet boundaries
and a Dirichlet condition is used onΓy at the walls:

∂Γx

∂x
(xmin, y) =

∂Γx

∂x
(xmax, y) = 0, Γy(x, ymin) = Γy(x, ymax) = 0,

where

Γ =

[

Γx

Γy

]

denotes the flux of a field variable.
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4. Conservation Laws

In order to study the underlying physics of electro-osmoticflow, we presented in Section 2.3 the fully
nonlinear set of partial differential equations. However,to understand the role of the nonlinearity in driving
the evolution toward a steady state, it is useful to considerthe non-dissipative limit of the system. For
an inviscid flow in the absence of an applied pressure drop, electromotive forcing, and diffusion of the
scalar fieldC, the energyE = 1

2

∫

v2 dx (mean-squared velocity), enstrophyZ = 1

2

∫

ω2 dx, (mean-
squared vorticity), mean-squared concentrationC = 1

2

∫

C2 dx, and cross correlationI = 1

2

∫

Cω dx are all
conserved. Here the scalarω is the magnitude of the vorticityω = ∇ × v. While the energyE and the
mean-squared concentrationC are conserved both in two and three dimensions, the enstrophy Z and the
cross-correlationI are conserved only in two dimensions. The energy is conserved if there is no viscosity or
forcing and the fieldC is conserved in the absence of diffusion. Note that in the presence of fluid viscosity
and body forces, the energy and enstrophy are not conserved,but, to the extent that scalar diffusion can be
neglected, the mean-squared concentrationC remains invariant.

5. Computational Procedure

In order to integrate the governing partial differential equations, we have developed a semi-implicit multigrid
algorithm to compute the electro-osmotic velocity field such that energy is conserved in the inviscid un-
forced limit. The concentration field is computed using parcel advection, a new numerical method for fluid
simulations. In order to implement the algorithm, aC++ module has been developed for the object-oriented
initial-value codeTRIAD, which provides general facilities for parameter input, parsing, generic integration
algorithms, dynamic time stepping, and a restart facility.All the spatial derivatives are calculated using a
second-order accurate centered-in-space finite-difference formula. The codeTRIAD is designed to solve a
system of first-order time-dependent ordinary differential equations.

5.1. Discretization

The partial differential equations that model fluid flow can be discretized using the finite-difference method.
In the area of computational fluid dynamics there have been two basic approaches to applying the finite-
difference method to the governing partial differential equations. One is the Eulerian approach and the other
is the Lagrangian approach. One of the most severe drawbacksof the Eulerian method is the difficulty
found in dealing correctly with the advective termv · ∇v. In the case of scalar advection of a tracer field,
the concentration must always remain non-negative. Without proper handling of advection terms, numerical
solutions can go unconditionally unstable, producing negative concentrations or spurious wiggles (Tannehill
et al., 1997; Presset al., 1997). Historically, the first alternative was the unconditionally stable method
of characteristics introduced by Courantet al. (1952) (sometimes referred to as the CIR scheme; see
LeVeque (1990)). Since that method uses interpolation based on the nearest grid point, in spite of its
unconditional stability, the overall performance is limited by the inherent computational damping associated
with interpolation (Ritchie, 1986).

For the concentration field, we employ an operator-splitting scheme, where different numerical dis-
cretizations are used for the diffusion and advection terms. The dynamics of the concentration field are
dominated by the advective derivative since the typical value of the dimensionless diffusion coefficient is
much smaller than one. Although a wide variety of finite-difference approaches can be used to simulate
an advection problem on an Eulerian grid, all of them must respect a Courant–Friedrich–Lewy criterion
to remain stable (see e.g., Presset al. (1997)). A fully Lagrangian advection algorithm (Bowmanet al.,
2002), combined with a Crank–Nicholson scheme for the diffusive part, has been applied to evolve the
concentration field. The discretization involves a numerical grid consisting of a finite number of cells.
Each of the field variables are computed at the centroid orgrid point of each cell. The boundary of the
computational domain passes through the centroid of the boundary cells.

Let nx andny be the total number of cells in thex andy directions respectively and let(i, j) be the
location of a cell centroid, wherei = 1, . . . , nx andj = 1, . . . , ny. The cells located at(1, j), (nx, j), (i, 1),
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and(i, ny) for anyi or j are boundary cells that are used to implement boundary conditions; for example, a
Dirichlet boundary condition requires fixed values at theseboundary cells. In order to implement a Neumann
boundary condition, we need additional cells around the domain known as ghost cells; they are located at
(0, j), (nx +1, j), (i, 0), and(i, ny +1). The fluid occupies the whole domain and is distributed over the grid
cells. The fluid that occupies one grid cell is called a parcelof fluid. In analogy to the particle-in-cell method,
at each time step, a parcel is assigned a new velocity, pressure, and concentration equal to the area-weighted
average of these quantities in the cells it overlaps. Initially, the cells and parcels are coincident. As the fluid
evolves, the shape of the parcels will in general become distorted; however, because the laminar flows in
this work are virtually uniform, rigid advection of the parcels was found to describe the evolution of the
concentration field sufficiently accurately.

In the momentum equation, the viscous force dominates the inertial force. The nonlinearity in the
advective term can thus be treated explicitly on the right-hand side as a source term. A Crank–Nicholson
scheme, which is unconditionally stable (Richtmyer & Morton, 1957), works well for the viscous term.
However, there are particular difficulties in dealing with the pressure term. Specifically, one should compute
the pressure in such a way that the incompressibility of the velocity field is maintained.

For the purpose of discretizing the governing equations, wedefine the discrete operator

∇1Fi,j =
Fi+1,j − Fi−1,j

2hx

x̂ +
Fi,j+1 − Fi,j−1

2hy

ŷ (25)

and the discrete Laplacian operator

∇2Fi,j =
Fi+1,j − 2Fi,j + Fi−1,j

h2
x

+
Fi,j+1 − 2Fi,j + Fi,j−1

h2
y

, (26)

wherehx andhy are the length and width of a cell, respectively. This finite differencing of the Laplacian
operator is second-order accurate, centered in space, and compact. At thenth time step, the discretized
momentum equation appears as

vn+1

i,j − vn
i,j

τ
+ vn

i,j · ∇1v
n
i,j =

νv

2
∇2
(

vn+1

i,j + vn
i,j

)

− ∇1P
n
i,j + F n

i,j , (27)

whereτ denotes the time step. This requires the solution of the linear system of equations
(

I −
νvτ

2
∇2

)

vn+1

i,j =
(

I +
νvτ

2
∇2

)

vn
i,j + τS(vn

i,j), (28)

i.e.,
L(τ)vn+1

i,j = L(−τ)vn
i,j + τS(vn

i,j), (29)

whereI denotes the identify operator,

L(τ) = I −
νvτ

2
∇2, (30)

andS(vn
i,j) = F n

i,j − vn
i,j · ∇1v

n
i,j −∇1P

n
i,j . Equation (29) is a Helmholtz-type linear system of equations

that can be solved using an iterative technique. We have chosen a multigrid method (Hackbusch, 1985;
Briggs, 1987; Presset al., 1997; Tannehillet al., 1997). In order to solve (29) we need to evaluate the
quantitiesFi,j andPi,j , as described in the following subsections.

For the concentration equation, we treat the advection partin the Lagrangian frame and the diffusion
part in the Eulerian frame with a Crank–Nicholson scheme. Let C̃ denote the solution of the pure advection
problem∂C̃/∂t+ v · ∇C̃ = 0, with the initial conditionC̃(x, 0) = C0. This passive advection problem is
solved using the parcel advection method (Bowmanet al., 2002), which is unconditionally stable and does
not require any artificial viscosity. The fluid is thought to be a collection of fluid parcels (see Figure 4).
A parcel of fluid is advected with its velocity for a single time step. It then contributes to changes in the
velocity and other physical properties of the surrounding fluid parcels.

We can combine advection and diffusion in the following manner:

Cn+1

i,j − C̃n
i,j

τ
=
νc

2
∇2

(

Cn+1

i,j + C̃n
i,j

)

. (31)
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Figure 4. Advection of a parcel.

This procedure is known as operator splitting (Ames, 1977; Presset al., 1997). Equation (31) requires the
solution of another linear system of partial differential equations. In a compact notation, we can rewrite the
entire system of equations asL(τ)Un+1 = L(−τ)Ũn + τS(Ũn), where

U =





vx

vy

C



 , Ũ =





vx

vy

C̃



 , S =





Svx

Svy

0



 .

For the momentum equation, we treat both advection and diffusion in an Eulerian frame. The overall
semi-implicit algorithm is summarized below:

1. Calculate the sourceS for each equation.
2. Evaluate the quantitỹUn.
3. Evaluate the expressionL(−τ)Ũn + τS(Ũn).

4. Invert the operatorL(τ) to getUn+1 = L
−1(τ)

(

L(−τ)Ũn + τS(Ũn)
)

for the next time step.

This algorithm can be used for any system of advection–diffusion equations. Thus, whenever advection
dominates over diffusion, a passive tracer can be evolved primarily in a Lagrangian frame, supplemented
by Eulerian diffusion.

5.2. Computation of the Pressure Field

The solenoidal nature of the velocity field is maintained by the pressure term in the form of the incom-
pressibility condition. Improper treatment of the pressure field leads to a violation of the incompressibility
condition, which is required for the conservation of nonlinear invariants such as energy and enstrophy. One
way of avoiding such a problem is to solve first for the velocity vector potentialA and then compute the
velocity as∇ × A. Although this approach has some advantages, much of its attractiveness is lost when
applied to three-dimensional flow (Tannehillet al., 1997). Moreover, there are complications in implementing
the pressure boundary condition in the vector potential formulation. We have therefore developed a scheme
for satisfying the incompressibility constraint directlyin terms of the velocity variable. To accomplish this,
the Poisson equation (21) has to be solved at every time step.

Beginning with the momentum equation, (27), in the absence of dissipation and forcing,

vn+1

i,j − vn
i,j

τ
+ vn

i,j · ∇1v
n
i,j = −∇1P

n
i,j , (32)

we apply the operator∇1 defined by (25) to (32). We assume that the initial velocity field satisfies
∇1 · vn

i,j = 0. In order for the computed velocity fieldvn+1

i,j to satisfy the discretized incompressibility
condition∇1 · vn+1

i,j = 0, we require that∇1 · (vn
i,j · ∇1v

n
i,j) = −∇1 · ∇1P

n
i,j . This suggests that the

Laplacian∇2P in the Poisson equation (21) should be discretized by applying the operator∇1· to ∇1Pi,j :

∇2
1Pi,j =

Pi+2,j − 2Pi,j + Pi−2,j

4h2
x

+
Pi,j+2 − 2Pi,j + Pi,j−2

4h2
y

, (33)

instead of using the conventional compact finite-differencing of the Laplacian operator given by (26). Indeed,
by maintaining the solenoidal nature of the velocity field ateach time step, (33) can be used to develop a
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spatial discretization that exactly conserves the total kinetic energy of the fluid. In contrast, if the compact
formula (26) is used for discretizing the Laplacian operator, the computed velocity field will not in general
be solenoidal and the energy will not be conserved. In the pressure-correction method of Patankar (1980),
the velocity and the pressure fields are computed simultaneously and one has to correct the pressure field at
each time step until the incompressibility condition is satisfied. By differencing the equations consistently,
we have developed a numerical scheme that does not require such a pressure correction.

The non-compact discretization given by (33) can be used to develop a numerical scheme that conserves
energy (to machine precision), in the absence of forcing anddissipation, by spatially discretizing the
momentum equation as

∂vi,j

∂t
= vi,j × (∇1 × vi,j) − ∇1

(

v2
i,j

2
+ Pi,j

)

. (34)

On taking the dot product of each side withvi,j , we obtain the energy evolution equation

1

2

∂

∂t
v2

i,j = −vi,j · ∇1P
′

i,j = 0, (35)

whereP ′

i,j = v2
i,j/2 + Pi,j is the solution to

∇1 · [vi,j × (∇1 × vi,j)] = ∇
2
1P

′

i,j . (36)

Using the summation by parts formula
n
∑

i=1

fi(gi+1 − gi−1) = fngn+1 + fn+1gn − f0g1 − f1g0 −
n
∑

i=1

(fi+1 − fi−1)gi, (37)

we then find that the total energy1
2

∑

i,j v
2
i,jhxhy evolves according to

1

2

∂

∂t

nx
∑

i=1

ny
∑

j=1

v2
i,jhxhy =

nx
∑

i=1

ny
∑

j=1

P ′

i,j∇1 · vi,jhxhy = 0, (38)

provided thatvi,j · x̂ vanishes on the boundary layersi = 0, i = 1, i = nx, andi = nx + 1 (or is periodic
in i with periodnx) andvi,j · ŷ vanishes on the boundary layersj = 0, j = 1, j = ny, andj = ny + 1
(or is periodic inj with periodny). We thus see that the discretized equations (34) and (36) respect the
energy conservation property of the advective nonlinearity.

6. Numerical Code

The numerical code developed throughout this study has beentested to simulate pressure-driven flow and
electro-osmotic flow. A wide variety of experimental results as well as analytical results of arbitrarily
simplified models exist in this case. We compare the flow characteristics computed by the numerical code
with analytical and experimental results. The numerical results are found to be in good qualitative agreement
with theoretical and experimental observations.

6.1. Simulation Parameters

Here, we describe various scales and evaluate all of the non-dimensional parameters that are defined earlier
in Section 2.3. These parameters depend on various scales. The non-dimensional parameters have been
evaluated from characteristic length and velocity scales based on typical laboratory experiments (Harrison
et al., 1992; Crabtreeet al., 2001). We summarize in Table 1 the characteristic scales and the dimensional
parameters used in our numerical experiments. For the aboveparameters, the Debye layer thickness is
about equal to the grid scalehy. The constantǫ is a material property of the buffer solution. For all of our
numerical experiments, we useǫ ∼ 7.4 × 10−11 C2/(Nm2). The values of the dimensionless parameters
defined in Section 2.3 are

νv = 20, νc = 2 × 10−3, α = 1.27 × 105, κ2 = 4.28 × 103, µ = 0.28.
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Table 1. Numerical simulation parameters.

Length scale (channel width) h 5× 10−5 m
Velocity scale U 10−3 m/s
Time scale h/U 0.05 s
Pressure scale ρU2 10−3 Pa
Potential scale Φ∗ 1 V
Channel length H 80h = 4× 10−3 m
Applied input voltage ΦH 280 V
Applied pressure at the input P0 480× ρU2 = 0.48 Pa
Kinematic viscosity of the buffer solution ν 10−6 m2/s
Diffusion coefficient D 10−10 m2/s
Electrophoretic mobility µ̃ 1.4× 10−8 m2/(Vs)
Wall potential ζ 0.1 V
Boltzmann constant k 1.38 × 10−23 J/K
Elementary charge e 1.6× 10−19 C
Temperature T 300 K
Permittivity of the buffer solution ǫ 7.4× 10−11 C2/(Nm2)
Buffer ion density n 3.4× 10−5 mol/m3

Avagadro number NA 6.02 × 1023 mol−1

Debye layer thickness λD 765 nm
Computational grid nx × ny 4097 × 65

6.2. Numerical Solvers

6.2.1. Pressure Poisson Solver

The computation of the pressure field is one of the more expensive computational steps because the discrete
Poisson equation

∇1 ·

[

Fi,j + vi,j × (∇1 × vi,j) −
1

2
∇1 (vi,j · vi,j)

]

= ∇
2
1Pi,j (39)

has to be solved forPi,j at each time step. The pressure solver is based on a multigridsoftware library
developed by Bowmanet al. (2000). Iterations on a hierarchy of consecutively coarser and coarser grids
are performed until convergence is achieved. The pressure field from the previous time step can be used as
a good initial guess for the multigrid solver, so that convergence can be achieved in about ten iterations. In
the absence of forcing and dissipation, the total kinetic energy should be exactly conserved. We tested this
numerically, using a conservative second-order midpoint integrator to advance (34) forward10 timesteps
of 0.01 for a doubly periodic flow fieldv on [0, 1] × [0, 1] initially satisfying v · x̂ = sin2(2πx) cos(2πy)
and∇1 · v = 0 on a16 × 16 grid.

In Figure 5, the numerically calculated energy and enstrophy are plotted and compared with the results
obtained using a traditional compact differencing of the Laplacian operator. Discretization of the pressure
Poisson equation using the non-compact formula conserves energy to as high an accuracy as desired,
depending on the number of multigrid iterations.

6.2.2. Crank–Nicholson Solver

The viscous term is treated with unconditional stability atthe expense of using a Crank–Nicholson method.
The nonlinearity associated with the advective term in the momentum equation is treated explicitly on
the right-hand side. We have developed aC++ Crank–Nicholson solver around a core recursive multigrid
routine. The Crank–Nicholson solver is based on an efficientmultigrid solver for the discretized Helmholtz
equation∇2u+λu = f , whereλ is a constant andf is a source function. A red–black ordered Gauss–Seidel
smoother is used to reduce the non-smooth component of the error in the fine grid. The divergence-free
velocity computed in the previous time step is used as an initial guess. It is found that the Crank–Nicholson
solver converges in about ten iterations.
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Figure 5. Scaled energy and enstrophy evolution as predicted with thecompact and non-compact pressure formulations.

Many theoretical and experimental studies have been done toexplain the fundamental characteristics
of pressure-driven flow (Bowenet al., 1976; Rice & Whitehead, 1965; Burgreen & Nakache, 1964). We
consider a two-dimensional pressure-driven flow in a rectangular channel of aspect ratio80 : 1. A parabolic
(Poiseuille) profile in the streamwise velocity field develops as a result of a pressure drop along the length
of the channel.

6.3. Electro-Osmotic Velocity Field

In this section we illustrate the electrokinetic effect in two-dimensional electro-osmotic flow in the absence
of an applied pressure drop. The Debye layer thicknessλD, which depends on the bulk ionic concentration
of the liquid inside the channel and plays a key role in producing electro-osmotic flow, is typically small
compared with the widthh of the channel. A decrease of bulk concentration will increase the Debye thickness
and decrease the dimensionless parameterκ = h/λD. Since the Debye layer establishes the charge separation
that leads to electro-osmotic flow (see Section 1), a change inκwill affect the electro-osmotic velocity profile.
This effect was studied analytically by Rice & Whitehead (1965) using a one-dimensional mathematical
model. We present in Figure 6 the electro-osmotic velocity profile for different values of effective ion
densityn for a two-dimensional channel. For large values ofn (and henceκ ) we see that the velocity
has a flat profile (andψ is negligible) across the channel, except in a narrow regionnear the wall. This is
the expected electro-osmotic velocity profile. Asn becomes smaller, departure from electro-osmotic flow
becomes noticeable. When the Debye thickness is comparablewith the characteristic length scaleh, the
internal potentialψ is non-zero far away from the walls. For low values ofn , the velocity profile takes
on a parabolic form, due to the overlapping of the Debye layerwith the entire cross section.

6.4. Evolution of the Concentration Field

Numerical experiments have been performed to study injection of a sample under the influence of a constant
electric field and pressure drop. The normalized sample concentration is set equal to one on a strip at the
input boundary and to zero elsewhere in the computational domain. One aim of the simulations was to
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Figure 8. Distribution ofC at t = 44 with (a) only an applied potential and (b) applied potentialand pressure drops.

study the concentration distribution if the sample is injected with a constant electric field in the absence
of a pressure drop between the input and output boundaries, so that the sample travels toward the output
boundary solely due to the applied electromotive force. Even when the pressure drop across the channel
is zero, one cannot assume thatP = 0 in the interior of the channel; a pressure field is still needed to
maintain the incompressibility of the fluid. Therefore, in contrast to the practice in some previous studies
(Patankar & Hu, 1998), the∇P term in the momentum equation should not be neglected. Another aim
of the simulations was to see the effect of a small pressure gradient on the concentration distribution. The
evolution of the concentration field is the result of two major mechanisms: advection (i.e., electro-osmosis
and electrophoresis) and diffusion. Because of the low value (∼ 10−3) of the non-dimensional parameter
νc = D/(Uh), transport of the sample is dominated by advection.

We simulated a rectangular sample plug near the input boundary of a channel with aspect ratio80 : 1.
The computational resolution4097×65 was chosen to be sufficient to resolve the Debye layer. To study the
effect of dispersion, which becomes important in a long simulation, we report the results of two numerical
experiments: flow due to an applied potential drop but (a) without any pressure drop and (b) with a pressure
drop. The profile ofC, which is usually called an electropherogram, is calculated at a point3H/4 downstream
from the input boundary and depicted in Figure 7. The distribution of C for both cases is illustrated in
Figure 8. The electropherogram is nearly symmetric inx if there is no pressure drop between the input
and output boundaries. The sample concentration is expected to have a Gaussian distribution when injected
by an electro-osmotic flow because the velocity profile is flatexcept in the Debye region. Note that the
electropherogram for case (a) is not perfectly symmetric, because of the enhanced value ofλD that we
used.

In contrast, in the presence of a small pressure gradient, equivalent to a pressure drop of2 mm of water
across the device (which can readily occur in an experiment), the distribution ofC is broader and markedly
asymmetric. We see that a pressure drop can cause dispersion, which is undesirable in electrophoretic species
separation. In our simulation, the sample has traveled onlya physical distance of about3 mm. However,
we expect to find a qualitatively similar dispersive effect,as seen in experiments (Crabtreeet al., 2001), if
the same pressure drop is distributed over a greater distance since in each case the same amount of work
will be done by the∇P force on the fluid over the length of the channel.

7. Conclusions

We have presented a numerical model of electro-osmosis thatcouples passive scalar advection with Eulerian
diffusion. This model consists of a set of elliptic, parabolic and hyperbolic partial differential equations.
A principle contribution of this work is the development of asemi-implicit multigrid algorithm for the
incompressible Navier–Stokes equation, which uses a non-compact discretization of the Poisson equation
for the pressure field to obtain a divergence-free velocity.This second-order center-differenced algorithm
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was designed to conserve energy in the inviscid limit. The implications of the failure of many numerical
algorithms to respect fundamental inviscid invariants (even if the actual system is dissipative) is discussed
further in de Frutos & Sanz-Serna (1994), Bowmanet al. (1997), Shadwicket al. (1999), and Kotovych &
Bowman (2002).

A C++ multigrid Crank–Nicholson solver is used to handle the viscous terms, which for the velocity
equations are dominant. This solver converges rapidly; thenumber of iterations is roughly independent of the
number of grid points. Once the velocity field is updatedvia the Navier–Stokes equation, the concentration
equation is solved in Lagrangian coordinates; although an Eulerian upwind scheme can provide a stable
numerical scheme for passive advection, it introduces too much numerical diffusion and does not guarantee
that the concentration field remains everywhere non-negative. Instead, the fluid is modeled as a collection
of parcels, each of which has a mean velocity, concentration, and position. The momentum equation is
solved on an Eulerian grid and the fluid body force is evaluated by solving the appropriate Laplace and
Helmholtz equations. The pressure is calculated at the cellcentroid by solving a Poisson equation. At each
time step, a parcel is assigned a new velocity equal to the area-weighted average of the fluid velocities in
the cells it overlaps. In a similar manner, parcels distribute their concentration to the cells they overlap.

Alternative numerical advection algorithms can be found inHolt (1984); LeVeque (1990); Tannehill
et al. (1997). Another alternate is the flux-corrected transportalgorithm of Boris & Book (1964), which
is an Eulerian method based on Lagrangian considerations. Although this method can ensure positivity
of the transported quantity and has been tested for several applications (Boris & Book, 1976), numerical
diffusion necessitates the use of an anti-diffusion stage (Boris & Book, 1964), which must be tailored to
the particular problem. However, if there is a sharp gradient in the solution, Eulerian numerical methods
have difficulties (Woodward & Colella, 1984; LeVeque, 1990). We find that our parcel advection algorithm
predicts the solution of an advection equation very well, even when a sharp gradient exists in the solution,
as is typically the case in electrophoretic separation.

Although our algorithm should have broader applications tomany problems involving the passive ad-
vection of a scalar field, we applied it in this work to verify numerically the experimentally observed
dispersive broadening of a concentration pulse due to a pressure gradient (Crabtreeet al., 2001). In the
case of electro-osmotic flow, our simulations confirm that pressure effects can in principle halt, retard or
even reverse the effects of electro-osmotic pumping. Perhaps more attention should be given to this pressure
effect in developing future electrophoretic technologies.
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