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Abstract. A numerical model for electro-osmotic flow is described. Huwecting velocity field is com-
puted by solving the incompressible Navier—Stokes egunafible method uses a semi-implicit multigrid
algorithm to compute the divergence-free velocity at eaahpmpint. The finite differences are second-order
accurate and centered in space; however, the traditiocahdeorder compact finite differencing of the
Poisson equation for the pressure field is shown not to ceasarergy in the inviscid limit. We have de-
signed a non-compact finite differencing for the Laplaciathe pressure equation that allows exact energy
conservation and affords second-order accuracy. The nasteincorporates a new numerical method for
passive scalar advection, called parcel advection, whiclurately predicts the evolution of a passively
traveling scalar pulse without requiring the addition of amtificial diffusion. The algorithm is used to
confirm the experimentally observed asymmetric conceotrgrofile that arises when an external pressure
drop is imposed on electro-osmotic flow.

1. Introduction

Extensive experimental studies of the application of amtatefield to a mixture of charged species in
solution have been performed in microfluidic experimentd anchemical analyses of biological fluids
(Jorgenson & Lukacs, 1981; Culbertson & Jorgenson, 19%erSa al., 1994; Culbertsoet al., 1998)—
for example, for protein separation and DNA sequencingalmtatory experiments, the solvent flow can be
directed along a specified microchannel by the applicatfcappropriate voltages (Harrisaet al., 1992).

In most of these experiments, the sample was injected witbleetro-osmotic flow driven by an applied
potential along the channel (Harrisen al., 1993; Seileret al., 1994). In the field of analytical sciences,
particularly in the area of DNA diagnostics or protein sgpian, the technique of electrokinetic injection
has advanced very rapidly during the last few decades. Tindafuental principles of microflow injection
are based on the double-layer theory developed by von H#m(i879) and the linearized ion energy
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distribution of Debye & Huckel (1923). The fact that the Apgtion of an electric field can induce a fluid
flow through a microchannel was observed as far back as thiarbeg of the19th century (Ruess, 1809).
Microfluidic devices composed of a network of channels aiedgeased in the chemical and biochemical
industries in order to reduce both the time and cost of aialyprocedures. Computer simulations can be
used along with empirical studies to investigate the efficyeof such microfluidic devices.

The phenomena that we deal with throughout this study areftbets associated with the distribution of
charged substances that are dissolved in a fluid near afeiceerith constant electric charge (Morrison &
Stukel, 1970). They play an important role in many diverseirzgd and technological processes, such as in
the biotechnology industry and in biochemical and biolagiesearch. When a charged interface is brought
in contact with an ionized fluid, the electrical charges amititerface will attract ions in the fluid that have
opposite sign; hence there is a layer of fluid near the chargedace where the counter-ion concentration
is much higher than the co-ion concentration (Arulanandain,&000). In other words, there is a layer,
known as the Debye sheath, next to the charged interfacehwiss a net electrical charge concentrated
in a small volume. The Debye—Hiickel approximation (Debyé&lidckel, 1923) can be used to show that
the thickness\p, of this layer depends on the ion densityof the fluid and is given b2, = kTe/(e*n),
wherek is the Boltzmann constar is the absolute temperaturejs the elementary charge, aads the
electrical permittivity of the fluid. Typical experimentahlues of)p, lie betweenl nm and100 nm. When
an electrical field is applied to the liquid, the excess ceutians in the Debye layer will move under the
applied electric field. These ions will migrate to the eled# that has opposite sign.

We consider an electro-osmotic device consisting of a cblawith a rectangular cross section filled
with a buffering medium across which a voltage is applied.cAesnatic diagram of the electric double
layer that develops at the charged interface is shown inr€igu Suppose that the wall of the channel is
negatively charged and a positive voltage is applied atrtpatireservoir on one end of the channel. Since
the interface is negatively charged, the positive changéise solution are concentrated near the wall. These
charges will move toward the negative electrode (Reed & Idorm, 1976), interact frictionally with the
surrounding fluid, pulling it with them and generating a flélav. This is the so-called electro-osmotic flow.
The bulk behavior of a solution of charged particles is caogpéd by the dynamics of the diffuse space
charge that arises from the response of the ions to the adhartgface (Levine & Neale, 1976). However,
if this complication is ignored, the dynamics of an ionicig@n near a charged interface can be understood
from a description of the electric fields and forces opegnitmthe fluid (Ermakowet al., 2000). The overall
dynamics can be modeled mathematically using the consenvaf mass and momentum, together with
the theory of Debye and Huckel.

Chemical separation procedures of various species, imgutie separation of small ions in solution,
have been investigated both theoretically and experinignées well, mathematical models and computer-
aided tools have been developed. The details of the matimhatodels can be found in Babsldt al.
(1983, and refs. therein) and in Mostedral. (1992, and refs. therein). Because these mathematicalsod
consist of nonlinear partial differential equations, an@analytical solution of a model cannot normally be
obtained for arbitrary initial and boundary conditionsesd the model is linearized. Numerical computation
can provide approximate solutions to the fully nonlineardelo Jorgenson & Lukacs (1981) developed a
one-dimensional model of capillary electrophoresis. €eghors demonstrated electrophoretic separation
efficiency of chemical and biological substances in opdntiar glass capillaries afs um inside diameter.
An analytical attempt to investigate electro-osmotic flowai single long uniform capillary can be found
in Rice & Whitehead (1965), Burgreen & Nakache (1964), andrpv & Lisin (1993). Two-dimensional
computer simulations of electrokinetic injection and gport phenomena in a cross-channel device (see
Figure 2) are described in Ermaket al. (1998, 2000). A steady-state three-dimensional sinuatias
performed by Patankar & Hu (1998) to study the electro-ogmitiw in a cross-channel microfluidic
device. Fletcheet al. (1999) described electro-osmotic flows and electropfosstparation procedures
and solved the one-dimensional electrophoresis equatiomerically using a Crank—Nicholson scheme,
where the chemical reaction terms were resolved. They fabatithe numerical scheme loses accuracy
if the reaction is much faster than the diffusion process praposed a fully implicit method. Major
numerical difficulties associated with electro-osmosid atectrophoresis are well known to numerical
analysts in this area. Particularly important issues inugting microchannel flows are (i) complicated
computational geometries, (ii) the solenoidal nature efklocity field, (iii) the formation of shock and
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Figure 1. A schematic diagram of the electric double layer that dex&lat the charged interface.
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Figure 2. A cross-channel microfluidic device.

contact discontinuities because of the slowly diffusinturaof the chemical species, and (iv) resolving the
Debye layer in the numerical grid. We have ignored the fisiésby restricting our simulation to a simple
geometry. Since the typical value of the Debye layer thiskris in the nanometer range, Patankar & Hu
(1998) and others have adopted higher values of this paesueuad/or used a finer grid near the Debye region.
It has been demonstrated analytically (Rice & Whitehea®5)1@nd numerically (e.g., see Alam (2000))
that increasing the non-dimensional value of the Debyerlthiekness may change the gross characteristics
of the electro-osmotic flow. However, at a sufficiently lowiooncentration, the thickness of the Debye
layer is large enough to be readily modeled with a uniforna.gri

Electro-osmosis is associated with substances that diffesy slowly when dissolved in a buffering
medium. Experiments show that the typical value of the difin coefficient of the concentration field is in
the range ofi0~12m?/s to 10~ m?/s. Thus the dissolved sample primarily experiences advetty the
fluid and electrophoretic velocities. Eulerian schemesafivection are unconditionally unstable and can
produce spurious wiggles and even negative values of theeodration. We have therefore developed a
fully Lagrangian algorithm to simulate passive advectiBoWmanet al., 2002). We have also developed a
numerical algorithm to simulate two-dimensional inconggible electro-osmotic flow such that the solenoidal
nature of the velocity field is preserved and, in the invisoid unforced limit, the kinetic energy of the
fluid is exactly conserved.

One of the primary aims of this study is to develop and optnmamerical techniques to study electro-
osmosis and electrophoresis. For simplicity, we resthet computational domain to a two-dimensional
rectangular channel. While the restriction to two dimensiés thought to be a good approximation to
describe passive transport by electro-osmotic flow (PatagkHu, 1998), our numerical code has been
designed so that it can be readily generalized to three difoes.

In the following sections we describe the fundamental phdifferential equations that model the
phenomena of electro-osmosis and electrophoresis, thenahalgorithm that preserves the solenoidal
nature of the flow field, and some results of our numerical ktens.
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2. Governing Equations

We assume that the buffer inside the channel is a fluid thaicismpressible and Newtonian with uniform
physical properties, the thickness of the Debye layer idissompared with the characteristic length scale,
and the concentration of the dissolved species is dilutedmas not affect other physical properties of
the fluid such as its density. This assumption does not nadlseequire that the density of the fluid be
constant; it only requires that the density be independétite concentration field. In other words, the
concentration field is a passive scalar quantity (e.g., sstid (1973)).

The fluid densityp(x, t) and fluid velocityv(x, t) satisfy the equations for incompressibility,

dp
E +v- Vp =0, (1)
and conservation of mass, 5
gp . -
21 + V- (vp) =0. 2

These two equations can be combined together to yield tlemsialal condition
V-.-v=0, 3

regardless of whether the density is uniform or not.
The buffer can often be assumed to be of uniform density, sthorest of this study we assume that
is constant everywhere in the domain. The flow field will thatisfy
1
@+(U-V)v=——vp+yv%+F, (4)
ot P
whereP(x,t) is the pressure; is the kinematic viscosity of the fluid, arBl(x, t) is the electric force per
unit mass. The concentrati@ri(x, t) of the species dissolved in the buffer will then satisfy
8—C+V-F=Dv20, 5)
ot
whereI" is the flux of C' per unit volume and is the diffusion coefficient. The concentration flixis
given by (Saville, 1977)

I'=(v+uE)C, ©)
wherey is the electrophoretic mobility (assumed to be a constanpqgrtional to the sign of the elementary
chargeq. of the species), an#l is the electric field intensity. Note that”' is the electro-osmotic flux, due
to the bulk fluid flow, and.EC is the flux due to electrophoresis.

Thus we have two partial differential equations, (4) andt®)pe solved subject to the constraint (3), for
the vectorv and two scalarg’ andC. The body forceF' is calculated using the electrical properties of the
fluid. The advected species is dilute, so that the fluid ptegreare independent of the concentration field.
The concentration field thus does not appear in the momenalamte; that is, (4) is decoupled from (5).
Once the velocity field has been computed from (3) and (4)pleauwith the equations for the electrical
field, the concentration distribution can then be deterchifnem (5).

2.1. Pressure Field

The solution of this system of partial differential equasads complicated by the absence of a dynamic
equation for the pressure field. The pressure field is deterin such a way that a divergence-free velocity
field is achieved. On taking the divergence of (4),

V.<%+U-V1}>:V-<—%VP+VVQU+F)7 @)

and using (3), we obtain a Poisson equation that can be s@dvel,

V2P =pV-(F-v-Vv). (8)
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Equation (8) is an elliptic partial differential equatidrat can be solved numerically fér using an iterative
technique, such as a multigrid Poisson solver (e.g., seaowt al. (2000)). The velocity and the pressure
fields are related in such a way that the pressure field wicisistently adjust to maintain the solenoidal
nature of the velocity field. In a numerical computation, ¥eéocity field should be computed such that (3)
is satisfied at each time step. Although no time derivativeeaps in (8), it has to be solved at each time
step to find the pressure distribution required to maintaendolenoidal nature of the velocity field.

2.2. Body Force

The body forceF in (4) can be related to the electric field intendifyand the space-charge dengity= ¢.C,
wheregq, is the elementary charge of the species, by

pF =p.E, 9)

wherekF is related to the total potenti@lvia E = —V&. Using Maxwell’'s equations, one obtains a Poisson
equation for the potential,

vig = L (10)

€
The potential field? thus arises due to the space charge densityn the case of electro-osmosis, the total
potential® has a contribution from the externally applied electricdfiahd another contribution due to the
charge at the walls and in the interior of the computatiormahdin. It is thus convenient to decompose
¢ = p + 1), whereyp is the potential due to the externally applied electric fiatdl«) is the potential due
to the space charges in the computational domain. Sincepplked potential arises only from external
charges, it satisfies Laplace’s equation within the domain,

VZp =0. (11)

Using (10) and (11), it follows that the potentiaklso satisfies Poisson’s equati®ty = —p. /¢, relatingy
to p.. The charge distribution in the solution is governed by theptial at the interface. The Debye—Hiickel
approximation leads to the Helmholtz equation

V= 0. (12)
D

Equation (9) then yield# = eV (¢ + )/(pA%). The concentration flux™ given by (6) can also be
written in terms of the potential fields d8 = [v — uV (¢ + )] C.

One can now write down the model equations in a closed sa@valoin, as described in the following
subsection.

2.3. Model Equations

Using a tilde to denote dimensional quantities, and usimegfalet that away from the wall the derivatives
of ¢ are negligible compared with those @f the governing equations can be written as

P 5. Vo— Py iV — 0V, (13)
ot p PAD
0 o [ e N A ren
STtV (v—uvw)c_pv c, (14)
V2P =pV- (—5 Ve —-Vd |, (15)
PAD
V2= -, (16)
)\D

Vg =0. (17)
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These equations form a closed system that can be non-diomatized by defining a characteristic length scale
and a characteristic velocity scale. For electro-osmatie dssociated with micro- and nano-technology, the
typical length scales are)=% m and10~? m, respectively. Since the flow characteristics in elecsoiotic
pumping are dynamically similar to a channel flow, we chosenlldth/ of the device used in the laboratory
experiments as our characteristic length scale. A typieldaity U of the fluid due to electro-osmosis is
taken as a characteristic velocity scale. Accordingly, meoduce the non-dimensional variables
0] Ut P 5 ¥

"2}
t= — =
@’w

- p=_—_ = . 1
Ua h7 pU2799 . @* (8)

v =
Here the pressure is scaled p§? and a typical valueb, is used to normalize the external and internal
potentials.

The governing equations can now be written in a flux-consgevéorm using the solenoidal nature of
the velocity field. In dimensionless variables, the equetitake the form

?9_1; + V. (vv) = -VP+1,V?v +ayVy, (29)
% +V-(v—uVy)C =1, V?C, (20)
V2P =V . (ap)Vyp —v-Vv), (21)
V2 = K2y, (22)
Vi =0, (23)
where -

B P2e B P2e2n _ v _ D 4P 5 h_2 B h2e’n (24)

Ty T vz T o T o T un T TN T kT

The values of the dimensionless constants here determ@naritierlying physics and nature of the flow
field. In order to realize the relative significance of theriia force over the viscous force, we can use
typical values of the dimensional quantities to estimateand v,, as listed in Table 1 (Harrisoat al.,
1992; Crabtreeet al.,, 2001). Using these typical values, we find that~ 20 andv,. ~ 10~3. Hence the
velocity field is dominated by viscosity and the concentratiield is dominated by advection. However,
the diffusion term cannot be neglected from (20) when thetitum of an electrophoretic experiment is
comparable with the diffusion time scale. The smallnes$efrion-dimensional number. indicates only
that diffusion is slower than advection. Equations (193}{2eed to be solved for one vector and four scalar
quantities. With suitable initial and boundary conditiptieey constitute a closed system. The fact that (22)
and (23) are time independent can be exploited in a numengaémentation of this system of equations.

3. Geometry and Boundary Conditions

3.1. Computational Geometry

In this work we restrict our attention to two-dimensionalflm a rectangular domaif? = {(z,y) : Zmin <

z < Tmax, Ymin < ¥ < Ymax} that represents a horizontal cross section of a single lapilary, as
illustrated in Figure 3. The domain has an input boundary &t x.,;,, an output boundary at = z,.,
and two wall boundaries at = yuin andy = ymax. In @ numerical simulation, the boundary conditions
must be consistent with one another to avoid numerical lnilgia The behavior of the field variables at
the boundary of the computational domain determines theesponding boundary conditions.

3.2. Boundary Conditions

We now describe the boundary conditions used for differehddsip, v, P, v, C', andI'. For the external
potential fieldp, a Dirichlet boundary condition at the input and output bdenes and a Neumann boundary
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Figure 3. Computational domain representing the horizontal crosscseof an electrophoretic microchannel.

condition at the walls (Levine & Neale, 1976) are used. Wethsenon-dimensional valug, at the input
boundary andp; at the output boundary fop:

0 0
‘P(xmina y) = $0; @(xmaxa y) = $1, a_z(xvymin) =0, a_j(xa ymaX) = 0.

For the potential due to the charges in the fluid, we use a Id@idoundary condition on the walls. To
model a solid-liquid interface that has a negative chargeuse the non-dimensional value( for ¢ at
the walls. We use a Neumann boundary conditionomt the inlet and outlet boundaries:

o P _ _ _

%('xnuna y) - Oa %(xma)uy) - 07 w(xa ymln) - _C7 ¢($7’ymax) - _C'

Using a Dirichlet boundary condition, we specify the dimentess pressure values at the input and output
boundaries. A Neumann boundary condition is used for thespire at the walls. Thus, the boundary

conditions onP are similar to those used by Sidilkover & Ascher (1995):

P P
P(a:minvy) = P(), P(xmaxay) = Pla ?9_y(x7ymin) =0 and aa_y(xyymax) - 07
where Py and P; are the non-dimensional pressure values at the input apdibbibundaries, respectively.
For the velocity field, no-slip boundary condition on the iware used. Assuming that the channel is very
long, we model only a small section of its length and adoptri&on boundary conditions at the input and
output boundaries,

0 0
8_’;)_(1‘min7y) =0, a_Z(xmaxvy) =0, 'U(xvymin) =0 and U($7ymax) =0.

For the concentration field, we adopt a Neumann boundaryittonan the walls and a Dirichlet boundary

condition at the input and output:

oC oC
C(xmin; y) = CO; C(xmaxa y) = Cl; a_y(x7 ymin) =0 and a_y(x; ymax) - 0;
whereCy, and(C; are the concentrations in the input and output reservaspactively. It is also necessary
to impose an additional boundary condition for the fluxesritheo to finite difference the momentum and
concentration equations. A Neumann boundary conditiorséiwon/, at the inlet and outlet boundaries
and a Dirichlet condition is used afj, at the walls:

or,
ox

ol

(xmin7 y) = a—a;(xmaxv y) = 0; EJ(x) ymin) = EJ($7 ymax) - 07

where

denotes the flux of a field variable.
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4. Conservation Laws

In order to study the underlying physics of electro-osmditiey, we presented in Section 2.3 the fully
nonlinear set of partial differential equations. Howeverunderstand the role of the nonlinearity in driving
the evolution toward a steady state, it is useful to consilernon-dissipative limit of the system. For
an inviscid flow in the absence of an applied pressure draztreimotive forcing, and diffusion of the
scalar fieldC, the energyE = 1 [v?dx (mean-squared velocity), enstroply = % [ w?dx, (mean-
squared vorticity), mean-squared concentratlea 3 [ C? dx, and cross correlation= £ [ Cw dx are all
conserved. Here the scalaris the magnitude of the vorticity = V x v. While the energyE and the
mean-squared concentratiGnare conserved both in two and three dimensions, the enstrgpdnd the
cross-correlatiori are conserved only in two dimensions. The energy is condéftieere is no viscosity or
forcing and the field’ is conserved in the absence of diffusion. Note that in theemee of fluid viscosity
and body forces, the energy and enstrophy are not consdnrgdp the extent that scalar diffusion can be
neglected, the mean-squared concentrafieamains invariant.

5. Computational Procedure

In order to integrate the governing partial differentialiations, we have developed a semi-implicit multigrid
algorithm to compute the electro-osmotic velocity field Isulcat energy is conserved in the inviscid un-
forced limit. The concentration field is computed using paedvection, a new numerical method for fluid
simulations. In order to implement the algorithn(;a™ module has been developed for the object-oriented
initial-value codeTRI AD, which provides general facilities for parameter inputspay, generic integration
algorithms, dynamic time stepping, and a restart facildly.the spatial derivatives are calculated using a
second-order accurate centered-in-space finite-diféeréormula. The cod@&RI AD is designed to solve a
system of first-order time-dependent ordinary differdreguations.

5.1. Discretization

The partial differential equations that model fluid flow candiscretized using the finite-difference method.
In the area of computational fluid dynamics there have beenb@sic approaches to applying the finite-
difference method to the governing partial differentialiations. One is the Eulerian approach and the other
is the Lagrangian approach. One of the most severe drawlzddke Eulerian method is the difficulty
found in dealing correctly with the advective temm Vv. In the case of scalar advection of a tracer field,
the concentration must always remain non-negative. Withmper handling of advection terms, numerical
solutions can go unconditionally unstable, producing tieg@oncentrations or spurious wiggles (Tannehill
et al, 1997; Pres®t al, 1997). Historically, the first alternative was the unctindally stable method

of characteristics introduced by Couraett al. (1952) (sometimes referred to as the CIR scheme; see
LeVeque (1990)). Since that method uses interpolationasethe nearest grid point, in spite of its
unconditional stability, the overall performance is liedtby the inherent computational damping associated
with interpolation (Ritchie, 1986).

For the concentration field, we employ an operator-sptitticheme, where different numerical dis-
cretizations are used for the diffusion and advection terfiie dynamics of the concentration field are
dominated by the advective derivative since the typical@alf the dimensionless diffusion coefficient is
much smaller than one. Although a wide variety of finite-glifnce approaches can be used to simulate
an advection problem on an Eulerian grid, all of them muspeesa Courant—Friedrich—Lewy criterion
to remain stable (see e.g., Preddsal. (1997)). A fully Lagrangian advection algorithm (Bowmanhal,,
2002), combined with a Crank—Nicholson scheme for the siifiel part, has been applied to evolve the
concentration field. The discretization involves a nunarigrid consisting of a finite number of cells.
Each of the field variables are computed at the centroidrimt point of each cell. The boundary of the
computational domain passes through the centroid of thedry cells.

Let n, andn, be the total number of cells in theandy directions respectively and I¢t, j) be the
location of a cell centroid, where=1,...,n, andj = 1,...,n,. The cells located &, j), (ns,5), (¢,1),
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and(i, ny) for anyi or j are boundary cells that are used to implement boundary tonslj for example, a
Dirichlet boundary condition requires fixed values at thesendary cells. In order to implement a Neumann
boundary condition, we need additional cells around thealnrknown as ghost cells; they are located at
0,7), (nz+1,5), (,0), and(z, n, +1). The fluid occupies the whole domain and is distributed dvergrid
cells. The fluid that occupies one grid cell is called a pan€élid. In analogy to the particle-in-cell method,
at each time step, a parcel is assigned a new velocity, peesaud concentration equal to the area-weighted
average of these quantities in the cells it overlaps. Ihtithe cells and parcels are coincident. As the fluid
evolves, the shape of the parcels will in general becomentiést; however, because the laminar flows in
this work are virtually uniform, rigid advection of the pats was found to describe the evolution of the
concentration field sufficiently accurately.

In the momentum equation, the viscous force dominates thgiah force. The nonlinearity in the
advective term can thus be treated explicitly on the riginichside as a source term. A Crank—Nicholson
scheme, which is unconditionally stable (Richtmyer & Mortd957), works well for the viscous term.
However, there are particular difficulties in dealing witle foressure term. Specifically, one should compute
the pressure in such a way that the incompressibility of #leaity field is maintained.

For the purpose of discretizing the governing equationsgefene the discrete operator

Fiprj—Fij . Fijp1—Fij-1
ViFi;= H’j% LE ’JHQh g (25)
T Yy
and the discrete Laplacian operator
Fipq i —2F; i+ F_q F;, iy —2F, i+ F; i_
VQEJ _ +1,7 L, ] + 1,5 + J+1 J + J—1 (26)

2 2 ’
h2 hg

whereh, andh, are the length and width of a cell, respectively. This finiiéedencing of the Laplacian
operator is second-order accurate, centered in space,anpact. At thenth time step, the discretized
momentum equation appears as

’Ug;_l — ’U’le n n Vv o2 n+1 n n n
S o Vel = S (o ) - VPS4 F, (27)
wherer denotes the time step. This requires the solution of thafisgstem of equations
(1= 20V ot = (1+ 250 V2 ) wfy + 7S (v)). (28)
ie.,
L(T)vf;’l L(—7)v; +78(v;), (29)
wherel denotes the identify operator,
L) =1I- ”;T v, (30)

andS(v;) = F[; — v}, - Vv, — V1 P[",. Equation (29) is a Helmholtz-type linear system of equetio
that can be solved usmg an |terat|ve technlque We haveechasmultigrid method (Hackbusch, 1985;
Briggs, 1987; Presst al., 1997; Tannehillet al., 1997). In order to solve (29) we need to evaluate the
quantitiesF; ; and P; ;, as described in the following subsections.

For the concentrat|on equation, we treat the advectionipdtie Lagrangian frame and the diffusion
part in the Eulerian frame with a Crank—Nicholson scheme (Ldenote the solution of the pure advection
problemdC/dt + v - VC = 0, with the initial conditionC (z, 0) = C,. This passive advection problem is
solved using the parcel advection method (Bowragaal., 2002), which is unconditionally stable and does
not require any artificial viscosity. The fluid is thought te & collection of fluid parcels (see Figure 4).
A parcel of fluid is advected with its velocity for a single gnstep. It then contributes to changes in the
velocity and other physical properties of the surroundingifparcels.

We can combine advection and diffusion in the following memn

n+1 ~n
Ci;j — Civj

T

= v (et Cry). (31)
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Figure 4. Advection of a parcel.

This procedure is known as operator splitting (Ames, 197&sget al., 1997). Equation (31) requires the
solution of another linear system of partial differentigliations. In a compact notation, we can rewrite the
entire system of equations #&{7)U"*! = L(—7)U" + 7S(U"), where

Vg B Vg va
U = Vy | U= Ug; y S = S?)y
c C 0

For the momentum equation, we treat both advection andgiififuin an Eulerian frame. The overall
semi-implicit algorithm is summarized below:

1. Calculate the sourc& for each equation.
2. Evaluate the quantityy™. _ _
3. Evaluate the expressiab(—7)U™ + 7S(U™).

4. Invert the operatoL () to getU™*! = £71(7) (L(—T)ﬁ" + 75(0")) for the next time step.

This algorithm can be used for any system of advection-siifiu equations. Thus, whenever advection
dominates over diffusion, a passive tracer can be evolvdapity in a Lagrangian frame, supplemented
by Eulerian diffusion.

5.2. Computation of the Pressure Field

The solenoidal nature of the velocity field is maintained bg pressure term in the form of the incom-
pressibility condition. Improper treatment of the pressiield leads to a violation of the incompressibility
condition, which is required for the conservation of noalininvariants such as energy and enstrophy. One
way of avoiding such a problem is to solve first for the velpeiéctor potentialA and then compute the
velocity asV x A. Although this approach has some advantages, much of iec@weness is lost when
applied to three-dimensional flow (Tannekillal., 1997). Moreover, there are complications in implememntin
the pressure boundary condition in the vector potentiahtdation. We have therefore developed a scheme
for satisfying the incompressibility constraint directiyterms of the velocity variable. To accomplish this,
the Poisson equation (21) has to be solved at every time step.

Beginning with the momentum equation, (27), in the abserictssipation and forcing,
ntl _ gn
—l ) 4l Vi) = =V P, (32)
-
we apply the operatoR; defined by (25) to (32). We assume that the initial velocitydfisatisfies

Vi -, = 0. In order for the computed velocity fiehil’.f;rl to satisfy the discretized incompressibility

condition V4 -v”jl = 0, we require thatV, - (vgjj . Vlv;fj) ==V -V P This suggests that the

3

Laplacianv? P in the Poisson equation (21) should be discretized by apgltie operatoV - to VP ;:

Pivoj —2Pj+Pia;  Pijyo—2P;+Pijo

4n3 an? ’ (33)

ViPi; =

instead of using the conventional compact finite-diffeiegof the Laplacian operator given by (26). Indeed,
by maintaining the solenoidal nature of the velocity fieldeath time step, (33) can be used to develop a
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spatial discretization that exactly conserves the tota¢#c energy of the fluid. In contrast, if the compact
formula (26) is used for discretizing the Laplacian operdatee computed velocity field will not in general
be solenoidal and the energy will not be conserved. In thespire-correction method of Patankar (1980),
the velocity and the pressure fields are computed simultastgand one has to correct the pressure field at
each time step until the incompressibility condition issfad. By differencing the equations consistently,
we have developed a numerical scheme that does not requeineaspressure correction.

The non-compact discretization given by (33) can be use@veldp a numerical scheme that conserves
energy (to machine precision), in the absence of forcing disdipation, by spatially discretizing the
momentum equation as

8;? =i X (V1 X v,) — Vi <% + Pw-) . (34)
On taking the dot product of each side with;, we obtain the energy evolution equation
%%vﬁj = —v,; ;- V1P ; =0, (35)
where P/ ; = v7,/2 + P; ; is the solution to
Vi [vij X (Vi Xv5)]=ViP/,. (36)

Using the summation by parts formula
D filgiv1 = 9i-1) = fagnir + fai1gn — foor = frgo— D _(fir1 — fim1)9s, (37)
i=1 i=1

we then find that the total energyy_, ; v ;h.h, evolves according to

%%szﬁjhmhy =33 P/ ;Vi-vijhshy =0, (38)
i=1 j=1 i=1 j=1
provided that; ; - & vanishes on the boundary layers- 0, i = 1, ¢ = n,, andi = n, + 1 (or is periodic
in ¢ with periodn,) andv; ; - ¢ vanishes on the boundary layers=0, j = 1, j = n,, andj = n, + 1
(or is periodic inj with periodn,). We thus see that the discretized equations (34) and (3@ece the
energy conservation property of the advective nonlingarit

6. Numerical Code

The numerical code developed throughout this study has tested to simulate pressure-driven flow and
electro-osmotic flow. A wide variety of experimental resuéis well as analytical results of arbitrarily
simplified models exist in this case. We compare the flow diarstics computed by the numerical code
with analytical and experimental results. The numericaiiits are found to be in good qualitative agreement
with theoretical and experimental observations.

6.1. Simulation Parameters

Here, we describe various scales and evaluate all of thelmoansional parameters that are defined earlier
in Section 2.3. These parameters depend on various scdlesndn-dimensional parameters have been
evaluated from characteristic length and velocity scatesetl on typical laboratory experiments (Harrison
et al,, 1992; Crabtreet al, 2001). We summarize in Table 1 the characteristic scalddlee dimensional
parameters used in our numerical experiments. For the aparsmeters, the Debye layer thickness is
about equal to the grid scalg. The constant is a material property of the buffer solution. For all of our
numerical experiments, we use~ 7.4 x 10~ C*/(Nm?). The values of the dimensionless parameters
defined in Section 2.3 are

vy = 20, ve=2x1073, a=1.27 x 105, k? =4.28 x 103, = 0.28.
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Table 1. Numerical simulation parameters.

M. Jahrul Alam and John C. Bowman

Length scale (channel width) h 5x107° m

Velocity scale U 1072 m/s

Time scale h/U 0.05s

Pressure scale pU? 1073 Pa

Potential scale D, 1V

Channel length H 80h =4 x 10> m
Applied input voltage Dy 280 V

Applied pressure at the input P 480 x pU? = 0.48 Pa
Kinematic viscosity of the buffer solution | v 107°m?/s

Diffusion coefficient D 1071%m?/s
Electrophoretic mobility fi 1.4 x 1073 m?/(Vs)
Wall potential ¢ 0.1V

Boltzmann constant k 1.38 x 107# JIK
Elementary charge e 1.6 x 1071C
Temperature T 300 K

Permittivity of the buffer solution € 7.4 x 107" C?/(Nm?)
Buffer ion density n 3.4 x 1075 mol/m?
Avagadro number Na 6.02 x 10?3 mol~!
Debye layer thickness AD 765 nm
Computational grid Nz X Ny 4097 x 65

6.2. Numerical Solvers
6.2.1. Pressure Poisson Solver

The computation of the pressure field is one of the more exypenemputational steps because the discrete
Poisson equation

1
V- .F@j + Vi X (Vl X U@j) — §V1 (’UZ‘J‘ . U@j) = V%P@j (39)

has to be solved foP; ; at each time step. The pressure solver is based on a mulsigfidare library
developed by Bowmaet al. (2000). Iterations on a hierarchy of consecutively caaasel coarser grids
are performed until convergence is achieved. The pressideffom the previous time step can be used as
a good initial guess for the multigrid solver, so that cogesice can be achieved in about ten iterations. In
the absence of forcing and dissipation, the total kinetergy should be exactly conserved. We tested this
numerically, using a conservative second-order midpaitdggrator to advance (34) forwaid timesteps

of 0.01 for a doubly periodic flow field» on [0,1] x [0, 1] initially satisfyingv - & = sin?(27z) cos(27y)
andV,-v=0o0nal6 x 16 grid.

In Figure 5, the numerically calculated energy and ensiyah plotted and compared with the results
obtained using a traditional compact differencing of th@lhaian operator. Discretization of the pressure
Poisson equation using the non-compact formula consemeryg to as high an accuracy as desired,
depending on the number of multigrid iterations.

6.2.2. Crank—Nicholson Solver

The viscous term is treated with unconditional stabilitytet expense of using a Crank—Nicholson method.
The nonlinearity associated with the advective term in th@mentum equation is treated explicitly on
the right-hand side. We have developed & Crank—Nicholson solver around a core recursive multigrid
routine. The Crank—Nicholson solver is based on an effigimnitigrid solver for the discretized Helmholtz
equationV?u -+ \u = f, where) is a constant angl is a source function. A red—black ordered Gauss—Seidel
smoother is used to reduce the non-smooth component of tbeierthe fine grid. The divergence-free
velocity computed in the previous time step is used as aiaiigitiess. It is found that the Crank—Nicholson
solver converges in about ten iterations.
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Figure 5. Scaled energy and enstrophy evolution as predicted witltdhgact and non-compact pressure formulations.

Many theoretical and experimental studies have been doeeglain the fundamental characteristics
of pressure-driven flow (Boweat al., 1976; Rice & Whitehead, 1965; Burgreen & Nakache, 1964. W
consider a two-dimensional pressure-driven flow in a repiéar channel of aspect ratid : 1. A parabolic
(Poiseuille) profile in the streamwise velocity field deyedas a result of a pressure drop along the length
of the channel.

6.3. Electro-Osmotic Velocity Field

In this section we illustrate the electrokinetic effectwotdimensional electro-osmotic flow in the absence
of an applied pressure drop. The Debye layer thicknessvhich depends on the bulk ionic concentration
of the liquid inside the channel and plays a key role in prasiyelectro-osmotic flow, is typically small
compared with the width of the channel. A decrease of bulk concentration will insesthe Debye thickness
and decrease the dimensionless parameter:/\ . Since the Debye layer establishes the charge separation
that leads to electro-osmotic flow (see Section 1), a changwill affect the electro-osmotic velocity profile.
This effect was studied analytically by Rice & Whitehead@3pusing a one-dimensional mathematical
model. We present in Figure 6 the electro-osmotic velocityfile for different values of effective ion
densityn for a two-dimensional channel. For large valuesnofand hencex) we see that the velocity
has a flat profile (and is negligible) across the channel, except in a narrow regear the wall. This is
the expected electro-osmotic velocity profile. Advecomes smaller, departure from electro-osmotic flow
becomes noticeable. When the Debye thickness is compandthiehe characteristic length scate the
internal potentialy) is non-zero far away from the walls. For low valuesof the velocity profile takes
on a parabolic form, due to the overlapping of the Debye layigt the entire cross section.

6.4. Evolution of the Concentration Field

Numerical experiments have been performed to study igedf a sample under the influence of a constant
electric field and pressure drop. The normalized sampleergration is set equal to one on a strip at the
input boundary and to zero elsewhere in the computationaladm. One aim of the simulations was to
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Figure 6. Electro-osmotic velocity profiles for different values wof.
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Figure 7. Distribution of C' along the center line of the channel at a dista£&/4 downstream from the input boundary.
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Figure 8. Distribution of C' att = 44 with (a) only an applied potential and (b) applied potensiatl pressure drops.
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study the concentration distribution if the sample is ifgelcwith a constant electric field in the absence
of a pressure drop between the input and output boundadebas the sample travels toward the output
boundary solely due to the applied electromotive force.rBEwben the pressure drop across the channel
is zero, one cannot assume that= 0 in the interior of the channel; a pressure field is still nektte
maintain the incompressibility of the fluid. Therefore, iontrast to the practice in some previous studies
(Patankar & Hu, 1998), th& P term in the momentum equation should not be neglected. Anatim

of the simulations was to see the effect of a small presswaéigmt on the concentration distribution. The
evolution of the concentration field is the result of two nrajeechanisms: advection (i.e., electro-osmosis
and electrophoresis) and diffusion. Because of the lowev&lu10—3) of the non-dimensional parameter
v. = D/(Uh), transport of the sample is dominated by advection.

We simulated a rectangular sample plug near the input boyrtdaa channel with aspect ratio : 1.
The computational resolutiotd97 x 65 was chosen to be sufficient to resolve the Debye layer. Ty shed
effect of dispersion, which becomes important in a long &tion, we report the results of two numerical
experiments: flow due to an applied potential drop but (aheut any pressure drop and (b) with a pressure
drop. The profile of”, which is usually called an electropherogram, is calcdlate poin8 H /4 downstream
from the input boundary and depicted in Figure 7. The distidn of C' for both cases is illustrated in
Figure 8. The electropherogram is nearly symmetrie: iif there is no pressure drop between the input
and output boundaries. The sample concentration is exppexteave a Gaussian distribution when injected
by an electro-osmotic flow because the velocity profile is dbatept in the Debye region. Note that the
electropherogram for case (a) is not perfectly symmetmcabise of the enhanced value)of that we
used.

In contrast, in the presence of a small pressure gradienivagnt to a pressure drop dfmm of water
across the device (which can readily occur in an experimér)distribution ofC' is broader and markedly
asymmetric. We see that a pressure drop can cause dispevkioh is undesirable in electrophoretic species
separation. In our simulation, the sample has traveled amyysical distance of abod@tmm. However,
we expect to find a qualitatively similar dispersive effexg,seen in experiments (Crabtegeal., 2001), if
the same pressure drop is distributed over a greater desince in each case the same amount of work
will be done by theV P force on the fluid over the length of the channel.

7. Conclusions

We have presented a numerical model of electro-osmosisthigles passive scalar advection with Eulerian
diffusion. This model consists of a set of elliptic, parab@nd hyperbolic partial differential equations.
A principle contribution of this work is the development ofsami-implicit multigrid algorithm for the
incompressible Navier—Stokes equation, which uses a nompact discretization of the Poisson equation
for the pressure field to obtain a divergence-free veloditys second-order center-differenced algorithm
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was designed to conserve energy in the inviscid limit. Thplications of the failure of many numerical
algorithms to respect fundamental inviscid invariantse(eif the actual system is dissipative) is discussed
further in de Frutos & Sanz-Serna (1994), Bownsral (1997), Shadwiclet al. (1999), and Kotovych &
Bowman (2002).

A C*T* multigrid Crank—Nicholson solver is used to handle the wiscterms, which for the velocity
equations are dominant. This solver converges rapidlyntimeber of iterations is roughly independent of the
number of grid points. Once the velocity field is updatéthe Navier—Stokes equation, the concentration
equation is solved in Lagrangian coordinates; although @lerian upwind scheme can provide a stable
numerical scheme for passive advection, it introduces toolnmumerical diffusion and does not guarantee
that the concentration field remains everywhere non-negjdtistead, the fluid is modeled as a collection
of parcels, each of which has a mean velocity, concentradod position. The momentum equation is
solved on an Eulerian grid and the fluid body force is evallidte solving the appropriate Laplace and
Helmholtz equations. The pressure is calculated at thecealiroid by solving a Poisson equation. At each
time step, a parcel is assigned a new velocity equal to treevmegghted average of the fluid velocities in
the cells it overlaps. In a similar manner, parcels distaltheir concentration to the cells they overlap.

Alternative numerical advection algorithms can be foundHmit (1984); LeVeque (1990); Tannehill
et al. (1997). Another alternate is the flux-corrected transpagorithm of Boris & Book (1964), which
is an Eulerian method based on Lagrangian consideratioittsough this method can ensure positivity
of the transported quantity and has been tested for sevepéications (Boris & Book, 1976), numerical
diffusion necessitates the use of an anti-diffusion st&mi¢ & Book, 1964), which must be tailored to
the particular problem. However, if there is a sharp gratierthe solution, Eulerian numerical methods
have difficulties (Woodward & Colella, 1984; LeVeque, 1998 find that our parcel advection algorithm
predicts the solution of an advection equation very welkrewhen a sharp gradient exists in the solution,
as is typically the case in electrophoretic separation.

Although our algorithm should have broader applicationsnemy problems involving the passive ad-
vection of a scalar field, we applied it in this work to verifymerically the experimentally observed
dispersive broadening of a concentration pulse due to spregradient (Crabtreet al., 2001). In the
case of electro-osmotic flow, our simulations confirm thaspure effects can in principle halt, retard or
even reverse the effects of electro-osmotic pumping. Parhreore attention should be given to this pressure
effect in developing future electrophoretic technologies
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