
Multithreaded Implicitly Dealiased Convolutions

Malcolm Roberts

Computer Modelling Group Ltd, 3710 33 Street NW, Calgary, Alberta, T2L 2M1 Canada

John C. Bowman∗

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton,
Alberta T6G 2G1, Canada

Abstract

Implicit dealiasing is a method for computing in-place linear convolutions
via fast Fourier transforms that decouples work memory from input data.
It offers easier memory management and, for long one-dimensional input
sequences, greater efficiency than conventional zero-padding. Furthermore,
for convolutions of multidimensional data, the segregation of data and work
buffers can be exploited to reduce memory usage and execution time sig-
nificantly. This is accomplished by processing and discarding data as it is
generated, allowing work memory to be reused, for greater data locality and
performance. A multithreaded implementation of implicit dealiasing that
accepts an arbitrary number of input and output vectors and a general mul-
tiplication operator is presented, along with an improved one-dimensional
Hermitian convolution that avoids the loop dependency inherent in previous
work. An alternate data format that can accommodate a Nyquist mode and
enhance cache efficiency is also proposed.

Keywords: convolution, implicit dealiasing, fast Fourier transform,
multithreading, parallelization, pseudospectral method

∗Corresponding author
Email addresses: malcolm.i.w.roberts@gmail.com (Malcolm Roberts),

bowman@ualberta.ca (John C. Bowman)

Preprint submitted to Journal of Computational Physics 7th April 2021



1. Introduction1

The convolution is an important operator in a wide variety of applications2

ranging from statistics, signal processing, image processing, and the numer-3

ical approximation of solutions to nonlinear partial differential equations.4

The convolution of two sequences {Fk}k∈Z and {Gk}k∈Z is
∑

p∈Z FpGk−p.5

In practical applications, the inputs {Fk}m−1k=0 and {Gk}m−1k=0 are of finite6

length m, yielding a linear convolution with components
∑k

p=0 FpGk−p for7

k = 0, . . . ,m−1. Computing such a convolution directly requires O(m2) op-8

erations, and roundoff error is a significant problem for largem. It is therefore9

preferable to make use of the convolution theorem, harnessing the power of10

the fast Fourier transform (FFT) to map the convolution to a component-wise11

multiplication. This reduces the computational complexity of a convolution12

to O(m logm) [5, 7] while improving numerical accuracy [8].13

Since the FFT considers the inputs to be periodic, the direct application14

of the convolution theorem results in a circular convolution, due to the indices15

being computed modulo m. Removing these extra aliases from the periodic16

convolution to produce a linear convolution is called dealiasing.17

We give a brief overview of the dealiasing requirements for different types18

of convolutions in Section 2. The standard method for dealiasing FFT-based19

convolutions is to pad the inputs with a sufficient number of zero values20

such that the aliased contributions are all zero, as shown in Figure 1. In21

Section 3, we generalize the method of implicit dealiasing [3] to handle an22

arbitrary number of input and output vectors, with a general spatial mul-23

tiplication operator. This allows implicit dealiasing to be efficiently applied24

to autocorrelations and pseudospectral simulations of nonlinear partial dif-25

ferential equations (e.g. in hydrodynamics and magnetohydrodynamics). We26

also discuss key technical improvements that allow implicit dealiasing to be27

fully multithreaded. For an efficient in-place implementation of the centered28

Hermitian convolution, it was necessary to unroll the outer loop partially so29

that interacting wavenumbers can be simultaneously processed. This loop30

unrolling offers another advantage: it removes the loop interdependence that31

prevented Function conv in [3] from being fully parallelized. For the con-32

struction of 2D and 3D convolutions, discussed in Section 4, the advantage33

of our new 1D convolution routines (relative to those in Ref. [3]) is the bet-34

ter pipelining afforded by loop interdependence, not their parallelizability, as35

the multithreading is now done at a higher level. The higher dimensional36

convolutions are decomposed into a sequence of lower-dimensional convo-37

2



{Fk}N−1
k=0 {0}N−1

k=0 {Gk}N−1
k=0 {0}N−1

k=0

{fj}2N−1
j=0 {gj}2N−1

j=0

{fjgj}2N−1
j=0

{(F ∗G)k}N−1
k=0

Figure 1: Computing a 1D convolution via explicit zero padding.

lutions, each of which are run on a separate thread. We demonstrate that38

multithreaded implicit dealiasing in dimensions greater than one uses far less39

memory and is much faster than explicit dealiasing. The accomplishments40

of this work and future directions for research are summarized in Section 5.41

Implicitly dealiased convolution routines are publicly available in the open-42

source software library FFTW++ [4], which is built on top of the widely used43

FFTW library [6].44

2. Dealiasing requirements for convolutions45

To compute the standard linear convolution
∑k

p=0 FpGk−p for k ∈ {0, . . . ,m−46

1}, the data is padded with m zeroes for a total FFT length of 2m. We refer47

to these inputs as non-centered and the paddings as 1/2 padding. If the input48

data is multidimensional with size m1× . . .×md, then the data must be zero49

padded to 2m1 × . . .× 2md, increasing the buffer size by a factor of 2d.50

For pseudospectral simulations, it is convenient to shift the zero wavenum-51

ber in the transformed data to the middle of the array. In this case, the inputs52

are {Fk}m−1k=−m+1 and {Gk}m−1k=−m+1, which we refer to as centered, and their53

convolution has components
∑m−1

p=k−m+1 FpGk−p for k = −m + 1, . . . ,m − 1.54

Convolutions on centered inputs require less padding than on non-centered55

inputs: data of length 2m−1 needs to be padded only to length 3m−2 (nor-56

mally extended to 3m); this is called 2/3 padding [10]. Explicit zero padding57

increases the d-dimensional buffer size in this case by a factor of (3/2)d.58

A binary convolution can be generalized to an n-ary operator ∗(F1, . . . , Fn)k =59 ∑
p1,...,pn

Fp1 · · ·Fpnδp1+...+pn,k, where δ is the Kronecker delta. For non-centered60

inputs, an n-ary convolution could be computed as a sequence of binary con-61

volutions using 1/2 padding. However, for centered inputs with both negative62

and positive frequencies, each binary convolution would have to be padded63

3



further to eliminate all aliased interactions [11]. As a result, n-ary convolu-64

tions benefit greatly from implicit dealiasing [3].65

We consider a generalized convolution operation that takes A inputs and66

produces B outputs, where the multiplication performed in the transformed67

space can be an arbitrary component-wise operation. In order to make use68

of 1/2 padding or 2/3 padding (for noncentered or centered inputs, respect-69

ively), the multiplication operator must be quadratic; if the multiplication70

operator is of higher degree, one must extend the padding to remove un-71

desired aliases. To compute a convolution with A inputs and B outputs using72

the convolution theorem, one performs A backward FFTs to transform the73

inputs, applies the appropriate multiplication operation on the transformed74

data, and then performs B forward FFTs to produce the final outputs, for a75

total of A+B FFTs.76

The choice of multiplication operator determines the type of convolution.77

Let {fj} be the inverse Fourier transform of {Fk}. An autoconvolution can78

be computed with just two transforms using A = B = 1 and the operation79

fj → f 2
j , while an autocorrelation would use fj → fjfj, where fj denotes the80

complex conjugate of fj. For the standard binary convolution, there are two81

inputs and one output, and the multiplication operation is (fj, gj)→ fjgj.82

The nonlinear advective term of the 2D incompressible Navier–Stokes vor-83

ticity equation can be computed with the operation (ux, uy, ∂ω/∂x, ∂ω/∂y)→84

(ux∂ω/∂x+ uy∂ω/∂y), where u = (ux, uy) is the 2D velocity and ω =85

ẑ ·∇×u is the z-component of the vorticity; this requires a total of five FFTs86

(A = 4 and B = 1). As shown in Appendix A, it is possible to reduce the FFT87

count for this case to four, with A = B = 2. Similarly, in three dimensions,88

Basdevant [2] showed that the number of FFT calls can be reduced from89

nine to eight, with A = 3 and B = 5. For incompressible 3D magnetohydro-90

dynamic (MHD) flows the operation is (u,ω,B, j)→ (u×ω+j×B,u×B),91

where u is the velocity, ω =∇× u is the vorticity, B is the magnetic field,92

and j is the current density (A = 12, B = 6) [12]. However, in Appendix A93

we show that Basdevant’s technique can be used to reduce the number of94

calls to 14 (A = 6, B = 8). For the Navier–Stokes and MHD equations, the95

operation is quadratic and the convolution is binary (n = 2), with a pad-96

ding ratio of 2/3 (since the Fourier modes are symmetric about the origin).97

In these pseudospectral applications, the physical space quantities are real98

valued: one can therefore use complex-to-real Fourier transforms, which are99

about twice as efficient as their complex counterparts.100

4



3. One-dimensional implicitly dealiased convolutions101

Implicit padding allows one to dealias convolutions without having to102

write, read, and multiply by explicit zero values. This is accomplished by103

implicitly incorporating the zero values into the top level of a decimated-in-104

frequency FFT. The extra memory previously used for padding now appears105

as a decoupled work buffer. One-dimensional implicitly dealiased convo-106

lutions therefore have the same memory requirements as explicitly padded107

convolutions. Although in one dimension implicit padding is only slightly108

more efficient than explicit zero padding on a single thread, it still has the109

advantage of not requiring the copying of user data to a separate enlarged110

zero-padded buffer before performing the FFT. We now describe the optim-111

ized 1D building blocks that will be used in Section 4 to construct higher-112

dimensional implicitly dealiased convolutions that are much more efficient113

and compact than their explicit counterparts.114

3.1. Complex convolution115

Dealiasing the standard convolution
∑k

p=0 FpGk−p for k = 0, . . . ,m − 1116

requires extending the input data with zeros from length m to length N ≥117

2m−1, thus removing the beating of two modes with wavenumber m−1 that118

would otherwise contaminate mode N = 0 modN . One generally chooses119

N = 2m to optimize the number of small prime factors in N , resulting in120

improved FFT performance.121

The backward Fourier transform {fj}N−1j=0 of the zero-padded input vector122

{Fk}N−1k=0 has components fj =
∑N−1

k=0 ζ
jk
N Fk, where ζN = exp (2πi/N) denotes123

the N th root of unity. The divide-and-conquer strategy of the fast Fourier124

transform is based on the property ζrN = ζN/r. Since Fk = 0 for k ≥ m,125

we can compute the even- and odd-indexed terms of {fj}N−1j=0 as separate126

subtransforms:127

f2` =
m−1∑
k=0

ζ2`k2mFk =
m−1∑
k=0

ζ`kmFk, f2`+1 =
m−1∑
k=0

ζ
(2`+1)k
2m Fk =

m−1∑
k=0

ζ`km ζ
k
2mFk, (1)

where ` = 0, . . . ,m− 1. That is, {fj}N−1j=0 can be computed with two Fourier128

transforms of length m depending on the input data {Fk}m−1k=0 , with the even-129

indexed and odd-indexed parts of the output stored separately. Equation (1)130

has a (slightly improved) computational complexity of O(N logm), while131

avoiding the outermost bit reversal stage and the inconvenience of explicitly132

5



{Fk}m−1
k=0 {Gk}m−1

k=0

{f2ℓ}m−1
ℓ=0 {f2ℓ+1}m−1

ℓ=0 {g2ℓ}m−1
ℓ=0 {g2ℓ+1}m−1

ℓ=0

{f2ℓg2ℓ}m−1
ℓ=0 {f2ℓ+1g2ℓ+1}m−1

ℓ=0

{(F ∗G)k}m−1
k=0

Figure 2: Computing a 1D convolution via implicit dealiasing.

appending m extra zero values to the input data. The (scaled) inverse of133

Eq. (1) is given by the forward transform134

2mFk =
2m−1∑
j=0

ζ−kj2m fj =
m−1∑
`=0

ζ−k2`2m f2` +
m−1∑
`=0

ζ
−k(2`+1)
2m f2`+1

=
m−1∑
`=0

ζ−k`m f2` + ζ−k2m

m−1∑
`=0

ζ−k`m f2`+1, k = 0, . . . ,m− 1, (2)

again using two Fourier transforms of length m. Equations (1) and (2) can135

be combined to compute a dealiased binary convolution of {Fk}m−1k=0 and136

{Gk}m−1k=0 , as shown in Figure 2 and implemented in pseudocode in Func-137

tion cconv of Ref. [3]. For each input, two arrays of size m are used instead138

of one array of size 2m. This distinction is the key to the improved effi-139

ciency and reduced storage requirements of the higher-dimensional implicit140

convolutions described in Section 4. In the 1D complex case, each of the six141

complex Fourier subtransforms of size m can be done out of place. Since142

implicit dealiasing does not compute the entire inverse Fourier transformed143

image at once, we included in our implementation a facility for determining144

the spatial coordinates of each point as it is processed. This can be used for145

generating an image in x space of the inverse transformed data.146

As in our previous work [3], we calculate the ζkN factors with a single147

complex multiply, using two short pre-computed tables Ha = ζasN and Lb =148

ζbN , where k = as + b with s = b√mc, a = 0, 1, . . . , dm/se − 1, and b =149

0, 1, . . . , s− 1. Since these one-dimensional tables occupy only O(
√
m) com-150

plex words, we do not account for them in our storage estimates.151

Out-of-place FFTs are often more efficient than their in-place counter-152

parts, and are more amenable to multithreading. It is not possible to make153

use of out-of-place FFTs for explicitly dealiased convolutions without allocat-154

ing additional memory, but the situation is different with implicitly dealiased155

6



convolutions. For example, in Function cconv of Ref. [3], for which A = 2,156

B = 1, all FFTs are out of place. The more general Function cconv in157

this work extends implicit dealiasing to arbitrary values of A and B; it uses158

A+B − 1 out-of-place FFTs and A+B + 1 in-place FFTs.159

In the special case A > B, the multiplication operator will free buffers160

that can be reused, and it is possible to compute the convolution with all161

FFTs out of place. The idea is that the input and work buffers can be162

processed separately, and, after applying the multiplication operator, the163

data in the last of the A work buffers is no longer needed. One can make use of164

this buffer to perform out-of-place transforms, as shown in Function cconvA165

of Appendix B, for which all 2A + 2B FFTs are computed out of place.166

Likewise, when A < B, Function cconvB shows that all but one of the167

2A+ 2B FFTs can be performed out of place.168

When A = 2 and B = 1, Function cconvA runs a few percent faster than169

Function cconv from Ref. [3], thanks to improvements in the loop structure in170

the pre- and post-processing stages. Thus, in one dimension, as seen in Fig-171

ure 3(a), implicit dealiasing on a single thread is now on average 12% faster172

(wall-clock time per convolution is 12% lower) than explicit zero padding.173

3.1.1. Multithreaded Complex 1D Binary Convolutions174

We parallelize Functions cconv, cconvA, and cconvB using OpenMP in175

our pre/post-processing phases and in the multiplication operator, while tak-176

ing advantage of the multithreading built into the FFTW library. In Fig-177

ure 3(a), we compare the speed of the implicit and explicit algorithms using178

one and four threads. Using one thread, the implicit method is on average179

1.12 times faster than the explicit method, whereas using four threads the180

performance improvement in wall-clock time is a factor of 1.04 to 2.6 for181

m ≥ 8192. The reason that the explicit version benefits from parallelization182

at smaller m values than implicit dealiasing is a simple consequence of the183

fact that the vector sizes for explicit dealiasing are twice as large, due to184

the memory wasted on padding. Multithreading efficiency for small vector185

lengths is limited due to thread initialization overhead and false sharing, a186

critical performance issue on symmetric multiprocessing systems, where the187

processors share a local cache. For arrays of m = 1048576 double precision188

complex numbers, each of 16 bytes, the 8MB cache boundary is exceeded189

and the performance enhancement from multithreading is now limited by the190

bus bandwidth to off-chip memory. The error bars in the timing figures in-191

dicate the lower and upper one-sided standard deviations, as given in Ref. [3].192

7



Input: vectors {fa}A−1a=0

Output: vectors {fb}B−1b=0

for a = 0 to A− 1 do
ua ← fft−1(fa)

{ub}B−1b=0 ← mult({ua}A−1a=0 )
parallel for k = 0 to m− 1 do

for a = 0 to A− 1 do
fa[k]← ζk2mfa[k]

for a = 0 to A− 1 do
fa ← fft−1(fa)

{f0}B−1b=0 ← mult({fa}A−1a=0 )
f0 ← fft(f0)
u0 ← fft(u0)
parallel for k = 0 to m− 1 do

f0[k]← f0[k] + ζ−k2mu0[k]
for b = 1 to B − 1 do

fb ← fft(fb)
u0 ← fft(ub)
parallel for k = 0 to m− 1
do

fb[k]← fb[k] + ζ−k2mu0[k]

return {fb/(2m)}B−1b=0

Function cconv returns the in-
place implicitly dealiased 1D con-
volution of the complex vectors
{fa}A−1a=0 using the multiplication
operator mult : CA → CB. Each
of the FFT transforms is multith-
readed, with A+B−1 out-of-place
and A+B + 1 in-place FFTs.

Input: vectors {fa}A−1a=0

Output: vectors {fb}B−1b=0

for a = 0 to A− 1 do
pretransform(fa, uA−1)

f0a ← fft−1(f0a)

f1a ← fft−1(f1a)
ua ← fft−1(uA−1)

{f0b}B−1b=0 ← mult({f0a}A−1a=0 )

{f1b}B−1b=0 ← mult({f1a}A−1a=0 )

{ub}B−1b=0 ← mult({ua}A−1a=0 )

for b = 0 to B − 1 do
u0 ← fft(ub)

f0b ← fft(f0b)

f1b ← fft(f1b)

posttransform({f0b}ck=0∪
{f1b}ck=2c+2−m, f

1
b [1], u0)

return {fb/(3m)}B−1b=0

Function conv returns the
implicitly dealiased 1D Her-
mitian convolution of length
m (m + 1) in the compact
(noncompact) format, using
the multiplication operator
mult : RA → RB, with 2A+
2B+2 in-place and A+B−2
out-of-place FFTS.

8



2

3

4

5

6

7

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi
ci
en
cy

512
2048
8192
32768
131072
524288

(b)

Figure 3: In-place 1D complex convolutions of length m, with A = 2 and B = 1: (a)
comparison of computation times for explicit and implicit dealiasing using T = 1 thread
and T = 4 threads; (b) parallel efficiency of implicit dealiasing versus number of threads.
For efficiency m is chosen to be a power of two.

9



The number of samples varied from several million for small data sizes to 20193

for larger data sizes.194

In Figure 3(b), we observe for m = 2048 to 524288 that the implicit195

method with four threads has a parallel efficiency of 43% to 85%, where196

parallel efficiency is defined as197

serial time

wall-clock time× number of cores
. (3)

With four cores, this corresponds to a parallel speedup factor of 1.7 to 3.4.198

Both the FFTW-3.3.6 library and the convolution layer we built on top199

of it were compiled with the GCC 5.3.1 20160406 compiler. Our library was200

compiled with the optimizations -fopenmp -fomit-frame-pointer -fstrict-201

aliasing -ffast-math -msse2 -mfpmath=sse -march=native and execut-202

ed on a 64-bit 3.4GHz Intel i7-2600K processor with an 8MB cache. Like the203

FFTW library, our algorithms were vectorized with specialized SSE2 single-204

instruction multiple-data code.205

3.2. Centered data formats206

In this work, we extend the treatment of centered Fourier input data207

{F−m+1, . . . , Fm−1} for even m from Ref. [3], to all natural numbers m. We208

also implement an optional new data layout {F−m, . . . , Fm−1}. In addition to209

handling convolutions of Fourier transformed real-space data of even length,210

this extended format can yield significant performance improvements, even if211

the additional mode F−m is simply set to zero. We refer to {F−m+1, . . . , Fm−1}212

as the compact format and {F−m, . . . , Fm−1} as the noncompact format. The213

noncompact format is consistent with the output of a real-to-complex FFT214

and allows for a multithreaded implementation (Procedure fft1padBackward)215

since it doesn’t have the loop dependency seen in Procedure fft0padBackward216

in Appendix B.217

Although the compact format has slightly smaller storage requirements,218

on some architectures with more than one (typically a power of two) memory219

banks, stride resonances can significantly hurt performance if successive mul-220

tidimensional array accesses fall on the same memory bank. A similar effect221

can occur on modern architectures due to cache associativity. It is therefore222

useful in the centered case to allow the user to choose between the two data223

formats.224

In the compact (noncompact) format, it is convenient to shift the Fourier225

origin so that the k = 0 mode is indexed as array element m− 1 (m). This226

10



shift, which can be built into implicitly dealiased convolution algorithms at227

no extra cost, allows for more convenient coding of wavenumber loops since228

the high-wavenumber cutoff is naturally aligned with the array boundaries.229

In the compact case, whereN = 2m−1, one needs to pad toN ≥ 3m−2 to230

prevent modes with wavenumber m−1 from beating together to contaminate231

the mode with wavenumber −m + 1. The ratio of the number of physical232

to total modes, (2m − 1)/(3m − 2), is then asymptotic to 2/3 for large m233

[10]. With explicit padding, for efficiency reasons one normally chooses the234

padded vector length N to be a power of 2, with m = b(N + 2)/3c, while for235

implicit padding, it is advantageous to choose the subtransform length m to236

be a power of 2. Moreover, it is convenient to pad implicitly slightly beyond237

3m− 2, to N = 3m, to support a radix 3 subdivision at the outer level.238

In the case of an even number 2m−2 of spatial data points, one must use239

the noncompact data format, with modes running from −m to m − 1. We240

now describe a noncompact implicitly dealiased centered Fourier transform;241

the compact case is obtained by setting F−m = 0. Suppose then that Fk = 0242

for k > m. On decomposing j = (3` + r) modN , where r ∈ {−1, 0, 1}, the243

substitution k′ = m+ k allows us to write the backward transform as244

f3`+r =
m−1∑
k=−m

ζ`km ζ
rk
3mFk =

m−1∑
k′=0

ζ`k
′

m ζ
r(k′−m)
3m Fk′−m +

m−1∑
k=0

ζ`km ζ
rk
3mFk =

m−1∑
k=0

ζ`kmwk,r,

(4)
where for 0 ≤ k ≤ m− 1,245

wk,r
.
= ζrk3m(Fk + ζ−r3 Fk−m). (5)

Here
.
= is used to emphasize a definition. The forward transform is then246

3mFk =
1∑

r=−1
ζ−rk3m

m−1∑
`=0

ζ−`km f3`+r, k = −m+ 1, . . . ,m− 1. (6)

The use of the remainder r = −1 instead of r = 2 allows us to exploit247

the optimization ζ−k3m = ζk3m in Eqs. (5) and (6). The number of complex248

multiplies needed to evaluate Eq. (5) for r = ±1 can be reduced by com-249

puting the intermediate complex quantities Ak
.
= ζk3m

(
ReFk + ζ−13 ReFk−m

)
250

and Bk
.
= iζk3m

(
ImFk + ζ−13 ImFk−m

)
, where ζ−13 = (−1

2
,−
√
3
2

), so that for251

k > 0, wk,1 = Ak + Bk and wk,−1 = Ak −Bk. The resulting noncompact252

backward transform is given in Procedure fft1padBackward; its inverse is253

11



given in Procedure fft1padForward. The compact versions of these routines254

are Procedure fft0padBackward in Appendix B and its inverse, Procedure255

fftpad0Forward from Ref. [3].256

Input: vector f
Output: vector f, vector u
parallel for k = 0 to m− 1 do

A← ζk3m

[
Re f[m+ k] +

(
−1

2
,−
√
3
2

)
Re f[k]

]
B← iζk3m

[
Im f[m+ k] +

(
−1

2
,−
√
3
2

)
Im f[k]

]
f[k]← f[k] + f[m+ k]
f[m+ k]← A + B

u[k]← A− B

f[0, . . . ,m− 1]← fft−1(f[0, . . . ,m− 1])
f[m, . . . , 2m− 1]← fft−1(f[m, . . . , 2m− 1])
u[0, . . . ,m− 1]← fft−1(u[0, . . . ,m− 1])

Procedure fft1padBackward(f,u) stores the shuffled 3m-padded centered
backward Fourier transform values of a noncompact-format vector f of
length 2m in f and an auxiliary vector u of length m. The Fourier ori-
gin corresponds to array position m.

3.2.1. Centered Hermitian Implicitly Padded 1D FFT257

The Fourier transform of real data satisfies the Hermitian symmetry258

F−k = Fk. This implies that the Fourier coefficient corresponding to k = 0 is259

real. There is a further consequence of this symmetry when the length N of260

the discrete transform
∑N−1

j=0 ζ
−kj
N fj is even. Due to the periodicity of the dis-261

crete transform in N , the highest frequency (Nyquist) mode must also be real:262

FN/2 = F−N/2 = FN/2. Letting m = bN/2c+ 1, in the case where N is even,263

the 2m modes can therefore be indexed as {F−m+1, . . . , Fm} where F0 and Fm264

are real. An odd number 2m− 1 of modes is indexed as {F−m+1, . . . , Fm−1}.265

Hermitian symmetry can be used to reduce the computational complex-266

ity and storage requirements of complex-to-real and real-to-complex Fourier267

transforms by a factor of about two. A one-dimensional convolution of Her-268

mitian data only requires the data corresponding to non-negative wavenum-269

bers. In the compact case, with modes in {−m + 1, . . . ,m − 1}, the un-270

symmetrized physical data needs to be padded with at least m − 1 zeros,271

12



Input: vector f, vector u
Output: vector f
f[0, . . . ,m− 1]← fft(f[0, . . . ,m− 1])
f[m, . . . , 2m− 1]← fft(f[m, . . . , 2m− 1])
u[0, . . . ,m− 1]← fft(u[0, . . . ,m− 1])
f[m]← f[0] + f[m] + u[0]
f[0]← 0
parallel for k = 1 to m− 1 do

A← f[k]

f[k]← A +
(
−1

2
,
√
3
2

)
ζ−k3mf[m+ k] +

(
−1

2
,−
√
3
2

)
ζk3mu[k]

f[m+ k]← A + ζ−k3mf[m+ k] + ζk3mu[k]

return f/(3m)

Procedure fft1padForward(f,u) returns the inverse of
fft1padBackward(f,u), with f[0] (the Nyquist mode for spatial data
of even length) set to zero.

just as in Section 3.2. Hermitian symmetry thus necessitates padding the m272

non-negative wavenumbers with at least c
.
= bm/2c zeros. The resulting 2/3273

padding ratio (for even m) turns out to work particularly well for develop-274

ing implicitly dealiased centered Hermitian convolutions. As in the centered275

case, we again choose the Fourier size to be N = 3m.276

When N = 3m, the most negative (Nyquist) wavenumber −m can con-277

structively beat with itself, producing an alias in mode −m+(−m) = −2m =278

m mod 3m, which is equivalent to itself modulo 2m. To remove this alias we279

set the Nyquist mode to zero at the end of the convolution, after account-280

ing for its effects on the other modes. We note that there are no aliases in281

{−m, . . . , 2m− 1} arising from the interaction of mode −m with any of the282

other modes. Those interactions can (and in fact, should) be retained.283

In the noncompact case, it is sufficient to retain the modes {0, . . . ,m}.284

One could of course treat this as compact data of size m + 1, but in the285

frequently occurring case where m = 2p (for p ∈ Z), this would require286

the computation of subtransforms of length 2p + 1 instead of 2p. The most287

efficient available FFT algorithms are typically those of size 2p.288

Fortunately, the choice N = 3m also works for the noncompact case,289

provided that the entry for the Nyquist mode, which must be real, is zeroed290

at the end of the convolution. For example, direct autoconvolution of the291

13



Hermitian data {(1, 0), (2, 3), (4, 0)} yields {(59, 0), (20,−18), (3, 12)}. With292

m = 3, the compact implicitly dealiased convolution in Function conv pro-293

duces identical results. For m = 2, the noncompact version yields the correct294

values {(59, 0), (20,−18)} for the first m elements only if the data (3, 12) for295

the Nyquist mode at k = m is taken into account. That is, in order to enforce296

Hermitian symmetry and reality of the corresponding spatial field, we split297

the coefficient for k = −m equally between F−m and its Hermitian conjugate298

Fm.299

Let us now describe a noncompact implicitly padded Hermitian FFT; the300

compact case can then be obtained by setting F−m = Fm = 0. We find301

f3`+r =
m∑

k=−m
ζ`km ζ

rk
3mFk =

m−1∑
k′=0

ζ`k
′

m ζ
r(k′−m)
3m Fk′−m +

m∑
k=0

ζ`km ζ
rk
3mFk =

m−1∑
k=0

ζ`kmwk,r,

(7)
Given that Fk = 0 for k > m, the backward (complex-to-real) transform302

appears as Eq. (7), but now with303

wk,r
.
=

{
F0 + Fm Re ζ−r3 if k = 0,

ζrk3m
(
Fk + ζ−r3 Fm−k

)
if 1 ≤ k ≤ m− 1.

(8)

We note for k > 0 that wk,r obeys the Hermitian symmetry wk,r = wm−k,r, so304

that the Fourier transform
∑m−1

k=0 ζ
`k
mwk,r in Eq. (7) will indeed be real valued.305

This allows us to build a backward implicitly dealiased centered Hermitian306

transform using three complex-to-real Fourier transforms of the first c + 1307

components of wk,r (one for each r ∈ {−1, 0, 1}). The forward transform is308

given by 3mFk =
∑1

r=−1 ζ
−rk
3m

∑m−1
`=0 ζ−`km f3`+r for k = 0, . . . ,m − 1. Since309

f3`+r is real, a real-to-complex transform can be used to compute the first310

c+ 1 frequencies of
∑m−1

`=0 ζ−`km f3`+r; the remaining m− c− 1 frequencies are311

then computed using Hermitian symmetry.312

3.2.2. Multithreaded Hermitian 1D Binary Convolution313

An in-place implicitly padded Hermitian convolution was previously de-314

scribed in Function conv of Ref. [3] for the case of 2M inputs and one output,315

where the multiplication operator was restricted to a dot product. How-316

ever, that algorithm cannot be efficiently applied to the autoconvolution317

case (with just one input and one output), to pseudospectral simulations of318

3D Navier–Stokes and magnetohydrodynamic flows, or to the reduced-FFT319

scheme of Basdevant for 2D turbulence (see Appendix A). Furthermore,320

14



interloop dependencies at the outermost level prevent it from being multith-321

readed. Moreover, to facilitate an in-place implementation, the transformed322

values for r = 1 were awkwardly stored in reverse order in the upper half323

of the input vector, exploiting the quadratic nature of the real-space mul-324

tiplication operator. By unrolling the outer loop of the in-place Hermitian325

1D convolution, these deficiencies can be eliminated, resulting in the fully326

multithreaded implementation in Function conv, generalized to handle A327

inputs and B outputs and an arbitrary quadratic multiplication operator328

mult : RA → RB.329

0

1
. . .

k
. . .

c+ 1− k
. . .

c− 1
c
. . .

c+ k − 1
. . .

2c− k
. . .

2c− 1

r = 0

r = 1

(a)

0

1
. . .

k
. . .

c+ 1− k
. . .

c− 1
c
. . .

c+ k
. . .

2c+ 1− k
. . .

2c− 1

2c

r = 0

r = 1

(b)

Figure 4: Loop unrolling for the Hermitian 1D convolution when (a) m = 2c and (b)
m = 2c + 1.

To multithread Procedure pretransform in Appendix B, we unrolled330

two iterations of the loop from Procedure build in Ref. [3] to read, process,331

and write the entries for the elements indexed by k, m − k, c + 1 − k, and332

m − c − 1 + k simultaneously, for k = 1, . . . , dc/2e, as shown in Figure 4.333

The implicitly padded transformed data for remainders r = 0 and r = 1 is334

stored in the input data vector f , whereas the data for remainder r = −1335

is stored in the auxiliary vector u. In the frequently encountered case where336

m = 2c, the values at position c− 1 and c overlap for the remainders r = 0337

and r = 1, whereas when m = 2c + 1 there is only one overlapping value,338

at index c. In the noncompact case, any Nyquist inputs f [m] and g[m] are339

properly accounted for, but on output f [m] is set to zero, for consistency340

15



with Hermitian symmetry. A similar loop unrolling is used in a revised341

implementation of the post-processing phase (see Procedure posttransform342

in Appendix B) to allow for an arbitrary number of inputs A and outputs B.343

In the pseudocode, the portions of the arrays corresponding to remainders344

r = 0 and r = 1 are shown in Figure 4 and distinguished by the superscripts345

0 and 1. Since these portions overlap when written to the array f , additional346

code is required to save and restore the overlapping elements in the actual347

in-place implementation.348

In our general Function conv, only A + B − 2 of the 3A + 3B FFTs349

can be performed out of place. When A = B this is the best that one350

can do: for example, for an autoconvolution (A = B = 1), there is no free351

buffer available that would enable the use of out-of-place transforms. Nev-352

ertheless when A > B or B > A the optimized Function convA or convB,353

respectively, in Appendix B performs one FFT in place and the remaining354

3A + 3B − 1 FFTs out of place. Even with one thread, for A = 2 and355

B = 1, Functions conv and convA both have slightly better performance356

than Function conv in Ref. [3], primarily due to the removal of loop interde-357

pendence. Most importantly, conv, convA, and convB have fully parallelized358

pre- and post-processing phases and use FFTW’s built-in parallel FFTs, which359

are typically much more efficient when the transforms are out of place. The360

new routines accept either compact or noncompact inputs and can therefore361

also benefit from the performance advantage of the noncompact data format362

discussed in Section 3.2.363

In the case of a binary convolution with two input vectors and one output364

vector, a fully in-place convolution requires a total of nine Hermitian Four-365

ier transforms of size m, for an overall computational scaling of 9
2
Km log2m366

operations, where K = 34/9 [3], in agreement with the leading-order scaling367

of an explicitly padded centered Hermitian convolution. In our new imple-368

mentation, eight of the nine Fourier transforms can now be performed out369

of place, using the same amount of memory (6c + 2 words in the compact370

case) as required to compute a centered Hermitian convolution with explicit371

padding.372

As seen in Fig. 5, the efficiency of the resulting implicitly dealiased373

centered Hermitian convolution is comparable to an explicit implementa-374

tion. For each algorithm, we benchmark only those vector lengths that yield375

optimal performance. The optimal values of m for the explicit version are376

b(2p + 2)/3c for natural numbers p, whereas for the implicit version the op-377

timal values are powers of two, so direct comparison of the methods using378

16



optimal problem sizes is not possible. Instead, we compare the two methods379

using a linear interpolation (with respect to logm) of the execution time res-380

caled by the computational complexity of the algorithm. With one thread,381

the implicit version runs between 5% and 23% faster for m ≥ 2048; with four382

threads, the implicit version is between 12% and 105% faster for m ≥ 65536,383

as shown in Fig. 5(a). We demonstrate the parallel efficiency of the implicit384

routine in Fig. 5(b) using one, two, and four threads. For m ≥ 8192, the385

parallel efficiency of the implicit method with four threads is between 45%386

and 68%, giving a speedup of a factor of 1.8 to 2.7.387

2

3

4

5

ti
m
e/
(m

lo
g
2
m
)
(n
s)

102 103 104 105 106
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E
ffi
ci
en
cy

512
2048
8192
32768
131072
524288

(b)

Figure 5: In-place 1D Hermitian convolutions of length m: (a) comparison of computation
times for explicit and implicit dealiasing using T = 1 thread and T = 4 threads; (b) parallel
efficiency of implicit dealiasing versus number of threads. For implicit convolutions, m is
chosen to be a power of two, while for explicit convolutions m = b(N + 2)/3c, where N is
a power of two.

4. Higher-dimensional convolutions388

A d-dimensional convolution can be computed by performing an inverse389

FFT of size m1 × . . . ×md, applying the appropriate multiplication on the390

transformed data, followed by an FFT back to the original space. Equival-391

ently, one can perform
∏d

i=2mi inverse FFTs in the first dimension, followed392

17



by m1 convolutions of dimension d− 1, and finally
∏d

i=2mi FFTs in the first393

dimension. The innermost operation of a recursive multidimensional convo-394

lution thus reduces to a 1D convolution. Using this decomposition, one can395

reuse the work buffer for each implicitly dealiased subconvolution, thereby re-396

ducing the total memory demand relative to the explicit d-dimensional deali-397

asing requirement. For multithreaded implicitly dealiased convolutions, the398

initial inverse FFT can be parallelized by dividing the
∏d

i=2mi 1D FFTs and399

m1 subconvolutions between the T threads. Since each implicitly dealiased400

subconvolution requires a work buffer, the total memory requirement grows401

with the number of threads, but is still much lower than that required for402

explicit multidimensional convolutions when T � m1. When T ≤ m1, we403

compute T subconvolutions at a time, using one inner thread per subconvo-404

lution to avoid over-subscription. Otherwise, if T > m1, we parallelize only405

the inner subconvolution (over all T threads).406

A single-threaded 2D implicitly 1/2-padded complex convolution is shown407

in Figure 6. Each input buffer is implicitly padded and inverse Fourier trans-408

formed in the x direction to produce the data shown in the square boxes. An409

implicitly padded inverse FFT is then performed in the y direction, column-410

by-column, using a one-dimensional work buffer, to produce a single column411

of the Fourier transformed image, depicted in yellow. The Fourier trans-412

formed columns of two inputs F and G are then multiplied pointwise and413

stored back into the F column. At this point, the y forward-padded FFT can414

then be performed, with the result stored in the lower-half of the column,415

next to the previously processed data shown in red. The process is repeated416

on the remaining columns, shifting and reusing the work buffer. Once all417

the columns have been processed, a forward-padded FFT in the x direction418

produces the final convolution in the left-hand half of the F buffer.419

The reuse of subconvolution work memory allows the convolution to be420

computed using less total memory: for 1/2 padded convolutions, the memory421

requirement per input is only about twice what would be required if deali-422

asing was outright ignored. This represents a memory savings of a factor423

of 2d−1 as compared to explicit padding; for 2/3 padded convolutions, the424

memory savings factor is (3/2)d−1. In addition to having reduced memory425

requirements, implicitly dealiased multidimensional convolutions are signific-426

antly faster than their explicit counterparts, due to better data locality and427

cache management, along with the fact that transforms of data known to be428

zero are automatically avoided.429

In the following subsections, we show that the algorithms developed in430

18



FFT−1
x {F}

even

FFT−1
x {F}
odd

FFT−1
x {G}

even

FFT−1
x {G}
odd

Figure 6: The reuse of memory in a 2D complex implicitly dealiased convolution: after
applying a 1D y convolution to the yellow column, the upper half is reused for the next
column.

Section 3 can be used as building blocks to construct efficient implicitly431

padded higher-dimensional convolutions.432

4.1. Complex 2D convolution433

Pseudocode for the implicitly padded transforms described by Eqs. (1)–434

(2) was given in Ref. [3] as Procedures fftpadBackward and fftpadForward.435

In order to compute a 2D convolution in parallel, the loops in these proced-436

ures were parallelized, and parallel FFTs were used. Since the input and437

output of these routines are multidimensional and the required FFT is one-438

dimensional, we use the FFTW multiple 1D FFT routine. A multithreaded439

version of this routine is available in the FFTW library, but we found that440

its parallel performance was sometimes lacking. This was somewhat surpris-441

ing, as there exists a simple algorithm to parallelize such problems: if one442

wishes to perform M FFTs using T threads, one can simply divide the M443

FFTs among the T threads, with any remaining r FFTs distributed among444

the first r threads. At run time, we automatically test for the possibility445

that this decomposition is faster than FFTW’s parallel multiple FFT and use446

whichever algorithm runs faster. This yielded a significant improvement in447

the parallel performance of our convolutions.448

As shown in Fig. 7(a), the resulting implicit 2D algorithm dramatically449

outperforms the explicit version: using one thread, the mean speedup is450

a factor of 1.5, with a maximum speedup of 1.8. Using four threads, the451

mean speedup over the parallel explicit version is approximately 2.6, with452

a maximum speedup factor of 4.5. Fig. 7(b) shows the parallel efficiency453

19



of the 2D implicitly dealiased complex convolution for a variety of problem454

sizes. The parallel efficiency for the implicit routine ranges from 58% to 92%455

with four threads, for a speedup of 2.3 to 3.7 relative to one thread. The456

explicit routine has a parallel efficiency between 25% and 90%. Notably, the457

2D explicit version has poor parallel performance for problem sizes of 5122
458

and above using FFTW’s built-in multithreading.459

Because the same temporary array u is used for each column of the convo-460

lution, the memory requirement is 2Cmxmy +TCmy complex words using T461

threads, where C = max{A,B}. Assuming that T < 2mx, this is far less than462

the 4Cmxmy complex words needed for an explicitly padded convolution.463

5

10

15

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.6

0.7

0.8

0.9

1

E
ffi
ci
en
cy

1282

5122

20482

81922

(b)

Figure 7: In-place 2D complex convolutions of size m×m: (a) comparison of computation
times for explicit and implicit dealiasing using T = 1 thread and T = 4 threads; (b)
parallel efficiency of implicit dealiasing versus number of threads. Here m is chosen to be
a power of two.

4.2. Centered Hermitian 2D convolution464

In two dimensions, the Fourier-centered Hermitian symmetry appears as465

F−k,−` = Fk,`. This symmetry is exploited in the centered Hermitian convo-466

lution algorithm shown for the noncompact case in Function conv2. As with467

the 1D Hermitian convolution, one has the option to use a compact or non-468

compact data format. For the compact data format, the array has dimensions469

20



{−mx + 1, . . . ,mx − 1} × {0, . . . ,my − 1}, whereas the noncompact version470

has dimensions {−mx, . . . ,mx−1}×{0, . . . ,my}. One can also perform con-471

volutions on data that is compact in one direction and noncompact in the472

other. For serial computations, the best performance typically is achieved473

when the x direction is compact and the y direction is noncompact, so that474

each dimension is odd, to reduce cache associativity issues. However, when475

running on more than one thread, the noncompact format should be used476

in the x direction since Procedures fft1padBackward and fft1padForward are477

fully multithreaded.478

While the noncompact case requires slightly more memory than the com-479

pact case, one advantage of the noncompact version is that the output of480

the Fourier transform of (2mx − 2) × (2my − 2) real values corresponds to481

the modes {−mx, . . . ,mx − 1} × {0, . . . ,my}, where the Fourier origin has482

been shifted in the x direction to the middle of the array. Moreover, one483

is able to use the extra memory in the x direction for temporary storage,484

and having my + 1 variables in the y direction avoids latency issues with485

cache associativity when my is a power of two. These factors combine to486

give the noncompact format a performance advantage over the compact one:487

the noncompact case is typically slightly faster than the compact case when488

using one thread and 25% faster on average when using four threads.489

21



Input: matrix {fa}A−1a=0

Output: matrix {fb}B−1b=0

for a = 0 to A− 1 do
parallel for j = 0 to my− 1 do
fftpadBackward(fTa [j],UT

a [j])

parallel for i = 0 to mx − 1 do
cconv({fa[i]}A−1a=0 )

cconv({Ua[i]}A−1a=0 )

for b = 0 to B − 1 do
parallel for j = 0 to my− 1 do
fftpadForward(fTb [j],UT

b [j])

return f

Function cconv2 returns the in-
place implicitly dealiased convolu-
tion of mx ×my matrices {fa}A−1a=0

in {fb}B−1b=0 , using A temporary
mx ×my matrices {Ua}A−1a=0 .

Input: matrix {fa}A−1a=0

Output: matrix {fb}B−1b=0

for a = 0 to A− 1 do
parallel for j = 0 to my do
fft1padBackward(fTa [j],UT

a [j])

parallel for i = 0 to 2mx− 1 do
conv({fa[i]}A−1a=0 )
parallel for i = 0 to mx − 1 do
conv({Ua[i]}A−1a=0 )
for b = 0 to B − 1 do
parallel for j = 0 to my do
fft1padForward(fTb [j],UT

b [j])

return f

Function conv2 returns the in-
place implicitly dealiased centered
Hermitian convolution of 2mx ×
(my + 1) matrices {fa}A−1a=0 in
the noncompact data format, us-
ing A temporary mx × (my + 1)
matrices {Ua}A−1a=0 .

490

The explicit version requires storage for 9Cmx(my + 1)/2 complex words,491

where C = max{A,B}. For the noncompact case, the implicit version using492

T threads requires storage for 3Cmx(my + 1) + TC(bmy/2c + 1) complex493

words, which is much less than the explicit case when mx ≥ T . As shown494

in Fig. 8(a), implicit padding again yields a dramatic improvement in speed:495

the implicit version is on average 1.36 times faster than the explicit version496

when using one thread, and 2.93 times faster than the explicit version when497

using four threads. In Fig. 8(b) we show that the parallel efficiency of the498

implicit version is between 73% and 87% efficiency when using four threads,499

giving a speedup of a factor of 2.9 to 3.5. As in the 2D complex case, the500

explicit version does not parallelize well for large problem sizes.501

4.3. Complex 3D convolution502

The decoupling of the 2D work arrays in Function cconv2 facilitates the503

construction of an efficient 3D implicit complex convolution, as described504

in Function cconv3. For A inputs with dimensions mx × my × mz and505

B outputs, the explicit version requires 8Cmxmymz complex words, where506

22



10

20

ti
m
e/
(m

2
lo
g
2
m

2
)
(n
s)

102 103
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.8

0.9

1

E
ffi
ci
en
cy

642

2562

10242

40962

(b)

Figure 8: In-place 2D Hermitian convolutions of size 2m × (m + 1): (a) comparison
of computation times for explicit and implicit dealiasing using T = 1 thread and T =
4 threads; (b) parallel efficiency of implicit dealiasing versus number of threads. For
implicit convolutions, m is chosen to be a power of two, while for explicit convolutions
m = b(N + 2)/3c, where N is a power of two.

23



C = max{A,B}. In contrast, the implicit version with T threads requires507

2Cmxmymz +TCmymz +TCmz complex words, approximately one quarter508

the storage requirements for the explicit version when mx � T . As shown509

in Fig. 9(a), implicitly dealiased convolutions are consequently much faster510

than their explicit counterparts. For a single thread, the implicit version511

is on average 1.9 times as fast as the explicit version and 4.3 times faster512

on average when comparing execution times over four threads. Fig. 9(b)513

shows the parallel efficiency of the implicit version, which is between 65%514

and 86% efficient when using four threads, giving a speedup of a factor of 2.6515

to 3.4 over one thread. The explicit version has reasonable parallel efficiency516

for small problem sizes, but this drops to roughly 25% on four threads for517

problem size m ≥ 64.518

4.4. Centered Hermitian 3D convolution519

As with the 1D and 2D cases, we offer compact and noncompact ver-520

sions of a 3D Hermitian convolution, and users can choose formats that are521

compact/noncompact in each direction separately. For serial computations,522

the best performance typically is achieved when the x and y directions are523

compact and the z direction is noncompact, so that each dimension is odd,524

in the interest of cache associativity. However, just as for 2D Hermitian con-525

volutions, when running on more than one thread, the x direction should be526

made noncompact to obtain optimal multithreading efficiency.527

24



Input: {fa}A−1a=0

Output: {fb}B−1b=0

R←
{0, . . . ,my − 1} × {0, . . . ,mz − 1}
for a = 0 to A− 1 do
parallel foreach (j, k) ∈ R do
fftpadBackward(fTa[k][j],UT

a[k][j])
parallel for i = 0 tomx − 1 do
cconv2({fa[i]}A−1a=0 )

cconv2({Ua[i]}A−1a=0 )

for b = 0 to B − 1 do
parallel foreach (j, k) ∈ R do
fftpadForward(fTb [k][j],UT

b [k][j])
return f

Function cconv3 returns the in-
place implicitly dealiased com-
plex convolution of mx ×my ×mz

matrices {fa}A−1a=0 , using A tem-
porary mx ×my ×mz matrices
{Ua}A−1a=0 .

Input: {fa}A−1a=0

Output: {fb}B−1b=0

R← {0, . . . , 2my} × {0, . . . ,mz}
for a = 0 to A− 1 do
parallel foreach (j, k) ∈ R do
fft1padBackward(fTa[k][j],UT

a[k][j])
parallel for i = 0 to 2mx − 1 do
conv2({fa[i]}A−1a=0 )
parallel for i = 0 to mx − 1 do
conv2({Ua[i]}A−1a=0 )
for b = 0 to B − 1 do
parallel foreach (j, k) ∈ R do
fft1padForward(fTb [k][j],UT

b [k][j])
return f

Function conv3 returns the in-place
implicitly dealiased Hermitian con-
volution of 2mx × 2my × (mz + 1)
matrices {fa}A−1a=0 , using A tempor-
ary mx × my × (mz + 1) matrices
{Ua}A−1a=0 .

528

Pseudocode for the noncompact algorithm is given in Function conv3.529

The noncompact version again offers a performance advantage over the com-530

pact version, with the single-threaded compact and noncompact cases roughly531

equal in execution time on a single thread, and the noncompact case offering532

between a 1% and 10% performance advantage when parallelized over four533

threads.534

In the noncompact format, the memory requirements for an explicit 3D535

Hermitian convolution with A inputs and B outputs is 27
2
Cmxmy(mz + 1)536

complex words, whereas the implicit version requires only 6Cmxmy(mz +537

1)+TCmy(mz +1)+TC(bmz/2c+1) complex words using T threads, where538

C = max{A,B}. We did not implement a high-performance version of the539

explicit routine, so instead we show the execution time of the implicit routine540

using one and four threads in Fig. 10 (a). The parallel efficiency is shown in541

Fig. 10(b) and ranges between 65% and 92%, which translates to a speedup542

of a factor of 2.6 to 3.7 using four threads instead of one.543

25



10

20

ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

101 102
m

explicit T=1

implicit T=1

explicit T=4

implicit T=4

(a)

1 2 4
Number of cores

0.7

0.8

0.9

1

E
ffi
ci
en
cy

643

1283

2563

5123

(b)

Figure 9: In-place 3D complex convolutions of size m ×m ×m: (a) comparison of com-
putation times for explicit and implicit dealiasing using T = 1 thread and T = 4 threads;
(b) parallel efficiency of implicit dealiasing versus number of threads. Here m is chosen to
be a power of two.

26



10

20

30

ti
m
e/
(m

3
lo
g
2
m

3
)
(n
s)

102
m

implicit T=1

implicit T=4

(a)

1 2 4
Number of cores

0.7

0.8

0.9

1

E
ffi
ci
en
cy

163

323

643

1283

2563

(b)

Figure 10: Implicitly dealiased in-place 3D Hermitian convolutions of size (2m−1)×(2m−
1) × (m + 1) for T = 1 and 2m × (2m − 1) × (m + 1) for T = 4: (a) computation times
using T = 1 thread and T = 4 threads; (b) parallel efficiency versus number of threads.
Here m is chosen to be a power of two.

5. Concluding remarks544

In this work we developed an efficient method for computing implicitly545

dealiased convolutions parallelized over multiple threads. Methods were de-546

veloped for noncentered complex data and centered Hermitian-symmetric547

data with inputs in one, two, and three dimensions. We showed how more548

general multiplication operators can be supported, allowing for the efficient549

computation of autoconvolutions, correlations (which are identical to convo-550

lutions for Hermitian-symmetric data), and general nonlinearities in pseudo-551

spectral simulations.552

Implicitly dealiased convolutions require less memory, are faster, and have553

greater parallel efficiency than their explicitly dealiased counterparts. Spe-554

cifically, in d dimensions the memory savings for 1/2 padding is a factor555

of 2d−1; for 2/3 padding the savings factor is (3/2)d−1. The decoupling of556

temporary storage and user data means that even in one dimension, users557

can save memory by not having to copy their data to a separate buffer. In558

higher dimensions, this decoupling allows one to reuse work memory. By559

avoiding the need to compute the entire Fourier image at once, one obtains560

27



a dramatic reduction in total memory use. Moreover, the resulting increased561

data locality significantly enhances performance, particularly under parallel-562

ization. For example, a 3D implicitly dealiased complex convolution runs563

about twice as fast as an explicitly dealiased convolution on one thread, and564

over four times faster than the explicit method when both are parallelized565

over four threads. For large problem sizes, an implicit complex convolution566

requires one-half of the memory needed for a zero-padded convolution in two567

dimensions and one-quarter in three dimensions. In the centered Hermitian568

case, the memory use in two dimensions is 2/3 of the amount used for an ex-569

plicit convolution and 4/9 of the corresponding storage requirement in three570

dimensions.571

An upcoming paper will discuss the implementation of implicit deali-572

asing on distributed-memory architectures, using hybrid MPI/OpenMP. Im-573

plicit dealiasing of higher-dimensional convolutions over distributed memory574

benefits significantly from the reduction of communication costs associated575

with the smaller memory footprint. It also provides a natural way of overlap-576

ping communication (during the transpose phase) with FFT computation.577

In future work, we wish to develop specialized implicit convolutions of578

real data for applications in signal processing, such as computing cross cor-579

relations and autocorrelations of time series. We are also exploring novel ap-580

plications of implicitly dealiased convolutions for computing sparse Fourier581

transforms [9], fractional phase Fourier (chirp-z) transforms [1], and partial582

Fourier transforms [13? ].583

Acknowledgment584

We thank Prof. Michael Jolly for making us aware of the Basdevant re-585

duction. Financial support for this work was provided by Discovery Grant586

RES0020458 from the Natural Sciences and Engineering Research Council of587

Canada.588

Appendix A. Basdevant formulation589

Appendix A.1. 3D incompressible Navier–Stokes equation590

A naive implementation of the pseudospectral method for the 3D incom-591

pressible Navier–Stokes equation,592

∂ui
∂t

+
∂Dij

∂xj
= − ∂p

∂xi
+ ν

∂2ui
∂x2j

+ Fi, (A.1)

28



where Dij = uiuj, requires three backward FFTs to compute the velocity593

components from their spectral representations and six forward FFTs of the594

independent components of the symmetric tensorDij, for a total of nine FFTs595

per integration stage. However Basdevant [2] showed that this number can596

be reduced to eight, by subtracting the divergence of the symmetric matrix597

Sij = δij trD/3 from both sides of Eq. (A.1):598

∂ui
∂t

+
∂(Dij − Sij)

∂xj
= −∂(pδij + Sij)

∂xj
+ ν

∂2ui
∂x2j

+ Fi. (A.2)

Since the symmetric matrix Dij−Sij is traceless, it has just five independent599

components. Together with the three backward FFTs required for the velo-600

city components ui, we see that only eight FFTs are required per integration601

stage. The effective pressure pδij + Sij is solved as usual from the inverse602

Laplacian of the force minus the nonlinearity.603

Appendix A.2. 2D incompressible Navier–Stokes equation604

The vorticity w =∇×u evolves according to

∂w

∂t
+ (u·∇)w = (w·∇)u + ν∇2w +∇×F ,

where in two dimensions the vortex stretching term (w·∇)u vanishes and
w is normal to the plane of motion. For C2 velocity fields, the curl of the
nonlinearity can be written in terms of ᵀDij

.
= Dij − Sij:

∂

∂x1

∂

∂xj
ᵀD2j −

∂

∂x2

∂

∂xj
ᵀD1j =

(
∂2

∂x21
− ∂2

∂x22

)
D12 +

∂

∂x1

∂

∂x2
(D22 −D11),

on recalling that S is diagonal and S11 = S22. The scalar vorticity ω thus
evolves as

∂ω

∂t
+

(
∂2

∂x21
− ∂2

∂x22

)
(u1u2) +

∂2

∂x1∂x2

(
u22 − u21

)
= ν∇2ω +

∂F2

∂x1
− ∂F1

∂x2
.

Two backward FFTs are required to compute u1 and u2 in physical space,605

from which the quantities u1u2 and u22−u21 can be calculated and then trans-606

formed to Fourier space with two additional forward FFTs. The advective607

term in 2D can thus be calculated with just four FFTs.608

29



Appendix A.3. 3D incompressible MHD equation609

In a similar manner, the incompressible MHD equations can be written

∂ui
∂t

+
∂(Dij − Sij)

∂xj
= −∂(pδij + Sij)

∂xj
+ ν

∂2ui
∂x2j

,

∂Bi

∂t
+
∂Gij

∂xj
= η

∂2Bi

∂x2j
, (A.3)

where Dij = uiuj−BiBj, Sij = δij trD/3, and Gij = Biuj−uiBj. The trace-610

less symmetric matrix Dij − Sij has five independent components, whereas611

the antisymmetric matrix Gij has only three. Since an additional six FFT612

calls are required to compute the components of u and B in x space, the613

MHD nonlinearity can be computed with 14 FFT calls (A = 6, B = 8).614

Appendix B. Pseudocode615

Here we correct a sequencing error in Procedure fft0padBackward from616

Ref. [3].2617

We also list Function cconvA, which implements optimized implicitly618

dealiased convolutions, for the case A > B, and Function cconvB, for the619

case A < B.620

Finally, we document the routines pretransform and posttransform,621

which are used by the 1D Hermitian convolution conv, along with the op-622

timized routines convA and convB discussed in the text.623

2Minor typographical errors also appeared on page 388 (0 . . . N should be 0 . . . N − 1),
page 391 (n should be N), and on p. 400 (2m1 − 1 should be 2mz − 1).

30



Input: vector f
Output: vector f, vector u
if noncompact then u[0]← f[0]− f[m]
else u[0]← f[0]
if m = 2c then F← f[c]
parallel for k = 1 to d do

a← ζ−k3m

[
Re f[k] +

(
−1

2
,
√
3
2

)
Re f[m− k]

]
b← −iζ−k3m

[
Im f[k] +

(
1
2
,−
√
3
2

)
Im f[m− k]

]
A← ζk−c−13m

[
Re f[c+ 1− k] +

(
−1

2
,
√
3
2

)
Re f[m− c− 1 + k]

]
B← −iζk−c−13m

[
Im f[c+ 1− k] +

(
1
2
,−
√
3
2

)
Im f[m− c− 1 + k]

]
u[k]← a− b
u[c+ 1− k]← A− B

f[k]← f[k] + f[m− k]

f[c+ 1− k]← f[c+ 1− k] + f[m− c− 1 + k]

f[m− c− 1 + k]← a + b

f[m− k]← A + B

if m = 2c then

u[c]← ReF +
√

3 ImF
f[c]← 2 ReF

Procedure pretransform(f,u) prepares the arrays to be Fourier trans-
formed in Function conv from an unpadded vector f of m (m + 1) values
in the compact (noncompact) format, and an auxiliary vector u of length
c+1, where c = bm/2c and d = b(c+1)/2c. The Fourier origin corresponds
to array position 0.

31



Input: vector f, real w, vector u
Output: vector f
if noncompact then f[m]← 0
if m = 2c and m > 2 then
a← f[1] + ζ−k3mw + ζk3mu[1]

b← f[1] +
(
−1

2
,−
√
3
2

)
ζk3mw +

(
−1

2
,
√
3
2

)
ζ−k3mu[k]

A← f[c] + ζk−c−13m f[m− 1] + ζc+1−k
3m u[c]

f[1]← a
f[c]← A
f[m− 1]← b

parallel for k = 2c+ 2−m to c− d do
a← f[k] + ζ−k3mf[m− c− 1 + k] + ζk3mu[k]

b← f[k] +
(
−1

2
,−
√
3
2

)
ζk3mf[m− c− 1 + k] +

(
−1

2
,
√
3
2

)
ζ−k3mu[k]

A← f[c+ 1− k] + ζk−c−13m f[m− k] + ζc+1−k
3m u[c+ 1− k]

B← f[c+ 1− k] +
(
−1

2
,−
√
3
2

)
ζm−c−1−k3m f[m− k] +(

−1
2
,
√
3
2

)
ζc+1−m−k
3m u[c+ 1− k]

f[k]← a
f[c+ 1− k]← A
f[m− c− 1 + k]← B
f[m− k]← b

if c+ 1 = 2d then
if d > 1 or m = 2c+ 1 then w = f[m− d]

a← f[d] + ζ−k3mw + ζk3mu[d]

b← f[d] +
(
−1

2
,−
√
3
2

)
ζk3mw +

(
−1

2
,
√
3
2

)
ζ−k3mu[d]

f[d]← a
f[m− d]← b

Procedure posttransform(f,w,u) is called by Function conv to combine
the contributions for r = 0, 1, and −1 into an implicitly-dealiased Her-
mitian convolution. The vector f has length m (m + 1) in the compact
(noncompact) format, and the auxiliary vector u has length c + 1, where
c = bm/2c and d = b(c + 1)/2c. When m = 2c, the scalar w contains the
overlapped value for r = 1 and k = 1.

32



Input: vector f
Output: vector f, vector u
u[0]← f[m− 1]
for k = 1 to m− 1 do

A← ζk3m
[

Re f[m− 1 + k] +
(
−1

2
,−
√
3
2

)
Re f[0]

]
B← iζk3m

[
Im f[m− 1 + k] +

(
−1

2
,−
√
3
2

)
Im f[0]

]
C← f[m− 1 + k] + f[0]
f[0]← f[k]
f[k]← C
f[m− 1 + k]← A + B

u[k]← A− B

f[0, . . . ,m− 1]← fft−1(f[0, . . . ,m− 1])
u[m]← f[m− 1]
f[m− 1]← u[0]
f[m− 1, . . . , 2m− 2]← fft−1(f[m− 1, . . . , 2m− 2])
u[0, . . . ,m− 1]← fft−1(u[0, . . . ,m− 1])

Procedure fft0padBackward(f,u) stores the shuffled 3m-padded centered
backward Fourier transform values of a compact-format vector of length
2m− 1 in f and an auxiliary vector u of length m+ 1.

References624

[1] Bailey, D.H., Swarztrauber, P.N., 1991. The fractional Fourier transform625

and applications. SIAM review 33, 389–404.626

[2] Basdevant, C., 1983. Technical improvements for direct numerical sim-627

ulation of homogeneous three-dimensional turbulence. Journal of Com-628

putational Physics 50, 209–214.629

[3] Bowman, J.C., Roberts, M., 2011. Efficient dealiased convolutions630

without padding. SIAM J. Sci. Comput. 33, 386–406.631

[4] Bowman, J.C., Roberts, M., May 6, 2010. FFTW++: A fast Fourier632

transform C++ header class for the FFTW3 library. http://fftwpp.633

sourceforge.net.634

33



Input: vectors {fa}A−1a=0

Output: vectors {fb}B−1b=0

for a = 0 to A− 1 do
ua ← fft−1(fa)

{ub}B−1b=0 ← mult({ua}A−1a=0 )
parallel for k = 0 to m− 1 do
for a = 0 to A− 1 do
fa[k]← ζk2mfa[k]

uA−1 ← fft−1(fA−1)
for a = A− 2 to 0 do
fa+1 ← fft−1(fa)
{fb}Bb=1 ←
mult({fa}A−1a=1 ∪ {uA−1})
for b = 0 to B − 1 do
fb ← fft(fb+1)
uA−1 ← fft(ub)
parallel for k = 0 to m− 1 do
fb[k]← fb[k] + ζ−k2muA−1[k]

return {fb/(2m)}B−1b=0

Function cconvA returns the in-
place implicit dealiased 1D con-
volution of the complex vectors
{fa}A−1a=0 using the multiplication
operator mult : CA → CB, with
A > B. All 2A + 2B FFTs are
out of place.

Input: vectors {fa}A−1a=0

Output: vectors {fb}B−1b=0

for a = A− 1 to 0 do
ua ← fft−1(fa)
parallel for k = 0 to m− 1 do
for a = A− 1 to 0 do
fa[k]← ζk2mfa[k]

for a = A− 1 to 0 do
fa+1 ← fft−1(fa)

{fb}B−1b=1 ∪ {uB−1} ←
mult({fa}Aa=1)
for b = 0 to B − 2 do
fb ← fft(fb+1)
fB−1 ← fft(uB−1)

{ub}B−1b=0 ← mult({ua}A−1a=0 )
u0 ← fft(u0)
parallel for k = 0 to m− 1 do
f0[k]← f0[k] + ζ−k2mu0[k]
for b = 1 to B − 1 do
u0 ← fft(ub)
parallel for k = 0 to m− 1
do
fb[k]← fb[k] + ζ−k2mu0[k]

return {fb/(2m)}B−1b=0

Function cconvB returns the in-
place implicit dealiased 1D con-
volution of the complex vectors
{fa}A−1a=0 using the multiplication
operator mult : CA → CB, with
B > A, with 2A + 2B − 1 out-
of-place and 1 in-place FFTs.

34



Input: vectors {fa}A−1a=0

Output: vectors {fb}B−1b=0

for a = 0 to A− 1 do
pretransform(fa, uA−1)
ua ← fft−1(uA−1)

{ub}B−1b=0 ← mult({ua}A−1a=0 )

uA−1 ← fft−1(f0A−1)
for a = A− 2 to 0 do
f0a+1 ← fft−1(f0a)

{f0b}Bb=1 ←
mult({f0a}A−1a=1 ∪ {uA−1})
uA−1 ← fft−1(f1A−1)
for a = A− 2 to 0 do
f1a+1 ← fft−1(f1a)

{f1b}Bb=1 ←
mult({f1a}A−1a=1 ∪ {uA−1})
for b = 0 to B − 1 do
uA−1 ← fft(ub)

f0b ← fft(f0b+1)

f1b ← fft(f1b+1)

posttransform({f0b}ck=0 ∪
{f1b}ck=2c+2−m, f

1
b [1], uA−1)

return {fb/(3m)}B−1b=0

Function convA returns the im-
plicitly dealiased 1D Hermitian
convolution of length m (m +
1) in the compact (noncompact)
format, for A > B, with 1 in-
place and 3A+3B−1 out-of-place
FFTs.

Input: vectors {fa}A−1a=0

Output: vectors {fb}B−1b=0

for a = A− 1 to 0 do
pretransform(fa, ua)
ua+1 ← fft−1(ua)

f0a+1 ← fft−1(f0a)

f1a+1 ← fft−1(f1a)

{f0b}B−1b=1 ∪ {u0} ← mult({f0a}Aa=1)
for b = 0 to B − 2 do
f0b ← fft(f0b+1)

f0B−1 ← fft(u0)

{f1b}B−1b=1 ∪ {u0} ← mult({f1a}Aa=1)
for b = 0 to B − 2 do
f1b ← fft(f1b+1)

f1B−1 ← fft(u0)

{ub}B−1b=1 ∪{u0} ← mult({ua}Aa=1})
u0 ← fft(u0)

posttransform({f0B−1}ck=0 ∪
{f1B−1}ck=2c+2−m, f

1
B−1[1], u0)

for b = 0 to B − 2 do
u0 ← fft(ub+1)

posttransform({f0b}ck=0 ∪
{f1b}ck=2c+2−m, f

1
b [1], u0)

return {fb/(3m)}B−1b=0

Function convB returns the im-
plicitly dealiased 1D Hermitian
convolution of length m (m +
1) in the compact (noncompact)
format, for B > A, with 1 in-
place and 3A+3B−1 out-of-place
FFTs.

35



[5] Cooley, J.W., Tukey, J.W., 1965. An algorithm for the machine cal-635

culation of complex Fourier series. Mathematics of Computation 19,636

297–301.637

[6] Frigo, M., Johnson, S.G., 2005. The design and implementation of638

FFTW3. Proceedings of the IEEE 93, 216–231.639

[7] Gauss, C.F., 1866. Nachlass: Theoria interpolationis methodo nova640

tractata, in: Carl Friedrich Gauss Werke. Königliche Gesellschaft der641

Wissenschaften, Göttingen. volume 3, pp. 265–327.642

[8] Gottlieb, D., Orszag, S.A., 1977. Numerical Analysis of Spectral Meth-643

ods: Theory and Applications. Society for Industrial and Applied Math-644

ematics, Philadelphia.645

[9] Hassanieh, H., Indyk, P., Katabi, D., Price, E., 2012. Simple and646

practical algorithm for sparse Fourier transform, in: Proceedings of the647

Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms,648

SIAM. pp. 1183–1194.649

[10] Orszag, S.A., 1971. Elimination of aliasing in finite-difference schemes650

by filtering high-wavenumber components. Journal of the Atmospheric651

Sciences 28, 1074.652

[11] Roberts, M., 2011. Multispectral Reduction of Two-Dimensional Tur-653

bulence. Ph.D. thesis. University of Alberta. Edmonton, AB, Canada.654

http://www.math.ualberta.ca/~bowman/group/roberts_phd.pdf.655

[12] Roberts, M., Leroy, M., Morales, J., Bos, W., Schneider, K., 2014. Self-656

organization of helically forced MHD flow in confined cylindrical geo-657

metries. Fluid Dynamics Research 46, 061422. URL: http://stacks.658

iop.org/1873-7005/46/i=6/a=061422.659

[13] Ying, L., Fomel, S., 2009. Fast computation of partial Fourier trans-660

forms. Multiscale Modeling and Simulation 8, 110–124.661

36


