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Abstract. Algorithms are developed for calculating dealiased linear convolution sums without
the expense of conventional zero-padding or phase-shift techniques. For one-dimensional in-place
convolutions, the memory requirements are identical with the zero-padding technique, with the
important distinction that the additional work memory need not be contiguous with the input
data. This decoupling of data and work arrays dramatically reduces the memory and computation
time required to evaluate higher-dimensional in-place convolutions. The technique also allows one
to dealias the higher-order convolutions that arise from Fourier transforming cubic and higher
powers. Implicitly dealiased convolutions can be built on top of state-of-the-art fast Fourier transform
libraries: vectorized multidimensional implementations for the complex and centered Hermitian
(pseudospectral) cases have been implemented in the open-source software FFTW++.
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1. Introduction. Discrete linear convolution sums based on the fast Fourier
transform (FFT) algorithm [7, 4] have become important tools for image filtering,
digital signal processing, and correlation analysis. They are also widely used in
periodic domains to solve nonlinear partial differential equations, such as the Navier–
Stokes equations. In some of these applications, such as direct numerical pseudospectral
simulations of turbulent fluids, memory usage is a critical limiting factor, and self-
sorting in-place multidimensional Fourier transforms [14] are typically used to reduce
the memory footprint of the required spectral convolutions.

It is important to remove aliases from FFT-based convolutions applied to non-
periodic (wavenumber-space) data because they assume cyclic input and produce
cyclic output. Typically the input data arrays are extended by padding them with
enough zeros so that wave beats of the positive frequencies cannot wrap around and
contaminate the negative frequencies. A cyclic convolution

∑N−1
p=0 fpgk−p is then

performed using a correspondingly larger Fourier transform size N . If the cost of
computing a complex Fourier transform of size N is asymptotic to KN log2N as
N →∞ (the lowest bound currently achievable is K = 34/9 [8, 10]), the asymptotic
cost of computing the convolution of two vectors of unpadded length m is 6Km log2m
(using three Fourier transforms with N = 2m).

Another important case in practice is the centered Hermitian 1D convolution,
dealiased by the 2/3 padding rule [11]. Since the computational cost of complex-to-real
and real-to-complex Fourier transforms of size N = 3m is asymptotic to 1

2KN log2N ,

the FFT-based Hermitian convolution
∑m−1

p=k−m+1 fpgk−p requires three transforms

and hence 9
2Km log2m operations. Alternatively, phase shift dealiasing [12, 3] can be

used to cancel out the aliasing errors between two convolutions with different phase
shifts. However, this second technique is rarely used in practice since, in addition to
doubling the memory requirements, it is computationally more expensive, requiring
6Km log2m operations for a centered Hermitian convolution.
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An explicit application of the zero-padding technique involves the rather obvious
inefficiency of summing over a large number of data values that are known a priori
to be zero. However, it is worthwhile to consider the response provided by Steven
G. Johnson to a frequently asked question about the possibility of avoiding this
expense [5]:

The most common case where people seem to want a pruned FFT
is for zero-padded convolutions, where roughly 50% of your inputs are
zero (to get a linear convolution from an FFT-based cyclic convolution).
Here, a pruned FFT is hardly worth thinking about, at least in one
dimension. In higher dimensions, matters change (e.g. for a 3d zero-
padded array about 1/8 of your inputs are non-zero, and one can
fairly easily save a factor of two or so simply by skipping 1d sub-
transforms that are zero).

The reasoning behind the assertion that such one-dimensional pruned FFTs are not
worth thinking about is that if only m of the N inputs are nonzero, the computational
cost is reduced only from N log2N to N log2m. For example, if m = N/2, the
savings is a minuscule 1/log2N . Moreover, since a zero-padded Fourier transform
of size N yields N (typically nonzero) output values, no storage savings appear
possible in one dimension. Nevertheless, in this work we demonstrate that pruning the
zero-padded elements of one-dimensional convolutions is still worth thinking about,
primarily because this provides useful building blocks for constructing more efficient
multidimensional convolutions.

The key observation is this: although the memory usage of our implicitly padded
1D convolution is identical to that of a conventional explicitly padded convolution,
the additional temporary memory need not be contiguous with the user data. In
a multidimensional context, this external work buffer can be reused for other low
dimensional convolutions. As a result, in d dimensions an implicitly dealiased convolution
asymptotically uses 1/2d−1 of the storage space needed for an explicitly padded
convolution. When the Fourier origin is centered in the domain, memory usage is
reduced to (2/3)d−1 of the conventional amount. If saving memory alone were the
goal, this reduction could also be achieved with explicit zero padding by copying the
data for the innermost convolution to an external padded buffer, but such extra data
communication would degrade overall performance. The fact that our one-dimensional
convolution does not require this extra copying is the main feature that was exploited
to obtain simultaneous improvements in memory usage and speed.

Nevertheless, the task of writing an efficient implicitly dealiased one-dimensional
convolution is onerous, particularly if one tries to compete with a problem-dependent,
architecture-adaptive FFT algorithm (like that provided by the award-winning FFTW
[6] library, which empirically predetermines a near optimal butterfly graph at each
subdivision). Effectively one wants to perform the outer FFT subdivision manually,
dropping the zero terms and deferring the computation of the inner transforms to
a standard library routine. But this also restricts the set of available platform-
dependent algorithms that can be used at the highest level. Fortunately, several
notable features of our algorithm help to offset this disadvantage. First, if the goal is
to produce a convolution, bit reversal for the hand-optimized outermost subdivision
is unnecessary: the scrambled Fourier subtransforms of the two input vectors can
be multiplied together as they are produced (perhaps while still accessible in the
cache). Second, the implicit method allows most of the subtransforms for an in-place
convolution to be optionally computed as out-of-place transforms, which typically
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execute faster than in-place transforms (cf. Figs. 1–6 of [6]) since they require no
extra (pre-, post-, or interlaced) bit-reversal stage. These savings help keep our
one-dimensional in-place implicit convolution competitive with an explicitly padded
convolution based on the same highly optimized library.

In Section 2, we develop an algorithm for Fourier transforming a one-dimensional
zero-padded vector without the need for explicit padding. We show how this algorithm
can be used to calculate implicitly padded convolutions for both general and Hermitian
inputs. We describe how implicit padding may be applied to compute the discrete
Fourier transform of an input vector padded beyond an arbitrary fraction p/q of its
length. Building on these one-dimensional algorithms, implicitly padded convolutions
are implemented for two- and three-dimensional input in Section 3. Finally, in
Section 4, we show for both general and Hermitian data how implicit padding may
be used to dealias higher-order convolutions efficiently.

2. Implicitly dealiased 1D convolutions. In this section we describe the
optimized 1D building blocks that are used in subsequent sections to construct higher-
dimensional implicitly dealiased convolutions.

2.1. Complex convolution. The Fourier origin for standard convolutions is
located at the first (zero) index of the array. Therefore, input data vectors of length m
must be padded with zeros to length N ≥ 2m−1 to prevent modes with wavenumber
m−1 from beating together to contaminate mode N = 0 modN . However, since FFT
sizes with small prime factors in practice yield the most efficient implementations, it
is normally desirable to extend the padding to N = 2m.

In terms of the Nth primitive root of unity, ζN
.
= exp (2πi/N) (here

.
= is used to

emphasize a definition), the unnormalized backward discrete Fourier transform of a
complex vector {Uk : k = 0, . . . , N − 1} may be written as

uj
.
=

N−1∑
k=0

ζjkN Uk, j = 0, . . . , N − 1.

The fast Fourier transform method exploits the properties that ζrN = ζN/r and ζNN = 1.
On taking N = 2m with Uk = 0 for k ≥ m, one can easily avoid looping over the

unphysical zero Fourier modes by decimating in wavenumber: for ` = 0, 1, . . . ,m− 1:

u2` =

m−1∑
k=0

ζ2`k2mUk =

m−1∑
k=0

ζ`kmUk, u2`+1 =

m−1∑
k=0

ζ
(2`+1)k
2m Uk =

m−1∑
k=0

ζ`km ζ
k
2mUk. (2.1)

This requires computing two subtransforms, each of sizem, for an overall computational
scaling of order 2m log2m = N log2m.

The odd and even terms of the convolution can then be computed separately
(without the need for a bit reversal stage), multiplied term by term, and finally
transformed again to Fourier space using the (scaled) forward transform

2mUk =

2m−1∑
j=0

ζ−kj2m uj =

m−1∑
`=0

ζ−k2`2m u2` +

m−1∑
`=0

ζ
−k(2`+1)
2m u2`+1

=

m−1∑
`=0

ζ−k`m u2` + ζ−k2m

m−1∑
`=0

ζ−k`m u2`+1, k = 0, . . . ,m− 1. (2.2)
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The implicitly padded transforms described by Eqs. (2.1) and (2.2) are implemented
as Procedure fftpadBackward and fftpadForward. These algorithms are combined
in Function cconv to compute a dealiased convolution of unpadded length m using two
arrays of size m as input vectors instead of one array of size 2m. This seemingly trivial
distinction is the key to the improved efficiency and reduced storage requirements of
the higher-dimensional implicit convolutions described in Section 3. Moreover, in
Function cconv we see that implicit padding allows each of the six complex Fourier
transforms of size m to be done out of place. In the listed pseudocode, an asterisk
(∗) denotes an element-by-element (vector) multiply.

In principle, the stable trigonometric recursion described by Buneman [2], which
requires two small precomputed tables, each of size log2N , could be used to compute
the required roots of unity ζkN that appear in Eqs. (2.1) and (2.2).1 While Buneman’s
recursion has the same average accuracy as an FFT itself [13], on modern hardware
a factorization method that does not rely on successive table updates turns out
to be more efficient [9], at the expense of somewhat higher memory usage. We
instead calculate the ζkN factors with a single complex multiply, using two short
precomputed tables Ha = ζasN and Lb = ζbN , where k = as + b with s = b

√
mc,

a = 0, 1, . . . , dm/se − 1, and b = 0, 1, . . . , s − 1. Since these one-dimensional tables
require only O(

√
m) complex words of storage and our focus is on higher-dimensional

convolutions anyway, we do not account for them in our storage estimates.
Referring to the computation times shown in Fig. 2.1, we see that the implicit

padding algorithm described by Eqs. (2.1) and (2.2) can thus be implemented to be
competitive with explicitly padded convolutions. The error bars indicate the lower
and upper one-sided standard deviations

σL =

√
1

n
2 − 1

n∑
i=1

ti<T

(ti − T )2, σH =

√
1

n
2 − 1

n∑
i=1

ti>T

(ti − T )2,

where T denotes the mean execution time of n samples. Both the FFTW-3.2.2 library
and the convolution layer we built on top of it were compiled with the Intel C/C++
11.0 20081105 compiler, using the optimization options -ansi-alias -malign-double

-fp-model fast=2 on a 64-bit 3GHz Intel E5450 Xenon processor with 6MB cache.
Like the FFTW library, our algorithm was vectorized for this architecture with
specialized single-instruction multiple-data (SIMD) code.

To compare the normalized error for the two methods, we considered the input
vectors fk = Feik and gk = Geik for k = 0, . . . ,m− 1, with F =

√
3 + i

√
7 and G =√

5 + i
√

11. The Fourier transforms of these vectors have nonzero components for all

transform sizes. In Fig. 2.2 we compare the normalized L2 error
√∑m−1

k=0 |hk −Hk|2/
√∑m−1

k=0 |Hk|2

for each of the computed solutions hk relative to the exact solutionHk =
∑k

p=0 fpgk−p =

FG(k + 1)eik.

2.2. Implicitly dealiased centered Fourier transform. A basic building
block for constructing multidimensional centered convolutions is an implicitly dealiased
centered Fourier transform, where the input data length is odd, say 2m − 1, with
the Fourier origin at index m − 1. Here, one needs to pad to N ≥ 3m − 2 to

1We note that, in terms of the smallest positive number ε satisfying 1 + ε > 1 in a given machine
representation, the singularity in Buneman’s scheme can be removed by replacing secπ/2 with 5/ε,
sin 4π with −ε/2, and sin 2π and sinπ each with −ε/10.
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Input: vector f
Output: vector f, vector u
for k = 0 to m− 1 do

u[k]← ζk2mf[k];
end
f ← fft−1(f);
u← fft−1(u);

Procedure fftpadBackward(f,u) stores
the scrambled 2m-padded backward
Fourier transform values of a vector f of
length m in f and an auxiliary vector u
of length m.

Input: vector f, vector u
Output: vector f
f ← fft(f);
u← fft(u);
for k = 0 to m− 1 do

f[k]← f[k] + ζ−k2mu[k];
end
return f/(2m);

Procedure fftpadForward(f,u) returns
the inverse of fftpadBackward(f,u).

Input: vector f, vector g
Output: vector f
u← fft−1(f);
v← fft−1(g);
u← u ∗ v;
for k = 0 to m− 1 do

f[k]← ζk2mf[k];

g[k]← ζk2mg[k];

end

v← fft−1(f);
f ← fft−1(g);
v← v ∗ f;

f ← fft(u);
u← fft(v);

for k = 0 to m− 1 do

f[k]← f[k] + ζ−k2mu[k];
end
return f/(2m);

Function cconv(f,g,u,v) computes an
in-place implicitly dealiased convolution
of two complex vectors f and g using
two temporary vectors u and v, each of
length m.
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Fig. 2.1. Comparison of computation times
for explicitly and implicitly dealiased complex in-
place 1D convolutions of length m. The storage
requirements of the two algorithms are identical.
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prevent modes with wavenumber m − 1 from beating together to contaminate the
mode with wavenumber −m+ 1. The ratio of the number of physical to total modes,
(2m− 1)/(3m− 2), is asymptotic to 2/3 for large m [11].

For explicit padding, one usually chooses the padded vector length N to be a
power of 2, with m = b(N + 2)/3c. However, for implicit padding, it is advantageous
to choose m itself to be a power of 2 since the algorithm reduces to computing FFTs
of length m. Moreover, it is convenient to pad implicitly slightly beyond 3m − 2, to
N = 3m, as this allows the use of a radix 3 subdivision at the outermost level, so that
only two of the three subtransforms of length m need to be retained.

Suppose then that Uk = 0 for k ≥ m. On decomposing j = (3`+r) modN , where
r ∈ {−1, 0, 1}, the substitution k′ = m+ k allows us to write the backward transform
as

u3`+r =

m−1∑
k=−m+1

ζ`km ζ
rk
3mUk =

m−1∑
k′=1

ζ`k
′

m ζ
r(k′−m)
3m Uk′−m +

m−1∑
k=0

ζ`km ζ
rk
3mUk =

m−1∑
k=0

ζ`kmwk,r,

(2.3)
where

(2.4) wk,r
.
=

{
U0 if k = 0,
ζrk3m(Uk + ζ−r3 Uk−m) if 1 ≤ k ≤ m− 1.

The forward transform is then

(2.5) 3mUk =

1∑
r=−1

ζ−rk3m

m−1∑
`=0

ζ−`km u3`+r, k = −m+ 1, . . . ,m− 1.

The use of the remainder r = −1 instead of r = 2 allows us to exploit the optimization

ζ−k3m = ζk3m in Eqs. (2.4) and (2.5). The number of complex multiplies needed to
evaluate Eq. (2.4) for r = ±1 can be reduced by computing the intermediate complex
quantities

Ak
.
= ζk3m

(
ReUk + ζ−13 ReUk−m

)
,

Bk
.
= iζk3m

(
ImUk + ζ−13 ImUk−m

)
,

where ζ−13 = (− 1
2 ,−

√
3
2 ), so that for k > 0, wk,1 = Ak + Bk and wk,−1 = Ak −Bk.

The resulting transforms, Procedures fft0padBackward and fft0padForward, each
have an operation count asymptotic to 3Km log2m. We were able to implement
strided multivector versions of these algorithms since they operate fully in place on
their arguments, with no additional storage requirements.

2.3. Centered Hermitian convolution. In this frequently encountered case
(relevant to the pseudospectral method), each input vector is the Fourier transform
of real-valued data; that is, it satisfies the Hermitian symmetry U−k = Uk. While
the physical data represented is of length 2m− 1, centered about the Fourier origin,
the redundant modes (corresponding to negative wavenumbers) are not included in
the input vectors. The input vectors are thus of length m, with the Fourier origin at
index 0. Just as in Section 2.2, the unsymmetrized physical data needs to be padded
with at least m − 1 zeros. Hermitian symmetry then requires us to pad the m non-
negative wavenumbers with at least c

.
= bm/2c zeros. The resulting 2/3 padding ratio

(for even m) turns out to work particularly well for developing implicitly dealiased
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Input: vector f
Output: vector f, vector u
u[0]← f[m− 1];
for k = 1 to m− 1 do

A← ζk3m

[
Re f[m− 1 + k] +

(
− 1

2 ,−
√
3
2

)
Re f[0]

]
;

B← iζk3m

[
Im f[m− 1 + k] +

(
− 1

2 ,−
√
3
2

)
Im f[0]

]
;

C← f[m− 1 + k] + f[0];
f[0]← f[k];
f[k]← C;
f[m− 1 + k]← A + B;

u[k]← A− B;

end
f[0, . . . ,m− 1]← fft−1(f[0, . . . ,m− 1]);
u[m]← f[m− 1];
f[m− 1]← u[0];
f[m− 1, . . . , 2m− 2]← fft−1(f[m− 1, . . . , 2m− 2]);
u[0, . . . ,m− 1]← fft−1(u[0, . . . ,m− 1]);

Procedure fft0padBackward(f,u) stores the scrambled 3m-padded centered
backward Fourier transform values of a vector f of length 2m−1 in f and an auxiliary
vector u of length m+ 1.

Input: vector f, vector u
Output: vector f
f[m− 1, . . . , 2m− 2]← fft(f[m− 1, . . . , 2m− 2]);
u[m]↔ f[m− 1];
f[0, . . . ,m− 1]← fft(f[0, . . . ,m− 1]);
u[0, . . . ,m− 1]← fft(u[0, . . . ,m− 1]);
u[m]← f[0] + u[m] + u[0];
for k = 1 to m− 1 do

f[k − 1]← f[k] +
(
− 1

2 ,
√
3
2

)
ζ−k3mf[m− 1 + k] +

(
− 1

2 ,−
√
3
2

)
ζk3mu[k];

f[m− 1 + k]← f[k] + ζ−k3mf[m− 1 + k] + ζk3mu[k];

end
f[m− 1]← u[m];
return f/(3m);

Procedure fft0padForward(f,u) returns the inverse of fft0padBackward(f,u).

centered Hermitian convolutions. As in the centered case, we again choose the Fourier
size to be N = 3m.

Given that Uk = 0 for k ≥ m, the backward (complex-to-real) transform appears
as Eq. (2.3), but now with

(2.6) wk,r
.
=

{
U0 if k = 0,
ζrk3m

(
Uk + ζ−r3 Um−k

)
if 1 ≤ k ≤ m− 1.

We note that wk,r obeys the Hermitian symmetry wk,r = wm−k,r, so that the Fourier

transform
∑m−1

k=0 ζ
`k
mwk,r in Eq. (2.3) will indeed be real valued. This allows us to build
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a backward implicitly dealiased centered Hermitian transform using three complex-
to-real Fourier transforms of the first c + 1 components of wk,r (one for each r ∈
{−1, 0, 1}). The forward transform is given by

(2.7) 3mUk =

1∑
r=−1

ζ−rk3m

m−1∑
`=0

ζ−`km u3`+r, k = 0, . . . ,m− 1.

Since u3`+r is real, a real-to-complex transform can be used to compute the first
c+ 1 frequencies of

∑m−1
`=0 ζ−`km u3`+r; the remaining m− c− 1 frequencies needed in

Eq. (2.7) are then computed using Hermitian symmetry.
Since there are two input vectors and one output vector, the complete convolution

requires a total of nine Hermitian Fourier transforms of sizem, for an overall computational
scaling of 9

2Km log2m operations, in agreement with the leading-order scaling of
an explicitly padded centered Hermitian convolution. For simplicity, we document
here only the practically important case m = 2c; minor changes are required to
implement the case m = 2c+ 1. We see in Function conv that seven out of the nine
Fourier transforms can be performed out of place using the same amount of memory,
2(bN/2c + 1) = 6c + 2 words, as would be used to compute a centered Hermitian
convolution with explicit padding.

To facilitate an in-place implementation of the backward transform, we store the
conjugate of the transformed values for r = 1 in reverse order in the upper half of the
input vector, using the identity (for real uj)

uj = uj =

c∑
k=−c+1

ζ−jkm Uk =

0∑
k′=m−1

ζj(k
′−c)

m Uc−k′ = (−1)j
m−1∑
k=0

ζjkm Uc−k

obtained with the substitution k′ = c−k. One can omit the factors of (−1)j here since
they will cancel during the real term-by-term multiplication of the two transformed
input vectors.

As seen in Fig. 2.3, the efficiency of the resulting implicitly dealiased centered
Hermitian convolution is comparable to an explicit implementation. For each algorithm,
we benchmark only those vector lengths that yield optimal performance.

To check the accuracy of our implementation, we used the test case fk = Feik

and gk = Geik for k = 0, . . . ,m − 1, with F =
√

3 and G =
√

5, noting that
Hermitian symmetry requires that F and G be real. The exact solution is Hk =
FG

∑m−1
p=k−m+1 e

ipei(k−p) = FG(2m−1−k)eik. The normalized L2 errors for implicit
and explicit padding are compared in Fig. 2.4.

2.4. General padding. Implicit padding corresponding to an arbitrary p/q rule
is also possible. Suppose that pm data modes are zero padded to N = qm, where p
and q are relatively prime. One decomposes j = q` + r, where ` = 0, . . . ,m − 1 and
r = 0, . . . , q − 1. Similarly, one expresses k = tm + s, where t = 0, . . . , p − 1 and
s = 0, . . . ,m− 1:

uq`+r =

pm−1∑
k=0

ζ−(q`+r)k
qm Uk =

m−1∑
s=0

p−1∑
t=0

ζ−`(tm+s)
m ζ−r(tm+s)

qm Utm+s =

m−1∑
s=0

ζ−`sm

p−1∑
t=0

ζ−r(tm+s)
qm Utm+s.

Since there are q choices of r, the problem reduces to computing q Fourier transforms
of length m, which requires Kqm log2m = KN log2(N/q) operations. Likewise, the
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Input: vector f, vector g
Output: vector f
F← f[c];
build(f,u);
C← f[c];
f[c]← 2 ReF;

u[c]← ReF +
√

3 ImF;

G← g[c];
build(g,v);
D← g[c];
g[c]← 2 ReG;

v[c]← ReG +
√

3 ImG;

u← crfft(u);
v← crfft(v);
v← v ∗ u;
u← rcfft(v);

v← crfft(f[0, . . . , c]);
f[0, . . . , c]← crfft(g[0, . . . , c]);
v← v ∗ f[0, . . . , c];
f[0, . . . , c]← rcfft(v);

S← f[c− 1];
T← f[c];

f[c− 1]← ReF−
√

3 ImF;
f[c]← C;

g[c− 1]← ReG−
√

3 ImG;
g[c]← D;

v← crfft(g[c− 1, . . . , 2c− 1]);
g[c− 1, . . . , 2c− 1]← crfft(f[c− 1, . . . , 2c− 1]);
g[c− 1, . . . , 2c− 1]← g[c− 1, . . . , 2c− 1] ∗ v;
v← rcfft(g[c− 1, . . . , 2c− 1]);

for k = 1 to c− 2 do

f[2c− k]← f[k] +
(
− 1

2 ,−
√
3
2

)
ζk6cv[k] +

(
− 1

2 ,
√
3
2

)
ζ−k6c u[k];

f[k]← f[k] + ζ−k6c v[k] + ζk6cu[k];

end

f[c− 1]← S + ζ1−c6c v[c− 1] + ζc−16c u[c− 1];

f[c]← T −
(
− 1

2 ,
√
3
2

)
v[c]−

(
− 1

2 ,−
√
3
2

)
u[c];

if c > 1 then

f[c+ 1]← S +
(
− 1

2 ,−
√
3
2

)
ζc−16c v[c− 1] +

(
− 1

2 ,
√
3
2

)
ζ1−c6c u[c− 1];

end
return f/(6c);

Function conv(f,g,u,v) uses Procedure build to compute an in-place implicitly
dealiased convolution of centered Hermitian vectors f and g of length 2c using
temporary vectors u and v of length c+ 1.
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Input: vector f
Output: vector f, vector u
u[0]← f[0];

F← f [2c− 1];
f[2c− 1]← f[0];
for k = 1 to c− 1 do

A← ζk6c

[
Re f[k] +

(
− 1

2 ,
√
3
2

)
ReF

]
;

B← −iζk6c
[
Im f[k] +

(
− 1

2 ,
√
3
2

)
ImF

]
;

f[k]← f[k] + F;
u[k]← A− B;

F← f[2c− 1− k];
f[2c− 1− k]← A + B;

end

Procedure build(f,u) builds the FFT
arrays required for Function conv from an
unpadded vector f of length 2c into f and
an auxiliary vector u of length c+ 1.
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Fig. 2.3. Comparison of computation times
for explicitly and implicitly dealiased centered
Hermitian in-place 1D convolutions of length
2m− 1.
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Fig. 2.4. Normalized L2 error for explicitly and implicitly dealiased centered Hermitian in-place
1D convolutions of length m.

forward implicit transform

qmUk =

m−1∑
`=0

q−1∑
r=0

ζ(q`+r)k
qm uq`+r =

q−1∑
r=0

ζrkqm

m−1∑
`=0

ζk`m uq`+r, k = 0, . . . , pm− 1

also requires q Fourier transforms of length m. Again, the computational savings for
a one-dimensional transform is marginal.
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3. Higher-dimensional convolutions. The algorithms developed in Section 2
can be used as building blocks to construct efficient implicitly padded higher-dimensional
convolutions.

3.1. Complex 2D convolution. The implicitly padded 2D convolution shown
in Function cconv2 is designed for data stored with a stride of one in the y direction.
Efficient multivector versions of Procedures fft0padBackward and fft0padForward

are used for the transform in the x direction; this allows a single ζk3m factor to be
applied to a consecutive column of data at constant x. In principle, one could also
develop a multivector version of Function cconv to perform simultaneous convolutions
in the y direction, but our timing tests indicate that this would only slightly enhance
the overall performance (since the data for constant y is not stored consecutively in
memory) and would prevent the 1D convolution work arrays from being reused for
the y convolution at each fixed x. The memory savings in our method comes precisely
from this reuse of temporary storage, which in turn requires that the y convolutions
be computed serially.

As shown in Fig. 3.1, the resulting implicit 2D algorithm dramatically outperforms
the explicit version: a 10242 implicit complex convolution is 1.91 times faster.

7.5
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15

ti
m
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(N

2
lo
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2
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2
)
(n
s)

102 103

N

explicit

y-pruned
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Fig. 3.1. Comparison of computation times for explicitly and implicitly dealiased complex in-
place 2D convolutions of size m2.

The third sentence of the quote from Steven G. Johnson on page 1 suggests
a sensible optimization for explicitly padded 2D convolutions: one can omit for
m ≤ y < 2m the backward and forward Fourier transforms in the x direction.
However potential data locality optimizations may be lost when a 2D convolution
is expressed directly in terms of 1D transforms: as observed in Fig. 3.1, while a
10242 y-pruned explicit convolution is 1.26 times faster than a conventional explicit
implementation, the pruned method becomes 1.80 times slower for the 81922 case.
Our implicitly dealiased convolution is also subject to these same optimization losses,
but the savings due to implicit padding, out-of-place subtransforms, the neglect of
high-level bit reversal, and the immediate convolution of constant x columns (while
still possibly in cache) outweigh these losses.
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Because the same temporary arrays u and v are used for each column of the
convolution, the memory requirement is 4mxmy + 2my complex words, far less than
the 8mxmy complex words needed for an explicitly padded convolution.

3.2. Centered Hermitian 2D convolution. In two dimensions, the Fourier-
centered Hermitian symmetry appears as U−k,−` = Uk,`. This symmetry is exploited
in the centered Hermitian convolution algorithm described in Function conv2. As
shown in Fig. 3.2, implicit padding again yields a dramatic improvement in speed.

When my is even, the memory usage for an implicitly dealiased (2mx−1)×(2my−
1) centered Hermitian convolution is 2(2mx − 1)my + 2(mx + 1)my + 2(my/2 + 1) =
6mxmy +my + 2 complex words, compared with a minimum of 2(3mx−2)(3my/2) =
9mxmy − 6my complex words required for an explicitly dealiased convolution.

Input: matrix f, matrix g
Output: matrix f
for j = 0 to my − 1 do

fftpadBackward(fT [j],UT [j]);

fftpadBackward(gT [j],VT [j]);

end
for i = 0 to mx − 1 do

cconv(f[i], g[i], u, v);
cconv(U[i],V[i], u, v);

end
for j = 0 to my − 1 do

fftpadForward(fT [j],UT [j]);
end
return f;

Function cconv2(f,g,u,v,U,V) returns an
in-place implicitly dealiased convolution
of mx ×my matrices f and g using
temporary mx ×my matrices U and V
and temporary vectors u and v of length
my.

Input: matrix f, matrix g
Output: matrix f
for j = 0 to my − 1 do

fft0padBackward(fT [j],UT [j]);

fft0padBackward(gT [j],VT [j]);

end
for i = 0 to 2mx − 2 do

conv(f[i], g[i], u, v);
end
for i = 0 to mx do

conv(U[i],V[i], u, v);
end
for j = 0 to my − 1 do

fft0padForward(fT [j],UT [j]);
end
return f;

Function conv2(f,g,u,v,U,V) returns an
in-place implicitly dealiased centered
Hermitian convolution of (2mx−1)×my

matrices f and g using temporary (mx +
1)×my matrices U and V and vectors u
and v of length my.

3.3. 2D pseudospectral application. In our implementation, we allow the
convolution inputs to be arrays of vectors, fi and gi (i = 1, . . . ,M), interpreting
in Functions cconv, conv, and tconv, the product f ∗ g as the element-by-element
dot product

∑
i fi ∗ gi. Convolving M input data blocks simultaneously like this

enables, for example, the nonlinear term of the 2D incompressible Euler equation to
be computed using five Fourier transforms (instead of three for each of the M = 2
input pairs). Specifically, the advective term −u·∇ω = −(ẑ×∇∇−2ω)·∇ω, which
appears in Fourier space as

∑
p

pxky − pykx
|k − p|2

ωpωk−p,
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can be computed efficiently with the call conv2(ikxω, ikyω,−ikyω/k2, ikxω/k2, u, v),
where u and v are work arrays.

3.4. Complex and centered Hermitian 3D convolutions. The decoupling
of the 2D work arrays in Function cconv2 facilitates the construction of an efficient 3D
implicit complex convolution, as described in Function cconv3. As shown in Fig. 3.3,
an implicit 2563 convolution is 2.38 times faster than the explicit version, while an xz-
pruned version is only 1.24 times faster. The memory usage of an implicitly padded
3D mx ×my ×mz convolution is 4mxmymz + 2mymz + 2mz complex words, far less
than the 16mxmymz complex words required by an explicit convolution based on
power-of-two transforms.

A (2mx− 1)× (2my − 1)× (2mz − 1) implicit centered Hermitian 3D convolution
was also implemented in an analogous manner. It required

6mx(2my−1)mz+2(my+1)mz+2(mz/2+1) = 12mxmymz−6mxmz+2mymz+mz+2

complex words, in comparison with the usual requirement of 27mxmymz complex
words for explicit padding with power-of-two transforms.

4. Implicitly dealiased ternary convolutions. In this section, we show that
implicit padding is well suited to dealiasing the centered ternary convolution

m−1∑
p=−m+1

m−1∑
q=−m+1

m−1∑
r=−m+1

fpgqhrδp+q+r,k,

which, for example, is required to compute the time evolution of the Casimir invariant∫
ω4 dx associated with the nonlinearity of two-dimensional incompressible flow expressed

in terms of the scalar vorticity ω. The basic building blocks for this problem are again
the centered Fourier transform and Hermitian convolution.
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Input: matrix f, matrix g
Output: matrix f
for j = 0 to my − 1 do

for k = 0 to mz − 1 do

fftpadBackward(fT [k][j],UT [k][j]);

fftpadBackward(gT [k][j],VT [k][j]);

end

end
for i = 0 to mx − 1 do

cconv2(f[i], g[i], u1, v1, u2, v2);
cconv2(U[i],V[i], u1, v1, u2, v2);

end
for j = 0 to my − 1 do

for k = 0 to mz − 1 do

fftpadForward(fT [k][j],UT [k][j]);
end

end
return f;

Function cconv3(f,g) returns an in-
place implicitly dealiased convolution of
mx ×my ×mz matrices f and g using
temporary mx ×my ×mz matrices U and V,
my ×mz matrices u2 and v2, and vectors u1
and v1 of length mz.

Input: vector f
Output: vector f, vector u
u[0]← f[0]← 0;
for k = 1 to 2m− 1 do

u[k]← −iζk4mf[k];
end
f ← fft−1(f);
u← fft−1(u);
return f;

Procedure fft0tpadBackward(f,u)
stores the scrambled signed 4m-
padded centered backward Fourier
transform values of a vector f of
length 2m in f and an auxiliary
vector u of length 2m.

Input: vector f, vector u
Output: vector f
f ← fft(f);
u← fft(u);
for k = 1 to 2m− 1 do

f[k]← f[k] + iζ−k4mu[k];
end
return f/(4m);

Procedure fft0tpadForward(f,u)
returns the inverse of Procedure
fft0tpadBackward(f,u).

4.1. Implicit double-dealiased centered Fourier transform. Here the input
data length is 2m− 1, with the Fourier origin at index m− 1, so one needs to pad to
N ≥ 4m− 3 to prevent contamination due to wave beating.

Implicit padding is most efficiently implemented by padding the input vector with
a single zero complex word at the beginning, to yield a vector of length 2m, with the
Fourier origin at index m. We choose m to be a power of 2 and N = 4m, with Uk = 0
for k = −m and k ≥ m.

On decomposing j = 2` + r, where ` = 0, . . . , 2m − 1 and r ∈ {0, 1}, we find on
substituting k′ = k +m that

u2`+r =

m−1∑
k=−m

ζ`k2mζ
rk
4mUk =

2m−1∑
k′=0

ζ
`(k′−m)
2m ζ

r(k′−m)
4m Uk′−m = (−1)`i−r

2m−1∑
k=0

ζ`k2mζ
rk
4mUk−m.

(4.1)
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The forward transform is then given for k = −m+ 1, . . . ,m− 1 by

(4.2)

4mUk =

1∑
r=0

ζ−rk4m

2m−1∑
`=0

ζ−`k2m u2`+r

=

1∑
r=0

ζ
−r(k′−m)
4m

2m−1∑
`=0

ζ
−`(k′−m)
2m u2`+r

=

1∑
r=0

ζ−rk
′

4m ir
2m−1∑
`=0

ζ−`k
′

2m (−1)`u2`+r, k′ = 1, . . . , 2m− 1.

For a ternary convolution, the product of the three factors (−1)` (one for each input
vector) arising from Eq. (4.1) and the factor (−1)` in Eq. (4.2) cancel. Procedures
fft0tpadBackward and fft0tpadForward each have an operation count asymptotic
to 4Km log2m. As they operate fully in place on their arguments, with no additional
storage requirements, it is straightforward to implement strided multivector versions
of these algorithms.

4.2. Implicitly dealiased centered Hermitian 1D ternary convolution.
Let us now consider a centered Hermitian ternary convolution with N = 4m, where
m is a power of 2. For explicit padding, one needs to pad the m non-negative
wavenumbers with m+ 1 zeros, for a total vector length of 2m+ 1.

On decomposing j = 2`+r, where ` = 0, . . . , 2m−1 and r ∈ {0, 1}, the backward
transform is given by

u2`+r =

m−1∑
k=−m

ζ`k2mζ
rk
4mUk.

If we set Um = 0, the real components u2`+r can thus be computed by taking a
complex-to-real transform of {ζrk4mUk : k = 0, . . . ,m}.

The forward transform is

4mUk =

1∑
r=0

ζ−rk4m

2m−1∑
`=0

ζ−`k2m u2`+r, k = −m+ 1, . . . ,m− 1.

The resulting implicitly padded centered Hermitian ternary convolution, Function
tconv, has an operation count of 8Km log2m. Five of the eight required Fourier
transforms can be done out of place. In Fig. 4.1 we show that this algorithm is
competitive with explicit padding. Function tconv requires 6(m+ 1) complex words
of storage, slightly more than the 3(2m + 1) = 6m + 3 complex words needed for
explicit padding.

Just as for convolutions, the performance and memory benefits of dealiasing
higher-order convolutions via implicit padding manifest themselves only in higher
dimensions. For example, in Fig. 4.2, we observe for mx = my = 4096 that the
implicit (2mx−1)×my centered Hermitian ternary convolution computed with Func-
tion tconv2 is 2.28 times faster than an explicit version. The memory usage for a
(2mx − 1) × my implicit centered Hermitian ternary convolution is 6 · 2mx(my +
1) + 3(my + 1) = 12mxmy + 12mx + 3my + 3 complex words, compared with 3 ·
4mx(2my + 1) = 24mxmy + 12mx complex words (using power-of-two transforms) for
an explicit version. In contrast, the corresponding y-pruned convolution requires the
same amount of storage as, but is 1.42 times faster than, an explicitly padded version.
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Input: vector f, vector g, vector h
Output: vector f
for k = 0 to m− 1 do

u[k]← ζk4mf[k];

v[k]← ζk4mg[k];

w[k]← ζk4mh[k];

end

u[m]← v[m]← w[m]← 0;
u← crfft−1(u);
v← crfft−1(v);
w← crfft−1(w);
v← u ∗ v ∗ w;
u← rcfft(v);

f[m]← g[m]← h[m]← 0;
v← crfft−1(f);
w← crfft−1(g);
g← crfft−1(h);
v← v ∗ w ∗ g;
f ← rcfft(v);

for k = 0 to m− 1 do

f[k]← f[k] + ζ−k4mu[k];
end
return f/(4m);

Function tconv(f,g,h,u,v,w) computes
an in-place implicitly dealiased
centered Hermitian ternary
convolution of three centered
Hermitian vectors f, g, and h, using
three temporary vectors u, v, and w,
each of length m+ 1.

Input: matrix f, matrix g, matrix h
Output: matrix f
for j = 0 to my − 1 do

fft0tpadBackward(fT [j],UT [j]);

fft0tpadBackward(gT [j],VT [j]);

fft0tpadBackward(hT [j],WT [j]);

end
for i = 0 to 2mx − 1 do

tconv(f[i], g[i], h[i], u, v,w);
tconv(U[i],V[i],W[i], u, v,w);

end
for j = 0 to my − 1 do

fft0tpadForward(fT [j],UT [j]);
end
return f;

Function tconv2(f,g,h) returns an
in-place implicitly dealiased centered
Hermitian ternary convolution of
2mx × (my + 1) matrices f, g, and h
using temporary 2mx × (my + 1)
matrices U, V, and W and vectors u, v
and w of length my + 1.

5. Concluding remarks. Explicitly padded Fourier transforms are frequently
used to dealias convolutions in one or more dimensions. In this work we have developed
an efficient method for avoiding explicit zero padding in multidimensional convolutions,
thereby saving both memory and computation time. The key idea that was exploited
was the decoupling of temporary storage and user data, which in higher dimensions
allows the reuse of storage space. The resulting increased data locality significantly
enhanced performance by as much as a factor of 2. The savings in memory use,
obtained by computing the Fourier transformed data in blocks rather than all at
once, was equally significant: asymptotically, as mx → ∞, an implicit complex
convolution requires one-half of the memory needed for a zero-padded convolution
in two dimensions and one-quarter in three dimensions. In the centered Hermitian
case, the memory use in two dimensions is 2/3 of the amount used for an explicit
convolution and 4/9 of the corresponding storage requirement in three dimensions.

Even in one dimension, where implicit padding can be implemented competitively
with conventional methods, the method has notable advantages. For the intended
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application to partial differential equations, there is flexibility in the choice of the
exact convolution size. This is why we consider for each algorithm only those vector
lengths that maximize performance. On the other hand, for those applications where
the size of the convolution is dictated by external criteria, implicit padding effectively
expands the available set of efficient convolution sizes to include integral powers of 2,
a case of practical significance. Canuto et al. [3, p.136] point out that if only a power-
of-two transform were available for a centered convolution, zero padding a vector of
length m = 2k would require a transform size of 2m, yielding an even slightly higher
operation count, 6Km log2(2m), than the 6Km log2m operations required for phase-
shift dealiasing. The availability of implicitly dealiased convolutions now makes this
argument moot.

Another advantage of implicit padding is the ability of the algorithm to work
directly on raw unpadded user data without the inconvenience or extra storage requirements
of a separate padding buffer. Having a prewritten, well-tested dealiased convolution
that takes care of dealiasing internally is a major convenience for the average user. For
2D and 3D Hermitian convolutions, a prepackaged routine should also automatically
enforce Hermitian symmetry of the data along the x axis or the xy plane, respectively.
With the highly optimized implementations of the algorithms developed in this work
made available in the open source package FFTW++ [1], writing a pseudospectral
code for solving nonlinear partial differential equations should now be a relatively
straightforward exercise.
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