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Abstract. Traditional explicit numerical discretizations of conservative systems generically
predict artificial secular drifts of any nonlinear invariants. In this work we present a general approach
for developing explicit nontraditional algorithms that conserve such invariants exactly. We illustrate
the method by applying it to the three-wave truncation of the Euler equations, the Lotka–Volterra
predator–prey model, and the Kepler problem. The ideas are discussed in the context of symplectic
(phase-space conserving) integration methods as well as nonsymplectic conservative methods. We
comment on the application of our method to general conservative systems.
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1. Introduction. For many years now symplectic integrators have been the
subject of much productive study. (See Channell and Scovel [6] for an overview; see
also the recent book by Sanz-Serna and Calvo [25].) There are a variety of Hamiltonian
systems for which symplectic methods have proven extremely useful, if not essential;
but these methods do not constitute the last word on integration techniques. As
Ge and Marsden [11] show, exact energy conservation is, in general, not possible
with a symplectic method. Since the energy error is typically not secular but rather
oscillatory, it is commonly believed that exact energy conservation is not as important
a benefit as preserving the phase space structure.

Concerning the numerical preservation of more general constants of motion, less
is known. Based on the work of Cooper [8], Sanz-Serna [25, 23] has shown that a
restricted class of quadratic invariants will be conserved by certain symplectic Runge–
Kutta schemes. For the Runge–Kutta methods studied by Cooper [8], conservation
of quadratic invariants necessarily requires that the method be implicit. One tech-
nique for ensuring the preservation of any constant of motion is to use the constant
to reduce the number of equations that must be solved. If the constants are in invo-
lution, then an entire degree of freedom (one coordinate and one momenta) can be
removed from the dynamics for each such constant. This is seldom practical since
the relationship between the constants of motion and a given dynamical variable may
well be noninvertible (see the discussion in Gear [12]). The net result is that the
reduced equations tend to be more complicated than the original system (hence the
“force” terms are more expensive to compute); thus, in a system with a large number
of degrees of freedom, little advantage is gained. Furthermore, if the constants of
motion are not in involution, the system obtained by eliminating these invariants will
be noncanonical [22, 21], resulting in even greater complexity.

It may be that the system of interest is most naturally described by variables that
give rise to a noncanonical Hamiltonian structure. For noncanonical systems, Ge and
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Marsden [11] have provided a general construction for integrators that preserve both
momentum maps and the structure of the Poisson manifold. Channell and Scovel [7]
have shown how to implement these algorithms without the need of coordinatizing the
configuration space group. This notwithstanding, they report that, with the exception
of certain special (albeit important) forms of the Hamiltonian, such methods tend to
be computationally expensive.

There is a further class of dynamical systems that is of interest, namely those
systems that are not Hamiltonian (canonical or otherwise) but still possess constants
of motion. Noteworthy examples of such systems are transport equations, such as
the Boltzmann equation. A further example is the truncated Fourier-transformed
Euler fluid equation. The untruncated equation constitutes an infinite-dimensional
Hamiltonian field theory, however, when the number of Fourier modes is reduced
to a finite set, the Hamiltonian structure is typically lost, even though energy and
enstrophy are still conserved. (The overall effect of such truncations on the dynamics
is very much an open question.) Given that these systems are not Hamiltonian,
symplectic methods, per se, are of little relevance, while the preservation of constants
of motion is still of great interest.

A variety of methods for enforcing conservation of general invariants has been
proposed. Baylis and Isaacson [3, 16] have proposed a two-stage algorithm where the
approximate solution, obtained by standard methods in the first stage, is projected
in the second stage onto the constraint surface defined by the invariants. Brasey and
Hairer [5] have proposed a “half-explicit” method where the projection (via a Lagrange
multiplier) and integration stages are merged together. LaBudde and Greenspan [18,
19] have developed an algorithm for central force problems that conserves both energy
and angular momentum. Gear [12, 13] advocates an approach that amounts to an
embedding of the original system into a higher dimensional space, yielding a set of
differential-algebraic equations, the solution of which coincides with the solution of
the original equations and preserves the invariants.

Our purpose in this paper is to present another approach to the development
of exactly conservative algorithms. Beginning with a simple model problem with
two quadratic invariants, of interest in both fluid mechanics and plasma physics, we
develop explicit integrators that conserve both invariants exactly. We then further
illustrate our method by applying it to the Lotka–Volterra predator–prey model and
to the Kepler problem.

2. A Model Problem. Our original interest in the issue of exact preservation
of constants of motion arose in the study of two-dimensional inviscid fluid turbulence.
As an illustration, consider the “three-wave” problem obtained by restricting the
Fourier-transformed Euler equations to three modes [2, 9, 4]:

dψK

dt
= MK ψP ψQ ≡ SK(ψ) ,(1a)

dψP

dt
= MP ψQ ψK ≡ SP (ψ) ,(1b)

dψQ

dt
= MQ ψK ψP ≡ SQ(ψ) ,(1c)

where ψ = (ψK , ψP , ψQ), K, P , andQ are the magnitudes of the Fourier wavenumbers
of the three modes, and the mode coupling coefficients MK , MP , and MQ satisfy

MK +MP +MQ = 0(2)
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and

K2MK + P 2MP +Q2MQ = 0 .(3)

This system possess two invariants: the total energy

E =
1

2

(
ψ2

K + ψ2

P + ψ2

Q

)
(4)

and the total enstrophy

Z =
1

2

(
K2 ψ2

K + P 2 ψ2

P +Q2 ψ2

Q

)
.(5)

The constancy of these quantities follows directly from properties of Sk:

∑

k

ψk Sk = 0 ,(6a)

∑

k

k2 ψk Sk = 0 ,(6b)

where k ranges over the set {K,P,Q}. (These equations are identical to Euler’s
equations for the rigid body, in which case the second invariant is the norm of the
total angular momentum.)

When (1) is integrated numerically using standard explicit methods, neither E
nor Z are exactly conserved. This behavior is made apparent by applying Euler’s
method with a time step τ :

ψk(t+ τ) = ψk(t) + τ Sk , k ∈ {K,P,Q} .(7)

The energy at the new time is

E(t+ τ) =
1

2

∑

k

[ψk(t) + τ Sk]2

=
1

2

∑

k

[
ψ2

k + 2 τ Sk ψk + τ2 S2

k

]

= E(t) +
1

2
τ2

∑

k

S2

k ,(8)

where we have used (6a) in the last step. Thus the total energy is always increasing.
A similar calculation for the enstrophy gives

Z(t+ τ) = Z(t) +
1

2
τ2

∑

k

k2 S2

k ,(9)

which is likewise always increasing. For extremely long runs these results imply that
a very small time step is required to keep the accumulated error down to a given level
— clearly an undesirable situation.

Many authors have noted that the lack of preservation of constants of motion
potentially introduces significant nonphysical effects and as such these errors are, in
some sense, more important than those numerical errors that do not alter constants of
motion. As de Frutos and Sanz-Serna [10] point out, one can think of the local error in



4 B. A. Shadwick, John C. Bowman and P. J. Morrison

a numerical integration as having two “components”: one which leads to unphysical
changes in the constants of motion and another which does not. When these local
errors accumulate over many time steps, the former component might be significantly
more harmful than the latter in that errors which lead to changes in the constants of
motion can affect the qualitative nature of the solution, whereas other errors may only
affect the quantitative results. (A similar observation regarding the accumulation of
error in area-preserving maps has been made by Greene [15].) In essence it is suggested
that nonconservative integrators have the potential to make “structural” errors in the
solution — an observation which agrees well with one’s physical intuition. In the
context of our model problem the implication is clear: keeping the time step small
enough to maintain a reasonable level of energy and enstrophy conservation is likely
to use more computational resources to obtain a given accuracy in the solution than
would otherwise be necessary with a conservative integrator.

Although the three-wave problem is both integrable and Hamiltonian, our ulti-
mate interest in this problem concerns the n-wave generalization of this system, which
possesses both energy and enstrophy invariants but is not Hamiltonian; hence, we are
led to consider methods that do not rely on a particular geometrical structure. One
might be tempted to enforce energy and enstrophy conservation by using these invari-
ants to eliminate two modes from the dynamics. In this case the algebraic relations
are simple enough to allow this, but there is a compelling physical argument against
this approach. The modes are typically associated with different length scales; the
choice of which modes to eliminate in favor of the invariants therefore has significant
physical implications. Furthermore, putting all of the numerical error into one mode
could effectively contribute a nonphysical energy and enstrophy transport between
the original modes.

3. Conservative Integrators for the Model Problem. In light of the above
discussion, an algorithm that exactly conserves energy and enstrophy is clearly desir-
able. As we have noted in §1, a variety of implicit methods are known that preserve
quadratic invariants. While implicit methods have noteworthy stability properties,
they tend to be less computationally efficient than explicit methods since they typi-
cally require multiple evaluations of the “force” terms. We therefore turn our attention
to the development of explicit conservative methods for our model problem.

An elegant approach to this problem is found by borrowing from the ideas of back-
ward error analysis [25]. The essential idea is to construct a new system of equations
that, under the conventional (nonconservative) integrator, yields a conservative nu-
merical approximation to the original equations. To this end, consider the alternative
problem described by three equations of the form

dψk

dt
= Sk(ψ) + fk.(10)

Our objective is to find an fk that guarantees exact energy and enstrophy conservation
and that vanishes in the limit of small step size. The form of fk will depend on the
integration algorithm. We begin by deriving fk for Euler’s method. We then construct
a second-order predictor–corrector scheme.

3.1. Euler’s Method. As a “proof of principle” test we develop a conservative
version of Euler’s method. While not particularly useful in practice, Euler’s method
has the advantage that the algebra associated with constructing the conservative
method is quite straightforward.



Exactly Conservative Integrators 5

Application of Euler’s method to the modified system yields

ψk(t+ τ) = ψk(t) + τ(Sk + fk).(11)

The energy at the new time,

E(t+ τ) =
1

2

∑

k

[ψk(t) + τ (Sk + fk)]
2

= E(t) +
1

2

∑

k

[
2 τ fk ψk + τ2(Sk + fk)2

]
,(12)

will be conserved provided

∑

k

[
2fk ψk + τ(Sk + fk)2

]
= 0 .(13)

There is considerable freedom in satisfying (13). To ensure that our discrete solution
approaches the exact solution of the original differential equation in the limit τ −→ 0,
it is necessary that fk vanish in this limit. That is, in the limit of an infinitesimal
time step, we must recover the original integration algorithm (to first order in τ).
Moreover, one would prefer that fk not introduce additional couplings into the differ-
ential equations. In light of this observation, let us try to satisfy (13) with the more
restrictive condition that each term in the sum must independently vanish:

2 fk ψk + τ (Sk + fk)2 = 0 .(14)

There is an additional motivation for splitting (13) into three equations, namely that
for fk satisfying (14), the enstrophy will also be conserved. These equations are easily
solved, yielding

τ fk = −(ψk + τ Sk) + σk

√
ψ2

k + 2 τ Sk ψk ,(15)

where σk ≡ σk(t, τ) is so far an unknown sign. Evaluation of (15) at τ = 0 implies
that σk(t, 0) = sgn(ψk(t)). Upon substituting (15) into the Euler integrator, (11), we
obtain the following time stepping rule:

ψk(t+ τ) = σk

√
ψ2

k + 2 τ Sk ψk .(16)

It is now clear that σk(t, τ) must in fact be the sign of ψk(t+ τ).
If ψk(t) 6= 0, then for sufficiently small τ the sign can be expressed explicitly as

σk = sgn(ψk(t)). In the τ −→ 0 limit, fk then vanishes, or equivalently, (16) reduces
to Euler’s method:

ψk(t+ τ) = sgn(ψk(t))
√
ψ2

k + 2 τ Sk ψk

≈ ψk + τ Sk .(17)

In this case the new algorithm predicts values of ψk(t + τ) that are quite close to
those given by Euler’s method—this is exactly what one would expect. The energy
and enstrophy errors arising from (7) are the result of small (but nontrivial) errors
in ψk(t+ τ) that can be corrected by making a slight modification to the algorithm.



6 B. A. Shadwick, John C. Bowman and P. J. Morrison

0 2 4 6
-2

-1

0

1

2

t

Euler
C-Euler
Exactψ

Q

ψ
K

ψ
P

ψ

Fig. 3.1. Solutions of the three-wave problem for the initial conditions ψK =
√

1.5, ψP = 0.0,
and ψQ =

√
1.5 computed using the conventional Euler (Euler) and conservative Euler (C–Euler)

methods, with a fixed time step of size 0.02. The exact solution (Exact) is also shown. The unphysical
energy growth in the conventional Euler algorithm leads to large errors in the amplitudes.

However, if ψk(t) = 0, it is seen from (15) that fk = −Sk. Consequently, (16)
has a spurious fixed point at ψk(t) = 0. Moreover, given a fixed time step τ , (17) will
break down when |ψk| < 2τ |Sk|. A related problem with (16) is that the argument
of the radical can become negative. In this case, let us rewrite the radical as

√
ψk χk,

where χk = ψk + 2 τ Sk is just the Euler approximation for a step size of 2 τ . The
condition ψk χk < 0 implies that Euler’s method predicts a sign change of ψk between t
and t+ 2 τ ; hence, we are in the vicinity of ψk = 0. A modification to (16), discussed
in Appendix A, has been devised to circumvent these problems. We give the name
“Conservative Euler” (C–Euler) to the resulting algorithm.

In Fig. 3.1 we compare the numerical solutions of the three-wave problem obtained
using the conventional Euler method with those obtained using C–Euler and with the
exact solution. For these calculations K =

√
3, P = 3, Q =

√
6, MK = 1, MP = 1

and MQ = −2. One can discern the effect of energy growth on the amplitudes
computed by the Euler method. The errors in the two approximate solutions are
shown in Fig. 3.2.

Away from the regions where ψk is small, C–Euler is an explicit algorithm. We
will see in the next section that the gymnastics described in Appendix A are merely a
consequence of the low order of the Euler method and that a fully explicit conservative
integrator is possible.

3.2. Predictor–Corrector. In practice, one would prefer to use a scheme that
both is of higher order than Euler’s method and has better stability properties. We
now turn to a simple second-order predictor–corrector scheme, which we apply to our
model problem (1):

ψ̃k = ψk + τ Sk ,(18a)
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Fig. 3.2. Differences between the computed and exact solutions in Fig. 3.1.

ψk(t+ τ) = ψk +
τ

2

(
Sk + S̃k

)
,(18b)

where S̃k = Sk(ψ̃). As we will show, using a second-order method overcomes the
fixed-point problem that we encountered with Euler’s method.

The energy now evolves according to

E(t+ τ) =
1

2

∑

k

[
ψ2

k + τ ψk

(
Sk + S̃k

)
+
τ2

4

(
Sk + S̃k

)2
]

= E(t) +
1

2

∑

k

[
τ(ψk Sk + ψ̃k S̃k) − τ2 Sk S̃k +

τ2

4
(Sk + S̃k)2

]

= E(t) +
τ2

8

∑

k

(
Sk − S̃k

)2

,(19)

where we have used the definition of ψ̃k and the properties of Sk in the final step. A
similar calculation gives

Z(t+ τ) = Z(t) +
τ2

8

∑

k

k2

(
Sk − S̃k

)2

.(20)

Again we see that the numerical method yields an ever increasing energy and enstro-
phy.1

To obtain a conservative version of this algorithm, we proceed as above by apply-
ing the predictor–corrector method to the modified equation of motion, (10), giving

ψ̃k= ψk + τ (Sk + fk) ,(21a)

1One might be tempted to conclude that any conventional method will yield a positive-definite
energy growth. While nonconservation is generic, the sign of the energy error is typically indefinite.
For example, a second-order Runge–Kutta method (equation 25.5.7 in Abramowitz and Stegun [1])
gives oscillatory errors in energy and enstrophy, although on average both the energy and enstrophy
grow.
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ψk(t+ τ)= ψk +
τ

2

(
Sk + fk + S̃k + f̃k

)
.(21b)

As we commented above, the conservative algorithm makes only small corrections to
the values of ψk(t + τ). This immediately brings to mind the underlying philosophy
of the predictor–corrector algorithms; in fact, one might suspect that energy and
enstrophy conservation can be achieved by modifying only the corrector part of the
integrator. Since the predictor is merely an intermediate approximation, there is
surely no need for it to be conservative. Thus we can replace (21) with the simpler
prescription

ψ̃k = ψk + τ Sk ,(22a)

ψk(t+ τ) = ψk +
τ

2

(
Sk + S̃k + gk

)
.(22b)

As before, we determine gk by demanding conservation of energy and enstrophy.
The energy at t+ τ is given by

E(t+ τ) =
1

2

∑

k

[
ψk(t)2 + τ ψk

(
Sk + S̃k + gk

)
+
τ2

4

(
Sk + S̃k + gk

)2
]

= E(t) +
τ

2

∑

k

[
gk ψk − τ Sk S̃k +

τ

4
(Sk + S̃k + gk)2

]
,(23)

where the last step follows from the definition of the predictor and the properties
of Sk. We see that energy will be conserved provided that

∑

k

[
gk ψk − τ Sk S̃k +

τ

4
(Sk + S̃k + gk)2

]
= 0 .(24)

Similarly, enstrophy will be conserved if

∑

k

k2

[
gk ψk − τ Sk S̃k +

τ

4
(Sk + S̃k + gk)2

]
= 0 .(25)

We can satisfy these conditions simultaneously if we can solve

gk ψk − τ Sk S̃k +
τ

4
(Sk + S̃k + gk)2 = 0(26)

for gk. Some straightforward algebra gives

τ

2
gk = −

[
ψk +

τ

2

(
Sk + S̃k

)]
+ σk

√
ψ2

k + τ
(
ψk Sk + ψ̃k S̃k

)
,(27)

where we choose σk = ±1 such that as τ −→ 0, gk vanishes. We consider the limit of
small τ in two cases. If ψk is nonzero, then for small enough τ , both ψk and ψ̃k have
the same sign and we can expand the radical to give

τ

2
gk = −ψk − τ

2

(
Sk + S̃k

)
+ σk sgn(ψk)

[
ψk +

τ

2

(
Sk + S̃k

)]
+O(τ2) ,(28)

leading us to choose σk = sgn(ψk). Otherwise, if ψk = 0, then ψ̃k = τ Sk and S̃k =
Sk +O(τ), so that

τ

2
gk = −τ Sk + σk

√
τ2 S2

k +O(τ2)

= −τ Sk + τ σk sgn(Sk)Sk +O(τ2) .(29)
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Fig. 3.3. Solutions of the three-wave problem for the initial conditions ψK =
√

1.5, ψP = 0.0,
and ψQ =

√
1.5 computed using the predictor–corrector (PC) and conservative predictor–corrector

(C–PC), with a time step of size 0.2. The exact solution (Exact) is also shown.

In this case we take σk = sgn(Sk) = sgn(ψ̃k). In the previous case, we noted, for

small τ , that ψk and ψ̃k have the same sign. Therefore, the choice σk = sgn(ψ̃k) will
always provide the correct limiting behavior.

Using the expression (29) for gk in our modified predictor–corrector algorithm, (22),
we obtain the following conservative integrator:

ψ̃k = ψk + τ Sk ,(30a)

ψk(t+ τ) = σ̃k

√
ψ2

k + τ
(
ψk Sk + ψ̃k S̃k

)
,(30b)

where σ̃k = sgn(ψ̃k). Unlike C–Euler, this algorithm, which we call “conservative
predictor–corrector,” (C–PC), does not suffer from fixed points (when ψk = 0, C–PC
reduces to (18) as τ −→ 0). It is still possible that the argument of the radical can
become negative; however, this merely indicates that the step size is too large. If Sk

has continuous first derivatives, it can be shown that a finite number of time step
reductions is sufficient to integrate the system through a negative-argument region.

For our model problem, we now compare the numerical solutions obtained by
the conventional predictor–corrector method with those obtained from C–PC, (30).
Our results are summarized in Figures 3.3–3.6. In Fig. 3.3 we show ψk(t) computed
with both methods as well as the exact solution. The errors in the two approximate
solutions are displayed in Fig. 3.4. In Fig. 3.5 we plot ∆E = E(t) −E(0) and ∆Z =
Z(t) − Z(0) for both methods.

In the limit of infinitesimal step size, C–PC reduces to the conventional predictor–
corrector. It is a straightforward exercise to verify analytically that both methods
agree with the exact solution to second order in the time step. To illustrate this
property we fit the error for a single step of mode K to a power law:

∆ψk = Aτn .(31)
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Fig. 3.4. Differences between the computed and exact solutions in Fig. 3.3.
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Fig. 3.5. Change in energy and enstrophy for the conventional predictor–corrector method (PC)
and the conservative predictor–corrector (C–PC).

The results of this fit, shown for both methods in Fig. 3.6, are consistent with the
second-order accuracy of the conventional and conservative predictor–corrector meth-
ods.

In constructing our conservative algorithms, we have essentially altered the man-
ner in which truncation error enters the solution. Where this error has gone is an
important question. It is unreasonable, of course, to expect that the truncation error
has vanished. Since our algorithm imposes two independent constraints on the three
dynamical variables, all of the truncation error is lumped into the only place left —
the phase of the numerical solution with respect to the exact solution. As our ulti-
mate application is to fluid turbulence, the nature of this component of the error in



Exactly Conservative Integrators 11

er
ro

r 
in

 ψ
K

τ 
10−110−2

10−3 

10−4 

10−5

PC    (n=3, A=1.3)

C-PC (n=3, A=1.2)

Fig. 3.6. Single-step error in mode K for the initial conditions ψK =
√

1.5, ψP = 1.0,
and ψQ =

√
1.5 for the conventional and conservative predictor–corrector methods. The results

of fitting the error to a power law Aτn is shown, indicating that conservative algorithm is of second
order, as expected.

general could be of great importance. There are two possibilities: either this error
manifests itself as a global phase shift, with all three waves exhibiting the same phase
error, or each wave receives a different phase error, so that relative phase shifts begin
to develop. Of the two possibilities, the first is of little consequence in a turbulence
simulation, whereas the second could, arguably, be as bad (from a structural point of
view) as the energy growth that we sought to eliminate.

Since our model problem is integrable, we can easily distinguish between these
cases. In a plot where each of the axes is one of the dynamical variables, the exact
solution is a simple closed curve. For our case, such a plot is shown in Fig. 3.7.
The solid line is the orbit computed with the conservative integrator, while the dots
represent the solution obtained from the conventional predictor–corrector. Since the
conservative solution yields a closed curve, we may conclude that the additional phase
error introduced is global and thus the relative phases of the waves are not affected by
our method. This supports the general observation made by de Frutos and Sanz-Serna
regarding the nature of local truncation error in systems with invariants [10].

3.3. Generalizations. The C–PC algorithm has two important straightforward
generalizations: to n waves and to complex ψk. The n-wave generalization is imme-
diate — nowhere in our derivations of the conservative algorithms have we made use
of the number of modes. Both C–Euler and C–PC can be applied to a system with
an arbitrary number of modes, where the energy and enstrophy expressions are the
appropriate generalizations of (4) and (5) respectively.

The generalization to complex amplitudes proceeds as follows. Consider a sys-
tem with n complex-valued amplitudes ψk. We split these amplitudes into real and
imaginary parts ψr

k and ψi
k, respectively, which evolve according to

dψr
k

dt
= Sr

k(ψ) ,(32a)
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Fig. 3.7. Integration of the three-wave problem using a conventional second-order predictor–
corrector (dotted line) and the conservative predictor–corrector (solid line). Both methods took
approximately 4000 time steps of size 0.05. Initially ψK =

√
1.5, ψP = 0, and ψQ =

√
1.5. The

effect of the 4% energy gain by the conventional method is clearly visible.

dψi
k

dt
= Si

k(ψ) ,(32b)

where Sr
k and Si

k are the real and imaginary parts of the source function Sk. For this
system the energy and enstrophy are given by

E =
1

2

∑

k

|ψk|2(33)

and

Z =
1

2

∑

k

k2 |ψk|2 ,(34)

where k ranges over the wavenumbers of the n modes. The properties of the source
terms that guarantee conservation of energy and enstrophy are

∑

k

ψr
k S

r
k + ψi

k S
i
k = 0 ,(35a)

∑

k

k2
(
ψr

k S
r
k + ψi

k S
i
k

)
= 0 ;(35b)
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hence, we see that a system of n complex modes is completely equivalent to a system
of 2n real modes. Therefore, the complex version of a conservative algorithm fol-
lows upon applying the real algorithm separately to each component of the complex
amplitudes.

3.4. Discussion. It is worth saying a few words about computational efficiency.
There are two sources of computational overhead associated with the conservative
algorithms compared to the conventional methods. Here we concentrate on C–PC
since C–Euler is not appropriate for practical use. In terms of operations, C–PC
requires two additional multiplications and a square-root evaluation over the standard
predictor–corrector method. Importantly C–PC uses no additional storage. The
cost of the extra operations will, in most cases, be negligible compared to the cost
of one evaluation of Sk. The square root is a cause for some concern as it may
involve a function call. In any event, on modern hardware the square-root operation
is only a small number of (typically five to seven) times slower than multiplication.
Furthermore, it is reasonable to expect that a conservative integrator will obtain
a given global accuracy with a larger time step than the corresponding conventional
integrator, thereby ameliorating the overhead problem. The second source of overhead
is the occasional need to reduce the time step when the argument of the square root
becomes negative. In practice we find that this happens approximately 10% of the
time; in light of the above discussion, we feel that this is not significant.

Since the C–PC method reduces to the usual predictor–corrector algorithm in the
limit of an infinitesimal time step, one expects that C–PC will inherit the infinitesimal
stability properties of PC. Indeed, in the sense of Skeel [29], one can establish that
PC and C–PC are equally stable. That is, upon adding a perturbation ξk to ψk(t)
in (18) and (30), one finds that for both discretizations the predicted and corrected
values at time t+ τ are perturbed by expressions of the form

ξk + τ
∑

j

ξj
∂Sk

∂ψj

+ O(τ2);(36)

this implies that for sufficiently small τ , both methods have the same stability prop-
erties. While this does not establish the behaviour for large time steps, we find in
practice that the C–PC algorithm is in fact as numerically robust (e.g. to blow-up of
the solution) as the original predictor–corrector scheme.

In numerical studies of the Euler fluid equations, an artificial viscosity is often
added to the dynamical equations to compensate partially for the spurious growth of
the energy and enstrophy introduced by the numerical scheme. The viscosity is usually
taken to vary as a power of wavenumber. However, only one of the two invariants
can be exactly conserved by such a procedure and this would require the prescribed
viscosity coefficient to be time dependent. Moreover, such a remedy can be shown to
contaminate the modal evolution. In contrast, the conservative algorithms developed
in this work faithfully reproduce the modal dynamics.

In addition these methods can be applied to dissipative systems where the change
in energy has a specific physical origin. The same numerical errors that previously led
to nonconservation of energy will now contribute to the net energy change, thus having
the effect of altering the underlying physics. For example, in a viscous fluid simulation
the amount of energy leaving a mode is determined by the balance between viscosity
and nonlinear transfer. It is an open question and a subject of further investigation
by the authors as to whether errors of this sort have the same structural effect on the
solution as in the dissipationless case.
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There is a simple interpretation of the C–Euler and C–PC algorithms that sheds
light both on their form and on the existence of the two σk branches. As numer-
ous authors have observed, most traditional numerical methods conserve the linear
invariants of a system. Consequently, one might be led to consider the possibility of
transforming ψk to new variables, in terms of which the invariants are linear. For the
three-wave problem, this can be accomplished by making the transformation φk = ψ2

k.
Upon applying the Euler method in the φk space and transforming back by taking the
square root, one immediately obtains (16). This indicates that our restriction of the
general constraint (13) to the condition (14) merely ensures that the modal energies
evolve in a manner consistent with the Euler discretization of the energy equations.
Below we will give derivations of integrators for other systems based on this idea. The
C–PC algorithm can be viewed in the same light, except that the predictor is taken to
have the simpler, nonconservative form. This also explains the ψk = 0 fixed point in
C–Euler: the modal energies have a second-order zero at ψk = 0; it is thus no wonder
that a first-order method fails at that point.

4. Lotka–Volterra. As a further demonstration, consider the Lotka–Volterra
predator–prey equations:

dx

dt
= −µx(1 − y) ,(37a)

dy

dt
= y(1 − x) .(37b)

These equations are surprisingly hard to integrate numerically since they are very
susceptible to round-off error. With the exception of Kahan’s [17] nontraditional
method (which Sanz-Serna [24] has shown to be symplectic) there are virtually no
other methods that can integrate this system without eventually failing due to round-
off error.

This is a noncanonical Hamiltonian system [24] with Hamiltonian

H = x− logx+ µy − µ log y(38)

and Poisson bracket

{f, g} = x y

(
∂f

∂x

∂g

∂y
− ∂g

∂x

∂f

∂y

)
.(39)

Just as with the three-wave problem, conventional integrators such as Euler and
predictor–corrector fail to conserve the total energy H . It happens that the dynamics
of this system are particularly sensitive to the value of the energy, which explains the
difficulty that these methods encounter when integrating (37).

It is possible to derive a conservative algorithm for this system based on the
method outlined in §3.2. However, the transcendental nature of the functions in the
energy greatly complicates the procedure and prevents an analytical solution of the
relevant equations. In light of these problems, we take an alternative approach to
deriving a conservative integrator. We proceed using the observation that standard
methods such as predictor–corrector exactly preserve linear invariants of a system of
differential equations. To exploit this behavior, we introduce new variables ξ1 and ξ2
defined by

ξ1 = x− logx ,(40a)

ξ2 = µ (y − log y) .(40b)
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Fig. 4.1. Integration of the Lotka–Volterra problem using a standard second-order predictor–
corrector and the C–PC algorithm each with 8 × 105 time steps of size 0.02. A point is plotted
every 200 time steps. The solid line represents the energy surface containing the initial condition.
The points obtained from C–PC all lie on this curve. The dramatic effect of the 1.2% energy gain
by the standard algorithm is clearly visible.

This transformation was chosen so that H is a linear function of ξ1 and ξ2. Using the
original equations of motion, we obtain

dξ1
dt

= µ(x − 1)(y − 1) ,(41a)

dξ2
dt

= −µ(x− 1)(y − 1) .(41b)

Applying the usual second-order predictor–corrector to these equations yields

ξ̃1 = ξ1 + τ µ(x− 1)(y − 1) ,(42a)

ξ̃2 = ξ1 − τ µ(x− 1)(y − 1) ,(42b)

ξ1(t+ τ) = ξ1 +
τ

2
µ [(x − 1)(y − 1) + (x̃− 1)(ỹ − 1)] ,(42c)

ξ2(t+ τ) = ξ2 −
τ

2
µ [(x − 1)(y − 1) + (x̃− 1)(ỹ − 1)] .(42d)

Strictly speaking, here x̃ and ỹ are to be computed from ξ̃1 and ξ̃2 by inverting (40a)
and (40b) respectively. Following the philosophy of the previous section, we instead
compute x̃ and ỹ from the original equations of motion to obtain the following con-
servative integrator:

x̃ = x− τ µ x(1 − y) ,(43a)

ỹ = y + τ y(1 − x) ,(43b)

ξ1(t+ τ) = ξ1 +
τ

2
µ [(x − 1)(y − 1) + (x̃− 1)(ỹ − 1)] ,(43c)

ξ2(t+ τ) = ξ2 −
τ

2
µ [(x − 1)(y − 1) + (x̃− 1)(ỹ − 1)] .(43d)



16 B. A. Shadwick, John C. Bowman and P. J. Morrison

Here x(t+τ) and y(t+τ) are determined from ξ1(t+τ) and ξ2(t+τ) by inverting (40).
Since this inversion requires solving a transcendental equation, in practice it will have
to be carried out iteratively. Although the expressions for x(t+τ) and y(t+τ) cannot
be written in closed form, (43) is still an explicit scheme.

Notice that ξ1 and ξ2 are not one-to-one functions of x and y; ξ1 has a minimum
value of 1 at x = 1, while ξ2 has a minimum of µ at y = 1. These minimum values play
roles similar to those of the points ψk = 0 in the three-wave problem. Fortunately, the
remedy is similar also: if either ξ1 or ξ2 are pushed below their respective minima,
this indicates that the time step is too large. Temporarily reducing the time step
alleviates this problem.

To illustrate the effectiveness of our conservative algorithm, we integrate (37)
taking µ = 1.5 with an initial condition of x(0) = 1.0 and y(0) = 0.4. In Fig. 4.1 we
show a comparison between the standard predictor–corrector and C–PC. The C–PC
orbit exactly conserves energy and forms a closed curve. The predictor–corrector orbit
spirals outward—a consequence of its energy gain.

We provide this example to illustrate the generality of our method; however, since
there is not an explicit expression for the inverse of the transformation (40) and a
symplectic algorithm is known [17, 24], this method seems to be of little practical
value due to the computational overhead of iteratively determining x and y from ξ1
and ξ2.

5. Kepler Problem. As a final example we consider the problem of a single
particle moving in a gravitational potential [14, 30]. Let r be the position vector of
the particle of mass m and φ(r), where r = |r|, be the gravitational potential. The
equations of motion for this system are

dr

dt
= v ,(44a)

dv

dt
= − 1

m
∇φ .(44b)

This is a conservative system with the Hamiltonian

H =
1

2
mv2 + φ(r) .(45)

As with all central force problems the total angular momentum, L = m r × v, is
conserved, confining the motion to the plane perpendicular to L. We exploit this
feature by aligning our coordinate system with the ẑ direction parallel to L and
introducing polar coordinates (r, θ) in the plane perpendicular to L.

In these coordinates the equations of motion become

dr

dt
= vr,(46a)

dvr

dt
=

`2

m2r3
− 1

m
φ′(r),(46b)

dθ

dt
=

`

mr2
,(46c)

where ` is the magnitude of the angular momentum and the Hamiltonian can be
written as

H =
1

2
mv2

r +
`2

2mr2
+ φ(r) .(47)
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Unlike all other central force problems, the Kepler problem has an additional
constant of motion known as the Runge–Lenz vector,

A = v × L + φ r .(48)

Conservation of the Runge–Lenz vector can be associated with the fact that the ori-
entation of the bound orbits of this system is fixed. It turns out that these orbits
are elliptical and oriented with the major axis in the direction of A. We say “asso-
ciated” here since in central force problems with any other force law, the orientation
of the bound orbits precesses. Furthermore, the Runge–Lenz vector is in some sense
redundant: it is not needed to integrate the equation of motion, as there are already
enough constants of motion to render the problem integrable.

We adopt the initial conditions r(0) = r0 and θ(0) = vr(0) = 0, so that the
vector A is in the x-direction. Writing the potential as φ(r) = −K/r, where K is a
constant, we see that the magnitude of A is given by

A =
`2

mr0
−K .(49)

5.1. A Conservative Integrator for the Kepler Problem. The Kepler
problem is an interesting example to consider in a study of conservative integrators,
not only as a preliminary to studying multi-body problems (which are of astronom-
ical significance), but also because of the Runge–Lenz vector. While this vector is
functionally dependent on the Hamiltonian and on the angular momentum, exact
conservation of these invariants neither guarantees conservation of the Runge–Lenz
vector nor prevents the computed orbits from exhibiting a spurious precession. Hence
numerical conservation of the Runge–Lenz vector is as much a structural issue as is
conservation of energy.

We now illustrate a conservative predictor–corrector (C–PC) algorithm for inte-
grating (46) that exactly conserves H and A. The predictor is conventional:

r̃ = r + τ vr ,(50a)

ṽr = vr + τ
1

mr2

(
`2

mr
−K

)
,(50b)

θ̃ = θ + τ
`

mr2
.(50c)

To obtain the corrector equations, we transform (r, vr) to the new variables

ξ1 = −K
r
,(51a)

ξ2 =
1

2
mv2

r +
1

2

`2

mr2
,(51b)

so that H = ξ1 + ξ2. Expressed in these new variables, the Hamiltonian is linear and
will be conserved by conventional integrators. The corrector is given by

ξ1(t+ τ) = ξ1 + ∆ ,(52a)

ξ2(t+ τ) = ξ2 − ∆ ,(52b)

where

∆ =
τ

2

(
Kvr

r2
+
Kṽr

r̃2

)
.(53)
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Fig. 5.1. Solutions of the Kepler problem: (a) computed using the conventional predictor–
corrector with a total of 1313 fixed time steps of size 0.08; (b) computed using the conservative
predictor–corrector with a total of 1000 fixed time steps of size 0.105.

In terms of the original variables, (52) may be rewritten as

r(t + τ) =
−K

−K/r + ∆
,(54a)

vr(t+ τ) = sgn(ṽr)

√
v2

r +
`2

m2

(
1

r2
− 1

r2(t+ τ)

)
− 2

∆

m
.(54b)

We still need an equation for θ. Thus far, we have enforced the invariance of H ,
but not A. Since only one integration variable remains to be determined, the conser-
vation of A enforces the following constraint on θ:

A

(
vr cos θ − `

mr
sin θ

)
= −K vr ,(55)

as is seen upon taking the v-projection of (48). This equation can be inverted for θ
using trigonometric identities and the quadratic formula. However, to avoid the com-
plexities associated with multiply-branched solutions, the most convenient method
for solving (55) appears to be Newton-Raphson iteration, using θ(t) for the initial
estimate. Convergence is rapid; typically, only 3 or 4 iterations are required.

In Fig. 5.1 we present our integration results for the conventional C–PC and PC
algorithms, respectively, adopting the initial parameters r = 1, vr = θ = 0, ` = 1,
K = 3/2, and m = 1. To allow an even comparison, a slightly larger time step size was
chosen for the C–PC run such that the amount of computer time needed to reach the
final time was the same in both cases. The new algorithm dramatically outperforms
the traditional integrator. The artificial precession of the trajectory exhibited by the
predictor–corrector result does not occur in the C–PC solution, due to the explicit
conservation of the Runge–Lenz vector.
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5.2. Discussion. We have demonstrated an explicit conservative integrator for
the Kepler problem that captures important structural features. LaBudde and Green-
span [18, 19] have constructed integrators for this problem that conserve both energy
and angular momentum, but it is unclear whether their method exhibits orbital pre-
cession.

The extension of these ideas to multi-body problems is a complicated task. Al-
though each of the components of the angular momentum are constants of motion,
they are not in involution. In the simple Kepler problem we are able to avoid any
difficulties associated with this behavior because the motion is confined to the plane
perpendicular to the angular momentum vector. In the multi-body problem this is
no longer the case, which significantly complicates matters.

6. Conclusions. We have demonstrated a technique, motivated by the idea of
backward error analysis, for deriving explicit , exactly conservative integration algo-
rithms. The method consists of modifying the dynamical equations in such a way
that when a particular conventional integration algorithm is applied to the modified
equations, one obtains a solution consistent with the original equations that exactly
conserves a system’s invariants. When applied to an explicit conventional algorithm,
the method will typically yield an explicit conservative scheme. We have seen that
the technique can be interpreted in terms of a transformation to a new set of variables
in which the invariants in question are linear. This promises to be a general method
for deriving conservative integrators.

In §3, we saw that for a system with quadratic invariants, conservative integrators
can be developed that are simple and computationally efficient. The case of quadratic
invariants is of particular interest. The invariants in Lie–Poisson systems are typically
quadratic Casimirs. Furthermore, for Hamiltonian systems with Lie group symme-
try, a Lie–Poisson system is the natural result of reduction; thus, our methods are
applicable to integrating the dynamics on the Poisson manifold of such systems. For
the integration of canonical Hamiltonian systems where the configuration space is
a Lie group Simo, Lewis and co-workers [26, 28, 27, 20] have developed a series of
methods that are symplectic and conserve momentum. One could imagine a hybrid of
these algorithms: a conservative integrator of the type discussed above for integrating
the dynamics on the Poisson manifold coupled to the algorithms of Simo et al. for
reconstruction of the full phase space flow.

In addition to the desirable physical aspects of exact energy conservation there
is some evidence [26] that such conservation leads to nonlinear numerical stability.
Furthermore, any conservative integration method developed for general systems could
certainly be applied to Hamiltonian systems, providing an interesting comparison with
symplectic methods. For example, this might shed some light on the relative merits
of preserving phase space structure and conserving nonlinear invariants. In fact, one
could envision using the local change in phase space volume as a diagnostic of the
performance of a conservative integrator. These ideas will be the subject of a future
paper.

Acknowledgments. The authors would like to thank G. Tarkenton and R. Fitz-
patrick for helpful conversations while developing these methods.

Appendix. Conservative Euler Algorithm.

One of the requirements in our derivation of C–Euler was that the new algorithm
should reduce to the Euler method in the limit τ −→ 0. This amounts to demanding
that (16) has a power series expansion in τ such that the first two terms are given by
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Euler’s formula, requiring that |2τSk/ψk| < 1. (For |2τSk/ψk| > 1, (16) has a series
expansion but all terms involve fractional powers of τ .) As noted in §3.1, (16) will
fail to meet this requirement in a neighborhood of ψk = 0. We now show that it is
possible to devise a conservative algorithm that circumvents this problem.

We exploit the fact that equation (16) conserves energy for any value of the time
step τ . This means that the scheme

ψk(t+ τ) = σk

√
ψ2

k(t) + µ τ Sk(t)ψk(t)(56)

obtained by substituting µ τ for 2τ in (16) is also conservative. Let εk = τSk/ψk. If
we choose µ = 2 + εj , equation (56) is equivalent to (7) for mode j. To make the
modified scheme match the Euler algorithm as closely as possible, we choose mode j
such that

|εj | = max
k∈{K,P,Q}

|εk|.(57)

We use (56) to evolve the system if |εj | < 1/2. However, if |εj | ≥ 1/2, we advance
mode j with (7) and evolve the other modes by stepping backwards in time from t+ τ
to t. The substitutions τ → −τ and t → t + τ in (56) yield an implicit conservative
algorithm for evolving backwards:

ψk(t) = sgn(ψk(t))
√
ψ2

k(t+ τ) − µ τ Sk(t+ τ)ψk(t+ τ) .(58)

Again, the equation for mode j will reduce to the one given by (7) if we choose

µ =
[2ψj + τ Sj(t)]Sj(t)

Sj(t+ τ)ψj(t+ τ)
.(59)

These modifications introduce a second-order correction to (16) that does not
affect the reduction expressed in (17). In either case, if the radical associated with
some mode (other than j) has a negative argument, it is clear from the form of (56)
and (58) that a finite reduction of the time step can always be found such that the
second term becomes dominated by the first.
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