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1 Introduction

In this lab we will learn how to use a pseudospectral simulation, a widely
used numerical tool for the study of fluid turbulence. The equation we will be
solving is the two-dimensional incompressible Navier–Stokes equation. A key
step requires solving for the velocity stream function ψ by inverting a Laplace
operator: ∇2ψ = ω. One of the most efficient methods for doing this is the
pseudospectral method, which exploits the Fast Fourier Transform algorithm.
Strictly speaking, this method is only appropriate for periodic boundary
conditions. However, in practice it can be used even when the physical
boundary conditions are nonperiodic, as long as the turbulence decorrelation
length is smaller than the box size.

In order to set up our simulation, we will first need to determine a con-
sistent set of forcing and dissipation parameters so that a fully developed
turbulent state is obtained, in which net forcing balances net dissipation.

2 Theory

We begin with the two-dimensional isotropic incompressible Navier–Stokes
equation for the vorticity ω = ω(x, t) in the case where the density ρ is
constant (so that there is no baroclinic term):

∂ω

∂t
+ (ẑ ×∇∇−2ω · ∇)ω = νH(−1)pH∇2pHω + f, (1)

where on the right-hand side we have included small-scale dissipation (pH ≥
1) and a random forcing f = f(x, t). Recall that the velocity u is related
to the stream function by u = ẑ × ∇ψ and the normal component of the
vorticity is given by ω

.
= ẑ · ∇ × u = ∇2ψ. (The notation “

.
=” denotes a

definition.)
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Upon taking the spatial Fourier Transform ωk(t) =
∫
ω(x, t)e−ik·x dx,

Eq. (1) becomes

∂ωk

∂t
=

∑
k+p+q=0

ẑ · p× q

q2
ω∗

pω
∗

q − νHk
2pHωk + fk. (2)

We will use a dealiased pseudospectral method to solve Eq. (2); this means
that the convolution sum in the second term is actually computed in the
spatial domain, with the help of the convolution theorem. Note that if we
had begun with an infinite spatial domain instead of a periodic domain (as
we implicitly assumed), the integral Fourier transform instead of the discrete
Fourier transform would be used; the convolution sum would then become a
convolution integral.

3 Simulation

In order to determine reasonable parameters for our numerical simulation
of Eq. (2), we introduce the enstrophy, or total mean-squared vorticity, Z,
defined as

Z
.
=

1

2

∫
k2 |ωk|

2 dk,

where dk = k dkdθ is the volume element. Upon multiplying Eq. (2) by
k2ω∗

k, symmetries in the cross product term cause the nonlinear (advective)
contributions to vanish, so that in a steady state, the balance equation for Z
becomes just

0 =
∂Z

∂t
= −2

∫
∞

0

νHk
2pH+2E(k) dk +

∫
fkω

∗

k dk, (3)

where the over-bar denotes a time average and E(k)
.
= 1

2
(2πk)|ωk|

2/k2 is the
energy spectrum. The enstrophy dissipation, described by the first integral,
occurs mostly at the small scales (high wavenumbers), where the viscous
terms dominate. We characterize these scales by the dissipation wavenumber

kd. In this lab we restrict the forcing to a narrow band, k ∈ [4, 6], centered
on the forcing wavenumber kf = 5. It turns out that it is crucial to include
all contributions of the enstrophy dissipation from the inertial range, which
is the wavenumber interval between the low forcing wavenumber kf and high
dissipation wavenumber kd. The theory of Kolmogorov [1941], Kraichnan
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[1967], and Batchelor [1969] predict that between kf and kd, Eq. (2) supports
power law solutions of the form

E(k) = Cη
2

3k−3,

where

η
.
= 2

∫ kd

kf

νHk
2pH+2E(k) dk,

the rate of enstrophy dissipation in the inertial range, is constant. In other
words,

η = 2νHCη
2

3

∫ kd

kf

k2pH−1 dk, (4)

which we may solve for η.
We assume that Eq. (1) is ergodic, so that ensemble averages are equiva-

lent to time averages. According to Novikov’s theorem [1964], if we prescribe
that fk is an isotropic white-noise random process satisfying 〈fk(t)f

∗

k′(t′)〉 =
F 2
k δkk′δ(t − t′), with Fk nonzero only for k ∈ [4, 6], the second integral in

Eq. (3) may be expressed in terms of the Green’s function for Eq. (2). Equa-
tion (3) simplifies to the balance

η = 2π
∫

6

4

kF 2

k dk.

We are now ready to describe the procedure to determine the parameters
for our pseudospectral run.

4 Procedure

1. Choose a resolutionN×N whereN is an odd number. See the graphical
user interface xtriad to the program triad for allowable values. The
maximum wavenumber kmax will then be (N − 1)/2.

2. Choose kd to be slightly less than (say 90% of) kmax.

3. Pick a value for the vorticity injection rate η, which is denoted eta in
the simulation. Letting pH = 3, kf = 5, and the forcing width δf = 2,
solve Eq. (4) for the high-wavenumber viscosity νH in terms of the
enstrophy dissipation rate η. An approximate value for the constant C
is 3.
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4. Now try running the simulation with these parameters by typing xtriad
at the command line prompt. Random initial conditions correspond-
ing to a statistical-mechanical equipartition will be used by default.
If you select the dynamic time-stepping option, you will not have to
worry about calculating an optimal value for the time step. Just pick
some small value like 10−6 as a starting time step; the dynamic time-
stepping mechanism will then quickly determine the best value. The
various graphs and movies may be viewed even while triad is running
[the numbers in square brackets periodically displayed by triad corre-
spond to 1000 time steps or the movie sampling interval (if nonzero),
whichever is less]. In the graph of the evolution of E =

∑
kEk and

Z =
∑

k k
2Ek, we also depict the palinstrophy P =

∑
k k

4Ek, which
is proportional to the rate of enstrophy dissipation. A similar calcula-
tion can be used to determine a large-scale damping −νLk

2pL, where
pL < 0, that can be added to the right-hand side of Eq. (2) so that a
true statistically stationary state will develop. However, in this lab we
simply set νL = 0.

5. What happens when you pick kd bigger than kmax (say kd = 10 kmax)?
Try it!

6. For a low-resolution inviscid run with νH = νL = Fk = 0, compare
the long-time energy spectrum predicted by the Fifth-Order Runge–
Kutta (RK5) and the Conservative Fifth-Order Runge–Kutta (C–RK5)
integrators. Which result do you think is closer to the true solution?

7. Another revealing numerical experiment is that of decaying turbulence,
where we set the forcing amplitude eta to zero. Starting from random-
ized initial conditions, you will eventually observe the formation of a
large-scale dipole vortex pair, which will continue to grow in amplitude
until the box size is reached. This upscale energy transfer involves the
same nonlinear mechanism as the inverse cascade that we talk about
in the lectures.
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