Math 655: Statistical Theories of Turbulence
Fall, 2015 Assignment 2

September 25 2015, due October 26

1. Use the phenomenological arguments of Kolmogorov and Kraichnan to deter-
mine the exponent of the inertial-range energy spectrum power law consistent
with a cascade characterized by k-independent helicity transfer.

The helicity transfer is proportional to the quantity
k 1/2
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Let f(k) = k*E(k), so that
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Differentiate this expression with respect to k to obtain
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Let ko be the smallest wavenumber in the inertial range. Integrate between kg and k
to obtain
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We can rewrite this as
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where

x(k) = 12001 x)

and xo = 2ﬁ§{k0_7E_3(k0)/3 = x(ko) > 0. Notice that for k > ko |1 — xo| we have
E(k) ~ k~7/3,

2. (a) Show that for two-dimensional unforced incompressible turbulence, the pres-
sure P is related to the stream function v by
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The velocity field is u = 2X V¢ = (—1)y,1,). The Laplacian of the pressure satisfies

V2P = —V-[(u-V)u] = —%[wy(w) — Yatbyy] — %[—%wm) + Yathey]
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(b) What is the pressure field required to maintain the incompressibility of the
velocity field w = (siny, sinz, 0)?

Let u = siny, v = sinz. From part (a), we see that
V2P = 2(~v,u, —u2) = —2cosz cosy

from which we deduce P(x,y) = cosz cosy (plus any solution of Laplaces equation
that satisfies the boundary conditions; for periodic boundary conditions, this means
to within a constant).

. In two dimensions, the statistical equipartition theory predicts that the ensemble-
averaged energy for the inviscid unforced incompressible Navier—Stokes (Euler)
equation should be distributed according to

1 1
Ek_i(W)’

where the constants o and 3 are related to the total energy £ = ), Ej and
enstrophy Z in the flow. Here the sum is over all excited (nonzero) Fourier
modes.

(a) Given a and 3, it is straighforward to calculate E and Z. What is the
formula for Z7
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(b) Given F and Z, the inverse problem of determining « and [ is more difficult.
Suppose that only a finite number 2N of Fourier modes are excited. Show that
the problem of determining («, #) from (£, Z) may be reduced to the problem
of solving for the root of a single nonlinear equation.

The constants « and § may be determined from the initial energy E and enstrophy Z
by expressing the ratio r = % in terms of p = %, using the relation
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We find that

N
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Upon inverting the last equation for p(r) with a numerical root solver, we may deter-
mine « and [ from the relations
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a = pb.

(c) Does a solution to (b) exist for all possible combinations of F and Z7? Why
or why not?

No, because if kyin < |k| < kpax, then
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so that

Therefore if the quantity » = Z/E lies outside the interval [k2; k2. ], then no

min’ "Ymax
solution can exist.

(d) In three-dimensional inviscid turbulence, one obtains an equipartition of
the modal energies Ej, since the Lagrange multiplier 5 corresponding to the
enstrophy is zero. What quantity is in equipartition in two dimensions, when
«a and (8 are both nonzero?

(a + BK?) [ug|?

. Consider two-dimensional flow in a plane perpendicular to 2.
(a) Show that the tensor

€kpq = (2°pX q>5k+p+q,0
is antisymmetric under interchange of any two indices.

The antisymmetry with respect to interchange of the last two indices follows from
the antisymmetry of the cross product. Also,

€pkq — (2-qu)5k+p+q70 = —(ﬁ.qu)5k+p+q70 = —€kpq
and

€qpk = —€pgk = €pkq = ~Ckpq-



(b) Prove that the two-dimensional Euler equation
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may be written as the noncanonical Hamiltonian system
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(where H is the Hamiltonian, in this case the total energy), by showing that
that the symplectic tensor
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obeys both the antisymmetry

qu — T Jqk
and the Jacobi identity
8Jpq 8qu 8Jkp o
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The Euler equation can be put into the above Hamiltonian form since

H:lZ‘ka:l wkw_kj(?Hzlw,’; 1w_q:w_,’;.
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To prove that the result is indeed a Hamiltonian, we first note that Jiq inherits
the antisymmetry of egpq that we established in part(a). To establish the Jacobi
symmetry, we first compute

oJ, . Ow_ . . . . "
Jkewpf = €kjew]eprq W; = crjeep(—0)qw) = 2-kX (p+q) 2pxqd(k+j+p+q)w;

Since €gpq is invariant under cyclic permutations of its indices, the sum of the cyclic
9Jpq
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permutations of Jye may be written as Agpqwi+ptq, Where
Agpg = 2-kX(p+q) 2pXq+ 2-pX(q + k) 2-qxk + 2:gX(k +p) 2-kXp.

Of the six terms in the above expression, the first and last, the second and third, and
the fourth and fifth cancel each other pairwise, so that Agpq = 0.



5. (a) Prove the Gaussian integration by parts formula
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for a (scalar) centered Gaussian random variable v and a continuously differen-
tiable (C') function f: R — R that vanishes at 4oo.
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Upon setting f(v) = v we see that the second moment of v is just the variance of v:
(v?) = 0? (1) = 0.

Hence

(o) =) (5 ).

(b) Use part (a) to show that that the odd-order moments of a centered Gaussian
distribution are zero.

First, we note that
(v) =0

since v is centered.
Part (a) implies that
8U2n

(211) = (02) (T ) = 2 (P ().

Therefore, by induction, <v2"_1> =0 for all n € N.




