Math 655: Statistical Theories of Turbulence
Fall, 2015 Assignment 1

September 11, due September 28

. For any vector fields u,v : R® — R? with continuous second derivatives show that if
u and v vanish sufficiently fast at infinity then

v /u-(VX'v)dac = /'v-(qu)dac,
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(b)
/u-szv de = —/(VXu)-(va)dm if V.u =0.

This follows from 1(a):
/(VXu)-(VXv) de = /u-Vx(va)dm = /u-[V(V-v) — Vv dx = —/u-VQ'Udcc.

Alternatively, we can establish the identity directly:
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since Vv = 0.
. (a) For any vector fields u,v : R® — R3, where u is differentiable, prove that

(VXu)xv =v-[Vu— (Vu)'].
€ijk (VX’LL)i’Uj:f}k = €ijk (Eljéaju];)vjif}k = Uj(ajuk - 6kuj):i:k = V- [V’LL - (V’U,)T]

(b) Use part (a) to show that the vortex-stretching term w-Vwu can be written in the
form D-w, where

D = -[Vu+ (Vu)T].
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In the special case where v = V Xu = w, we find from part (a) that

0=wXw=w-[Vu— (Vu)'].



Hence w-Vu = w-(Vu)?, so
w-Vu = %w- [Vu+ (Vu)'] =w-D = D-w.

In the last step, we used the symmetry of D:

w-D = wiDij:ij = wlD”:iJ = :ﬁJD”wl = D-w.

. A simple one-dimensional model for turbulence is Burgers equation,
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What global integral invariants does the inviscid version of Burgers equation have?

The spatial integral of any continuously differentiable function f of v is an invariant of
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given either periodic boundary conditions or the condition liril v =0. Let
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(this integral always exists, since f’ is continuous). Note that ¢'(v) = f/(v)v. Then

%/f(v)dwz/f’(v)%dwz—/f’(v)v%dx:— 6(’;(;) dx = 0.

Note: One does not assume the incompressibility condition dv/0x = 0 for Burgers
equation since this leads to the trivial solution that v is independent of both space

and time.
H = 1/uw dx
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is conserved by the three-dimensional inviscid incompressible Navier—Stokes equation.
From 1(a) we see that

. Prove that the helicity
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= /uogdm:/u-[w-Vu—u-Vw] :/u-Vx(uxw)
= /qu-(uxw) :/w-(uxw) =0

since w and u Xw are perpendicular to each other.



5. Show that

1
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is an invariant of the three-dimensional inviscid incompressible Navier—Stokes equa-
tion, where A is any vector potential for the velocity v and w = V Xu.

From 1(a) we see that

%/A-wdw: %/A-qudw: %/u-VxAd:nz %/u-udw;

hence this is just the total energy in the flow, which we have seen to be an invariant of the
nonlinear terms of the Navier—Stokes equation.

Alternatively, we can show the invariance directly by first noting that, in the Coulomb gauge,
w and A are related by

w=Vx(VxA) =V(V-A) — V2A = —V2A.

Thus
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The terms where | = k cancel each other, so we only need to consider the terms where [ = ¢
and [ = j. Hence
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since the first and last terms vanish and the second term, after making the substitution
1 — j — k — 1, cancels the third term.



