Math 538: Asymptotic Methods

List of Theorems

Theorem 1.1 (Order Properties): The following implications hold:

(i)
$$f \prec g \ (z \rightarrow z_0 \ in \ A) \Rightarrow f \leq g \ (z \rightarrow z_0 \ in \ A);$$

(ii)
$$f \leq g \ (z \to z_0 \ in \ A), \alpha \in \mathbb{R}^+ \Rightarrow |f|^{\alpha} \leq |g|^{\alpha} \ (z \to z_0 \ in \ A);$$

(iii)
$$f \prec g \ (z \rightarrow z_0 \ in \ A), \alpha \in \mathbb{R}^+ \Rightarrow |f|^{\alpha} \prec |g|^{\alpha} \ (z \rightarrow z_0 \ in \ A);$$

(iv)
$$f \leq g \leq h$$
 $(z \rightarrow z_0 \text{ in } A) \Rightarrow f \leq h$ $(z \rightarrow z_0 \text{ in } A)$;

(v)
$$f \leq g \prec h \ (z \rightarrow z_0 \ in \ A) \Rightarrow f \prec h \ (z \rightarrow z_0 \ in \ A);$$

(vi)
$$f \prec g \leq h \ (z \rightarrow z_0 \ in \ A) \Rightarrow f \prec h \ (z \rightarrow z_0 \ in \ A);$$

(vii)
$$f \leq \phi$$
, $g \leq \psi$ ($z \rightarrow z_0$ in A) $\Rightarrow fg \leq \phi \psi$ ($z \rightarrow z_0$ in A);

(viii)
$$f \leq \phi$$
, $g \prec \psi$ ($z \rightarrow z_0$ in A) $\Rightarrow fg \prec \phi \psi$ ($z \rightarrow z_0$ in A);

(ix)
$$f \leq \phi$$
, $g \leq \phi$ ($z \rightarrow z_0$ in A) $\Rightarrow f + g \leq \phi$ ($z \rightarrow z_0$ in A);

(x)
$$f \prec \phi$$
, $g \prec \phi$ ($z \rightarrow z_0$ in A) $\Rightarrow f + g \prec \phi$ ($z \rightarrow z_0$ in A).

Theorem 1.2 (Asymptotic Functions Have Same Order): $f \sim g \ (z \to z_0 \ in \ A) \Rightarrow f = \mathcal{O}(g) \ and \ g = \mathcal{O}(f) \ (z \to z_0 \ in \ A).$

Lemma 1.1: If $\{\phi_n\}$ and $\{\psi_n\}$ are asymptotically equivalent sequences and $\{\phi_n\}$ is an asymptotic sequence then $\{\psi_n\}$ is an asymptotic sequence.

Theorem 1.3 (Uniqueness): Let $\{\phi_n\}_{n=0}^N$ be an asymptotic sequence. Then

$$f(z) \sim \sum_{n=0}^{N} a_n \phi_n(z) \ (z \to z_0 \ in \ A) \iff$$

$$a_0 = \lim_{\substack{z \to z_0 \\ z \in A}} \frac{f(z)}{\phi_0(z)}, \qquad a_n = \lim_{\substack{z \to z_0 \\ z \in A}} \frac{f(z) - \sum_{j=0}^{n-1} a_j \phi_j(z)}{\phi_n(z)}, \quad n = 1, 2, \dots, N.$$

Theorem 1.4 (Nonuniqueness): If $f(z) \sim \sum_{n=0}^{\infty} a_n \phi_n(z)$ and $f - g = \mathcal{O}(\phi_n)$ ($z \to z_0$ in A) $\forall n$, then $g(z) \sim \sum_{n=0}^{\infty} a_n \phi_n(z)$ ($z \to z_0$ in A).

Theorem 1.5 (Addition): If $f(z) \sim \sum_{n=0}^{\infty} a_n \phi_n(z)$ and $g(z) \sim \sum_{n=0}^{\infty} b_n \phi_n(z)$ $(z \to z_0)$ in A), then $\alpha f(z) + \beta g(z) \sim \sum_{n=0}^{\infty} (\alpha a_n + \beta b_n) \phi_n(z)$ $(z \to z_0)$ in A).

Lemma 1.2: If $\{\phi_n\}_{n=0}^{\infty}$ $(z \to z_0 \text{ in } A)$ is an asymptotic sequence that satisfies

$$\phi_m(z)\phi_n(z) = \alpha(z)\phi_{m+n}(z), \tag{1.1}$$

(where without loss of generality one takes $\alpha(z) = 0$ whenever $\phi_0(z) = 0$), then ϕ_n can be expressed as $\phi_n(z) = \alpha(z)\beta^n(z)$, where $\lim_{\substack{z \to z_0 \\ z \in A}} \beta(z) = 0$. Here, we interpret $\beta^0(z) = 1$ for all $\beta(z)$.

Theorem 1.6 (Multiplication/Division): *If*

(i) the sequence $\{\phi_n\}_{n=0}^{\infty}$ satisfies Eq. (1.1);

(ii)
$$f(z) \sim \sum_{n=0}^{\infty} a_n \phi_n(z)$$
 $(z \to z_0 \text{ in } A);$

(iii)
$$g(z) \sim \sum_{n=0}^{\infty} b_n \phi_n(z) \quad (z \to z_0 \text{ in } A);$$

with $b_0 \neq 0$, then the product fg and the quotient f/g satisfy

$$f(z)g(z) \sim \alpha(z) \sum_{n=0}^{\infty} c_n \phi_n(z) \quad (z \to z_0 \text{ in } A)$$

$$\frac{f(z)}{g(z)} \sim \frac{1}{\alpha(z)} \sum_{n=0}^{\infty} d_n \phi_n(z) \quad (z \to z_0 \text{ in } A),$$

where

$$c_n = \sum_{j=0}^n a_j b_{n-j}$$

and

$$d_0 = \frac{a_0}{b_0}, \qquad d_n = \frac{1}{b_0} \left(a_n - \sum_{j=0}^{n-1} d_j b_{n-j} \right) \quad n \ge 1.$$

Theorem 1.7 (Termwise Integration): If

- (i) $\{\phi_n\}_{n=0}^{\infty} (z \to z_0 \text{ in } A) \text{ is an asymptotic sequence};$
- (ii) $\forall n, \ \phi_n \ is \ analytic \ in \ A, \ with \ antiderivative \ \Phi_n \ satisfying \lim_{\substack{z \to z_0 \\ z \in A}} \Phi_n(z) = 0;$
- (iii) f is analytic in A;

(iv)
$$f(z) \sim \sum_{n=0}^{\infty} a_n \phi_n(z) \ (z \to z_0 \ in \ A);$$

Then the antiderivatives $\Phi_n(z)$ form an asymptotic sequence and

$$\int_{z_0}^z f(\zeta) d\zeta \sim \sum_{n=0}^\infty a_n \Phi_n(z) \quad (z \to z_0 \text{ in } A),$$

provided the path of integration (except possibly for z_0) lies in A.

Theorem 1.8 (Termwise Differentiation): Let $z_0 \in \mathbb{C}$. If

- (i) ϕ_n is holomorphic in an open set A such that $z_0 \in \overline{A}$;
- (ii) $\{\phi_n\}_{n=0}^{\infty}$, and $\{\phi_n'\}_{n=0}^{\infty}$ are asymptotic sequences as $(z \to z_0 \text{ in } A)$

(iii)
$$\frac{\phi_n}{\phi'_n} = \begin{cases} \mathcal{O}(z - z_0) & (z \to z_0 \text{ in } A), \text{ if } z_0 \neq \infty, \\ \mathcal{O}(z) & (z \to \infty \text{ in } A), \text{ if } z_0 = \infty; \end{cases}$$

(iv) f is analytic in A;

(v)
$$f(z) \sim \sum_{n=0}^{\infty} a_n \phi_n(z)$$
 $(z \to z_0 \text{ in } A),$

then

$$f'(z) \sim \sum_{n=0}^{\infty} a_n \phi'_n(z) \quad (z \to z_0 \text{ in } A).$$

Lemma 2.1 (Small Laplace Tail): Let $\delta > 0$. Given a function r(t) and some $\bar{x} \in \mathbb{R}$ such that

$$\int_0^\infty e^{-\bar{x}t} r(t) \, dt$$

converges, the function

$$J(x) \doteq \int_{\delta}^{\infty} e^{-xt} r(t) dt = \mathcal{O}(x^{-\mu}) \qquad (x \to \infty)$$

for all $\mu \in \mathbb{R}$.

Theorem 2.1 (Watson's Lemma): If $f(t) \sim t^{\alpha} \sum_{n=0}^{\infty} a_n t^{\beta n}$ $(t \to 0^+)$, where $\alpha > -1$ and $\beta > 0$, then

$$\int_0^\infty e^{-xt} f(t) dt \sim \sum_{n=0}^\infty \frac{a_n \Gamma(\alpha + \beta n + 1)}{x^{\alpha + \beta n + 1}} \quad (x \to \infty),$$

provided the integral converges for all sufficiently large x.

Corollary 2.1.1 (Generalized Watson's Lemma): If $f(t) \sim t^{\alpha} \sum_{n=0}^{\infty} a_n t^{\beta n}$ $(t \to 0^+)$, where $\alpha > -1$ and $\beta > 0$, and $\int_0^{\infty} e^{-xt} f(t) dt$ converges for all sufficiently large x, then for any a > 0,

$$I_a(x) \doteq \int_0^a e^{-xt} f(t) dt \sim \sum_{n=0}^\infty \frac{a_n \Gamma(\alpha + \beta n + 1)}{x^{\alpha + \beta n + 1}} \quad (x \to \infty).$$

Lemma 2.2: If $f \sim g$ and g is bounded as $x \to x_0$ then $e^f \sim e^g$ as $x \to x_0$.

Corollary 2.1.2 (Laplace's Method): Suppose f and h are real-valued functions on [a, b], such that $f \in C$, $h \in C^1$, and h' < 0 on some subinterval (a, c). Suppose also that $h(t) \leq M < h(a)$ for $t \in (c, b)$, so that the maximum of h is approached only at a. Define $H(t) \doteq h(a) - h(t)$ for $t \in (a, c)$ and $F(u) \doteq f(H^{-1}(u))(H^{-1})'(u)$ and suppose

$$F(u) \sim u^{\alpha} \sum_{n=0}^{\infty} \gamma_n u^{\beta n} \qquad u \to 0^+,$$

with $\alpha > -1$ and $\beta > 0$. Then

$$I(x) = \int_a^b e^{xh(t)} f(t) dt \sim e^{xh(a)} \sum_{n=0}^{\infty} \frac{\gamma_n \Gamma(\alpha + \beta n + 1)}{x^{\alpha + \beta n + 1}} \quad (x \to \infty),$$

provided the integral converges absolutely for all $x \geq X$.

Corollary 2.1.3 (Maximum with N-1 Zero Derivatives): Let f and h be infinitely differentiable real-valued functions on [a,b]. Suppose $f(a) \neq 0$ and h has an exterior maximum at a, with $h^{(n)}(a) = 0$ for n = 1, 2, ..., N-1, $h^{(N)}(a) < 0$, and $\sup_{[c,b]} h(t) < h(a)$ for all $c \in (a,b)$. Then the leading-order asymptotic expansion as $x \to \infty$ of $I(x) = \int_a^b e^{xh(t)} f(t) dt$ is

$$I(x) \sim \frac{1}{N} \Gamma\left(\frac{1}{N}\right) e^{xh(a)} f(a) \left(\frac{N!}{-h^{(N)}(a)x}\right)^{1/N} \quad (x \to \infty).$$

Theorem 2.2 (Riemann-Lebesgue Lemma):

(i) If f is piecewise continuous on a bounded interval [a,b] then

$$\int_{a}^{b} e^{ixt} f(t) dt = o(1) \qquad (x \to \infty).$$

(ii) If f is continuous on (a possibly unbounded interval) (a, b) except perhaps at a finite number of points then

$$\int_{a}^{b} e^{ixt} f(t) dt = \mathcal{O}(1) \qquad (x \to \infty),$$

provided for sufficiently large x the integral converges uniformly.

Lemma 2.3: For $0 < \alpha < 1$ and x > 0,

$$\int_0^\infty e^{ixt} t^{\alpha - 1} dt = \frac{i^\alpha \Gamma(\alpha)}{x^\alpha}.$$

Lemma 2.4 (Steepest Descent): If

- (i) h(x+iy) = u(x,y) + iv(x,y) is analytic at $z_0 \doteq x_0 + iy_0$,
- (ii) $h'(z_0) \neq 0$,
- (iii) C is the curve through z_0 defined by $v(x,y) = v_0$,

then ∇u is tangent to C at z_0 .

Lemma 2.5 (Saddle Points): If

- (i) h is analytic at z_0 ,
- (ii) $h^{(n)}(a) = 0$ for n = 1, 2, ..., N 1 and $h^{(N)}(a) = ae^{i\alpha}$, with a > 0,

then there are N paths of steepest descent (ascent) through z_0 , with direction $\frac{(2n+1)\pi-\alpha}{N}$ ($\frac{2n\pi-\alpha}{N}$) for $n=0,1,2,\ldots,N-1$.

Theorem 3.1: Suppose that

$$y'' + p(x)y' + q(x)y = 0$$

has a regular singular point at x_0 and that the corresponding indicial equation P(r) = 0 has roots at r_1 and r_2 .

1. If $r_1, r_2 \in \mathbb{R}$ with $r_1 - r_2 \notin \mathbb{Z}$, then there exist two linearly independent solutions of the form

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}, \quad a_0 \neq 0,$$

$$y_2(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^{n+r_2}, \quad b_0 \neq 0.$$

2. If $r_1, r_2 \in \mathbb{R}$ with $r_1 = r_2$, then there exist two linearly independent solutions of the form

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}, \qquad a_0 \neq 0,$$

$$y_2(x) = y_1(x)\log(x - x_0) + \sum_{n=0}^{\infty} b_n(x - x_0)^{n+r_1},$$

where the constants b_n may be zero.

3. If $r_1, r_2 \in \mathbb{R}$ with $r_1 - r_2 \in \mathbb{N}$, then there exist two linearly independent solutions of the form

$$y_1(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^{n+r_1}, \quad a_0 \neq 0,$$

$$y_2(x) = Ay_1(x)\log(x - x_0) + \sum_{n=0}^{\infty} b_n(x - x_0)^{n+r_2}, \quad b_0 \neq 0,$$

where the constant A may be zero.

4. If $r_1, r_2 = \alpha \pm i\beta$, then there exist two linearly independent solutions of the form

$$y_1(x) = \cos(\beta \log(x - x_0)) \sum_{n=0}^{\infty} a_n (x - x_0)^{n+\alpha}, \quad a_0 \neq 0,$$

$$y_2(x) = \sin(\beta \log(x - x_0)) \sum_{n=0}^{\infty} b_n (x - x_0)^{n+\alpha}, \quad b_0 \neq 0.$$