Math 538: Asymptotic Methods
List of Theorems

Theorem 1.1 (Order Properties): The following implications hold:
(i) f<g(z—2inA) = f=<g(z— 2 inA);
(i) f =g (z—= 2z in A),a e RT = |f|* < |g]* (z = 20 in A);
(1)) f<9g (z— 20 in A),a € Rt = |f|* < |g|* (z = 2z in A);
(v) fLg=h(z— 2 inA)=f=h(z— 2z in A);
(v) fg<h(z— 2z inA)=f<h(z— 2z in A);
(vi) f<g=h(z— 2z inA)=f<h(z— 2z in A);
(vii) f < 6, g < (2= 2 in A) = fg < 60 (2 = 2 in A);
(viti) f ¢, =<0 (z =2z inA) = fg <o (z = 2o in A);
(ix) f 20, g2 (z—=20inA)=f+9g=¢ (2= 2 inA);
() f<¢, g<b(z—=>2z0imA) = f+g=<0¢(z— 2 in A).

Theorem 1.2 (Asymptotic Functions Have Same Order): f ~ g (z — 29 in A) =
f=0(g) and g =O(f) (z = 20 in A).

Lemma 1.1: If {¢,} and {1} are asymptotically equivalent sequences and {¢,} is
an asymptotic sequence then {1, } is an asymptotic sequence.

Theorem 1.3 (Uniqueness): Let {¢, }_, be an asymptotic sequence. Then

F(2) ~ ) andn(z) (z = 2 in A) <

n—1
f(2) = 3 a;05(2)
ap = lim /(z) a, = lim =0 n=12...,N.
e Po(2)’ TR Pn(2) ’ o
Theorem 1.4 (Nonuniqueness): If f(z) ~ i anOn(2) and [ — g = o(én) (2 —
n=0
2o in A) Vn, then g(z) ~ i andn(z) (2 = 2o in A).
n=0

Theorem 1.5 (Addition): If f(z) ~ > " jandn(z) and g(z) ~ > 7 badn(2) (z = 2o
in A), then af(z)+ Bg(z) ~ > 2 (aa, + Bby)on(2) (z — z in A).



Lemma 1.2: If {¢,}22, (z — 20 in A) is an asymptotic sequence that satisfies

(where without loss of generality one takes a(z) = 0 whenever ¢o(z) = 0), then ¢,
can be expressed as ¢,(z) = a(z)p"(z), where 1LI% B(z) = 0. Here, we interpret

z€A
B%(z) =1 for all B(2).
Theorem 1.6 (Multiplication/Division): If

(i) the sequence {$,}°°, satisfies Eq. ([1);

(ii) f(2) ~ ) andn(z) (2 = 2 in A);

(iii) g(z) ~ Y budn(z) (2= 2 in A);

with by # 0, then the product fg and the quotient f/g satisfy

f(z) ~ L Zdn¢n(2) (z = 2z in A),

where
n
Cp = E ajbn_j
j=0
and

n—1
Qo 1
b > 1.
do = —bo, d, = b (an JE:O d;by, J> n

Theorem 1.7 (Termwise Integration): If
(1) {dn}22y (2 = 20 in A) is an asymptotic sequence;

(i1) ¥'n, ¢ is analytic in A, with antiderivative ®,, satisfying hﬁrg) D, (2) =0;

z€EA

(11i) f is analytic in A;

(iv) f(z) ~ Zanqﬁn(z) (z — 29 in A);



Then the antiderivatives ®,,(z) form an asymptotic sequence and

/z F(QOdC~ Y an®u(z) (2= 2 in A),
20 n=0

provided the path of integration (except possibly for zy) lies in A.
Theorem 1.8 (Termwise Differentiation): Let zq € C. If

(i) ¢n is holomorphic in an open set A such that zy € A;

(11) {Pn} o, and {P)}>° are asymptotic sequences as (z — zy in A)

L O [ O(z—20) (22010 A), if 20 # 00,
(111) o

O(z) (z = o0 in A), if zg = oo;

(iv) f is analytic in A;

(v) f(2) ~ > andn(z) (2= 2 in A),

then .
F1(2) ~ Y and(2) (2= 2 in A).
n=0

Lemma 2.1 (Small Laplace Tail): Let 6 > 0. Given a function r(t) and some T € R

such that -
/ e (t) dt
0

J(z) = /5 T et dt = 0@ ) (z - o0)

converges, the function

for all p € R.

Theorem 2.1 (Watson’s Lemma): If f(t) ~ taZantB" (t — 07), where a > —1
n=0

and 3 > 0, then

(e}

<, a,'a+ pn+1
/0 e f(t)dt ~ ) (xa+5n+1 ) (z — 0),
n=0

provided the integral converges for all sufficiently large x.



Corollary 2.1.1 (Generalized Watson’s Lemma): If f(t) ~ t“Zantﬁn (t — 0),
n=0
where a > —1 and 8 > 0, and fooo e *t f(t) dt converges for all sufficiently large x,
then for any a > 0,

xa+ﬁn+1

L(x) = /0 () dt~ Y wllatfntl)

n=0

Lemma 2.2: If f ~ g and g is bounded as x — x then e/ ~ €9 as v — x.

Corollary 2.1.2 (Laplace’s Method): Suppose f and h are real-valued functions on
[a,b], such that f € C, h € C', and k' < 0 on some subinterval (a, c). Suppose also
that h(t) < M < h(a) for t € (¢, b), so that the maximum of A is approached only
at a. Define H(t) = h(a) — h(t) for t € (a,c) and F(u) = f(H *(u))(H™")(u) and
suppose

F(u) ~u® Z%uﬁn u— 0F,
n=0

with @ > —1 and # > 0. Then

b o0
x xh(a an(oz+»ﬁn—+1)
o) = [ erOftyar~ et SIS EIED (o o),
a n=0

provided the integral converges absolutely for all x > X.

Corollary 2.1.3 (Maximum with N — 1 Zero Derivatives): Let f and h be infinitely
differentiable real-valued functions on [a,b]. Suppose f(a) # 0 and h has an ex-
terior maximum at a, with A (a) = 0 for n = 1,2,...,N — 1, h®™(a) < 0, and
supy.; M(t) < h(a) for all ¢ € (a,b). Then the leading-order asymptotic expansion

as v — oo of I(x) = fab e f(t) dt is

I(2) ~ %r(%)erh@ f(a) (_h(NL)!(a)x)w (z = o0).

Theorem 2.2 (Riemann-Lebesgue Lemma):

(i) If f is piecewise continuous on a bounded interval [a,b] then

b
/ et f(t)dt = o(1) (r — 00).



(i1) If f is continuous on (a possibly unbounded interval) (a,b) except perhaps at a
finite number of points then

/ et f(t) dt = o(1) (x — 00),

provided for sufficiently large x the integral converges uniformly.

Lemma 2.3: For0<a <1 and x >0,

/OO eimtta—l dt — M
0

s
Lemma 2.4 (Steepest Descent): If
(i) h(z +iy) = u(z,y) +iv(x,y) is analytic at zo = xo + iyo,
(i) W(z0) # 0,
(i1i) C' is the curve through zy defined by v(x,y) = vy,
then Vu is tangent to C' at zy.
Lemma 2.5 (Saddle Points): If
(i) h is analytic at z,

(i) h™(a) =0 forn=1,2,...,N — 1 and h'N)(a) = ae™, with a > 0,

2n+1)m—a

then there are N paths of steepest descent (ascent) through zy, with direction ~——

(WT_Q) forn=0,1,2,...,N — 1.
Theorem 3.1: Suppose that
y" +pl)y +q(z)y =0

has a reqular singular point at xo and that the corresponding indicial equation
P(r) =0 has roots at vy and rs.

1. Ifri,m9 € R with r1 —1re € Z, then there exist two linearly independent solutions
of the form
n (,’L’) = Z a”(x - x0>n+rlv Qg ;é 07
n=0

ya(x) =D bulw —z0)"2, by £ 0.
n=0



2. If ri,r9 € R with vy = ry, then there exist two linearly independent solutions of
the form

y1(z) = Zan(:c — o)™, ap # 0,
n=0

ys(w) = 1 () log(x — x0) + ) _ bu(w — o)™,

n=0

where the constants b, may be zero.

3. Ifry,ro € R with ry —ry € N, then there exist two linearly independent solutions
of the form

y1(z) = Z an(x — )", ap # 0,
n=0

yo(z) = Ayi(z)log(x — o) + Z b (z — x0)" 172, by # 0,

n=0

where the constant A may be zero.
4. Ifri,r9 = a£if, then there exist two linearly independent solutions of the form

y1(z) = cos(Blog(z — xp)) Z an(x — 20)" 1, ag # 0,

n=0

ys(w) = sin(Blog(x — x0)) Y bulw — o)™, by # 0,

n=0



