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Chapter 1

Asymptotic Series

Divergent series are the invention of the devil, and it is shameful to
base on them any demonstration whatsoever. N. H. Abel (1828)

The differential equations encountered in applied mathematics, science, and engineering
research are only rarely soluble in terms of familiar mathematical functions. When
an exact solution is lacking, it is often desirable to use local analysis to determine the
approximate behaviour of a solution near a point of interest (which could even be ∞).
Asymptotic series provide a powerful technique for constructing such approximations.

1.A A Simple Example

To illustrate what an asymptotic series is, suppose we want to evaluate the Laplace
transform of cos t:

I(x) =

∫ ∞

0

e−xt cos t dt (x > 0).

If we didn’t know how to integrate this result directly, we might be tempted to
evaluate I by substituting in the Taylor series of cos t:

I(x) =

∫ ∞

0

e−xt

∞∑
n=0

(−1)nt2n

(2n)!
dt (x > 0).

1
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If we can justify the interchange of the two limit processes (the integral and infinite
sum), we would then obtain, on substituting u = xt,

I(x) =
∞∑
n=0

(−1)n

(2n)!

∫ ∞

0

e−xtt2n dt

=
∞∑
n=0

(−1)n

(2n)! x2n+1

∫ ∞

0

e−uu2n du

=
∞∑
n=0

(−1)n

(2n)! x2n+1
Γ(2n+ 1)

=
∞∑
n=0

(−1)n

(2n)! x2n+1
(2n)!

=
1

x

∞∑
n=0

(
− 1

x2

)n

,

where Γ(z) is defined by
∫∞
0
e−u uz−1 du for Re z > 0 and elsewhere by Γ(z+1) = zΓ(z)

(cf. Sect. 2.A). The resulting geometric series, with ratio −1/x2, converges for x > 1
to the value

1

x
· 1

1 + 1
x2

=
x

x2 + 1
.

In fact, on directly integrating I(x) by parts twice, we can quickly verify that the
final formula I(x) = x/(1 + x2) is valid also for x ∈ (0, 1] even though the geometric
series we encountered above diverges on this interval.

Now suppose we attempt to apply the same technique to the compute the Laplace
transform of 1/(1 + t), whose Taylor series is just the geometric series

∑∞
n=0(−1)ntn:

(1.1)

f(x) =

∫ ∞

0

e−xt

1 + t
dt

=

∫ ∞

0

e−xt

∞∑
n=0

(−1)ntn dt

=
∞∑
n=0

(−1)n
∫ ∞

0

e−xttn dt

=
∞∑
n=0

(−1)n

xn+1

∫ ∞

0

e−uun du

=
∞∑
n=0

(−1)n

xn+1
Γ(n+ 1)

=
∞∑
n=0

(−1)nn!

xn+1
.
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Unfortunately, we see that the resulting series diverges for all x (for any fixed x the
terms do not even go to zero as n→ ∞).

Why did our procedure fail for the second example? The problem is that the
Taylor series for 1/(1 + t) only converges for |t| < 1 and we integrated for t ∈ [0,∞).
Somewhat surprisingly, even though our final result is a divergent series, it can still
be useful for computing approximations to f(x) for sufficiently large x. In terms of
the Nth partial sums1

fN(x)
.
=

N∑
n=0

(−1)nn!

xn+1
,

we define the pointwise error or remainder

RN(x)
.
= f(x)− fN(x).

On making use of the Nth partial sums of the previously encountered geometric series,

N∑
n =0

(−1)ntn =
1

1 + t
− (−t)N+1

1 + t
.

we can express

f(x) =

∫ ∞

0

e−xt 1

1 + t
dt

=

∫ ∞

0

e−xt

[
N∑

n=0

(−1)ntn +
(−t)N+1

1 + t

]
dt

= fN(x) +

∫ ∞

0

e−xt (−t)N+1

1 + t
dt.

Then

(1.2)|RN(x)| =
∫ ∞

0

e−xt t
N+1

1 + t
dt ⩽

∫ ∞

0

e−xt tN+1 dt =
(N + 1)!

xN+2
.

Thus, the partial sum fN of the series approximates f(x) with an error that is
less than or equal to the first term it neglects, even though the series itself diverges!
For large x, this remainder is small, even for a few terms. For example, for N = 3,
we have

|R3(x)|⩽
24

x5
,

so for x = 10, and x = 100 say, we have

|R3(10)|⩽ 2.4× 10−4 and |R3(100)|⩽ 2.4× 10−9.

The series we found for f(x) is called an asymptotic series. The key distinction
here is the order in which the limits N → ∞ and x→ ∞ are taken:

1we use the symbol
.
= to emphasize a definition, although the notation := is more common.
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• The series we found for I(x) is convergent since lim
N→∞

RN(x) = 0 for fixed x > 1.

• The series we found for f(x) is asymptotic since lim
x→∞

RN(x) = 0 for fixed N .

1.B Order Symbols

Let f and g be functions defined on D ⊂ X → Y , where the sets X and Y could
represent either the real numbers R or the complex numbers C. Let A be a subset
of D.

Definition: We say f is in the order of g on A if ∃M > 0 ∋

|f(x)| ⩽M |g(x)| for all x ∈ A.

We write f(x) = O(g(x)). The order of g can be thought of as the class of all
functions that are asymptotically smaller than or equal to (some positive multiple of)
g on A. Equivalently, if g(x) is nonzero on A,

sup
x∈A

∣∣∣∣f(x)g(x)

∣∣∣∣ <∞;

(i.e.
∣∣∣fg ∣∣∣ is bounded on A).

• Let A = X = Y = R, f(x) = sinx, g(x) = 1. Then sinx = O(1) on R since
|sinx| ⩽ 1 for all x ∈ R.

• Let A = X = Y = R, f(x) = sinx, g(x) = x. Then sinx = O(x) on R since
|sinx| ⩽ |x| for all x ∈ R.

• Let A = X = Y = R, f(x) = sinhx, g(x) = coshx. Then sinh x = O(cosh(x)) on

R since |sinhx| =
∣∣∣ ex−e−x

2

∣∣∣ ⩽ ex+e−x

2
= coshx for all x ∈ R.

• Let A = X = Y = R, f(x) = 10x, g(x) = x. Then f(x) = O(g(x)) on R.

• Let X = Y = C, A = Br(0)
.
= {z ∈ C : |z| < r}, f(z) = z2, g(z) = z. Then

z ∈ Br(0) ⇒ |z| < r ⇒ |z2| ⩽ r |z|. Hence z2 = O(z) on Br(0).

• Let A = X = R, Y = C, f(x) = eix, g(x) = 1. Then eix = O(1) on R.
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Remark: Of the first two statements, sin x = O(1) is more useful if |x| is large and
sinx = O(x) is more useful if |x| is small.

Remark: Frequently one is interested in an order relation near some distinguished
point z0 (which could include ∞). It is therefore convenient to introduce a local
definition of asymptotic ordering.

Let X∞ be one of the sets R∞ = R ∪ {−∞,∞} or C∞ = C ∪ {∞}. Suppose
z0 ∈ A ⊂ X∞ (i.e. z0 is a limit point of A).

Definition: We say f is in the order of g as z → z0 on A ⊂ X∞ if X∞ contains a
neighbourhood U of z0 such that for some M

z ∈ U ∩ A⇒ |f(z)| ⩽M |g(z)| .

We write f(z) = O(g(z)) as z → z0. Equivalently, if g is nonzero near z0 ∈ A,

lim sup
z→z0
z∈A

∣∣∣∣f(z)g(z)

∣∣∣∣ <∞

(i.e.

∣∣∣∣fg
∣∣∣∣ is bounded on A near z0). Recall lim sup

z→z0

f(z)
.
= inf

δ>0
sup

z∈Bδ(z0)
z ̸=z0

f(z) is the

supremum of values of f(z) near z0. In particular, if f(z) is continuous at z0 then
lim sup
z→z0

f(z) = lim
z→z0

f(z) = f(z0).

• X = Y = C, A = Br(0), z0 = 0 ∈ A. Then |z| < r ⇒ |z2| ⩽ r |z| ⇒

z2 = O(z) (z → 0 in A).

• X = Y = C, A = Br(0)
c, z0 = ∞ ∈ A. Then 0 < r ⩽ |z| ⇒ |z| ⩽ 1

r
|z2| ⇒

z = O(z2) (z → ∞ in A).

Definition: We say f is in the little order of g as z → z0 in A ⊂ X∞ if for all ε > 0,
X∞ contains an neighbourhood Uε of z0 such that

z ∈ Uε ∩ A⇒ |f(z)| ⩽ ε |g(z)| .

We write f(z) = O(g(z)) as z → z0. Equivalently, if g is nonzero near z0 (and
f(z0) = 0 when z0 ∈ A),

lim
z→z0
z∈A

f(z)

g(z)
= 0.
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• A = X = Y = C. Considering the limits points 0 and ∞ of A, we see that

lim
z→0

z2

z
= 0 ⇒ z2 = O(z) (z → 0 in A) and lim

z→∞
z

z2
= 0 ⇒ z = O(z2) (z → ∞ in A).

Remark: A less common but sometimes more convenient notation for f = O(g) is
f ≼ g. The latter emphasizes that the (somewhat misleading) notation f = O(g)
actually represents a logical binary relation between the functions f and g and not
an equality. Likewise, an alternative notation for f = O(g) is f ≺ g (although the
notation f ≪ g, or equivalently, g ≫ f , is much more common in applied fields).
These alternative notations are convenient for stating the following theorem.

Theorem 1.1 (Order Properties): The following implications hold:

(i) f ≺ g (z → z0 in A) ⇒ f ≼ g (z → z0 in A);

(ii) f ≼ g (z → z0 in A), α ∈ R+ ⇒ |f |α≼ |g|α (z → z0 in A);

(iii) f ≺ g (z → z0 in A), α ∈ R+ ⇒ |f |α≺ |g|α (z → z0 in A);

(iv) f ≼ g ≼ h (z → z0 in A) ⇒ f ≼ h (z → z0 in A);

(v) f ≼ g ≺ h (z → z0 in A) ⇒ f ≺ h (z → z0 in A);

(vi) f ≺ g ≼ h (z → z0 in A) ⇒ f ≺ h (z → z0 in A);

(vii) f ≼ ϕ, g ≼ ψ (z → z0 in A) ⇒ fg ≼ ϕψ (z → z0 in A);

(viii) f ≼ ϕ, g ≺ ψ (z → z0 in A) ⇒ fg ≺ ϕψ (z → z0 in A);

(ix) f ≼ ϕ, g ≼ ϕ (z → z0 in A) ⇒ f + g ≼ ϕ (z → z0 in A);

(x) f ≺ ϕ, g ≺ ϕ (z → z0 in A) ⇒ f + g ≺ ϕ (z → z0 in A).

Proof: These results follow easily from the definitions.

Problem 1.1: Prove Theorem 1.1.

Definition: If f − g = O(g) (z → z0 in A), we say f is asymptotic to g and write
f ∼ g (z → z0 in A).
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Remark: If g(z) ̸= 0 near z0 (and f(z0) = g(z0) when z0 ∈ A), then f ∼ g (z →
z0 in A) is equivalent to lim

z→z0
z∈A

f(z)

g(z)
= 1.

In Problem 1.2 we show that f ∼ g is an equivalence relation. The following
theorem establishes a connection between this asymptotic equivalence and asymptotic
ordering.

Theorem 1.2 (Asymptotic Functions Have Same Order): f ∼ g (z → z0 in A) ⇒
f = O(g) and g = O(f) (z → z0 in A).

Proof: If f ∼ g (z → z0 in A) then f − g = O(g) (z → z0 in A), which implies
that ∀ε > 0, ∃ a neighbourhood Uε of z0 ∋

z ∈ Uε ∩ A⇒ |f(z)− g(z)|⩽ ε|g(z)|.
But by the triangle inequality we have

|f(z)|−|g(z)|⩽ |f(z)− g(z)| ⩽ ε|g(z)|,
|g(z)|−|f(z)|⩽ |f(z)− g(z)| ⩽ ε|g(z)|.

The first inequality yields |f(z)|⩽ (1 + ε)|g(z)|, which implies that f = O(g) (z →
z0 in A). For the special case ε = 1/2, the second inequality implies that |g(z)| ⩽
2 |f(z)|, so we see that g = O(f) (z → z0 in A).

Remark: The converse of the above theorem is not true. Consider f(x) = x and
g(x) = 2x. We have

|f(x)|= |x|⩽ 2|x|= |g(x)| hence f = O(g) (x→ 0),

|g(x)|= 2|x|⩽ 2|f(x)| hence g = O(f) (x→ 0).

But lim
x→0

f(x)
g(x)

= lim
x→0

x
2x

= 1
2
̸= 1. Therefore f ̸∼ g (x→ 0).

Q. Does f = O(g) and g = O(f) (z → z0 in A) imply ∃K ̸= 0 (const.) ∋
f ∼ Kg (z → z0 in A)?

A. Exercise.

Problem 1.2: Show that the definition of f ∼ g satisfies

(i) f ∼ f ,

(ii) f ∼ g ⇒ g ∼ f ,

(iii) f ∼ g, g ∼ h⇒ f ∼ h,

making it an equivalence relation.
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Problem 1.3: If f and g are continuous at z = z0, is it necessarily true that f =
O(g)? Prove or provide a counterexample.

1.C Sequences and Series

Suppose

(i) ϕn : D ⊂ X → Y for n = 0, 1, . . . , N , where X, Y ∈ {R,C};

(ii) A ⊂ D;

(iii) z0 ∈ X∞ is a limit point of A.

Definition: The set {ϕn}Nn=0 is called an asymptotic sequence (z → z0 in A) if
ϕn+1 = O(ϕn) (z → z0 in A) for n = 0, 1, . . . , N − 1.

• If A = X = Y = C, z0 ∈ C, and ϕn(z) = (z − z0)
n, then

lim
z→z0

ϕn+1(z)

ϕn(z)
= lim

z→z0
(z − z0) = 0 ⇒ ϕn+1 = O(ϕn) (z → z0 in A).

Hence {ϕn}∞n=0 is an asymptotic sequence.

• If A = X = Y = C, z0 = ∞, ϕn(z) =
1
zn
, then

lim
z→∞

ϕn+1(z)

ϕn(z)
= lim

z→∞
1

z
= 0 ⇒ ϕn+1 = O(ϕn) (z → ∞ in A).

Hence {ϕn}∞n=0 is an asymptotic sequence.

• If A = X = Y = C, z0 = ∞, ϕn(z) =
α(z)
zn

, then

lim
z→∞

ϕn+1(z)

ϕn(z)
= lim

z→∞
1

z
= 0 ⇒ ϕn+1 = O(ϕn) (z → z0 in A).

Hence {ϕn}∞n=0 is an asymptotic sequence.

• If X = Y = C, A = {z ∈ C; |arg z|≤ θ0 <
π
2
}, z0 = ∞, ϕn(z) = e−nz, then

lim
z→z0

ϕn+1(z)

ϕn(z)
= lim

z→z0
e−z = lim

x→+∞
(e−xe−iy) = 0 ⇒ ϕn+1 = O(ϕn) (z → z0 in A).

Hence {ϕn}∞n=0 is an asymptotic sequence.
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• If X = Y = R, A = (0,∞), x0 = ∞, ϕn(x) = ex/n, then

lim
x→∞

ϕn+1(x)

ϕn(x)
= lim

x→∞
e

−x
n(n+1) = 0 ⇒ ϕn+1 = O(ϕn) (x→ ∞).

Hence {ϕn}∞n=0 is an asymptotic sequence. This example shows that it is not
necessary for the individual elements of an asymptotic series go to zero, or even
remain bounded. The “asymptoticness” of a sequence is determined solely from
the ratio of consecutive terms.

• Let X = Y = R, A = (0, 1), x0 = 0. Consider the two sequences:

{ϕn(x)}∞n=0 = {log x, 1, x log x, x, x2 log2 x, x2 log x, x2, x3 log3 x, x3 log2 x, x3 log x, x3, . . . },

ψn(x) = xn, n = 0, 1, 2, . . . .

It is easily seen that lim
x→0

ϕn+1(x)
ϕn(x)

= 0 for all n ∈ N0, so that these are both asymptotic

sequences, with {ψn} being a subsequence of {ϕn}. One might say that {ϕn} is a
more “refined” asymptotic sequence than {ψn}.

Remark: Asymptotic sequences satisfy the following properties:

1. Any subsequence of an asymptotic sequence is an asymptotic sequence.

2. If {ϕn} is an asymptotic sequence and α > 0 then {|ϕn|α} is an asymptotic
sequence.

3. If {ϕn} and {ψn} are asymptotic sequences then {ϕnψn} is an asymptotic
sequence.

Definition: Two sequences {ϕn}Nn=0 and {ψn}Nn=0 (not necessarily asymptotic) are
said to be asymptotically equivalent if ϕn = O(ψn) and ψn = O(ϕn) for n =
0, 1, . . . , N .

Remark: If lim
z→z0

∣∣∣∣ϕn

ψn

∣∣∣∣ = Ln where 0 < Ln < ∞, for each n = 0, 1, . . . , N , then

{ϕn}Nn=0 and {ψn}Nn=0 are asymptotically equivalent as z → z0.

Lemma 1.1: If {ϕn} and {ψn} are asymptotically equivalent sequences and {ϕn} is
an asymptotic sequence then {ψn} is an asymptotic sequence.

Proof: ψn+1 ≼ ϕn+1 ≺ ϕn ≼ ψn. Therefore ψn+1 ≺ ψn (i.e. ψn+1 = O(ψn)).
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Definition: A sum
N∑

n=0

anϕn(z), (an const.) is called an asymptotic series if {ϕn}Nn=0

is an asymptotic sequence.

In the case N = ∞, nothing is implied about the convergence of this series. In
fact, the question of convergence is of no particular interest in asymptotic theory.

We now define how an asymptotic series can represent a function near some
distinguished point z0.

Definition: If f(z) =
N∑

n=0

anϕn(z) + O(ϕN) (z → z0 in A) for some N ∈ N0, the

asymptotic series
N∑

n=0

anϕn(z) is said to be an asymptotic expansion to N terms for

f (z → z0 in A). We write f(z) ∼
N∑

n=0

anϕn(z) (z → z0 in A).

Definition: The remainder after N terms is RN
.
= f(z)−

N∑
n=0

anϕn(z).

Remark: If we let

FN(z) =


RN (z)
ϕN (z)

for ϕN(z) ̸= 0,

0 for ϕN(z) = 0,

we see that the statement f(z) =
N∑

n=0

anϕn(z) + O(ϕN) (z → z0 in A) is equivalent

to f(z) =
N∑

n=0

anϕn(z) + FN(z)ϕN , where lim
z→z0
z∈A

FN(z) = 0.

Definition: If for each N ∈ N0,
N∑

n=0

anϕn(z) is an asymptotic expansion to N terms

for f then the series is an asymptotic expansion of f . We write f(z) ∼
∞∑
n=0

anϕn(z)

(z → z0 in A).

We now return to the example of the previous section.

• Consider the function f given in Eq. (1.1). Our näıve attempt to obtain a series

representation for f led to the divergent series
∞∑
n=0

(−1)nn!
xn+1 . There are two questions

to be considered here: (i) is this an asymptotic series; and (ii) if so, is this an
asymptotic expansion of f?
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For this series we have ϕn(x) = x−(n+1) and

lim
x→∞

ϕn+1(x)

ϕn(x)
= lim

x→∞
1

x
= 0

so that series is indeed an asymptotic series. The remainderRN satisfies (cf. Eq. (1.2))

|RN(x)|⩽
(N + 1)!

xN+2
= (N + 1)! ϕN+1(x),

so that

|RN(x)|
ϕN(x)

⩽ (N + 1)!
ϕN+1(x)

ϕN(x)
, and hence lim

x→∞
|RN(x)|
ϕN(x)

= 0, ∀N.

Thus we have

f(x) =

∫ ∞

0

e−xt

1 + t
dt ∼

∞∑
n=0

(−1)nn!

xn+1
(x→ ∞).

The following result indicates the degree to which asymptotic expansions are
unique.

Theorem 1.3 (Uniqueness): Let {ϕn}Nn=0 be an asymptotic sequence. Then

f(z) ∼
N∑

n=0

anϕn(z) (z → z0 in A) ⇐⇒

a0 = lim
z→z0
z∈A

f(z)

ϕ0(z)
, an = lim

z→z0
z∈A

f(z)−
n−1∑
j=0

ajϕj(z)

ϕn(z)
, n = 1, 2, . . . , N.

Proof: This equivalence follows directly from the fact that

lim
z→z0
z∈A

(
f(z)

ϕ0(z)
− a0

)
= lim

z→z0
z∈A

f(z)− a0ϕ0(z)

ϕ0(z)
= lim

z→z0
z∈A

R0(z)

ϕ0(z)
= 0

and

lim
z→z0
z∈A


f(z)−

n−1∑
j=0

ajϕj(z)

ϕn(z)
− an

 = lim
z→z0
z∈A

f(z)−
n−1∑
j=0

ajϕj(z)− anϕn(z)

ϕn(z)

= lim
z→z0
z∈A

Rn(z)

ϕn(z)
= 0.
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Remark: This result shows that, given a function f and an asymptotic sequence
{ϕn}Nn=0, the asymptotic expansion of f , if it exists, is unique.

Remark: In particular, for the asymptotic sequence ϕn(z) = (z−z0)n, the corresponding
asymptotic expansion of an analytic function f is in fact just its Taylor series, with
the unique coefficients (cf. Prob. 1.5)

an =
f (n)(z0)

n!
, n = 0, 1, 2, . . . .

Remark: On the other hand, as the following example illustrates, a function f
may have asymptotic expansions relative to different asymptotic sequences, and
furthermore, these sequences need not be asymptotically equivalent.

Problem 1.4: Consider the function 1
1+x

and for n = 1, 2, . . . the sequences

ϕn(x) =
1

xn
, ψn(x) =

x− 1

x2n
, θn(x) =

x2 − x+ 1

x3n
.

Verify that:

(i) these sequences are asymptotic as (x→ +∞);

(ii) these sequences are not asymptotically equivalent;

(iii) the statements

1

1 + x
∼

∞∑
n=1

(−1)n−1

xn
,

1

1 + x
∼

∞∑
n=1

x− 1

x2n
,

1

1 + x
∼

∞∑
n=1

(−1)n−1 (x
2 − x+ 1)

x3n

are valid asymptotic representations as (x→ +∞).

Remark: In addition to a single function having different asymptotic expansions
relative to different asymptotic sequences, a single asymptotic series can be a valid
asymptotic representation for more than one function: if two functions f and g
differ by an amount that is asymptotically smaller than any element of the sequence
{ϕn}∞n=0, the series doesn’t “see the difference”.

Theorem 1.4 (Nonuniqueness): If f(z) ∼
∞∑
n=0

anϕn(z) and f − g = O(ϕn) (z →

z0 in A) ∀n, then g(z) ∼
∞∑
n=0

anϕn(z) (z → z0 in A).

Proof: Exercise.
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• Consider the functions f(x)
.
= 1

1+x
and g(x)

.
= 1+e−x

1+x
. From the previous example

we know that 1
1+x

∼
∞∑
n=1

(−1)n−1

xn (x → +∞). But, on examining the difference

between f and g we get

f(x)− g(x) =
1

1 + x
− 1 + e−x

1 + x
=

−e−x

1 + x
= O

(
1

xn

)
(x→ +∞) ∀n.

Hence, by Theorem 1.4 we have
1 + e−x

1 + x
∼

∞∑
n=1

(−1)n−1

xn
as x→ +∞.

Problem 1.5: Let f be a function that is infinitely differentiable in a neighbourhood

of x0 and ak = f (k)(x0)/k!. Define ϕn(x) = (x− x0)
n and Sn(x) =

n∑
j=0

ajϕj(x).

(a) Evaluate the kth derivative ϕ
(k)
n (x) of ϕn at x = x0.

(b) Evaluate the kth derivative S
(k)
n (x) of Sn at x = x0.

(c) Evaluate lim
x→x0

[f (k)(x)− S(k)
n (x)] for n = 0, 1, 2, . . ..

(d) Use L’Hôpitals Rule to compute for n = 1, 2, . . .

lim
x→x0

f(x)− Sn−1(x)

ϕn(x)
.

Note: always check that L’Hôpitals Rule applies before using it!

(e) Recall Taylor’s Remainder theorem:

f(x) =
N−1∑
n=0

(x− x0)
n

n!
f (n)(x0) +RN(x, x0),

where RN(x, x0) = (x−x0)
Nf (N)(cN)/N ! for some number cN between x and x0.

Use the continuity of f (N) to conclude that f (N)(cN) is bounded by some constant
MN . Deduce that

f(x) ∼
∞∑
n=0

anϕn(x) (x→ x0),

(f) Evaluate the limit in part (d) directly from part (e) and Theorem 1.3.
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1.D Operations on Asymptotic Series

Suppose that

(i) ϕn : D ⊂ X → Y, n = 0, 1, . . . , N, where X, Y ∈ {R,C};

(ii) A ⊂ D;

(iii) z0 ∈ X∞ is a limit point of A;

(iv) {ϕn}∞n=0 (z → z0 in A) is an asymptotic sequence.

We want to determine under what conditions is it legitimate to add, multiply,
divide, differentiate, and integrate asymptotic series. Term by term addition of
asymptotic series is always possible:

Theorem 1.5 (Addition): If f(z) ∼∑∞
n=0 anϕn(z) and g(z) ∼

∑∞
n=0 bnϕn(z) (z → z0

in A), then αf(z) + βg(z) ∼∑∞
n=0(αan + βbn)ϕn(z) (z → z0 in A).

Proof: We are given

f(z) ∼
∞∑
n=0

anϕn(z) ⇒ f(z) =
N∑

n=0

anϕn(z) + FN(z)ϕN(z),

g(z) ∼
∞∑
n=0

bnϕn(z) ⇒ g(z) =
N∑

n=0

bnϕn(z) +GN(z)ϕN(z),

with lim
z→z0

FN(z) = lim
z→z0

GN(z) = 0. Thus

αf(z) + βg(z) =
N∑

n=0

(αan + βbn)ϕn(z) + [αFN(z) + βGN(z)]ϕN(z).

The desired result follows from the fact that lim
z→z0

[αFN(z)+βGN(z)] = 0+0 = 0.

Remark: Taking the formal product of
∑

m amϕm and
∑

n bnϕn yields an expression
containing all possible products ϕmϕn, m, n ∈ N0. It is not possible, in general, to
arrange the functions {ϕmϕn}∞m,n=0 into an asymptotic sequence. However, we will
mostly restrict our attention to asymptotic sequences satisfying the property

(1.3)ϕm(z)ϕn(z) = α(z)ϕm+n(z),

where without loss of generality one takes α(z) = 0 whenever ϕ0(z) = 0. Sequences
which satisfy Eq. (1.3) can be multiplied in a manner reminiscent of polynomial
multiplication. Such sequences are necessarily of a certain form:
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Lemma 1.2: If {ϕn}∞n=0 (z → z0 in A) is an asymptotic sequence that satisfies
Eq. (1.3), then ϕn can be expressed as ϕn(z) = α(z)βn(z), where lim

z→z0
z∈A

β(z) = 0.

Here, we interpret β0(z) = 1 for all β(z).

Proof: Exercise.

Theorem 1.6 (Multiplication/Division): If

(i) the sequence {ϕn}∞n=0 satisfies Eq. (1.3);

(ii) f(z) ∼
∞∑
n=0

anϕn(z) (z → z0 in A);

(iii) g(z) ∼
∞∑
n=0

bnϕn(z) (z → z0 in A);

with b0 ̸= 0, then the product fg and the quotient f/g satisfy

f(z)g(z) ∼ α(z)
∞∑
n=0

cnϕn(z) (z → z0 in A)

f(z)

g(z)
∼ 1

α(z)

∞∑
n=0

dnϕn(z) (z → z0 in A),

where

cn =
n∑

j=0

ajbn−j

and

d0 =
a0
b0
, dn =

1

b0

(
an −

n−1∑
j=0

djbn−j

)
n ⩾ 1.

Proof: We are given

f(z) =
N∑

n=0

anϕn(z) + FN(z)ϕN(z), g(z) =
N∑

n=0

bnϕn(z) +GN(z)ϕN(z),

where lim
z→z0

FN(z) = lim
z→z0

GN(z) = 0.
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Omitting the z arguments for brevity, we obtain, introducing the indices n = j+k
(which runs from 0 to 2N) and m = n−N ,

fg =
N∑
j=0

N∑
k=0

ajbkϕjϕk +
N∑
j=0

(ajGN + bjFN)ϕjϕN + FNGNϕNϕN

=

(
N∑

n=0

n∑
j=0

+
2N∑

n=N+1

N∑
j=n−N

)
ajbn−jαϕn +

{
N∑
j=0

(ajGN + bjFN)ϕj + FNGNϕN

}
ϕN

=
N∑

n=0

n∑
j=0

ajbn−jαϕn +
N∑

m=1

N∑
j=m

ajbN+m−jϕmϕN

+

{
N∑
j=0

(ajGN + bjFN)ϕj + FNGNϕN

}
ϕN

= α

(
N∑

n=0

cnϕn + ENϕN

)
,

where each term of

EN
.
=

N∑
m=1

N∑
j=m

ajbN+m−jβ
m +

N∑
j=0

(ajGN + bjFN)β
j + FNGNβ

N

is seen to approach 0 as z → z0 since

lim
z→z0

βj(z) =

{
1 for j = 0,
0 for j > 0,

and lim
z→z0

FN(z) = lim
z→z0

GN(z) = 0.

The formula for division follows immediately upon inverting the product formula
for f(z)

g(z)
· g(z),

an =
n∑

j=0

djbn−j,

to obtain dn for n = 0, 1, 2, . . ..

Remark: In the following two theorems, it will be helpful to recall that if f is
holomorphic in a set A then it either has isolated zeros in A or is identically zero
on A.
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Theorem 1.7 (Termwise Integration): If

(i) {ϕn}∞n=0 (z → z0 in A) is an asymptotic sequence;

(ii) ∀n, ϕn is holomorphic in A, with antiderivative Φn satisfying lim
z→z0
z∈A

Φn(z) = 0;

(iii) f is holomorphic in A;

(iv) f(z) ∼
∞∑
n=0

anϕn(z) (z → z0 in A);

Then the antiderivatives Φn(z) form an asymptotic sequence and∫ z

z0

f(ζ) dζ ∼
∞∑
n=0

anΦn(z) (z → z0 in A),

provided the path of integration (except possibly for z0) lies in A.

Proof: Without loss of generality, we may assume that none of the ϕn are identically
zero on A. It follows that these holomorphic functions must have isolated zeros; that
is, there exists a δn > 0 such that 0 < |z − z0| < δn ⇒ ϕn(z) ̸= 0.

From (i) and (ii), we see from L’Hôpitals Rule that

lim
z→z0

Φn+1(z)

Φn(z)
= lim

z→z0

Φ′
n+1(z)

Φ′
n(z)

= lim
z→z0

ϕn+1(z)

ϕn(z)
= 0.

Also, (iv) implies

f(z) =
N∑

n=0

anϕn(z) + FN(z)ϕN(z),

where lim
z→z0

FN(z) = 0 for each N . On integrating each side between z0 and z, we find

∫ z

z0

f(ζ) dζ =
N∑

n=0

anΦn(z) + EN(z)ΦN(z),

where

EN(z) =

∫ z

z0
FN(ζ)ϕN(ζ) dζ

ΦN(z)
.

The desired result then follows upon taking the limit z → z0:

lim
z→z0

EN(z) = lim
z→z0

∫ z

z0
FN(ζ)ϕN(ζ) dζ

ΦN(z)
= lim

z→z0

FN(z)ϕN(z)

Φ′
N(z)

= lim
z→z0

FN(z) = 0.
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Remark: By far the most difficult theorem to prove, and the one with the most
conditions, is the following theorem on term-by-term differentiation of asymptotic
series.

Theorem 1.8 (Termwise Differentiation): Let z0 ∈ C. If

(i) ϕn is holomorphic in an open convex set A such that z0 ∈ A;

(ii) {ϕn}∞n=0, and {ϕ′
n}∞n=0 are asymptotic sequences as (z → z0 in A)

(iii)
ϕn

ϕ′
n

=

{
O(z − z0) (z → z0 in A), if z0 ̸= ∞,
O(z) (z → ∞ in A), if z0 = ∞;

(iv) f is holomorphic in A;

(v) f(z) ∼
∞∑
n=0

anϕn(z) (z → z0 in A),

then

f ′(z) ∼
∞∑
n=0

anϕ
′
n(z) (z → z0 in A).

Proof:
Case z0 ̸= ∞:
Consider the circle Cλ(z) = {w ∈ C : |w − z| = λ |z − z0|} of radius λ |z − z0|

about z0 for a fixed λ ∈ (0, 1) such that Cλ ⊂ A. We are given that

f(z) =
N∑

n=0

anϕn(z) + FN(z)ϕN(z),

where lim
z→z0
z∈A

FN(z) = 0. Note from (i) and (iv) that FN is holomorphic in A for all N

and

f ′(z) =
N∑

n=0

anϕ
′
n(z) + FN(z)ϕ

′
N(z) + F ′

N(z)ϕN(z)

=
N∑

n=0

anϕ
′
n(z) +

[
FN(z) + F ′

N(z)
ϕN(z)

ϕ′
N(z)

]
ϕ′
N(z).

The conditions that the functions ϕn are holomorphic and form an asymptotic
series guarantee that ϕ′

N is nonzero and bounded near z0. It thus suffices to show
that

lim
z→z0
z∈A

F ′
N(z)

ϕN(z)

ϕ′
N(z)

= 0.
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LetMN(z) be the maximum value achieved by the continuous function |FN | on the
compact set Cλ(z). Then since all points of Cλ(z) remain inside A and approach z0 as
z → z0, we see from lim

z→z0
z∈A

|FN(z)| = 0 that lim
z→z0
z∈A

MN(z) = 0. Hence Cauchy’s residue

formula implies that

|F ′
N(z)| =

∣∣∣∣ 1

2πi

∫
Cλ(z)

FN(w)

(w − z)2
dw

∣∣∣∣ ⩽ 1

2π
MN(z)

2πλ |z − z0|
λ2 |z − z0|2

=
MN(z)

λ |z − z0|
.

Finally, from (iii), we know that there exists a KN > 0 and δN > 0 such that

0 < |z − z0| < δN , z ∈ A⇒
∣∣∣∣ϕN(z)

ϕ′
N(z)

∣∣∣∣ ⩽ KN |z − z0| .

Now given ε > 0, choose δ ∈ (0, δN) such that

0 < |z − z0| < δ, z ∈ A⇒MN(z) <
ελ

KN

⇒
∣∣∣∣F ′

N(z)
ϕN(z)

ϕ′
N(z)

∣∣∣∣ ⩽ MN(z)

λ |z − z0|
KN |z − z0| < ε,

as desired.
Case z0 = ∞:
The proof proceeds similarly, but with Cλ(z) = {w ∈ C : |w − z| = λ |z|} and

|z − z0| < δN replaced by |z| > δN . Note for w ∈ Cλ(z) that w → ∞ as z → ∞ since

(1− λ) |z| = |z| − |w − z| ⩽ |z + w − z| = |w| .

Remark: For some applications, it is convenient to choose the set A in Theorem 1.8
to be an open subset of the pie-shaped sector S(z0, α, β)

.
= {z ∈ C; z ̸= z0, α <

Arg(z − z0) < β}.

Remark: In this chapter we have given the basic theoretical foundation of asymptotic
sequences and series needed for the remainder of the course. The examples presented
thus far have been relatively simple in that an asymptotic expansion to a given func-
tion f relative to a given asymptotic sequence {ϕn}∞n=0 was not difficult to obtain.
In most applications, however, the situation is not so straightforward. The func-
tions for which asymptotic expansions are sought are usually unknown in advance,
typically being the solution to some initial or boundary value problem. Even the
appropriate asymptotic sequence to be used in the expansion of the solution is not
usually known and must be determined as part of the overall solution procedure.
These problems can be quite challenging.



Chapter 2

Expansion of Integrals

2.A The Gamma Function

For Re(z) > 0, define

Γ+(z)
.
=

∫ ∞

0+
e−ttz−1 dt,

where the integration is performed along the positive real axis. Then Γ+ is holomorphic
in the right half plane {z ∈ C : Re(z) > 0}. A single integration by parts yields the
following recurrence relation

(2.1)Γ+(z + 1) =

∫ ∞

0+
e−ttz dt = −e−ttz

∣∣∣∣∞
0

+ z

∫ ∞

0+
e−ttz−1 dt

= zΓ+(z).

Since Γ+(1) =
∫∞
0
e−t dt = 1 = 0!, we see that Γ+(n+1) = n! for n ∈ N0. Continuing

in this manner we find that Γ+(z+n) = (z+n−1) . . . (z+1)zΓ+(z). On rearranging
this formula,

Γ+(z) =
Γ+(z + n)

z(z + 1) . . . (z + n− 1)
,

it is possible to analytically continue the function to the left-half plane:

Γ(z)
.
=


Γ+(z) Re(z) > 0,

Γ+(z + n)

z(z + 1) . . . (z + n− 1)
−n < Re(z) ⩽ −n+ 1, z ̸= −n+ 1, n = 1, 2, 3, . . .

The resulting function Γ(z) is holomorphic in the complex plane except at z =
0,−1,−2, . . . , where it has simple poles. The graph of Γ(x) for x ∈ R is shown
in Figure 2.1 and an interactive three-dimensional plot of the surface Γ(z) for z ∈ C
is shown in Figure 2.2.

We proceed to derive a few useful relationships involving the Γ function.

20
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• For α ∈ (0, 1) we have

Γ(α) =

∫ ∞

0+
e−ttα−1 dt = 2

∫ ∞

0+
e−y2y2α−1 dy (letting t = y2),

which leads to

Γ(α)Γ(1− α) =

(
2

∫ ∞

0+
e−y2y2α−1 dy

)(
2

∫ ∞

0+
e−x2

x1−2α dx

)
= 4

∫ ∞

0+

∫ ∞

0+
e−(x2+y2)

(y
x

)2α−1

dx dy

= 4

∫ π/2

0

tan2α−1 θ

∫ ∞

0

e−r2r dr dθ

= 2

∫ π/2

0

tan2α−1 θ dθ.

In particular, we see for α = 1/2 that Γ2(1/2) = 2
∫ π/2

0
dθ = π and∫ ∞

−∞
e−x2

dx = 2

∫ ∞

0

e−x2

dx = Γ

(
1

2

)
=

√
π.

A substitution then leads to the important result
∫∞
−∞ e−ax2

dx =
√
π/a for

a > 0.

For arbitrary α ∈ (0, 1), we find, on substituting z = tan2 θ,

I(α)
.
= Γ(α)Γ(1− α) = 2

∫ π/2

0+
tan2α−1 θ dθ =

∫ ∞

0+

zα−1

1 + z
dz.

The integral here can be evaluated by a contour integration in the complex
plane, noting that the function zα−1 = e(α−1) log z is holomorphic on the star-
shaped domain obtained by slicing the complex plane along the positive real
axis. This branch cut is shown in red in the following figure. In other words we
choose the antiderivative log z = log |z|+ i arg z of the function z 7→ 1/z, where
arg z ∈ [0, 2π).

Im z

Re z

ir−1

iR

CR

Cr
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Here the large circular contour CR is chosen to have radius R ⩾ 2, so that
|1 + z| ⩾ R/2 on CR, and the small semicircular contour Cr is chosen to have
radius r ⩽ 1/2, so that |1 + z| ⩾ 1/2 on Cr. On denoting

f(z)
.
=

zα−1

1 + z
=
e(α−1) log z

1 + z
,

we then see, accounting for the residue from the pole of f at z = −1, that

2πie(α−1)iπ =

∫ R+ir

ir

f +

∫
CR

f +

∫ −ir

R−ir

f +

∫
Cr

f.

Since α < 1, we see that the contribution from the circular arc CR is∣∣∣∣∫
CR

f

∣∣∣∣ ⩽ Rα−1

R
2

· 2πR = 4πRα−1 →
R→∞

0.

Likewise, since α > 0, the contribution from the semicircular contour Cr is∣∣∣∣∫
Cr

f

∣∣∣∣ ⩽ rα−1

1
2

· πr = 2πrα →
r→0

0.

We thus deduce that

2πie(α−1)iπ = lim
r→0
R→∞

[∫ R+ir

ir

f −
∫ R−ir

−ir

f

]
=

∫ ∞

0+

e(α−1) log|z|

1 + z
dz −

∫ ∞

0+

e(α−1)(log|z|+i2π)

1 + z
dz

= I(α)
(
1− e(α−1)2πi

)
.

Thus

π = I(α) · e
−(α−1)πi − e(α−1)πi

2i
= I(α) · −e

−απi + eαπi

2i
,

from which we see that

I(α) = Γ(α)Γ(1− α) =
π

sinπα
,

On extending this result by analytic continuation, one finds for all z ∈ C \ Z
that

Γ(z)Γ(1− z) =
π

sin πz
. (2.2)
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• For α ⩾ 1 and positive x and λ, another frequently encountered integral can be
expressed in terms of Γ using the substitution u = xtλ:∫ ∞

0

e−xtλtα−1 dt =
1

λx
α
λ

∫ ∞

0

e−uu
α
λ
−1 du =

Γ
(
α
λ

)
λx

α
λ

. (2.3)

For the special case α = x = 1, this result simplifies to∫ ∞

0

e−tλ dt =
1

λ
Γ

(
1

λ

)
= Γ

(
1 +

1

λ

)
.

For 0 < α < 1 and x > 0, a related integral is

(2.4)

∫ ∞

0

eixttα−1 dt =
iαΓ(α)

xα
,

where we introduce a branch cut (shown in red) along the negative real axis:

Im z

Re zr R

ir

iR
CR

Cr

We note that f(z) = eixzzα−1 is holomorphic inside the blue contour. Cauchy’s
Integral Theorem thus implies that

0 =

∫ R

r

f(t) dt+

∫
CR

f + i

∫ r

R

f(it) dt+

∫
Cr

f.

Since α < 1, we see that∣∣∣∣∫
CR

f

∣∣∣∣ ⩽ ∫ π/2

0

e−xR sin θRα−1R dθ

⩽ Rα−1

∫ π/2

0

e−2xRθ/πR dθ = Rα−1 π

2x

(
1− e−xR

)
→

R→∞
0.

Likewise, since α > 0, we see that∣∣∣∣∫
Cr

f

∣∣∣∣ ⩽ rα
π

2x

(
1− e−xr

r

)
→
r→0

0.

Hence ∫ ∞

0

f(t) dt = −
∫ 0

∞
f(it) idt = iα

∫ ∞

0

e−xttα−1 dt =
iαΓ(α)

xα
,

as claimed.
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Figure 2.1: Graph of Γ(x) on the real line.

Gamma Function and Binomial Expansions

The Γ function gives us a convenient way to write general binomial expansions. For
arbitrary α, z ∈ C consider the general binomial expansion

(1 + z)α = 1 + αz +
α(α− 1)

2!
z2 + · · ·+ α(α− 1) · · · (α− k)(α− k + 1)

k!
zk + · · · .

It is convenient to introduce a generalized binomial coefficient.

Definition: The generalized binomial coefficient is defined as follows:(
α

k

)
.
=

1

k!

k−1∏
j=0

(α− j).

We can now write the general binomial expansion in a more compact form

(1 + z)α = 1 +
∞∑
k=1

(
α

k

)
zk.



2.A. THE GAMMA FUNCTION 25

Figure 2.2: Surface plot of Γ(z) in the complex plane, using an RGB color wheel to
represent the phase. Red indicates real positive values. The poles at the negative
integers and 0 are evident.

For α ∈ C \ Z, we re-write the genearlized binomial coefficient as follows:(
α

k

)
=

1

k!

k−1∏
j=0

(α− j) =
α(α− 1) · · · (α− k)(α− k + 1)

k!

=
α(α− 1) · · · (α− k)(α− k + 1)

k!
· Γ(α− k + 1)

Γ(α− k + 1)

=
α(α− 1) · · · (α− k)Γ(α− k)

k! Γ(α− k + 1)
(using Eq. (2.1))

=
αΓ(α)

k! Γ(α− k + 1)
=

Γ(α + 1)

k! Γ(α− k + 1)
. (2.5)

The above formula is a convenient way to represent the general binomial coefficient


////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012--today, Alexander Grahn
//
// 3Dmenu.js
//
// version 20140923
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript used by media9.sty
//
// Extended functionality of the (right click) context menu of 3D annotations.
//
//  1.) Adds the following items to the 3D context menu:
//
//   * `Generate Default View'
//
//      Finds good default camera settings, returned as options for use with
//      the \includemedia command.
//
//   * `Get Current View'
//
//      Determines camera, cross section and part settings of the current view,
//      returned as `VIEW' section that can be copied into a views file of
//      additional views. The views file is inserted using the `3Dviews' option
//      of \includemedia.
//
//   * `Cross Section'
//
//      Toggle switch to add or remove a cross section into or from the current
//      view. The cross section can be moved in the x, y, z directions using x,
//      y, z and X, Y, Z keys on the keyboard, be tilted against and spun
//      around the upright Z axis using the Up/Down and Left/Right arrow keys
//      and caled using the s and S keys.
//
//  2.) Enables manipulation of position and orientation of indiviual parts and
//      groups of parts in the 3D scene. Parts which have been selected with the
//      mouse can be scaled moved around and rotated like the cross section as
//      described above. To spin the parts around their local up-axis, keep
//      Control key pressed while using the Up/Down and Left/Right arrow keys.
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
// The code borrows heavily from Bernd Gaertners `Miniball' software,
// originally written in C++, for computing the smallest enclosing ball of a
// set of points; see: http://www.inf.ethz.ch/personal/gaertner/miniball.html
//
////////////////////////////////////////////////////////////////////////////////
//host.console.show();

//constructor for doubly linked list
function List(){
  this.first_node=null;
  this.last_node=new Node(undefined);
}
List.prototype.push_back=function(x){
  var new_node=new Node(x);
  if(this.first_node==null){
    this.first_node=new_node;
    new_node.prev=null;
  }else{
    new_node.prev=this.last_node.prev;
    new_node.prev.next=new_node;
  }
  new_node.next=this.last_node;
  this.last_node.prev=new_node;
};
List.prototype.move_to_front=function(it){
  var node=it.get();
  if(node.next!=null && node.prev!=null){
    node.next.prev=node.prev;
    node.prev.next=node.next;
    node.prev=null;
    node.next=this.first_node;
    this.first_node.prev=node;
    this.first_node=node;
  }
};
List.prototype.begin=function(){
  var i=new Iterator();
  i.target=this.first_node;
  return(i);
};
List.prototype.end=function(){
  var i=new Iterator();
  i.target=this.last_node;
  return(i);
};
function Iterator(it){
  if( it!=undefined ){
    this.target=it.target;
  }else {
    this.target=null;
  }
}
Iterator.prototype.set=function(it){this.target=it.target;};
Iterator.prototype.get=function(){return(this.target);};
Iterator.prototype.deref=function(){return(this.target.data);};
Iterator.prototype.incr=function(){
  if(this.target.next!=null) this.target=this.target.next;
};
//constructor for node objects that populate the linked list
function Node(x){
  this.prev=null;
  this.next=null;
  this.data=x;
}
function sqr(r){return(r*r);}//helper function

//Miniball algorithm by B. Gaertner
function Basis(){
  this.m=0;
  this.q0=new Array(3);
  this.z=new Array(4);
  this.f=new Array(4);
  this.v=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.a=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.c=new Array(new Array(3), new Array(3), new Array(3), new Array(3));
  this.sqr_r=new Array(4);
  this.current_c=this.c[0];
  this.current_sqr_r=0;
  this.reset();
}
Basis.prototype.center=function(){return(this.current_c);};
Basis.prototype.size=function(){return(this.m);};
Basis.prototype.pop=function(){--this.m;};
Basis.prototype.excess=function(p){
  var e=-this.current_sqr_r;
  for(var k=0;k<3;++k){
    e+=sqr(p[k]-this.current_c[k]);
  }
  return(e);
};
Basis.prototype.reset=function(){
  this.m=0;
  for(var j=0;j<3;++j){
    this.c[0][j]=0;
  }
  this.current_c=this.c[0];
  this.current_sqr_r=-1;
};
Basis.prototype.push=function(p){
  var i, j;
  var eps=1e-32;
  if(this.m==0){
    for(i=0;i<3;++i){
      this.q0[i]=p[i];
    }
    for(i=0;i<3;++i){
      this.c[0][i]=this.q0[i];
    }
    this.sqr_r[0]=0;
  }else {
    for(i=0;i<3;++i){
      this.v[this.m][i]=p[i]-this.q0[i];
    }
    for(i=1;i<this.m;++i){
      this.a[this.m][i]=0;
      for(j=0;j<3;++j){
        this.a[this.m][i]+=this.v[i][j]*this.v[this.m][j];
      }
      this.a[this.m][i]*=(2/this.z[i]);
    }
    for(i=1;i<this.m;++i){
      for(j=0;j<3;++j){
        this.v[this.m][j]-=this.a[this.m][i]*this.v[i][j];
      }
    }
    this.z[this.m]=0;
    for(j=0;j<3;++j){
      this.z[this.m]+=sqr(this.v[this.m][j]);
    }
    this.z[this.m]*=2;
    if(this.z[this.m]<eps*this.current_sqr_r) return(false);
    var e=-this.sqr_r[this.m-1];
    for(i=0;i<3;++i){
      e+=sqr(p[i]-this.c[this.m-1][i]);
    }
    this.f[this.m]=e/this.z[this.m];
    for(i=0;i<3;++i){
      this.c[this.m][i]=this.c[this.m-1][i]+this.f[this.m]*this.v[this.m][i];
    }
    this.sqr_r[this.m]=this.sqr_r[this.m-1]+e*this.f[this.m]/2;
  }
  this.current_c=this.c[this.m];
  this.current_sqr_r=this.sqr_r[this.m];
  ++this.m;
  return(true);
};
function Miniball(){
  this.L=new List();
  this.B=new Basis();
  this.support_end=new Iterator();
}
Miniball.prototype.mtf_mb=function(it){
  var i=new Iterator(it);
  this.support_end.set(this.L.begin());
  if((this.B.size())==4) return;
  for(var k=new Iterator(this.L.begin());k.get()!=i.get();){
    var j=new Iterator(k);
    k.incr();
    if(this.B.excess(j.deref()) > 0){
      if(this.B.push(j.deref())){
        this.mtf_mb(j);
        this.B.pop();
        if(this.support_end.get()==j.get())
          this.support_end.incr();
        this.L.move_to_front(j);
      }
    }
  }
};
Miniball.prototype.check_in=function(b){
  this.L.push_back(b);
};
Miniball.prototype.build=function(){
  this.B.reset();
  this.support_end.set(this.L.begin());
  this.mtf_mb(this.L.end());
};
Miniball.prototype.center=function(){
  return(this.B.center());
};
Miniball.prototype.radius=function(){
  return(Math.sqrt(this.B.current_sqr_r));
};

//functions called by menu items
function calc3Dopts () {
  //create Miniball object
  var mb=new Miniball();
  //auxiliary vector
  var corner=new Vector3();
  //iterate over all visible mesh nodes in the scene
  for(i=0;i<scene.meshes.count;i++){
    var mesh=scene.meshes.getByIndex(i);
    if(!mesh.visible) continue;
    //local to parent transformation matrix
    var trans=mesh.transform;
    //build local to world transformation matrix by recursively
    //multiplying the parent's transf. matrix on the right
    var parent=mesh.parent;
    while(parent.transform){
      trans=trans.multiply(parent.transform);
      parent=parent.parent;
    }
    //get the bbox of the mesh (local coordinates)
    var bbox=mesh.computeBoundingBox();
    //transform the local bounding box corner coordinates to
    //world coordinates for bounding sphere determination
    //BBox.min
    corner.set(bbox.min);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //BBox.max
    corner.set(bbox.max);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    //remaining six BBox corners
    corner.set(bbox.min.x, bbox.max.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.min.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.min.y, bbox.max.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
    corner.set(bbox.max.x, bbox.max.y, bbox.min.z);
    corner.set(trans.transformPosition(corner));
    mb.check_in(new Array(corner.x, corner.y, corner.z));
  }
  //compute the smallest enclosing bounding sphere
  mb.build();
  //
  //current camera settings
  //
  var camera=scene.cameras.getByIndex(0);
  var res=''; //initialize result string
  //aperture angle of the virtual camera (perspective projection) *or*
  //orthographic scale (orthographic projection)
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov*180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('\n3Daac=%s,', aac);
  }else{
      camera.viewPlaneSize=2.*mb.radius();
      res+=host.util.printf('\n3Dortho=%s,', 1./camera.viewPlaneSize);
  }
  //camera roll
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('\n3Droll=%s,',roll);
  //target to camera vector
  var c2c=new Vector3();
  c2c.set(camera.position);
  c2c.subtractInPlace(camera.targetPosition);
  c2c.normalize();
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('\n3Dc2c=%s %s %s,', c2c.x, c2c.y, c2c.z);
  //
  //new camera settings
  //
  //bounding sphere centre --> new camera target
  var coo=new Vector3();
  coo.set((mb.center())[0], (mb.center())[1], (mb.center())[2]);
  if(coo.length)
    res+=host.util.printf('\n3Dcoo=%s %s %s,', coo.x, coo.y, coo.z);
  //radius of orbit
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var roo=mb.radius()/ Math.sin(aac * Math.PI/ 360.);
  }else{
    //orthographic projection
    var roo=mb.radius();
  }
  res+=host.util.printf('\n3Droo=%s,', roo);
  //update camera settings in the viewer
  var currol=camera.roll;
  camera.targetPosition.set(coo);
  camera.position.set(coo.add(c2c.scale(roo)));
  camera.roll=currol;
  //determine background colour
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('\n3Dbg=%s %s %s,', rgb.r, rgb.g, rgb.b);
  //determine lighting scheme
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+=host.util.printf('\n3Dlights=%s,', curlights);
  //determine global render mode
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      currender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      currender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      currender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      currender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      currender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      currender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      currender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      currender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      currender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      currender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      currender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      currender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      currender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      currender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      currender='HiddenWireframe';break;
  }
  if(currender!='Solid')
    res+=host.util.printf('\n3Drender=%s,', currender);
  //write result string to the console
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Copy and paste the following text to the\n'+
    '%% option list of \\includemedia!\n%%' + res + '\n');
}

function get3Dview () {
  var camera=scene.cameras.getByIndex(0);
  var coo=camera.targetPosition;
  var c2c=camera.position.subtract(coo);
  var roo=c2c.length;
  c2c.normalize();
  var res='VIEW%=insert optional name here\n';
  if(!(coo.x==0 && coo.y==0 && coo.z==0))
    res+=host.util.printf('  COO=%s %s %s\n', coo.x, coo.y, coo.z);
  if(!(c2c.x==0 && c2c.y==-1 && c2c.z==0))
    res+=host.util.printf('  C2C=%s %s %s\n', c2c.x, c2c.y, c2c.z);
  if(roo > 1e-9)
    res+=host.util.printf('  ROO=%s\n', roo);
  var roll = camera.roll*180/Math.PI;
  if(host.util.printf('%.4f', roll)!=0)
    res+=host.util.printf('  ROLL=%s\n', roll);
  if(camera.projectionType==camera.TYPE_PERSPECTIVE){
    var aac=camera.fov * 180/Math.PI;
    if(host.util.printf('%.4f', aac)!=30)
      res+=host.util.printf('  AAC=%s\n', aac);
  }else{
    if(host.util.printf('%.4f', camera.viewPlaneSize)!=1)
      res+=host.util.printf('  ORTHO=%s\n', 1./camera.viewPlaneSize);
  }
  rgb=scene.background.getColor();
  if(!(rgb.r==1 && rgb.g==1 && rgb.b==1))
    res+=host.util.printf('  BGCOLOR=%s %s %s\n', rgb.r, rgb.g, rgb.b);
  switch(scene.lightScheme){
    case scene.LIGHT_MODE_FILE:
      curlights='Artwork';break;
    case scene.LIGHT_MODE_NONE:
      curlights='None';break;
    case scene.LIGHT_MODE_WHITE:
      curlights='White';break;
    case scene.LIGHT_MODE_DAY:
      curlights='Day';break;
    case scene.LIGHT_MODE_NIGHT:
      curlights='Night';break;
    case scene.LIGHT_MODE_BRIGHT:
      curlights='Hard';break;
    case scene.LIGHT_MODE_RGB:
      curlights='Primary';break;
    case scene.LIGHT_MODE_BLUE:
      curlights='Blue';break;
    case scene.LIGHT_MODE_RED:
      curlights='Red';break;
    case scene.LIGHT_MODE_CUBE:
      curlights='Cube';break;
    case scene.LIGHT_MODE_CAD:
      curlights='CAD';break;
    case scene.LIGHT_MODE_HEADLAMP:
      curlights='Headlamp';break;
  }
  if(curlights!='Artwork')
    res+='  LIGHTS='+curlights+'\n';
  switch(scene.renderMode){
    case scene.RENDER_MODE_BOUNDING_BOX:
      defaultrender='BoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
      defaultrender='TransparentBoundingBox';break;
    case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
      defaultrender='TransparentBoundingBoxOutline';break;
    case scene.RENDER_MODE_VERTICES:
      defaultrender='Vertices';break;
    case scene.RENDER_MODE_SHADED_VERTICES:
      defaultrender='ShadedVertices';break;
    case scene.RENDER_MODE_WIREFRAME:
      defaultrender='Wireframe';break;
    case scene.RENDER_MODE_SHADED_WIREFRAME:
      defaultrender='ShadedWireframe';break;
    case scene.RENDER_MODE_SOLID:
      defaultrender='Solid';break;
    case scene.RENDER_MODE_TRANSPARENT:
      defaultrender='Transparent';break;
    case scene.RENDER_MODE_SOLID_WIREFRAME:
      defaultrender='SolidWireframe';break;
    case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
      defaultrender='TransparentWireframe';break;
    case scene.RENDER_MODE_ILLUSTRATION:
      defaultrender='Illustration';break;
    case scene.RENDER_MODE_SOLID_OUTLINE:
      defaultrender='SolidOutline';break;
    case scene.RENDER_MODE_SHADED_ILLUSTRATION:
      defaultrender='ShadedIllustration';break;
    case scene.RENDER_MODE_HIDDEN_WIREFRAME:
      defaultrender='HiddenWireframe';break;
  }
  if(defaultrender!='Solid')
    res+='  RENDERMODE='+defaultrender+'\n';

  //detect existing Clipping Plane (3D Cross Section)
  var clip=null;
  if(
    clip=scene.nodes.getByName('$$$$$$')||
    clip=scene.nodes.getByName('Clipping Plane')
  );
  for(var i=0;i<scene.nodes.count;i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd==clip||nd.name=='') continue;
    var ndUTFName='';
    for (var j=0; j<nd.name.length; j++) {
      var theUnicode = nd.name.charCodeAt(j).toString(16);
      while (theUnicode.length<4) theUnicode = '0' + theUnicode;
      ndUTFName += theUnicode;
    }
    var end=nd.name.lastIndexOf('.');
    if(end>0) var ndUserName=nd.name.substr(0,end);
    else var ndUserName=nd.name;
    respart='  PART='+ndUserName+'\n';
    respart+='    UTF16NAME='+ndUTFName+'\n';
    defaultvals=true;
    if(!nd.visible){
      respart+='    VISIBLE=false\n';
      defaultvals=false;
    }
    if(nd.opacity<1.0){
      respart+='    OPACITY='+nd.opacity+'\n';
      defaultvals=false;
    }
    if(nd.constructor.name=='Mesh'){
      currender=defaultrender;
      switch(nd.renderMode){
        case scene.RENDER_MODE_BOUNDING_BOX:
          currender='BoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX:
          currender='TransparentBoundingBox';break;
        case scene.RENDER_MODE_TRANSPARENT_BOUNDING_BOX_OUTLINE:
          currender='TransparentBoundingBoxOutline';break;
        case scene.RENDER_MODE_VERTICES:
          currender='Vertices';break;
        case scene.RENDER_MODE_SHADED_VERTICES:
          currender='ShadedVertices';break;
        case scene.RENDER_MODE_WIREFRAME:
          currender='Wireframe';break;
        case scene.RENDER_MODE_SHADED_WIREFRAME:
          currender='ShadedWireframe';break;
        case scene.RENDER_MODE_SOLID:
          currender='Solid';break;
        case scene.RENDER_MODE_TRANSPARENT:
          currender='Transparent';break;
        case scene.RENDER_MODE_SOLID_WIREFRAME:
          currender='SolidWireframe';break;
        case scene.RENDER_MODE_TRANSPARENT_WIREFRAME:
          currender='TransparentWireframe';break;
        case scene.RENDER_MODE_ILLUSTRATION:
          currender='Illustration';break;
        case scene.RENDER_MODE_SOLID_OUTLINE:
          currender='SolidOutline';break;
        case scene.RENDER_MODE_SHADED_ILLUSTRATION:
          currender='ShadedIllustration';break;
        case scene.RENDER_MODE_HIDDEN_WIREFRAME:
          currender='HiddenWireframe';break;
        //case scene.RENDER_MODE_DEFAULT:
        //  currender='Default';break;
      }
      if(currender!=defaultrender){
        respart+='    RENDERMODE='+currender+'\n';
        defaultvals=false;
      }
    }
    if(origtrans[nd.name]&&!nd.transform.isEqual(origtrans[nd.name])){
      var lvec=nd.transform.transformDirection(new Vector3(1,0,0));
      var uvec=nd.transform.transformDirection(new Vector3(0,1,0));
      var vvec=nd.transform.transformDirection(new Vector3(0,0,1));
      respart+='    TRANSFORM='
               +lvec.x+' '+lvec.y+' '+lvec.z+' '
               +uvec.x+' '+uvec.y+' '+uvec.z+' '
               +vvec.x+' '+vvec.y+' '+vvec.z+' '
               +nd.transform.translation.x+' '
               +nd.transform.translation.y+' '
               +nd.transform.translation.z+'\n';
      defaultvals=false;
    }
    respart+='  END\n';
    if(!defaultvals) res+=respart;
  }
  if(clip){
    var centre=clip.transform.translation;
    var normal=clip.transform.transformDirection(new Vector3(0,0,1));
    res+='  CROSSSECT\n';
    if(!(centre.x==0 && centre.y==0 && centre.z==0))
      res+=host.util.printf(
        '    CENTER=%s %s %s\n', centre.x, centre.y, centre.z);
    if(!(normal.x==1 && normal.y==0 && normal.z==0))
      res+=host.util.printf(
        '    NORMAL=%s %s %s\n', normal.x, normal.y, normal.z);
    res+=host.util.printf(
      '    VISIBLE=%s\n', clip.visible);
    res+=host.util.printf(
      '    PLANECOLOR=%s %s %s\n', clip.material.emissiveColor.r,
             clip.material.emissiveColor.g, clip.material.emissiveColor.b);
    res+=host.util.printf(
      '    OPACITY=%s\n', clip.opacity);
    res+=host.util.printf(
      '    INTERSECTIONCOLOR=%s %s %s\n',
        clip.wireframeColor.r, clip.wireframeColor.g, clip.wireframeColor.b);
    res+='  END\n';
//    for(var propt in clip){
//      console.println(propt+':'+clip[propt]);
//    }
  }
  res+='END\n';
  host.console.show();
//  host.console.clear();
  host.console.println('%%\n%% Add the following VIEW section to a file of\n'+
    '%% predefined views (See option "3Dviews"!).\n%%\n' +
    '%% The view may be given a name after VIEW=...\n' +
    '%% (Remove \'%\' in front of \'=\'.)\n%%');
  host.console.println(res + '\n');
}

//add items to 3D context menu
runtime.addCustomMenuItem("dfltview", "Generate Default View", "default", 0);
runtime.addCustomMenuItem("currview", "Get Current View", "default", 0);
runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);

//menu event handlers
menuEventHandler = new MenuEventHandler();
menuEventHandler.onEvent = function(e) {
  switch(e.menuItemName){
    case "dfltview": calc3Dopts(); break;
    case "currview": get3Dview(); break;
    case "csection":
      addremoveClipPlane(e.menuItemChecked);
      break;
  }
};
runtime.addEventHandler(menuEventHandler);

//global variable taking reference to currently selected node;
var target=null;
selectionEventHandler=new SelectionEventHandler();
selectionEventHandler.onEvent=function(e){
  if(e.selected&&e.node.name!=''){
    target=e.node;
  }else{
    target=null;
  }
}
runtime.addEventHandler(selectionEventHandler);

cameraEventHandler=new CameraEventHandler();
cameraEventHandler.onEvent=function(e){
  var clip=null;
  runtime.removeCustomMenuItem("csection");
  runtime.addCustomMenuItem("csection", "Cross Section", "checked", 0);
  if(clip=scene.nodes.getByName('$$$$$$')|| //predefined
    scene.nodes.getByName('Clipping Plane')){ //added via context menu
    runtime.removeCustomMenuItem("csection");
    runtime.addCustomMenuItem("csection", "Cross Section", "checked", 1);
  }
  if(clip){//plane in predefined views must be rotated by 90 deg around normal
    clip.transform.rotateAboutLineInPlace(
      Math.PI/2,clip.transform.translation,
      clip.transform.transformDirection(new Vector3(0,0,1))
    );
  }
  for(var i=0; i<rot4x4.length; i++){rot4x4[i].setIdentity()}
  target=null;
}
runtime.addEventHandler(cameraEventHandler);

var rot4x4=new Array(); //keeps track of spin and tilt axes transformations
//key event handler for scaling moving, spinning and tilting objects
keyEventHandler=new KeyEventHandler();
keyEventHandler.onEvent=function(e){
  var backtrans=new Matrix4x4();
  var trgt=null;
  if(target) {
    trgt=target;
    var backtrans=new Matrix4x4();
    var trans=trgt.transform;
    var parent=trgt.parent;
    while(parent.transform){
      //build local to world transformation matrix
      trans.multiplyInPlace(parent.transform);
      //also build world to local back-transformation matrix
      backtrans.multiplyInPlace(parent.transform.inverse.transpose);
      parent=parent.parent;
    }
    backtrans.transposeInPlace();
  }else{
    if(
      trgt=scene.nodes.getByName('$$$$$$')||
      trgt=scene.nodes.getByName('Clipping Plane')
    ) var trans=trgt.transform;
  }
  if(!trgt) return;

  var tname=trgt.name;
  if(typeof(rot4x4[tname])=='undefined') rot4x4[tname]=new Matrix4x4();
  if(target)
    var tiltAxis=rot4x4[tname].transformDirection(new Vector3(0,1,0));
  else  
    var tiltAxis=trans.transformDirection(new Vector3(0,1,0));
  var spinAxis=rot4x4[tname].transformDirection(new Vector3(0,0,1));

  //get the centre of the mesh
  if(target&&trgt.constructor.name=='Mesh'){
    var centre=trans.transformPosition(trgt.computeBoundingBox().center);
  }else{ //part group (Node3 parent node, clipping plane)
    var centre=new Vector3(trans.translation);
  }
  switch(e.characterCode){
    case 30://tilt up
      rot4x4[tname].rotateAboutLineInPlace(
          -Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(-Math.PI/900,centre,tiltAxis);
      break;
    case 31://tilt down
      rot4x4[tname].rotateAboutLineInPlace(
          Math.PI/900,rot4x4[tname].translation,tiltAxis);
      trans.rotateAboutLineInPlace(Math.PI/900,centre,tiltAxis);
      break;
    case 28://spin right
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            -Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(-Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 29://spin left
      if(e.ctrlKeyDown&&target){
        trans.rotateAboutLineInPlace(Math.PI/900,centre,spinAxis);
      }else{
        rot4x4[tname].rotateAboutLineInPlace(
            Math.PI/900,rot4x4[tname].translation,new Vector3(0,0,1));
        trans.rotateAboutLineInPlace(Math.PI/900,centre,new Vector3(0,0,1));
      }
      break;
    case 120: //x
      translateTarget(trans, new Vector3(1,0,0), e);
      break;
    case 121: //y
      translateTarget(trans, new Vector3(0,1,0), e);
      break;
    case 122: //z
      translateTarget(trans, new Vector3(0,0,1), e);
      break;
    case 88: //shift + x
      translateTarget(trans, new Vector3(-1,0,0), e);
      break;
    case 89: //shift + y
      translateTarget(trans, new Vector3(0,-1,0), e);
      break;
    case 90: //shift + z
      translateTarget(trans, new Vector3(0,0,-1), e);
      break;
    case 115: //s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1.01);
      trans.translateInPlace(centre.scale(1));
      break;
    case 83: //shift + s
      trans.translateInPlace(centre.scale(-1));
      trans.scaleInPlace(1/1.01);
      trans.translateInPlace(centre.scale(1));
      break;
  }
  trans.multiplyInPlace(backtrans);
}
runtime.addEventHandler(keyEventHandler);

//translates object by amount calculated from Canvas size
function translateTarget(t, d, e){
  var cam=scene.cameras.getByIndex(0);
  if(cam.projectionType==cam.TYPE_PERSPECTIVE){
    var scale=Math.tan(cam.fov/2)
              *cam.targetPosition.subtract(cam.position).length
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }else{
    var scale=cam.viewPlaneSize/2
              /Math.min(e.canvasPixelWidth,e.canvasPixelHeight);
  }
  t.translateInPlace(d.scale(scale));
}

function addremoveClipPlane(chk) {
  var curTrans=getCurTrans();
  var clip=scene.createClippingPlane();
  if(chk){
    //add Clipping Plane and place its center either into the camera target
    //position or into the centre of the currently selected mesh node
    var centre=new Vector3();
    if(target){
      var trans=target.transform;
      var parent=target.parent;
      while(parent.transform){
        trans=trans.multiply(parent.transform);
        parent=parent.parent;
      }
      if(target.constructor.name=='Mesh'){
        var centre=trans.transformPosition(target.computeBoundingBox().center);
      }else{
        var centre=new Vector3(trans.translation);
      }
      target=null;
    }else{
      centre.set(scene.cameras.getByIndex(0).targetPosition);
    }
    clip.transform.setView(
      new Vector3(0,0,0), new Vector3(1,0,0), new Vector3(0,1,0));
    clip.transform.translateInPlace(centre);
  }else{
    if(
      scene.nodes.getByName('$$$$$$')||
      scene.nodes.getByName('Clipping Plane')
    ){
      clip.remove();clip=null;
    }
  }
  restoreTrans(curTrans);
  return clip;
}

//function to store current transformation matrix of all nodes in the scene
function getCurTrans() {
  var tA=new Array();
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(nd.name=='') continue;
    tA[nd.name]=new Matrix4x4(nd.transform);
  }
  return tA;
}

//function to restore transformation matrices given as arg
function restoreTrans(tA) {
  for(var i=0; i<scene.nodes.count; i++){
    var nd=scene.nodes.getByIndex(i);
    if(tA[nd.name]) nd.transform.set(tA[nd.name]);
  }
}

//store original transformation matrix of all mesh nodes in the scene
var origtrans=getCurTrans();

//set initial state of "Cross Section" menu entry
cameraEventHandler.onEvent(1);

//host.console.clear();



////////////////////////////////////////////////////////////////////////////////
//
// (C) 2012, Michail Vidiassov, John C. Bowman, Alexander Grahn
//
// asylabels.js
//
// version 20120912
//
////////////////////////////////////////////////////////////////////////////////
//
// 3D JavaScript to be used with media9.sty (option `add3Djscript') for
// Asymptote generated PRC files
//
// adds billboard behaviour to text labels in Asymptote PRC files so that
// they always face the camera under 3D rotation.
//
//
// This work may be distributed and/or modified under the
// conditions of the LaTeX Project Public License.
// 
// The latest version of this license is in
//   http://mirrors.ctan.org/macros/latex/base/lppl.txt
// 
// This work has the LPPL maintenance status `maintained'.
// 
// The Current Maintainer of this work is A. Grahn.
//
////////////////////////////////////////////////////////////////////////////////

var bbnodes=new Array(); // billboard meshes
var bbtrans=new Array(); // billboard transforms

function fulltransform(mesh) 
{ 
  var t=new Matrix4x4(mesh.transform); 
  if(mesh.parent.name != "") { 
    var parentTransform=fulltransform(mesh.parent); 
    t.multiplyInPlace(parentTransform); 
    return t; 
  } else
    return t; 
} 

// find all text labels in the scene and determine pivoting points
var nodes=scene.nodes;
var nodescount=nodes.count;
var third=1.0/3.0;
for(var i=0; i < nodescount; i++) {
  var node=nodes.getByIndex(i); 
  var name=node.name;
  var end=name.lastIndexOf(".")-1;
  if(end > 0) {
    if(name.charAt(end) == "\001") {
      var start=name.lastIndexOf("-")+1;
      if(end > start) {
        node.name=name.substr(0,start-1);
        var nodeMatrix=fulltransform(node.parent);
        var c=nodeMatrix.translation; // position
        var d=Math.pow(Math.abs(nodeMatrix.determinant),third); // scale
        bbnodes.push(node);
        bbtrans.push(Matrix4x4().scale(d,d,d).translate(c).multiply(nodeMatrix.inverse));
      }
    }
  }
}

var camera=scene.cameras.getByIndex(0); 
var zero=new Vector3(0,0,0);
var bbcount=bbnodes.length;

// event handler to maintain camera-facing text labels
billboardHandler=new RenderEventHandler();
billboardHandler.onEvent=function(event)
{
  var T=new Matrix4x4();
  T.setView(zero,camera.position.subtract(camera.targetPosition),
            camera.up.subtract(camera.position));

  for(var j=0; j < bbcount; j++)
    bbnodes[j].transform.set(T.multiply(bbtrans[j]));
  runtime.refresh(); 
}
runtime.addEventHandler(billboardHandler);

runtime.refresh();
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in terms of the Γ function. However, there is a slight variation of this formula which
is also convenient. To arrive at this other formula we need to make use of certain
properties of the Γ function. Using Eq. (2.2) with z = α + 1, we get

Γ(α + 1)Γ(−α) = π

sin π(α + 1)
.

Again using Eq. (2.2), but with z = α− k + 1, we get

Γ(α− k + 1)Γ(k − α) =
π

sin π(α− k + 1)
= (−1)k

π

sin π(α + 1)
.

Combining these, for α ∈ C\Z, allows us to write an equivalent form for the binomial
coefficient as (

α

k

)
= (−1)k

Γ(k − α)

k! Γ(−α) . (2.6)

Note that
(
α
0

)
= 1, so, for α ∈ C \ Z, the binomial expansion becomes

(1 + z)α =
∞∑
k=0

Γ(α + 1)

k! Γ(α− k + 1)
zk, (2.7)

or, equivalently

(1 + z)α =
∞∑
k=0

(−1)k
Γ(k − α)

k! Γ(−α)z
k. (2.8)

For negative integers α = −n with n ∈ N, formula Eq. (2.8) can be used directly. For
non-negative integer values of α, we take the appropriate limits. Since the Γ function
has simple poles at non-positive integer values of its argument, it follows that

lim
z→−n

Γ(z) = ∞, or equivalently lim
z→−n

1

Γ(z)
= 0 for n ∈ N0,

so that for non-negative integers α = n ∈ N0, taking the limit in Eq. (2.5) yields(
n

k

)
= lim

α→n

(
α

k

)
= lim

α→n

Γ(α + 1)

k! Γ(α− k + 1)

=


Γ(n+ 1)

k! Γ(n− k + 1)

0

=


n!

k! (n− k)!
, for k = 0, 1, 2, . . . , n,

0, for k ⩾ n+ 1,

and, thus we recover the usual expression

(1 + z)n =
n∑

k=0

n!

k! (n− k)!
zk.
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Problem 2.1: Show that

Γ

(
n+

1

2

)
=

(2n)!

22n n!

√
π.

Problem 2.2: (Alternate derivation of the binomial expansion in Eq. (2.7).)
Let α ∈ C \ Z. Consider the infinite sum

(2.9)f(z) =
∞∑
n=0

Γ(α + 1)

n! Γ(α + 1− n)
zn.

(a) What is the radius of convergence R of the series in Eq. (2.9)?

(b) Compute f ′(z) for |z| < R.

(c) Use your answer in part (b) to find a first-order differential equation with solution
f(z) for |z| < R. Hint: compute (1 + z)f ′(z).

(d) Solve the first-order differential equation in part (c) subject to the boundary
condition f(0) = 1 to determine f(z).

(e) Confirm that we chose the right boundary condition in part (d) by verifying that
all of the coefficients in the Taylor series of f(z) about 0 agree with those in
Eq. (2.9).

(f) Use part (d) to find the asymptotic expansion of (t2 + 2t)
−1/2

for the asymptotic
sequence {tn}∞n=0 as t→ 0.

2.B Some Elementary Examples

In this section we give a few examples to illustrate, in a relatively ad-hoc manner,
some of the techniques used to obtain asymptotic approximations to integrals of the
form

I(x) =

∫ x

x0

f(ξ) dξ, or I(z) =

∫ z

z0

f(ζ) dζ.

If f(z) ∼∑∞
n=0 anϕn(z) for some asymptotic sequence {ϕn}∞n=0 then, provided the

conditions of Theorem 1.7 hold, we can integrate the asymptotic series term by term.
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• Calculate an asymptotic expansion for I(x) =

∫ ∞

x

e−t4 dt as (x→ 0+).

If we try to integrate e−t4 ∼
∞∑
n=0

(−1)nt4n

n!
(t→ 0+) term by term we encounter a

problem arising from the upper limit of integration:∫ ∞

x

e−t4 dt ∼
∞∑
n=0

(−1)nt4n+1

n! (4n+ 1)

∣∣∣∣∣
∞

x

= ∗@⋆?

The correct approach is to first peel off an infinite definite integral:

I(x) =

∫ ∞

x

e−t4 dt =

∫ ∞

0

e−t4 dt−
∫ x

0

e−t4 dt ∼ Γ

(
5

4

)
−

∞∑
n=0

(−1)nx4n+1

n! (4n+ 1)
(x→ 0+).

Note the form of the terms in the asymptotic series:

ϕn(x) = x4n+1 = α(x)βn(x), where α(x) = x, β(x) = x4.

• Find an asymptotic series as (z → 0 in A) for the exponential integral

E1(z) =

∫ ∞

z

e−ζ

ζ
dζ, where A = S(0,−θ0, θ0), θ0 <

π

2
.

Since E1 has a singularity at z = 0, we cannot split
∫∞
z

=
∫∞
0

−
∫ z

0
. Instead,

consider its derivative:

E ′
1(z) = −e

−z

z
∼ −

∞∑
n=0

(−1)nzn−1

n!
∼ −1

z
−

∞∑
n=1

(−1)nzn−1

n!
.

On moving the first term to the left-hand side and integrating from 1 to z, we find

E1(z) + log z ∼ −
∞∑
n=1

(−1)nzn

nn!
+ C (z → 0 in A).

where the constant C can be evaluated as

C = lim
z→0
z∈A

(E1(z) + log z)

= lim
z→0
z∈A

[∫ ∞

z

e−ζ

ζ
dζ + log z − log(1 + z)

]
= lim

z→0
z∈A

lim
T→∞

∫ T

z

e−ζ

ζ
− 1

ζ
+

1

1 + ζ
dζ

=

∫ ∞

0+

e−ζ

ζ
− 1

ζ(1 + ζ)
dζ.
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On using the fact that

log n =

∫ n

1

1

k
dk =

∫ n

1

∫ ∞

0

e−kx dx dk =

∫ ∞

0+

∫ n

1

e−kx dk dx =

∫ ∞

0+

e−x − e−nx

x
dx,

we can show that C = −γ, where γ is Euler’s constant:

γ
.
= lim

n→∞

(
n∑

k=1

1

k
− log n

)

= lim
n→∞

(
n∑

k=1

∫ ∞

0+
e−kx dx−

∫ ∞

0+

e−x − e−nx

x
dx

)

=

∫ ∞

0+

(
e−x

1− e−x
− e−x

x

)
dx

= lim
δ→0+

∫ ∞

δ

(
1

ex − 1
− e−x

x

)
dx

= lim
δ→0+

(∫ ∞

eδ−1

1

y(y + 1)
dy −

∫ ∞

δ

e−x

x
dx

)
=

∫ ∞

0+

1

x

(
1

1 + x
− e−x

)
dx

=0.5772 . . . ,

using the substitution y = ex − 1.

Therefore

E1(z) =

∫ ∞

z

e−ζ

ζ
dζ ∼ − log z − γ −

∞∑
n=1

(−1)nzn

nn!
(z → 0 in A).

Incidentally, the fact that

lim
z→0
z∈A

(E1(z) + log z) = −γ

implies a close connection between the constant γ and the Γ function, namely:

Γ′(1) =

∫ ∞

0+
e−t log t dt

= lim
z→0+

(
[−e−t log t]∞z +

∫ ∞

z

1

t
e−t dt

)
= lim

z→0+
(log z + E1(z))

= −γ.



30 CHAPTER 2. EXPANSION OF INTEGRALS

A slight reformulation of the definition for γ in terms of a telescoping series,

γ = lim
n→∞

(
n∑

k=1

1

k
− log n

)
+ lim

n→∞
log

(
n+ 1

n

)

= lim
n→∞

(
n∑

k=1

1

k
− log(n+ 1)

)

=
∞∑
k=1

[
1

k
− log

(
k + 1

k

)]
,

has a simple geometric interpretation as the sum of the areas of the green regions in
Figure 2.3. The total shaded (green+red) areas is just the area 1 of the rectangle
[1, 2]×[0, 1] (since the telescoping sum

∑∞
k=1[

1
k
− 1

k+1
] = 1), so γ is the fraction of

the shaded area that is coloured green. The convexity of the graph of f(x) = 1/x on
(0,∞) then establishes that 1/2 < γ < 1.

y

x1 2 . . . k k + 1 . . .

(1,1) y =
1

x

Figure 2.3: Geometrical interpretation of Euler’s constant.

2.C Integration by Parts

One of the most useful techniques for assisting us in the asymptotic approximation
of integrals is integration by parts. This is easily illustrated with a few examples.

• Find the asymptotic behaviour of I(x) =

∫ ∞

x

e−t4 dt as (x→ ∞). Clearly lim
x→∞

I(x) =

0. But how fast does I(x) → 0? Consider

I(x) = −1

4

∫ ∞

x

1

t3
d

dt

(
e−t4

)
dt = − 1

4t3
e−t4

∣∣∣∣∞
x

− 3

4

∫ ∞

x

e−t4

t4
dt =

e−x4

4x3
− 3

4
I1(x),

where

In(x)
.
=

∫ ∞

x

e−t4

t4n
dt ⩽

1

x4

∫ ∞

x

e−t4

t4n−4
dt =

In−1(x)

x4
.
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From this inequality it follows that In+1 = O(In) (x → ∞). Noting that I(x) =

I0(x), we then see that
e−x4

4x3
= I0(x) +

3

4
I1(x) ∼ I0(x) = I(x) as x→ ∞. We have

thus obtained the one term asymptotic expansion

I(x) ∼ e−x4

4x3
(x→ ∞).

Continuing along these lines, we find for n = 0, 1, 2, . . .

In(x) = −1

4

∫ ∞

x

1

t4n+3

d

dt

(
e−t4

)
dt

=
e−x4

4x4n+3
−
(
4n+ 3

4

)
In+1(x)

=
1

4
[ϕn(x)− (4n+ 3)In+1(x)],

where ϕn(x)
.
=

e−x4

x4n+3
forms an asymptotic sequence: lim

x→∞
ϕn+1(x)

ϕn(x)
= 0. Note for

(x→ ∞) that In+1 = O(In) implies that In+1 = O(ϕn) as well. Hence

I(x) ∼
∞∑
n=0

anϕn(x) (x→ ∞),

where a0 = 1
4
, an+1 = −(4n+3

4
)an = −(−1)n

3 · 7 · 11 · . . . · (4n+ 3)

4n+2
, n ⩾ 0. The

terms in the asymptotic series may thus be written in the form

ϕn(x) = α(x)βn(x), with α(x) =
e−x4

x3
, β(x) =

1

x4
.

The integral thus has the asymptotic representation∫ ∞

x

e−t4 dt ∼ e−x4

x3

∞∑
n=0

an
x4n

∼ e−x4

4x3

[
1− 3

4x4
+

3 · 7
42x8

− . . .

]
(x→ ∞).

Remark: Comparing to the example on p. 27, we now have asymptotic expansions
for I(x) for both small and large x:∫ ∞

x

e−t4 dt ∼ Γ

(
5

4

)
−

∞∑
n=0

(−1)nx4n+1

n! (4n+ 1)
(x→ 0+) (series converges),∫ ∞

x

e−t4 dt ∼ e−x4

x3

∞∑
n=0

an
x4n

(x→ ∞) (series diverges).

The expansion for x→ 0+ is just the Taylor’s series for I(x). Although this series
converges for all x, the convergence is slow for large x, as seen in Figure 2.4. In
contrast, the first few terms of the divergent series for I(x) (as x → ∞) accurately
approximate the exact value of I(x) at large x.
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1

2

3

1 2 3
x

T10(x)/I(x)

T11(x)/I(x)

I1(x)/I(x)

I2(x)/I(x)

I3(x)/I(x)

Figure 2.4: Comparison of the 10 term (T10) and 11 term (T11) Taylor series
expansions of I(x) about x = 0 with the N -term asymptotic expansion of I(x) =∫∞
x
e−t4 dt (x→ ∞) for N = 1, 2, 3.

• Behaviour of I(x) =

∫ x

0

et
2

dt (x→ ∞).

Wrong approaches:

I(x) =

∫ x

0

∞∑
n=0

t2n

n!
dt =

∞∑
n=0

x2n+1

n! (2n+ 1)
not an asymptotic series (x→ ∞)

I(x) =

∫ ∞

0

et
2

dt−
∫ ∞

x

et
2

dt form ∞−∞

I(x) =
1

2

∫ x

0

1

t

d

dt
et

2

dt =
et

2

2t

∣∣∣∣∣
x

0

+
1

2

∫ x

0

et
2

t2
dt singular at t = 0

Correct approach:
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Introduce a cutoff parameter a ∈ (0, x):

I(x) =

∫ a

0

et
2

dt+

∫ x

a

et
2

dt

= I(a) + J0(a, x),

where Jn(a, x) =

∫ x

a

et
2

t2n
dt. Then

J0(a, x) =
1

2

∫ x

a

1

t

d

dt
et

2

dt =
et

2

2t

∣∣∣∣∣
x

a

+
1

2

∫ x

a

et
2

t2
dt

=
ex

2

2x
− ea

2

2a
+

1

2
J1(a, x).

We now show that J1(a, x) = O(ex
2
/2x):

lim
x→∞

J1(a, x)
ex2

2x

= lim
x→∞

∫ x

a

et
2

t2
dt

ex2

2x

= lim
x→∞

ex
2

x2

(1− 1
2x2 )ex

2 = lim
x→∞

2

2x2 − 1
= 0.

Thus

lim
x→∞

I(x)
ex2

2x

= lim
x→∞

{
I(a)
ex2

2x

+ 1−
ea

2

2a

ex2

2x

+
1
2
J1(a, x)

ex2

2x

}
= 1.

That is,

I(x) ∼ ex
2

2x
(x→ ∞).

Notice that this one-term asymptotic series for I(x) is independent of the cuttoff
parameter a (why?).

Continuing in this manner leads to∫ x

0

et
2

dt ∼ ex
2

2x

[
1 +

∞∑
n=1

1 · 3 · 5 · . . . · (2n− 1)

(2x2)n

]
(x→ ∞),

again independent of a.

Remark: Integration by parts “looks like”

I(z) = a0ϕ0(z) + I1(z)
= a0ϕ0(z) + a1ϕ1(z) + I2(z)
= . . .

=
N∑

n=0

anϕn(z) + IN+1(z).



34 CHAPTER 2. EXPANSION OF INTEGRALS

Remark: The method will work if one can show that IN+1 = O(ϕN) (z → z0).

Remark: Usually one finds ϕn(z) = α(z)βn(z), so that

I(z) ∼ α(z)
∞∑
n=0

anβ
n(z).

2.D Laplace Integrals

Until now we have considered integrals like
∫ x

0
et

2
dt, with the variable x appearing

only in the limit of integration. In this section, we consider integrals where x appears
in the integrand:

I(x) =

∫ b

a

f(x, t) dt.

In particular, we will use Laplace’s method to study the behaviour of Laplace’s integral,

I(x) =

∫ b

a

exh(t)f(t) dt,

as x→ ∞.

The underlying heuristic argument is that eαx = O(eβx) as x → ∞ for α < β.
Therefore, one would expect the leading-order asymptotic behaviour of I(x) as x→ ∞
to be determined in a neighbourhood of a point c at which h has a maximum in
[a, b]. As x gets larger, this maximum becomes increasingly steep, so the dominant
contribution to the integral comes from the immediate neighbourhood of the peak.

We begin by looking at a special type of Laplace integral that is of practical
importance, the Laplace Transform:∫ π/2

0

e−x sin t dt ∼ 1

x
(x→ ∞).

If h has an interior maximum at c, with h′(c) = 0 and h′′(c) < 0, and f(c) ̸= 0,
one might expect the dominant contribution to be given by

I(x) ∼
∫ b

a

ex[h(c)+
1
2
h′′(c)(t−c)2]f(c) dt ∼ exh(c)f(c)

∫ ∞

−∞
e

1
2
xh′′(c)τ2 dτ

= exh(c)f(c)

√
2π

−xh′′(c) (x→ ∞).
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• Laplace’s method predicts the leading-order behaviour∫ π/2

−π/2

ex cos t dt ∼ ex
√

2π

x
(x→ ∞).

If h has an enpoint maximum, say at c = a, with h′(a) < 0 and f(a) ̸= 0, the
above argument suggests that

I(x) ∼
∫ b

a

ex[h(a)+h′(a)(t−a)]f(a) dt ∼ exh(a)f(a)

∫ ∞

0

exh
′(a)τ dτ =

exh(a)f(a)

−xh′(a) (x→ ∞).

• Laplace’s method predicts the leading-order behaviour∫ π/2

0

e−x sin t dt ∼ 1

x
(x→ ∞).

• One may need to keep additional terms in the Taylor series expansion of h or f :∫ π/2

0

ex cos t sin t dt ∼
∫ ∞

0

ex(1−t2/2)t dt = ex

[
e−xt2/2

−x

]∞
0

=
ex

x
(x→ ∞).

In this case we can actually compute the exact behaviour of the original integral:∫ π/2

0

ex cos t sin t dt =

[
ex cos t

−x

]π/2
0

=
ex − 1

x
.

Remark: In the previous example we see that Laplace’s procedure to lowest order
predicts the first term of the exact result correctly, but not the second. Clearly we
need a more rigourous justification of the procedure, to help us know how many
terms we need to retain in the Taylor series to obtain a prescribed number of terms
in the asymptotic expansion.

• A special case of practical importance is the Laplace Transform,

I(x) =

∫ ∞

0

e−xtf(t) dt.

In this case h(t) = −t has a maximum in [0,∞) at t = 0, with h′(t) = −1.

The main tool that will allow us to determine the behaviour of Laplace integrals
is Watson’s Lemma. However, in order to prove Watson’s Lemma we will need the
following integral, which can be easily expressed in terms of the Γ function, using the
substitution ξ = xt:∫ ∞

0

e−xttα dt =
1

xα+1

∫ ∞

0

e−ξξα dξ =
Γ(α + 1)

xα+1
,

and the following lemma.
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Lemma 2.1 (Small Laplace Tail): Let δ > 0. Given a function r(t) and some x ∈ R
such that ∫ ∞

0

e−xtr(t) dt

converges, the function

J(x)
.
=

∫ ∞

δ

e−xtr(t) dt = O(x−µ) (x→ ∞)

for all µ ∈ R.

Proof: Let

K(T )
.
=

∫ T

δ

e−xtr(t) dt.

Since J(x) = lim
T→∞

K(T ) converges, we know that there exists a T0 > 0 such that

T > T0 ⇒ |J(x)−K(T )| < ε.

Also, K is continuous and therefore bounded on [δ, T0]. We conclude that K is
bounded on [δ,∞). Let M

.
= sup

[δ,∞]

|K|.
For x > x we have

J(x) =

∫ ∞

δ

e−(x−x)te−xtr(t) dt

=

∫ ∞

δ

e−(x−x)tK ′(t) dt

= e−(x−x)tK(t)
∣∣∞
δ
+ (x− x)

∫ ∞

δ

e−(x−x)tK(t) dt

= 0 + (x− x)

∫ ∞

δ

e−(x−x)tK(t) dt,

so that

|J(x)| ⩽ (x− x)

∫ ∞

δ

e−(x−x)t |K(t)| dt ⩽ (x− x)M

∫ ∞

δ

e−(x−x)t dt =Me−(x−x)δ.

Then, since lim
x→∞

xµe−xδ = 0 for any µ, we see that lim
x→∞

|xµJ(x)| = 0, as desired.

Theorem 2.1 (Watson’s Lemma): If f(t) ∼ tα
∞∑
n=0

ant
βn (t → 0+), where α > −1

and β > 0, then∫ ∞

0

e−xtf(t) dt ∼
∞∑
n=0

anΓ(α + βn+ 1)

xα+βn+1
(x→ ∞),

provided the integral converges for all sufficiently large x.
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Proof: We are given that

f(t) = tα
N∑

n=0

ant
βn + rN(t),

where rN(t) = O(tα+βN) as (t→ 0+). Then∫ ∞

0

e−xtf(t) dt =
N∑

n=0

anΓ(α + βn+ 1)

xα+βn+1
+RN(x),

where RN(x) =
∫∞
0
e−xtrN(t) dt. We know that there exists a number x such that

RN(x), like the integral on the left-hand side of the above equation, converges on
[x,∞). We need to show for all N ∈ N0 that RN(x) = O

(
1

xα+βN+1

)
(x→ ∞).

Given ε > 0, there exists δN > 0 such that

0 < t < δN ⇒ |rN(t)| < εtα+βN .

Decompose RN(x) = IN(x) + JN(x), where

IN(x)
.
=

∫ δN

0

e−xtrN(t) dt,

JN(x)
.
=

∫ ∞

δN

e−xtrN(t) dt.

We see immediately that IN = O
(

1
xα+βN+1

)
(x→ ∞):

|IN(x)| ⩽
∫ δN

0

e−xt |rN(t)| dt ⩽ ε

∫ δN

0

e−xttα+βN dt < ε
Γ(α + βN + 1)

xα+βN+1
.

Also, from Lemma 2.1, we see in particular that JN = O(x−µ) (x → ∞) for µ =
α + βN + 1, so that RN(x) = O

(
1

xα+βN+1

)
(x→ ∞), as desired.

• Recall the Laplace transform considered in Eq. (1.1):

I(x) =

∫ ∞

0

e−xt

1 + t
dt

Since
1

1 + t
∼

∞∑
n=0

(−1)ntn (t→ 0+).

we see that

I(x) ∼
∞∑
n=0

(−1)n
n!

xn+1
(x→ ∞).
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• (Modified Bessel function) Using the substitution t = s− 1 we can express

K0(x) =

∫ ∞

1

e−xs(s2 − 1)−1/2 ds = e−x

∫ ∞

0

e−xt(t2 + 2t)−1/2 dt.

From Prob. 2.2, we know the asymptotic expansion

(
t2 + 2t

)−1/2
= (2t)−1/2

(
1 +

t

2

)−1/2

∼
√
π

2t

∞∑
n=0

tn

2nn! Γ
(
1
2
− n

) (t→ 0+).

Hence

K0(x) ∼ e−x

√
π

2

∑
n=0

Γ
(
n+ 1

2

)
2nn! Γ

(
1
2
− n

)
xn+

1
2

(x→ ∞).

• If a > 0, we can use the substitution u = t− a to find the asymptotic behaviour as
x→ ∞ of

I(x) =

∫ ∞

a

e−xttλ dt = e−ax

∫ ∞

0

e−xu(u+ a)λ du = e−axaλ
∫ ∞

0

e−xu
(
1 +

u

a

)λ
du.

Since (
1 +

u

a

)λ
∼

∞∑
n=0

(
λ

n

)
un

an
(u→ 0+),

we have

I(x) ∼ e−axaλ
∞∑
n=0

(
λ

n

)
Γ(n+ 1)

anxn+1

∼ e−axaλ
∞∑
n=0

∏n−1
j=0 (λ− j)

anxn+1
(x→ ∞).

Note that this is consistent with Lemma 2.1.

Remark: The next theorem extends Watson’s lemma to the case of a bounded
interval, since, as just observed, the contribution from the tail of the improper
integral is asymptotically small.

Corollary 2.1.1 (Generalized Watson’s Lemma): If f(t) ∼ tα
∞∑
n=0

ant
βn (t → 0+),

where α > −1 and β > 0, and
∫∞
0
e−xtf(t) dt converges for all sufficiently large x,

then for any a > 0,

Ia(x)
.
=

∫ a

0

e−xtf(t) dt ∼
∞∑
n=0

anΓ(α + βn+ 1)

xα+βn+1
(x→ ∞).
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Proof: From Watson’s Lemma, we know that

I∞(x)
.
=

∫ ∞

0

e−xtf(t) dt ∼
∞∑
n=0

anΓ(α + βn+ 1)

xα+βn+1
(x→ ∞).

Let

Ra(x)
.
= I∞(x)− Ia(x) =

∫ ∞

a

e−xtf(t) dt = O

(
1

xα+βn+1

)
(x→ ∞),

by Lemma 2.1, for every n ∈ N0. Hence in view of Theorem 1.4, Ia and I∞ have the
same asymptotic expansion with respect to 1/xα+βn+1 as x→ ∞.

Remark: Watson’s Lemmas can sometimes be used to find amptotic expansions for
Laplace integrals even when h(t) ̸= −t, using the substitution ξ = −h(t).

• The asymptotic behaviour of

I(x) =

∫ ∞

0

e−x sinh t dt

as x→ ∞ can be found by first doing the substitution ξ = sinh t:

I(x) =

∫ ∞

0

e−xξ dξ√
1 + ξ2

.

From Prob. 2.2, we know

(
1 + ξ2

)−1/2 ∼ √
π

∞∑
n=0

ξ2n

n! Γ
(
1
2
− n

) (ξ → 0).

Hence

I(x) ∼ √
π

∞∑
n=0

Γ(2n+ 1)

n! Γ
(
1
2
− n

)
x2n+1

(x→ ∞).

• To find the asymptotic behaviour as x→ ∞ of

I(x) =

∫ π/2

0

e−x sin2 t dt,

let ξ = sin2 t, so that dξ = 2 sin t cos t dt = 2ξ1/2(1− ξ)1/2 dt and

I(x) =
1

2

∫ 1

0

e−xξ

ξ1/2(1− ξ)1/2
dξ.
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From the asymptotic expansion

ξ−1/2(1− ξ)−1/2 ∼ √
πξ−1/2

∞∑
n=0

(−1)nξn

n! Γ
(
1
2
− n

) (ξ → 0),

we then see that

I(x) ∼ 1

2

√
π

x

∞∑
n=0

(−1)nΓ(1
2
+ n)

n! Γ
(
1
2
− n

)
xn

(x→ ∞).

We now turn to more general Laplace integrals. If we want to use Watson’s Lemma
to find the asymptotic behaviour of

I(x) =

∫ b

a

exh(t)f(t) dt

as x → ∞, where h is a real-valued strictly decreasing continuous function on [a, b],
the substitution ξ = H(t)

.
= h(a)− h(t) leads to

I(x) = exh(a)
∫ h(a)−h(b)

0

e−xξ F (ξ) dξ,

where F (ξ)
.
= f(H−1(ξ))(H−1)′(ξ).

The following result extends our Generalized Watson’s Lemma to the more general
situation where the function h in the integrand is known to be decreasing in a
neighbourhood of a global maximum at a.

Corollary 2.1.2 (Laplace’s Method): Suppose f and h are real-valued functions on
[a, b], such that f ∈ C, h ∈ C1, and h′ < 0 on some subinterval (a, c). Suppose also
that h(t) ⩽ M < h(a) for t ∈ (c, b), so that the maximum of h is approached only
at a. Define H(t)

.
= h(a)− h(t) for t ∈ (a, c) and F (ξ)

.
= f(H−1(ξ))(H−1)′(ξ) and

suppose

F (ξ) ∼ ξα
∞∑
n=0

γnξ
βn ξ → 0+,

with α > −1 and β > 0. Then

I(x) =

∫ b

a

exh(t)f(t) dt ∼ exh(a)
∞∑
n=0

γnΓ(α + βn+ 1)

xα+βn+1
(x→ ∞),

provided the integral converges absolutely for all x ⩾ X.
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Proof: On making the substitution ξ = H(t) for t ∈ [a, c], we find for x > X that∣∣∣∣∣I(x)− exh(a)
∫ h(a)−h(c)

0

e−xξ F (ξ) dξ

∣∣∣∣∣ =
∣∣∣∣∫ b

c

exh(t)f(t) dt

∣∣∣∣
⩽
∫ b

c

e(x−X)h(t)eXh(t) |f(t)| dt

⩽ e(x−X)M

∫ b

c

eXh(t) |f(t)| dt

= O

(
exh(a)

xα+βn+1

)
(x→ ∞)

for any n ∈ N0. In view of Theorem 1.4, we then see from Corollary 2.1.1 that

I(x) ∼ exh(a)
∫ h(a)−h(c)

0

e−xξ F (ξ) dξ ∼ exh(a)
∞∑
n=0

γnΓ(α + βn+ 1)

xα+βn+1
(x→ ∞).

Remark: In order to use this result requires a knowledge of F , which depends on
H−1. Of course the difficulty here is in having to compute H−1.

Remark: If h is holomorphic, then an asymptotic expansion for H−1(ξ) can be found
by series reversion. Letting τ = t− a and ξ = g(τ) = H(a+ τ), so that g(0) = 0,
we need to invert

ξ = g(τ) = a1τ + a2τ
2 + a3τ

3 + . . .+ aNτ
N +RN , (2.10)

where a1 ̸= 0 and RN = O(τN) as τ → 0, for the inverse function τ = g−1(ξ). A
(unique) series expansion

τ = g−1(ξ) = b1ξ + b2ξ
2 + b3ξ

3 + . . .+ bNξ
N + SN , (2.11)

where SN = O(ξN) as ξ → 0, for the inverse function can be obtained by substituting
Eq. (2.11) into Eq. (2.10):

ξ = a1b1ξ +
(
a2b

2
1 + a1b2

)
ξ2 +

(
a3b

3
1 + 2a2b1b2 + a1b3

)
ξ3

+
(
3a3b

2
1b2 + a2b

2
2 + a2b1b3

)
+ . . .+ O(ξN) (ξ → 0),

on noting as ξ → 0 that τ ∼ a−1
1 ξ and hence τN = O(ξN), so that RN = O(τN)

implies RN = O(ξN). On equating like coefficients, we obtain

b1 = a−1
1 ,

b2 = −a−3
1 a2,

b3 = a−5
1 (2a22 − a1a3),

and so on. A general formula for the coefficients bn is derived in Appendix A. The
desired series for H−1(ξ) is then given by a+ g−1(ξ).
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• When h(t) = −t2, we reproduce the (exact) result∫ ∞

0

e−xt2 dt =

∫ ∞

0

e−xξ dξ

2
√
ξ
∼ 1

2

Γ
(
1
2

)
√
x

=
1

2

√
π

x
(x→ ∞).

• When h(t) = −tλ and f(t) = tα we reproduce another exact result (cf. Eq. (2.3)):∫ ∞

0

e−xtλtα dt =

∫ ∞

0

e−xξξα/λ
dξ

λξ(λ−1)/λ

=
1

λ

∫ ∞

0

e−xξξ(α+1)/λ−1dξ

∼ 1

λ

Γ
(
α+1
λ

)
x

α+1
λ

(x→ ∞).

Remark: Because of the difficulty in computing H−1, a widely used alternative to
doing a change of variables in the integrand is to substitute an asymptotic series
for the functions h(t) and f(t) directly into the integral. This technique relies on
the following elementary property.

Lemma 2.2: If f ∼ g and g is bounded as x→ x0 then ef ∼ eg as x→ x0.

Proof: There exist numbers δ0 > 0 and M > 0 such that |g| ⩽ M whenever
|x− x0| < δ0. Then given ε > 0, we can find a δ ∈ (0, δ0) > 0 such that

|x− x0| < δ ⇒ |f − g| ⩽ ε

M
|g| ⩽ ε.

Thus lim
x→x0

[f(x)− g(x)] = 0. Since ex is a continuous function, we then see that

lim
x→x0

ef(x)

eg(x)
= lim

x→x0

ef(x)−g(x) = e
lim

x→x0
[f(x)−g(x)]

= e0 = 1.

Hence ef ∼ eg as x→ x0.

Remark: It is not necessarily true that f ∼ g implies h(f) ∼ h(g) for any continuous
function h: consider f(x) = x, g(x) = π and h(x) = sinx as x→ π.

Problem 2.3: Prove that if h is continuous everywhere and there exists a λ so that
|h(g(z))| ⩾ λ > 0 and g is bounded for all z sufficiently near z0, then f ∼ g ⇒
h(f) ∼ h(g) as z → z0.
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Remark: In particular we see from Problem 2.3 that a complex version of Lemma 2.2
also holds: if f ∼ g and g is bounded as z → z0 then ef ∼ eg as z → z0.

If h has a maximum at t = a, with h′(a) < 0 and f(a) ̸= 0, then one obtains

I(x) ∼
∫ b

a

ex[h(a)+h′(a)(t−a)]f(a) dt ∼ exh(a)f(a)

∫ ∞

0

exh
′(a)τ dτ =

exh(a)f(a)

−xh′(a) (x→ ∞).

• Laplace’s method predicts the leading-order behaviour∫ π/2

0

e−x sin t dt ∼ 1

x
(x→ ∞).

• Laplace’s method predicts the leading-order behaviour∫ π/2

0

ex cos t sin t dt ∼
∫ ∞

0

ex(1−t2/2)t dt = ex

[
e−xt2/2

−x

]∞
0

∼ ex

x
(x→ ∞).

In this case we can actually compute the exact behaviour of the original integral:∫ π/2

0

ex cos t sin t dt =

[
ex cos t

−x

]π/2
0

=
ex − 1

x
.

In the previous examples h′(a) ̸= 0 What if h′(a) = 0? Corollary 2.1.2 can be
applied to validate and generalize the heuristic leading-order asymptotic expansion
when h has a maximum of arbitrary order:

Corollary 2.1.3 (Maximum with N − 1 Zero Derivatives): Let f and h be infinitely
differentiable real-valued functions on [a, b]. Suppose f(a) ̸= 0 and h has an
exterior maximum at a, with h(n)(a) = 0 for n = 1, 2, . . . , N − 1, h(N)(a) < 0, and
sup[c,b] h(t) < h(a) for all c ∈ (a, b). Then the leading-order asymptotic expansion

as x→ ∞ of I(x) =
∫ b

a
exh(t)f(t) dt is

I(x) ∼ 1

N
Γ

(
1

N

)
exh(a)f(a)

(
N !

−h(N)(a)x

)1/N

(x→ ∞).
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Proof: In terms of the positive constant K
.
= −h(N)(a)/N ! we have

h(t) ∼ h(a)−K(t− a)N (t→ a+).

Moreover, from Taylor’s remainder theorem for h′, we see that

h′(t) = −NK(t− a)N−1 +
h(N+1)(ξ)

N !
(t− a)N ,

for t ∈ (a, b] and some ξ ∈ (a, t). Let M > 0 be an upper bound for the continuous
function h(N+1)/N ! on [a, b]. Then

h′(t) < (t− a)N−1[−NK +M(t− a)] < 0

if a < t < a+NK/M
.
= c. We may thus apply Corollary 2.1.2 with

u = H(t) = h(a)− h(t) ∼ K(t− a)N (t→ a+).

Note that H is invertible on (a, c) and

ξ = H(H−1(ξ)) ∼ K(H−1(ξ)− a)N (ξ → 0+),

so that

H−1(ξ) ∼ a+

(
ξ

K

)1/N

(ξ → 0+).

We then see that f(H−1(ξ)) ∼ f(a) (ξ → 0+) and

(H−1)′(ξ) ∼ 1

NK1/N
ξ1/N−1 (ξ → 0+).

Hence

I(x) ∼ exh(a)f(a)
Γ(1/N)

N(Kx)1/N

∼ 1

N
Γ

(
1

N

)
exh(a)f(a)

(
N !

−h(N)(a)x

)1/N

(x→ ∞).

• In this example we have h(t) = cos t with N = 2. Laplace’s method predicts the
leading-order behaviour∫ π/2

0

ex cos t dt ∼ ex
√

π

2x
(x→ ∞).
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In order to obtain more than the leading order behaviour of the integral, more
terms of the asymptotic expansions of f and h must be used. The natural question
which then arises is: How many terms from the asymptotic expansions of h and f
must we retain in order to achieve some predetermined order of approximation for
the integral? From our Generalized Watson’s Lemma we find for α > λ that∫ 1

0

e−xtλext
α

tβ dt =

∫ 1

0

e−xtλ
∞∑
k=0

xktαk+β

k!
dt ∼

∞∑
k=0

Γ
(
αk+β+1

λ

)
k!λx

αk+β+1
λ

−k
(x→ ∞),

so to expand to order x−µ we require all terms that satisfy

(2.12)αk + β ⩽ λk + λµ− 1.

• Revisiting the behaviour of (p. 39)

I(x) =

∫ π/2

0

e−x sin2 t dt,

as x→ ∞, one could alternatively expand

sin2 t ∼
(
t− t3

3!
+O(t5)

)2

∼ t2 − t4

3
+O(t6) (t→ 0).

On setting λ = 2, β = 0, and µ = 3/2 in Eq. (2.12) we see that to expand to order
x−3/2 we need to keep terms with 4k ⩽ αk ⩽ 2k + 2 since α ⩾ 4; this implies that
k = 0 or k = 1, α = 4:

I(x) ∼
∫ 1

0

e−xt2ext
4/3 dt ∼

∫ ∞

0

e−xt2
(
1 + x

t4

3

)
dt ∼ 1

2

Γ(1
2
)√
x

+
1

3

xΓ(5
2
)

2x5/2

∼ 1

2

Γ(1
2
)√
x

+
1

3

(
3
2

)(
1
2

)
Γ(1

2
)

2x3/2
∼ 1

2

√
π

x

(
1 +

1

4x

)
(x→ ∞).

• For a > −1, let us find the behaviour of

I(x) =

∫ 1

0

e−x(t+at2) dt,

as x→ ∞ in three different ways:
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(i) Letting ξ = t + at2, we see for t ∈ (0, 1/2) that dξ
dt

= 1 + 2at > 1− 2t > 0, and
t = (−1+

√
1 + 4aξ)/2a. On [1/2, 1] we see for a ⩾ 0 that ξ ⩾ min(ξ(1/2), ξ(1)) > 0

and for −1 < a < 0 that ξ ⩾ min(ξ(1/2), ξ(1),−1/(4a)) > 0. We may thus
apply Corollary 2.1.2:

I(x) ∼
∫ ξ(1/2)

0

e−xξ 1√
1 + 4aξ

dξ (x→ ∞)

∼
∫ ∞

0

e−xξ
√
π

∞∑
n=0

(4aξ)n

n! Γ
(
1
2
− n

) dξ (x→ ∞)

∼ √
π

∞∑
n=0

(4a)n

Γ
(
1
2
− n

)
xn+1

(x→ ∞)

∼ 1

x
− 2a

x2
+

12a2

x3
(x→ ∞).

(ii) Alternatively, we could find the first few terms with series reversion. For

ξ = h(t) = t+ at2

we find

h−1(ξ) = ξ − aξ2 + 2a2ξ3 + . . . (ξ → 0)

so that (h−1)′(ξ) = 1− 2aξ + 6a2ξ2 + . . . and

I(x) ∼
∫ ∞

0

e−xξ
(
1− 2aξ + 6a2ξ2 + . . .

)
du

∼ 1

x
− 2a

x2
+

12a2

x3
(x→ ∞).

(iii) As a final check, let us Taylor expand e−xat2 about t = 0. On setting λ = 1,
α = 2, β = 0, and µ = 3 in Eq. (2.12) we see that to expand to order x−3 we
need to retain terms with 2k ⩽ k + 2; this implies that k ⩽ 2:

I(x) ∼
∫ 1

0

e−xt

(
1− xat2 +

x2a2t4

2

)
dt ∼ 1

x
− 2a

x2
+

12a2

x3
(x→ ∞).

Note that when using methods (ii) and (iii), one still needs to check that the
conditions of Corollary 2.1.2 hold.
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Problem 2.4: Find the leading asymptotic behaviour as x→ ∞ of∫ 1

0

exp

[
x

(
t+

t3

6
− sinh t

)]
cos t dt.

• (Movable maximum) Let us find the asymptotic behaviour of

I(x) =

∫ ∞

0

e−xte−1/t dt,

as x → ∞. If we let h(t) = −t, which has a maximum at 0, the other piece,
f(t) = e−1/t is O(tm) for all m ∈ R (t → 0), so its asymptotic expansion with
respect to ϕn(t) = tn is

f(t) ∼ 0 + 0t+ 0t2 + . . . (t→ 0).

Watson’s Lemma then yields I(x) ∼ 0
x
+ 0

x2 + . . . (x → ∞), which, while correct,
isn’t very useful. To find the leading-order behaviour, we need to determine the
maximum of the entire integrand. Letting g(t) = −xt − 1/t, we see that eg(t)

has a maximum when 0 = g′(t) = −x + 1/t2, that is, when t = 1/
√
x (noting

g′′(t) = −2/t3 < 0). This point is called a moveable maximum since its location
depends on x. Let us transform into this moving frame by letting s = t

√
x, so that

the maximum occurs at the fixed value s = 1, independent of x:

I(x) =
1√
x

∫ ∞

0

e−
√
x(s+1/s) ds.

We can now apply Laplace’s method. Since the function h(s)
.
= −s − 1/s has an

interior maximum at s = 1, we shift the integration variable to ξ = s− 1, so that
the peak occurs at 0:

I(x) =
1√
x

∫ ∞

−1

e
√
xh(1+ξ) dξ.

We then expand h(1 + ξ) in a Taylor’s series about ξ = 0:

h(1 + ξ) = −ξ − 1− 1

1 + ξ
∼ −ξ − 1− (1− ξ + ξ2) ∼ −2− ξ2 (ξ → 0).

Hence

I(x) ∼ e−2
√
x

√
x

∫ ∞

−1

e−
√
xξ2 dξ ∼ e−2

√
x

√
x

∫ ∞

−∞
e−

√
xξ2 dξ ∼

√
πe−2

√
x

x3/4
(x→ ∞).

To check that we have retained enough terms, note that for λ = 2, µ = 1/2, and
β = 0, Eq. (2.12) implies that αk ⩽ 2k, so that k = 0 or α ⩽ 2.
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• (Stirling’s Formula) Let us now determine the asymptotic behaviour of Γ(x) for
x→ ∞:

Γ(x) =

∫ ∞

0+
e−ttx−1 dt =

∫ ∞

0+
e(x−1) log t−t dt =

∫ ∞

0+
ex log t e

−t

t
dt.

However, log t has no maximum in [0,∞), so we need to find the maximum of the
entire integrand. Letting g(t) = (x− 1) log t− t, we see that

0 = g′(t) =
(x− 1)

t
− 1 ⇒ t = x− 1,

and g′′(x − 1) = −1/(x − 1) < 0 for x > 1. For large x the maximum occurs at
t = x− 1 ∼ x. We can therefore transform to the frame of this moving maximum
by introducing the variable s = t/x:

Γ(x) =

∫ ∞

0+
e−sx(sx)x−1x ds = xx

∫ ∞

0+

ex(log s−s)

s
ds.

Letting h(s) = log s−s, we see that the maximum now occurs at s = 1. On shifting
the integration variable to ξ = s− 1, we find

Γ(x) = xx
∫ ∞

−1+

exh(1+ξ)

1 + ξ
dξ.

Now

h(1 + ξ) = log(1 + ξ)− (1 + ξ) ∼ −1− ξ2

2
+
ξ3

3
− ξ4

4
(ξ → 0)

and

f(ξ) =
1

1 + ξ
∼ 1− ξ + ξ2 (ξ → 0).

On setting λ = 2 and µ = 3/2 in Eq. (2.12) we see that to expand to order x−3/2

we need to keep all terms with even values of αk + β ⩽ 2k + 2. Since α ⩾ 3 then
k ⩽ 2 and we need only consider even values of αk+β in [3k, 2k+2]: for k = 0 we
need to retain the ξ0 and ξ2 terms, for k = 1 we need the ξ4 terms and for k = 2
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we need only the ξ6 term:

Γ(x) ∼ xxe−x

∫ 1

−1

e−xξ2/2ex(ξ
3/3−ξ4/4)(1− ξ + ξ2) dξ

∼ xxe−x

∫ ∞

−∞
e−xξ2/2

[
1 + x

(
ξ3

3
− ξ4

4

)
+ x2

ξ6

18

]
(1− ξ + ξ2) dξ

∼ xxe−x

∫ ∞

−∞
e−xξ2/2

[
1− xξ4

4
+
x2ξ6

18
− xξ4

3
+ ξ2

]
dξ

∼ xxe−x

∫ ∞

−∞
e−xξ2/2

[
1 + ξ2 − 7

12
xξ4 +

x2ξ6

18

]
dξ

∼ xxe−x

(
Γ(1

2
)21/2

x1/2
+

Γ(3
2
)23/2

x3/2
− 7xΓ(5

2
)25/2

12x5/2
+
x2Γ(7

2
)27/2

18x7/2

)

∼
√
2πxxe−x

(
1

x1/2
+

1

x3/2
− 7

4x3/2
+

5

6x3/2

)
∼
√

2π

x
xxe−x

(
1 +

1

12x

)
(x→ ∞).

The first term leads to Stirling’s formula:

n!∼
√

2π

(n+ 1)
(n+ 1)(n+1)e−(n+1)

∼
√

2π(n+ 1)nn

(
1 +

1

n

)n

e−(n+1)

∼
√
2πn

nn

en
(n→ ∞).

2.E Fourier Integrals

Let us now determine the behaviour as x→ ∞ of the Fourier integral

I(x) =

∫ b

a

eixtf(t) dt,

where x, t ∈ R. For Laplace integrals the primary result that allowed us to obtain
asymptitic expansions was Watson’s Lemma. For Fourier integrals, the corresponding
result is the Riemann–Lebesgue Lemma.

Theorem 2.2 (Riemann–Lebesgue Lemma):
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(i) If f is piecewise continuous on a bounded interval [a, b] then∫ b

a

eixtf(t) dt = O(1) (x→ ∞).

(ii) If f is continuous on an unbounded interval (a, b), except perhaps at a finite
number of points, then∫ b

a

eixtf(t) dt = O(1) (x→ ∞),

provided for sufficiently large x the integral converges uniformly.

Proof:

(i) Without loss of generality, we may suppose that f is continuous on [a, b] (if
not, we can subdivide [a, b] into a finite number of subintervals on which it is
continuous and then sum the results).

Let M = max
[a,b]

|f |. Since f continuous on [a, b] ⇒ f is uniformly continuous on

[a, b], given ε > 0, there exists a sufficiently fine partition

{a = t0 < t1 < . . . < tn−1 < tn = b}

of [a, b] such that for j = 1, 2, . . . n,

t ∈ [tj−1, tj] ⇒ |f(t)− f(tj)| <
ε

2(b− a)
.

We will use the fact that for x > 0,∣∣∣∣∫ b

a

eixt dt

∣∣∣∣ = ∣∣∣∣eibx − eiax

ix

∣∣∣∣ ⩽
∣∣eibx∣∣+ |eiax|

x
=

2

x
.

We then find for x > 4nM/ε,∣∣∣∣∫ b

a

eixtf(t) dt

∣∣∣∣ =
∣∣∣∣∣

n∑
j=1

∫ tj

tj−1

eixt[f(tj) + f(t)− f(tj)] dt

∣∣∣∣∣
⩽

n∑
j=1

|f(tj)|
∣∣∣∣∣
∫ tj

tj−1

eixt dt

∣∣∣∣∣+
n∑

j=1

∫ tj

tj−1

∣∣eixt∣∣ |f(t)− f(tj)| dt

⩽
n∑

j=1

M
2

x
+

n∑
j=1

ε

2(b− a)
(tj − tj−1)

= nM
2

x
+

ε

2(b− a)
(b− a) =

ε

2
+
ε

2
= ε.
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Thus

lim
x→∞

∫ b

a

eixtf(t) dt = 0,

as desired.

(ii) Let cj, j = 1, 2, . . . , n be the points of discontinuity of f in (a, b) listed in
ascending order. Then given ε > 0 we know from the Cauchy criterion and (i)
that there exists a number δ ∈ (0, 1

2
min
1⩽j<n

[cj+1 − cj]) such that the integrals∫ c1−δ

a
eixtf(t) dt,

∫ cj+δ

cj−δ
eixtf(t) dt for j = 1, 2, . . . n, and

∫ b

cn+δ
eixtf(t) dt are each

bounded by 1
2
ε/(n + 2) for all sufficiently large x. Since f is continuous on

[cj+δ, cj+1−δ] for each j = 1, 2, . . . , n−1 we know from (i) that the contribution
from each of these n−1 subintervals is less than 1

2
ε/(n−1) for sufficiently large x.

On summing up all 2n+ 1 contributions we find for sufficiently large x that∫ b

a

eixtf(t) dt < ε.

Remark: If f ∈ C1[a, b] then we may use the Riemann–Lebesgue Lemma to find the
asymptotic behaviour as x→ ∞ of

I(x) =

∫ b

a

eixtf(t) dt.

On integrating by parts we find

I(x) =
eixtf(t)

ix

∣∣∣∣b
a

− 1

ix

∫ b

a

eixtf ′(t) dt

=
i

x

[
eiaxf(a)− eibxf(b)

]
+R1(x),

where

R1(x) =
i

x

∫ b

a

eixtf ′(t) dt = O

(
1

x

)
(x→ ∞)

since f ′ ∈ C[a, b]. Hence

I(x) ∼ i

x

[
eiaxf(a)− eibxf(b)

]
(x→ ∞).

Furthermore, if f ∈ CN [a, b] then repeated integration by parts N times yields

I(x) =
N∑

n=1

(
i

x

)n[
eiaxf (n−1)(a)− eibxf (n−1)(b)

]
+RN(x),
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where

RN(x) =

(
i

x

)N ∫ b

a

eixtf (N)(t) dt = O

(
1

xN

)
(x→ ∞).

If f ∈ C∞[a, b] then

I(x) ∼
∞∑
n=1

(
i

x

)n[
eiaxf (n−1)(a)− eibxf (n−1)(b)

]
(x→ ∞).

Note that the contribution to the asymptotic expansion comes only from the
endpoints.

2.F Method of Stationary Phase

Let us now consider the generalization

I(x) =

∫ b

a

eixh(t)f(t) dt

of a Fourier integral, where x, t ∈ R and h : R → R and f is differentiable on
[a, b]. The heuristic reasoning underlying Laplace’s method doesn’t apply in this
case since

∣∣eixh(t)∣∣ = 1 for all x, t ∈ R.

The idea behind the method of stationary phase is that for large x, contributions
from the integrand oscillate rapidly and will typically cancel each other out, except
near (i) the endpoints a and b due to lack of symmetry, and (ii) a zero of h′(t), where h
changes relatively slowly.

Definition: A point at which h′(t) vanishes is called a stationary point.

Remark: In physical problems involving wave propagation, h(t) has the interpretation
of a phase, hence the name method of stationary phase.

• Let us first find the asymptotic behaviour of

I(x) =

∫ b

a

eixh(t)f(t) dt,

in the case where f is differentiable and h has no stationary points in [a, b]. Letting
ξ = h(t), we find

I(x) =

∫ h(b)

h(a)

eixξf(h−1(ξ))
dξ

h′(h−1(ξ))
∼ i

x

[
eixh(a)f(a)

h′(a)
− eixh(b)f(b)

h′(b)

]
(x→ ∞).

Thus, I(x) = O(1/x) as x→ ∞.



2.F. METHOD OF STATIONARY PHASE 53

(a)

y

0 1 2 3
t

(b)

y

0 1 2 3
t

Figure 2.5: Comparison of y = Re eixh(t)(1 +
√
t) with x = 50 for (a) h(t) = t, which

has no stationary points; (b) h(t) = (2− t)2, which has a stationary point at t = 2.

Remark: To find the asymptotic behaviour of I(x) when h has a stationary point,
we will need the following lemma.

Definition: If h(n)(a) = 0 for n = 1, 2, . . . , N − 1, h(N)(a) ̸= 0, and h′ ̸= 0 on (a, b],
we say that N is the order of the stationary point of h at a.

Lemma 2.3: Let

I(x) =

∫ b

a

eixh(t)f(t) dt,

where f is differentiable on [a, b], f(a) ̸= 0, h has a stationary point of order N
at a, and h′ ̸= 0 on (a, b]. Then

I(x) ∼ 1

N
Γ

(
1

N

)
f(a)eixh(a)

(
N ! i

h(N)(a)x

)1/N

(x→ ∞).

Proof: As t → a+ we have eix[h(t)−h(a)]f(t)/f(a) ∼ F (x, t), where F (x, t)
.
=

eixh
(N)(a)(t−a)N/N !. That is,

eix[h(t)−h(a)]f(t) = [F (x, t) +R(x, t)]f(a),

where R(x, t) = O(F (x, t)) as t→ a+. Given x > 0, choose δ sufficiently small so that

a ⩽ t < a+ δ ⇒ |R(x, t)| ⩽ 1

x
|F (x, t)| .

Decompose I(x) = I1(x) + I2(x) where

I1(x) =

∫ a+δ

a

eixh(t)f(t) dt = eixh(a)f(a)

∫ a+δ

a

[F (x, t) +R(x, t)] dt

∼ eixh(a)f(a)

∫ a+δ

a

F (x, t) dt (x→ ∞)
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and

I2(x) =

∫ b

a+δ

eixh(t)f(t) dt = O
(
1

x

)
(x→ ∞),

noting that h has no stationary points in [a + δ, b]. On introducing the substitution
ξ =

∣∣h(N)(a)
∣∣ (t− a)N/N !, we find on using Eq. 2.4 (or its complex conjugate) that∫ a+δ

a

F (x, t) dt =

∫ ∞

a

F (x, t) dt−
∫ ∞

a+δ

F (x, t) dt

=
1

N

(
N !

|h(N)(a)|

)1/N ∫ ∞

0

esgn(h
(N)(a))ixξξ1/N−1 dξ +O

(
1

x

)
∼ 1

N
Γ

(
1

N

)(
N ! i

h(N)(a)x

)1/N

(x→ ∞)

since (t− a)N has no stationary points in [a+ δ,∞). Here, the complex plane is cut
along the negative real axis, so that Arg z ∈ (−π, π). It follows that

I(x) ∼ 1

N
Γ

(
1

N

)
f(a)eixh(a)

(
N ! i

h(N)(a)x

)1/N

(x→ ∞).

Remark: The previous result gives just the leading order expansion of I(x). If more
terms are required, then the neglected contributions of order O(1/x) must be taken
into account.

Problem 2.5: By substituting τ = −t, show that if h instead has a stationary point
of order N at b, with h′ ̸= 0 on [a, b) and f(b) ̸= 0, then

I(x) ∼ − 1

N
Γ

(
1

N

)
f(b)eixh(b)

(
(−1)NN ! i

h(N)(b)x

)1/N

(x→ ∞).

Remark: Slight modifications would be necessary if we wanted to extend the above
analysis to the case where h has no stationary points (N = 1): both endpoints
contribute to the leading-order behaviour, as seen previously.

Remark: If h has a stationary point at c ∈ (a, b), we simply sum the contributions
from the subintervals [a, c] and [c, b].
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• Consider the behaviour as x→ ∞ of

I(x) =

∫ π/2

0

eix cos t dt.

Here f(t) = 1 and h(t) = cos t. Since h′(0) = 0 but h′′(0) = −1 ̸= 0 and h′(t) =
− sin t ̸= 0 on (0, π/2], we see that h has a single stationary point of order N = 2
at t = 0. Thus

I(x) ∼
√

π

2x
ei(x−π/4) (x→ ∞).

Remark: The leading asymptotic behaviour of I(x) =
∫ b

a
eixh(t)f(t) dt is determined

by the highest-order stationary point of h in [a, b].

Remark: To get the full asymptotic series one must take into account contributions
from all stationary points and end points. This is in contrast with Laplace’s method
for Laplace integrals, where the full asymptotic series is determined entirely from
the immediate neighbourhood of the point at which h attains its global maximum.

2.G Method of Steepest Descent

Let λ ∈ R, D ⊂ C and the complex-valued functions h and f be holomorphic on
D. Given a contour C in D, suppose we wish to find the asymptotic behaviour as
λ→ ∞ of

I(λ) =

∫
C

eλh(z) f(z) dz.

In the method of steepest descent , one

(i) deforms the contour to a new contour C̃ on which Imh(z) = const;

(ii) parametrizes C̃ as z = ζ(t) with t ∈ [a, b];

(iii) uses Laplace’s method on the resulting integral, expressing h(ζ(t)) = u(ζ(t))+iv,
where u(z) and v are real valued:

I(λ) = eiλv
∫
C̃

eλu(z) f(z) dz.

Remark: One could alternatively find a contour on which the real part of h is
constant and use the method of stationary phase instead, but Laplace’s method is
typically easier.
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Remark: The following lemma shows that the path of constant phase is typically a
path of steepest descent (or ascent), hence the name “method of steepest descent.”
Given a surface u = u(x, y), note that ∇u = (ux, uy) is the direction in which u
increases most rapidly.

Lemma 2.4 (Steepest Descent): If

(i) h(x+ iy) = u(x, y) + iv(x, y) is holomorphic at z0
.
= x0 + iy0,

(ii) h′(z0) ̸= 0,

(iii) C is the curve through z0 defined by v(x, y) = v0,

then ∇u is tangent to C at z0.

Proof: From the Cauchy–Riemann equations we know that

ux = vy,
uy = −vx.

Hence h′(z0) ̸= 0 implies that

0 ̸= ux + ivx = ux − iuy = vy + ivx,

so that the vectors ∇u and ∇v are both nonzero at z0.
Parametrize C as (ξ(t), η(t)) with tangent T = (ξ′(0), η′(0)) and normal N =

(η′(0),−ξ′(0)) at z0 = (ξ(0), η(0)).
At the point z0 we then see that

∇u·N = (ux, uy)·(η′(0),−ξ′(0)) = (vy,−vx)·(η′(0),−ξ′(0)) = (vx, vy)·(ξ′(0), η′(0)) = 0

since v(ξ(t), η(t)) = v0. Hence ∇u is perpendicular to N and therefore parallel to T
at z0.

Remark: If h′(z0) ̸= 0, Lemma 2.4 guarantees that there is a unique path z =
(ξ(t), η(t)) of constant phase through z0 = (x0, y0) = (ξ(0), η(0)), in the direction of
the gradient of u. Denoting U(t) = u(ξ(t), η(t)) we know that U ′(0) = ux(x0, y0)ξ

′(0)+
uy(x0, y0)η

′(0) = ∇u·T ̸= 0, since ∇u is nonzero and parallel to T at z0.

Remark: From the Laplace method, we know that the dominant contribution to∫ b

a
eλU(t)f(ζ(t)) dt comes from points where U achieves its maximum. These are

either the end points a and b or critical points of U (points where U ′ is zero or does
not exist). In the case where h′(z0) ̸= 0, we have just seen that U ′(0) ̸= 0, so such
points must be end points of the integration path. In the following example this
dominant contribution comes from the endpoint t = 0.
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• To find the asymptotic behaviour as λ→ ∞ of

I(λ) =

∫ 1

0+
eiλt log t dt,

we cannot use integration by parts since log(0) = −∞ and log(1) = 0. Let h(z) = iz
and f(z) = log z. The contours on which Imh(z) are constant are the vertical lines
x = constant, such as the contours C1 and C3 in the following figure.

iy

x

iT

1

1 + iT

C

C1

C2

C3

We thus deform the original contour C to C1 ∪ C2 ∪ C3.
For λ > 0 we see as T → ∞ that∫
C2

eλh(z) log z dz =

∫ 1

0

eiλ(t+iT ) log(t+ iT ) dt = e−λT

∫ 1

0

eiλt log(t+ iT ) dt = O(1)

since

log(t+ iT ) =
1

2
log(t2 + T 2) + i tan−1 T

t

=
1

2
log(T 2) +

1

2
log

(
1 +

t2

T 2

)
+ i tan−1 T

t

∼ log(T ) (T → ∞).

Also,

lim
T→∞

∫
C1

eλh(z) log z dz =

∫ ∞

0

e−λt log(it)i dt

= i

∫ ∞

0

e−λt
(
log t+ i

π

2

)
dt

=
i

λ

∫ ∞

0

e−ξ
(
log ξ − log λ+ i

π

2

)
dξ

=
i

λ

(
−γ − log λ+ i

π

2

)
= −i log λ

λ
− iγ + π/2

λ
,
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on using the substitution ξ = λt and the fact that Γ′(1) =
∫∞
0
e−ξ log ξ dξ = −γ.

Finally,

lim
T→∞

∫
C3

eλh(z) log z dz = −
∫ ∞

0

eiλ(1+it) log(1 + it)i dt

= ieiλ
∫ ∞

0

e−λt

∞∑
n=1

(−it)n
n

dt

∼ ieiλ
∞∑
n=1

(−i)n(n− 1)!

λn+1
(λ→ ∞).

Thus

I(λ) ∼ −i log λ
λ

− iγ + π/2

λ
+ ieiλ

∞∑
n=1

(−i)n(n− 1)!

λn+1
(λ→ ∞).

Remark: When h′(z0) = 0, then U ′(0) = 0 no matter what path z = (ξ(t), η(t))
we choose through z0. However, the following lemma shows that only certain
directions through z0 actually correspond to paths of steepest descent, while others
correspond to paths of steepest ascent. For this reason, points where h′(z0) = 0
are called saddle points. We will want to integrate along the steepest descent path,
so that the integrand becomes sharply peaked at z0 as λ → ∞. Note that if z0 is
not an endpoint of the integration path, then U will have a local interior maximum
at 0.

Lemma 2.5 (Saddle Points): If

(i) h is holomorphic at z0,

(ii) h(n)(a) = 0 for n = 1, 2, . . . , N − 1 and h(N)(a) = ρeiα, with ρ > 0,

then there are N paths of steepest descent (ascent) through z0, with direction
(2n+1)π−α

N

(2nπ−α
N

) for n = 0, 1, 2, . . . , N − 1.

Proof:
Let z − z0 = reiθ. Then

h(z)− h(z0) ∼
h(N)(z0)

N !
(z − z0)

N =
ρeiα

N !
rNeiNθ =

ρrN

N !
[cos(α+Nθ) + i sin(α+Nθ)].

The direction of steepest descent of Re[h(z) − h(z0)] is given by the value of θ for
which Re[h(z)−h(z0)] is most negative, namely for α+Nθ = cos−1(−1) = (2n+1)π.
Likewise, the directions of steepest ascent satisfy α + Nθ = cos−1(1) = 2nπ. Notice
that in each of these directions we have sin(α+Nθ) = 0, so that these are all directions
of constant phase.
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• We now use the method of steepest descent to find the asymptotic behaviour of

I(λ) =

∫ 1

0

eiλt
2

dt

as λ → ∞. Let f(z) = 1, h(z) = iz2 = i(x + iy)2 = −2xy + i(x2 − y2). Since
h′(0) = 0, but h′′(0) = 2i, at the origin we have a saddle point of order N = 2,
with α = π/2. The steepest descent directions out of the origin are given by π/4
and 5π/4, while the steepest ascent directions are given by 3π/4 and 7π/4. We
choose C1 to be the curve x2 − y2 = 0 coming out of the origin, at angle θ = π/4.
We denote the curve x2 − y2 = 1 as C3 and deform the original contour C to
C1 ∪ C2 ∪ C3, as shown below:

iy

x

(T, T ) (
√
1 + T 2, T )

1C

C1

C2

C3

Now∣∣∣∣∫
C2

eλh(z) dz

∣∣∣∣ ⩽ ∫
√
1+T 2

T

∣∣∣eiλ(t+iT )2
∣∣∣ dt = ∫ √

1+T 2

T

e−2λtT dt ⩽
√
1 + T 2 − T →

T→∞
0.

Also

lim
T→∞

∫
c1

eλh(z) dz = (1 + i)

∫ ∞

0

e−2λt2 dt =
1

2

√
π

2λ
(1 + i).

Let us parametrize C3 by t = y ∈ [0, T ], so that U(t)
.
= Reh(ζ(t)) = −2t

√
1 + t2,

which has a maximum in [0,∞) at t = 0. Letting s = −U(t) we have iz2 = −s+ i
on C3, so that z = (1 + is)1/2 and dz = 1

2
i(1 + is)−1/2ds. Then

lim
T→∞

∫
C3

eλh(z) dz = − i

2
eiλ
∫ ∞

0

e−λs (1 + is)−1/2 ds.

Since

(1 + is)−1/2 ∼ √
π

∞∑
n=0

(is)n

n! Γ
(
1
2
− n

) (s→ 0),

we then find using Laplace’s method that

lim
T→∞

∫
C3

eλh(z) dz ∼ − i

2
eiλ

√
π

∞∑
n=0

in

Γ
(
1
2
− n

)
λn+1

(λ→ ∞).
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Thus

I(λ) ∼ 1

2

√
π

2λ
(1 + i)− i

√
π

2
eiλ

∞∑
n=0

in

Γ
(
1
2
− n

)
λn+1

(λ→ ∞).

• (Bessel Function) Consider the asymptotic behaviour of

J0(λ) =
1

π

∫ π/2

−π/2

cos(λ cos θ) dθ

=
2

π

∫ π/2

0

cos(λ cos θ) dθ

=
2

π
Re

∫
C

eiλ cos z dz

as λ→ ∞, where C is the contour shown below.

iy

x

π
2C

Letting

h(z) = i cos z = i cos(x+ iy) = sinx sinh y + i cosx cosh y,

we see that there is a unique curve of constant phase cos x cosh y = 0 through
z = π/2, since h′(π/2) = i ̸= 0. However, since h′(0) = 0 and h′′(0) = −i
we see that N = 2 and α = −π/2, so that the two steepest descent curves of
constant phase, shown above in green, leave the origin at θ = 3π/4 and 7π/4. The
two steepest ascent curves are shown in red. All four curves satisfy the equation
cosx cosh y = 1. We want to deform C to a path connecting the origin and (π/2, 0)
that leaves the origin on a path of steepest descent. We thus consider the deformed
contour C1 ∪ C2 ∪ C3:

iy

x

π
2

−iT

C

C1

C2

C3
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We find for T > 0∣∣∣∣Re∫
C2

eiλ cos z dz

∣∣∣∣ ⩽ ∫ π/2

cos−1(sechT )

e−λ sin t sinhT dt ⩽
∫ π/2

cos−1(sechT )

1 dt = π/2−cos−1(sechT ) →
T→∞

0.

Also,

Re

∫
C3

eiλ cos z dz = Re

∫ 0

−T

eλ sinh ti dt = 0.

Finally, recall that the contour C1 was chosen so that h(ζ(t)) = U(t)+i, making it
convenient to introduce the change of variables s = −U(t), so that s = i− i cos(z),
with

ds = i sin z dz = i(1− cos2 z)1/2 dz = i(1− (1 + is)2)1/2 dz = i(s2 − 2is)1/2 dz

on C1, where we use the branch arg z ∈ [−π, π] to evaluate the square root. On
noting that U = 0 at the origin and s = − sinx sinh y → ∞ as x → π/2 and
y → −∞, we thus see that

J0(λ) =
2

π
Re lim

T→∞

∫
C1

eiλ cos z dz

= − 2

π
Re i

∫ ∞

0

e−λs+λi(s2 − 2is)−1/2 ds

= − 2

π
Re ieiλ(−2i)−1/2

∫ ∞

0

e−λss−1/2
(
1− s

2i

)−1/2

ds

∼ − 2

π
Re ieiλ(−2i)−1/2

∫ ∞

0

e−λss−1/2

∞∑
n=0

Γ
(
1
2

)
n! Γ

(
1
2
− n

)(is
2

)n

ds

∼ Re ei(λ−π/4)

√
2

πλ

∞∑
n=0

Γ
(
n+ 1

2

)
in

2nn! Γ
(
1
2
− n

)
λn

(λ→ ∞).

Remark: The strategy of the steepest descent method is:

1. Identify possible stationary points of h.

2. Determine the paths of steepest descent from each stationary point.

3. Justify, via Cauchy’s theorem, the deformation of the original contour onto one
or more paths of steepest descent.

4. Determine the asymptotic expansion.



Chapter 3

Asymptotic Solution of Linear
ODEs

3.A Classification of Singular Points

[Bender & Orszag 1999, pp. 62–63]

Exact solutions in closed form can only rarely be obtained for ordinary differential
equations, either linear or nonlinear. Most of the time we must content ourselves
with some sort of approximation to the solution. For linear equations one can usually
predict the local behaviour of the solution near a point without knowing how to
solve the equation explicitly. It suffices to examine the coefficient functions of the
differential equation in a neighbourhood of the point.

The general homogeneous linear ordinary differential equation of order n is

(3.1)u(n)(z) + pn−1(z)u
(n−1)(z) + . . .+ p2(z)u

′′(z) + p1(z)u
′(z) + p0(z)u(z) = 0.

Definition: The point z0 ̸= ∞ is an ordinary point of Eq. (3.1) if pk(z) is analytic at
z0 for k = 0, 1, . . . , n− 1.

• For the equation zu′ = u every point except z = 0 is an ordinary point.

• The equation u′ = |z|u has no ordinary points since |z| is nowhere analytic.

Remark: All n linearly independent solutions of Eq. (3.1) are analytic at ordinary
points. If any solution is expanded in a Taylor series about an ordinary point, then
the radius of convergence will be at least as large as the distance to the nearest
singularity of the coefficients pk(z).

62
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Definition: The point z0 ̸= ∞ is a regular singular point of Eq. (3.1) if (i) z0 is
not an ordinary point of Eq. (3.1); and (ii) (z − z0)

n−kpk(z) is analytic at z0 for
k = 0, 1, . . . , n− 1.

• The equations zu′ = u, z2u′′ = u, and z2u′ = u all have a singularity at z = 0. The
point z = 0 is a regular singular point of the first and second equations but not the
third.

Remark: If a solution of Eq. (3.1) is not analytic, its singularity will be either a pole
or a branch point. There is always at least one solution of the form

u(z) = A(z)(z − z0)
α,

where A is analytic at z0, A(z0) ̸= 0, and α is called the indicial exponent. The
Taylor series of A, expanded about z0, has a radius of convergence at least as large
as the distance to the next nearest singularity. If Eq. (3.1) is of order n ⩾ 2, then
there is a second linearly independent solution of the form

u(z) = B(z)(z − z0)
β,

or u(z) = A(z)(z − z0)
α log(z − z0) +B(z)(z − z0)

β,

where B is analytic at z0. In general, the nth solution is, at worst, of the form

u(z) =
n−1∑
j=0

Aj(z)(z − z0)
γj [log(z − z0)]

j,

where Aj is analytic at z0 for j = 0, 1, . . . , n− 1.

Definition: The point z0 ̸= ∞ is an irregular singular point of Eq. (3.1) if it is neither
an ordinary point nor a regular singular point.

Remark: There is no comprehensive theory for irregular singular points. What can
be said is the following:

(i) at least one solution is not of the form of those given previously for ordinary
and regular singular points;

(ii) while it may happen that a solution is analytic, or has a branch point at an
irregular point z0, typically every solution has an essential singularity at z0.
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Remark: To classify the point z0 = ∞, one considers the behaviour of

w(ζ) = u(1/ζ)

near ζ = 0. From Eq. (3.1), one then obtains, upon repeated differentiation of
u(z) = w(1/z), an equation of the form

(3.2)w(n)(ζ) + qn−1(ζ)w
(n−1)(ζ) + . . .+ q2(ζ)w

′′(ζ) + q1(ζ)w
′(ζ) + q0(ζ)w(ζ) = 0.

Definition: The point z0 = ∞ is:

(i) an ordinary point of Eq. (3.1) if ζ0 = 0 is an ordinary point of Eq. (3.2);

(ii) a regular singular point of Eq. (3.1) if ζ0 = 0 is a regular singular point of
Eq. (3.2);

(iii) an irregular singular point of Eq. (3.1) if ζ0 = 0 is an irregular singular point of
Eq. (3.2).

Problem 3.1: Classify all points of the Airy equation u′′ = zu.

3.B Behaviour near Ordinary Points

Since all solutions of a linear ordinary differential equation are analytic at an ordinary
point z0, they can be expanded in a Taylor series about z0:

u(z) =
∞∑
n=0

an(z − z0)
n.

Substituting this series into Eq. (3.1) and equating like-degree terms yields a
recursion relation for the ans.

• We want to determine the local behaviour of solutions to the Airy equation u′′ = zu
near z = 0. The point z = 0 is an ordinary point, so all solutions are analytic at
z = 0. Let us expand u in a Taylor series about z = 0:

u(z) =
∞∑
n=0

anz
n.
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We insert this solution into the Airy equation to obtain

∞∑
n=2

n(n− 1)anz
n−2 =

∞∑
n=0

anz
n+1

and then collect like-degree terms:

2a2 +
∞∑
n=0

[(n+ 2)(n+ 3)an+3 − an]z
n+1 = 0.

This implies that a0, and a1 are arbitrary, a2 = 0, and

an+3 =
an

(n+ 2)(n+ 3)
, n = 0, 1, 2, . . . .

For j = 1, 2, . . ., we deduce for

n = 3j − 3: a3j =
a3j−3

(3j − 1)(3j)
⇒ a3j =

a0Γ
(
2
3

)
9jj! Γ

(
j + 2

3

) ,
n = 3j − 2: a3j+1 =

a3j−2

(3j)(3j + 1)
⇒ a3j+1 =

a1Γ
(
4
3

)
9jj! Γ

(
j + 4

3

) ,
n = 3j − 1: a3j+2 =

a3j−1

(3j + 1)(3j + 2)
⇒ a3j+2 = 0.

If we define c0 = a0Γ
(
2
3

)
and c1 = a1Γ

(
4
3

)
, then the general solution of the Airy

equation can be written as

u(z) = c0

∞∑
n=0

z3n

9nn! Γ
(
n+ 2

3

) + c1

∞∑
n=0

z3n+1

9nn! Γ
(
n+ 4

3

) .
Since the coefficient function in the Airy equation is entire, we know that this series
must have an infinite radius of convergence. It is conventional to define two special
linearly independent solutions:

(3.3a)Ai(z)
.
= 3−2/3

∞∑
n=0

z3n

9nn! Γ
(
n+ 2

3

) − 3−4/3

∞∑
n=0

z3n+1

9nn! Γ
(
n+ 4

3

) ,
(3.3b)Bi(z)

.
= 3−1/6

∞∑
n=0

z3n

9nn! Γ
(
n+ 2

3

) + 3−5/6

∞∑
n=0

z3n+1

9nn! Γ
(
n+ 4

3

) .
The functions Ai, Bi are called Airy functions. The constants are chosen so that:

(i) For x ∈ R, Ai(x) decays exponentially as x→ +∞;

(ii) For x ∈ R, Bi(x) oscillates 90o out of phase with Ai(x) as x→ −∞.
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The qualitative behaviour of Ai(x) and Bi(x) for x ∈ R changes dramatically as x
passes through the origin. This can explained, at least heuristically, by comparing
the real variable version of the Airy equation u′′ = xu with the constant coefficient
equations (for real λ)

(3.4a)u′′ = λ2u

and

(3.4b)u′′ = −λ2u.

The solution of Eq. (3.4a), u(x) = Aeλx + Be−λx, grows or decays exponentially,
depending on the constants of integration, whereas the solution of Eq. (3.4b),
u(x) = A cos(λx) + B sin(λx), oscillates. For the Airy equation, the solutions
grow or decay exponentially when x > 0 and oscillate when x < 0. Points like this
where the qualitative nature of the solutions changes due to a coefficient function
passing through zero are called turning points. We will encounter turning points
again later.

0.5

1

−10 −8 −6 −4 −2 2
x

Ai(x)

Bi(x)

Figure 3.1: The Airy functions

3.C Behaviour near Regular Singular Points

The solution near a regular singular point can be found by the Frobenius method.
This technique is discussed in introductory texts on differential equations. We will
summarize the technique here.
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In this section we shall restrict most of our analysis to second-order equations,
although everything can be generalized to higher-order equations. Consider the
differential equation

(3.5)y′′ + p(x)y′ + q(x)y = 0.

If x0 is an ordinary point of Eq. (3.5), then two linearly independent solutions of the
form

y(x) =
∞∑
n=0

an(x− x0)
n

can be found. What happens if x0 is a singular point? We can get an idea as to what
happens if we examine the Cauchy–Euler equation:

x2y′′ + axy′ + by = 0, (a, b = constant). (3.6)

If we look for a solution of the form y = xr, this leads to

(3.7)r2 + (a− 1)r + b = 0.

Thus, y = xr is a solution to Eq. (3.6) only if r is a root of the above quadratic
equation.

• For the equation
3x2y′′ + 11xy′ − 3y = 0,

the quadratic (3.7) becomes r2+ 8
3
r−1 = 0, which leads to two linearly independent

solutions: y1(x) = x1/3 and y2(x) = x−3.

Remark: The general solution to the Cauchy–Euler equation (3.6) can be found
with the transformation x = et (which converts it into an equation with constant
coefficients):

(3.8)y(x) =


c1x

r1 + c2x
r2 , if r1 ̸= r2,

c1x
r + c2x

r log x, if r1 = r2 = r,
xα[c1 cos(β log x) + c2 sin(β log x)], if r1, r2 = α± iβ.

When written in the standard form

y′′ +
a

x
y′ +

b

x2
y = 0,

it is clear that x = 0 is a regular singular point of the equation. The solutions will
also usually be singular at x = 0, as in the previous example.

In general, if x0 is a regular singular point of Eq. (3.5), then p and q can be written
as

p(x) =
A(x)

x− x0
, q(x) =

B(x)

(x− x0)2
,
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where A and B are analytic at x0. Equation (3.5) now becomes

y′′ +
A(x)

x− x0
y′ +

B(x)

(x− x0)2
y = 0.

In terms of the operator

L .
= (x− x0)

2 d
2

dx2
+ A(x)(x− x0)

d

dx
+B(x).

we may thus write Eq. (3.5) as Ly = 0.
This equation resembles the Cauchy–Euler equation, so it is reasonable to look

for a solution of the form
y(x) = (x− x0)

rY (x),

where Y is analytic at x0. This means that Y can be expanded in a Taylor series:

y(x) = (x− x0)
r

∞∑
n=0

an(x− x0)
n =

∞∑
n=0

an(x− x0)
n+r, a0 ̸= 0. (3.9)

The series in Eq. (3.9) is called a Frobenius series. Since A and B are analytic at x0,
each can be expanded in a Taylor series:

A(x) =
∞∑
n=0

An(x− x0)
n, B(x) =

∞∑
n=0

Bn(x− x0)
n.

On substituting these expansions into the operator L, we find that

Ly=
∞∑
n=0

(n+r)(n+r−1)an(x−x0)n+r+

( ∞∑
j=0

Aj(x−x0)j
)( ∞∑

k=0

(k+r)ak(x−x0)k+r

)

+

( ∞∑
j=0

Bj(x− x0)
j

)( ∞∑
k=0

(ak(x− x0)
k+r

)

=
∞∑
n=0

(n+ r)(n+ r − 1)an(x− x0)
n+r +

∞∑
n=0

(
n∑

k=0

(k + r)An−kak

)
(x− x0)

n+r

+
∞∑
n=0

(
n∑

k=0

Bn−kak

)
(x− x0)

n+r.

If we define the coefficient of the term a0(x− x0)
r by

(3.10)P (r)
.
= r2 + (A0 − 1)r +B0,

this result may be written

Ly = P (r)a0(x− x0)
r +

∞∑
n=1

{
P (n+ r) an +

n−1∑
k=0

[(k+ r)An−k +Bn−k]ak

}
(x− x0)

n+r.

(3.11)
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Setting the individual coefficients of (x− x0)
n+r to zero then yields

(3.12a)n = 0: P (r) a0 = 0,

(3.12b)n ⩾ 1 : P (n+ r) an = −
n−1∑
k =0

[(k + r)An−k +Bn−k]ak.

If the nontrivial Frobenius series in Eq. (3.9) is to be a solution to Ly = 0, it follows
from Eq. (3.12a) that P (r) = 0:

(3.13)r2 + (A0 − 1)r +B0 = 0.

Thus, r must be a root of the quadratic polynomial (3.10). Equation (3.13) is called
the indicial equation. Using the solutions of the indicial equation, r = r1 and r = r2,
the ans can then be determined recursively from Eq. (3.12b) in terms of an overall
arbitrary constant a0, provided that P (n + r) ̸= 0 for every n ∈ N. That is, at least
one solution in Frobenius form can be found provided r1−r2 does not equal a nonzero
integer.

• Suppose we want to find a solution about x = 0 of the differential equation

(3.14)(x+ 2)x2y′′ − xy′ + (x+ 1)y = 0.

The coefficient functions are given by

p(x) = − 1

x(x+ 2)
, q(x) =

x+ 1

x2(x+ 2)
.

We see that x = 0 is a regular singular point since

xp(x) = − 1

x+ 2
, x2q(x) =

x+ 1

x+ 2
,

are both analytic at x = 0.
Let us look for a Frobenius series solution of the form

y(x) =
∞∑
n=0

anx
n+r, a0 ̸= 0.

Instead of expressing xp(x) and x2q(x) as power series and using Eqs. (3.12), it
is more convenient in this case to substitute the above expansion for y(x) directly
into Eq. (3.14):

0 = (x+ 2)
∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r −

∞∑
n=0

(n+ r)anx
n+r + (x+ 1)

∞∑
n=0

anx
n+r

=
∞∑
n=1

(n+ r − 1)(n+ r − 2)an−1x
n+r + 2

∞∑
n=0

(n+ r)(n+ r − 1)anx
n+r

−
∞∑
n=0

(n+ r)anx
n+r +

∞∑
n=1

an−1x
n+r +

∞∑
n=0

anx
n+r.
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On letting P (r) = 2r2 − 3r + 1, we then find that

n = 0: P (r)a0 = 0,

n ⩾ 1 : P (n+ r)an = −[(n+ r − 1)(n+ r − 2) + 1]an−1.

The indicial equation P (r) = 0 implies that r = 1 or r = 1/2. The recurrence
relation gives for r = 1:

a1 = −a0
3
, a2 =

a0
10
, a3 = −a0

30

and for r = 1/2:

a1 = −3

4
a0, a2 =

7

32
a0, a3 = − 133

1920
a0.

Two linearly independent solutions are therefore (for a0 = 1):

y1(x) = x

(
1− 1

3
x+

1

10
x2 − 1

30
x3 + . . .

)
and

y2(x) = x1/2
(
1− 3

4
x+

7

32
x2 − 133

1920
x3 + . . .

)
,

so that the general solution is y(x) = c1y1(x) + c2y2(x).

Remark: What happens if the roots of the indicial equation are equal, that is, if
r1 = r2 = r? We can get one Frobenius solution y1(x) =

∑∞
n=0 an(x− x0)

n+r, but
how do we determine a second linearly independent solution? A hint is given by the
solution (3.8) to the Cauchy–Euler equation. In that case the linearly independent
solutions are y1(x) = xr and y2(x) = xr log x. It therefore seems reasonable in the
general case to look for a second solution of the form

(3.15)y2(x) = y1(x) log(x− x0) +
∞∑
n=0

bn(x− x0)
n+r.

To show that a solution of the form (3.15) will always work in the case where
P (r) has a multiple real root, let us define an(r) to be the solution of the recursion
relation (3.12b) with a0(r) = 1 and define

w(x, r)
.
=

∞∑
n=0

an(r)(x− x0)
n+r.
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One solution to Lw(x, r) = 0 is given by y1(x) = w(x, r1). When P (r) = (r − r1)
2

and a0 = 1, we see from Eq. (3.11) that

Lw(x, r) = P (r)(x− x0)
r = (r − r1)

2(x− x0)
r. (3.16)

Differentiation of Eq. (3.16) with respect to r then yields

∂

∂r
Lw(x, r) = 2(r − r1)(x− x0)

r + (r − r1)
2(x− x0)

r log(x− x0).

On interchanging the order of differentiation and setting r = r1, we deduce that

y2(x) =
∂w

∂r
(x, r1) is a second solution:

L
[
∂w

∂r
(x, r1)

]
=

∂

∂r
Lw(x, r)

∣∣∣∣
r=r1

= 0.

From the definition of w(x, r) we then see that

y2(x) =
∂

∂r

{
(x− x0)

r

∞∑
n=0

an(r)(x− x0)
n

}∣∣∣∣∣
r=r1

= (x− x0)
r1 log(x− x0)

∞∑
n=0

an(r1)(x− x0)
n + (x− x0)

r1

∞∑
n=0

a′n(r1)(x− x0)
n

= y1(x) log(x− x0) +
∞∑
n=0

a′n(r1)(x− x0)
n+r1 ,

which is precisely the form suggested earlier, Eq. (3.15).

Remark: In the case where r1−r2 = N ∈ N, we note for r = r2 that the coefficient aN
in Eq. (3.12b) is multiplied by P (N + r2) = P (r1) = 0. If the right-hand side of
Eq. (3.12b) is zero, aN is then arbitrary, yielding a second linearly independent
solution in Frobenius form. However, if the right-hand side of Eq. (3.12b) is nonzero
for n = N , then Eqs. (3.12) cannot be satisfied for r = r2: there is only one equation
in Frobenius form, corresponding to r = r1. In this case differentiating

Lw(x, r) = (r − r1)(r − r2)(x− x0)
r

with respect to r at r = r1 shows only that y2(x) =
∂w

∂r
(x, r1) is a particular

solution of the inhomogeneous equation

L
[
∂w

∂r
(x, r1)

]
= (r1 − r2)(x− x0)

r1 .

Nevertheless, since L is linear, we only need to find a second (linearly independent)
particular solution ỹ(x) and then the difference of these two particular solutions
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will be a solution to the homogeneous equation Ly = 0. Fortunately, a second
particular solution to

Lỹ(x) = (r1 − r2)(x− x0)
r1 .

in Frobenius form

ỹ(x)
.
=

∞∑
n=0

ãn(x− x0)
n+r2 .

can always be found. For n ̸= N the coefficients ãn satisfy the same equations as
the coefficients an, namely Eqs. (3.12) with r = r2. For n = N = r1 − r2, equating
the coefficients of (x − x0)

r1 yields a constraint that leaves ãN arbitrary but fixes
the value of ã0:

1

N

N−1∑
k =0

[(k + r2)AN−k +BN−k]ãk = 1.

The above constraint can always be satisfied by scaling ã0, recalling for this case
that the right-hand side of Eq. (3.12b), with ak replaced by ãk, is nonzero for
n = N . The difference y2(x) − ỹ(x), containing the arbitrary constant ãN is the
desired second solution to the inhomogeneous equation Ly = 0.

The following theorem summarizes these results.

Theorem 3.1: Suppose that Eq. (3.5) has a regular singular point at x0 and that the
corresponding indicial equation P (r) = 0 has roots at r1 and r2.

1. If r1, r2 ∈ R with r1−r2 ̸∈ Z, then there exist two linearly independent solutions
of the form

y1(x) =
∞∑
n=0

an(x− x0)
n+r1 , a0 ̸= 0,

y2(x) =
∞∑
n=0

bn(x− x0)
n+r2 , b0 ̸= 0.

2. If r1, r2 ∈ R with r1 = r2, then there exist two linearly independent solutions of
the form

y1(x) =
∞∑
n=0

an(x− x0)
n+r1 , a0 ̸= 0,

y2(x) = y1(x) log(x− x0) +
∞∑
n=0

bn(x− x0)
n+r1 ,

where the constants bn may be zero.
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3. If r1, r2 ∈ R with r1−r2 ∈ N, then there exist two linearly independent solutions
of the form

y1(x) =
∞∑
n=0

an(x− x0)
n+r1 , a0 ̸= 0,

y2(x) = Ay1(x) log(x− x0) +
∞∑
n=0

bn(x− x0)
n+r2 , b0 ̸= 0,

where the constant A may be zero.

4. If r1, r2 = α± iβ, then there exist two linearly independent solutions of the form

y1(x) = cos(β log(x− x0))
∞∑
n=0

an(x− x0)
n+α, a0 ̸= 0,

y2(x) = sin(β log(x− x0))
∞∑
n=0

bn(x− x0)
n+α, b0 ̸= 0.

Problem 3.2: Find two linearly independent solutions about x = 0 to

x2 y′′ − x y′ + (1− x) y = 0.

4

3.D Behaviour near Irregular Singular Points

As was stated previously, there is no comprehensive theory for irregular singular
points. However, we can get some insight by examining a first-order differential
equation:

(3.17)u′ = p(z)u.

The solution is easily obtained and is

u(z) = ce
∫
p(z) dz, c = const.

Now suppose p has a pole of order N at z = z0. Then

• z0 is an ordinary point if N = 0;
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• z0 is a regular singular point if N = 1;

• z0 is an irregular singular point if N ⩾ 2.

We can expand p in a Laurent series:

p(z) =
N∑

n=1

bn
(z − z0)n

+
∞∑
n=0

an(z − z0)
n.

This leads to

∫
p(z) dz =



∞∑
n=0

an
n+ 1

(z − z0)
n+1 if N = 0,

b1 log(z − z0) +
∞∑
n=0

an
n+ 1

(z − z0)
n+1 if N = 1,

N∑
n=2

bn
(1− n)(z − z0)n−1

+ b1 log(z − z0) +
∞∑
n=0

an
n+ 1

(z − z0)
n+1 if N ⩾ 2.

Define

v(z)
.
= exp

( ∞∑
n=0

an
n+ 1

(z − z0)
n+1

)
, S̃(z)

.
=

N∑
n=2

bn
(1− n)(z − z0)n−1

.

Then v is analytic at z = z0, with v(z0) = 1. The solution may now be written as

u(z) = c exp

(∫
p(z) dz

)
=


c v(z) if N = 0,
c (z − z0)

b1 v(z) if N = 1,

c eS̃(z) (z − z0)
b1 v(z) if N ⩾ 2.

It is clear that if

1. N = 0, the solution is analytic at z0;

2. N = 1, the solution has, at worst, a pole or a branch point at z0;

3. N ⩾ 2, the solution has an essential singularity at z0.

Now consider a second-order linear differential equation

(3.18)u′′ + p(z)u′ + q(z)u = 0,

with an irregular singular point at z = z0. The previous example suggests making a
change of dependent variable as follows:

u(z) = eS(z).
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Then
u′(z) = S ′(z)u(z), u′′(z) = [S ′′(z) + S ′2(z)]u(z),

so that Eq. (3.18) becomes

(3.19)S ′′(z) + S ′2(z) + p(z)S ′(z) + q(z) = 0.

Note that this is a second-order nonlinear differential equation and so may seem worse
than Eq. (3.18) for u. This is where we make a crucial assumption:

S ′′ = O(S ′2) (z → z0) .

Most of the time this is a reasonable assumption, but it must be verified after the
fact in each case. To see why this may be reasonable, let us re-examine the solution
to the first-order equation (3.17). We have

S(z) ∼ bN
(1−N)(z − z0)N−1

(z → z0) if N ⩾ 2.

On differentiating this asymptotic expansion, we find

S ′(z) ∼ bN
(z − z0)N

, S ′′(z) ∼ −NbN
(z − z0)N+1

(z → z0),

so that

lim
z→z0

S ′′(z)

S ′2(z)
= lim

z→z0

−N
bN

(z − z0)
N−1 = 0 for N ⩾ 2.

Hence S ′′ = O(S ′2) (z → z0).
Equation (3.19) may now be approximated by

S ′2 ∼ −p(z)S ′ − q(z).

This equation, while still nonlinear, is at least of first order. Moreover, it can readily
be solved with the substitution y = S ′, from which we can then determine the
solution u to Eq. (3.18).

• Let us determine the behaviour of x3u′′ = u as x → 0+. Noting that x = 0 is an
irregular singular point, we let u(x) = eS(x):

(3.20)S ′′ + S ′2 =
1

x3

Assuming that S ′′ = O(S ′2) (x→ 0), we find

S ′ ∼ σ

x3/2
,
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where σ denotes the sign ±1. Then S ∼ −2σ
x1/2 (x→ 0). Since

S ′′ ∼ − 3σ

2x5/2
,

we can then check the consistency of our assumption:

S ′′

S ′2 ∼ − 3σx3

2x5/2
= −3σ

2
x1/2 → 0 (x→ 0).

To find more terms in the asymptotic expansion of S, let us try to express

S(x) = − 2σ

x1/2
+ C(x),

with C(x) = O(x−1/2). This implies that

S ′(x) =
σ

x3/2
+ C ′(x) with C ′ = O(x−3/2)

and

S ′′(x) =
−3σ

2x5/2
+ C ′′(x) with C ′′ = O(x−5/2).

If we substitute these expressions into Eq. (3.20) we find:

−3σ

2x5/2
+ C ′′ +

( σ

x3/2
+ C ′

)2
=

1

x3
,

so that

(3.21)C ′′ +
2σ

x3/2
C ′ + C ′2 =

3σ

2x5/2
.

Since C ′(x) = O(x−3/2), we see that C ′2 = O(x−3/2C ′); the dominant balance of
terms is thus given by

2σ

x3/2
C ′ ∼ 3σ

2x5/2
(x→ 0).

Then

C ′ ∼ 3

4x
(x→ 0)

and hence C(x) ∼ 3
4
log x = O(x−1/2) as x→ 0. Now express C(x) = 3

4
log x+D(x),

where we anticipate that D(x) = O(log x) (x→ 0).
To go further, we find from Eq. (3.21) that

− 3

4x2
+D′′ +

2σ

x3/2

(
3

4x
+D′

)
+

(
3

4x
+D′

)2

=
3σ

2x5/2
.

which simplifies to

D′′ +
2σ

x3/2
D′ +

3

2x
D′ +D′2 =

3

16x2
.
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On differentiating C(x) = 3
4
log x+D(x), we see that D′(x) = O(x−1) and D′′(x) =

O(x−2) as x→ 0. The dominant balance is then given by

2σ

x3/2
D′ ∼ 3

16x2
(x→ 0),

so that

D′ ∼ 3σ

32
x−1/2 (x→ 0)

and

D ∼ k +
3σ

16
x1/2 (x→ 0),

where k is a constant. As desired, we verify that D(x) = O(log x) as x → 0.
SinceD approaches a constant as x→ 0, we now have enough terms to ascertain the
leading-order asymptotic behaviour of the solutions u(x) to the original differential
equation:

u(x) ∼ Kx3/4e±2x−1/2

(x→ 0),

where K is a constant.



Chapter 4

Perturbation Theory

4.A Introduction

In perturbation problems one considers functions

u : Ω× I → Rm,

where u(x; ε) = (u1(x; ε), u2(x; ε), . . . , um(x, ε)), x = (x1, x2, . . . , xn) ∈ Ω ⊂ Rn and
ε ∈ I ⊂ R. Usually the function u is defined implicitly as the solution of a system
of differential equations with boundary and/or initial conditions. We may represent
such problems as:

P :

{
M(u, ε) = 0, M is a differential operator (possibly nonlinear),
B(u, ε) = 0, B is a boundary condition operator.

The objective is to solve the problem P for u(x; ε). Usually, this is too difficult, so we
settle for some sort of approximation φ(x; ε) to u(x; ε). Typically, the parameter ε will
be a small positive constant (i.e. ε ∈ I = (0, a)) and we will seek an approximation φ
which is asymptotic to u:

u(x; ε) ∼ φ(x; ε) (ε→ 0+) ∀x ∈ Ω.

Definition: A function δ : (0, a) → R+ is called a gauge function if δ is continuous
and strictly monotonic.

• The functions 1/ε, εn for n ̸= 0,
√
ε, and −ε log ε are all gauge functions on (0, a)

for sufficiently small a, whereas ε sin(1/ε) is not a gauge function on (0, a) for any a.

Suppose that

(i) φ : Ω× (0, ε0) → R, Ω ⊂ Rn;

(ii) δ : (0, a) → R+ is a gauge function;

(iii) Ω0 ⊂ Ω.

78
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Definition: We write φ = O(δ) (ε → 0+) uniformly in Ω0 if there exist positive
numbers a and M such that for all x ∈ Ω0,

0 < ε < a⇒ |φ(x, ε)|⩽Mδ(ε).

This is equivalent to

∣∣∣∣φ(x, ε)δ(ε)

∣∣∣∣ being bounded on Ω0 × I.

Definition: We write φ = O(δ) (ε→ 0+) uniformly in Ω0 if for all ε̃ > 0 there exists
a > 0 such that for all x ∈ Ω0,

0 < ε < a⇒ |φ(x, ε)|⩽ ε̃δ(ε).

Equivalently, lim
ε→0+

φ(x, ε)

δ(ε)
= 0 uniformly in Ω0.

• Let x0 ∈ (0, 1), Ω0 = (x0, 1), Ω = (0, 1), φ(x, ε) = ε/x, and δ(ε) = ε. Then

|φ(x, ε)|= ε

x
⩽

ε

x0
=Mδ(ε)

in Ω0, where M = 1/x0 is independent of x. That is, φ = O(δ) (ε→ 0+) uniformly
in Ω0, but not uniformly in Ω.

• Let L > 0, Ω0 = (0, L), Ω = (0,∞), φ(x, ε) = εx, ψ(x, ε) = ε sinx, and δ(ε) = ε.
Then |φ(x, ε)|= εx ⩽ Lε for all x ∈ Ω0. That is, φ = O(δ) (ε → 0+) uniformly in
Ω0, but not uniformly in Ω. On the other hand |ψ(x, ε)|= ε|sinx|⩽ ε for all x ∈ Ω.
Therefore ψ = O(δ) (ε→ 0+) uniformly in Ω.

• Let x0 ∈ (0, 1), Ω0 = (x0, 1), Ω = (0, 1), φ(x, ε) = e−x/ε, and δ(ε) = εn, where
n ∈ N. Then |φ(x, ε)|= e−x/ε ⩽ e−x0/ε for all x ∈ Ω0. Hence in Ω0,

0 ⩽ lim
ε→0+

∣∣∣∣φ(x, ε)δ(ε)

∣∣∣∣ ⩽ lim
ε→0+

ε−ne−x0/ε = 0.

Therefore φ = O(δ) (ε→ 0+) uniformly in Ω0, but not uniformly in Ω.

Definition: The function φ is a uniform asymptotic approximation to u in Ω0 valid
to order δ if u − φ = O(δ) (ε → 0+) uniformly in Ω0. We write u ∼ φ (ε → 0+)
uniformly in Ω0.
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• Let x0 ∈ (0, 1). Suppose that

u(x, ε) =
1

x+ ε
, φ(x, ε) =

1

x

(
1− ε

x

)
, δ(ε) = ε.

Then

|u(x, ε)− φ(x, ε)|= ε2

x2(x+ ε)
= O(ε) (ε→ 0).

uniformly in (x0, 1), so that φ is a uniform asymptotic approximation to u in (x0, 1),
but not in (0, 1):

lim
x→0+

lim
ε→0+

ε2

x2(x+ ε)
= 0 ̸= ∞ = lim

ε→0+
lim
x→0+

ε2

x2(x+ ε)
.

• Let x0 ∈ (0, 1) and

u(x, ε) = x+ ε+ e−x/ε, φ(x, ε) = x+ ε, δ(ε) = εn,

where n ∈ N. Then
|u(x, ε)− φ(x, ε)|= e−x/ε = O(εn)

uniformly in (x0, 1) but not in (0, 1):

lim
x→0+

lim
ε→0+

e−x/ε = 0 ̸= 1 = lim
ε→0+

lim
x→0+

e−x/ε.

Definition: A sequence of functions {φn}Nn=0, where φn : Ω× (0, a) → R is a uniform
asymptotic sequence in Ω0 if φn+1 = O(φn) (ε→ 0) uniformly in Ω0.

Definition: The series
N∑

n=0

φn(x, ε) is a uniform asymptotic series in Ω0 if {φn}Nn=0

is a uniform asymptotic sequence in Ω0.

• For example, φn(x, ε) = un(x)ε
n is a uniform asymptotic sequence if un+1(x)/un(x)

is bounded for each n ∈ N.

4.B Regular Perturbations

Let u : Ω× (0, a) → Rm. The most naive way to try to solve the problem

(4.1)P :

{
M(u, ε) = 0,
B(u, ε) = 0
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is by assuming an asymptotic expansion of the Poincaré type:

(4.2)u(x, ε) ∼
∞∑
n=0

un(x)ε
n.

On substituting this expansion into P , one obtains a sequence of linear problems:

P0 :

{
M(u0, 0) = 0,
B(u0, 0) = 0,

Pn :

{
L(un) = Rn(u0, . . . , un−1),

B̃(un) = R̃n(u0, . . . , un−1)
n ⩾ 1.

• Consider the problem

P :

{
u′ + (1 + εx)u = 0, x ∈ (0,∞),
u(0) = 1,

which has the exact solution

(4.3)u(x, ε) = e−x−εx2/2.

On introducing the expansion (4.2), the problem P becomes
0 =

∞∑
n=0

u′n(x)ε
n +

∞∑
n=0

un(x)ε
n +

∞∑
n=0

xun(x)ε
n+1 = u′0 + u0 +

∞∑
n=1

(u′n + un + xun−1)ε
n,

∞∑
n=0

un(0)ε
n = 1,

which reduces to the sequence of problems

P0 :

{
u′0 + u0 = 0,
u0(0) = 1,

Pn :

{
u′n + un = −xun−1,
un(0) = 0

n ⩾ 1.

We can easily solve these first-order linear ordinary differential equations to find

u0 = e−x,

un(x) = −e−x

∫ x

0

ξeξun−1(ξ) dξ, n = 1, 2, . . . .

That is,

u1(x) = −e−x

∫ x

0

ξ dξ = −x
2

2
e−x,

u2(x) = −e−x

∫ x

0

ξ

[
−ξ

2

2

]
dξ =

x4

8
e−x,

...

un(x) = −e−x

∫ x

0

ξ

[
(−1)n−1ξ2(n−1)

2n−1(n− 1)!

]
dξ =

(−1)nx2n

2nn!
e−x.
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Since∣∣∣∣un+1(x)ε
n+1

un(x)εn

∣∣∣∣ = x2ε

2(n+ 1)
= O(1) (ε→ 0) uniformly in (0, L) but not in (0,∞),

we see that

u(x, ε) ∼
∞∑
n=0

(−1)nx2n

2nn!
e−xεn = e−x−εx2/2 (ε→ 0)

is a uniform asymptotic series in (0, L) but not on (0,∞).

Definition: The problem P is a regular perturbation problem in Ω if
∞∑
n=0

un(x)ε
n

is a uniform asymptotic approximation to u(x, ε) in Ω.

Definition: The problem P is a singular perturbation problem if P is not a regular
perturbation problem.

Remark: The previous example is thus a regular perturbation problem in Ω0 = (0, L)
and a singular perturbation problem in Ω = (0,∞).

Remark: Typically, a straightforward expansion will give rise to a uniform asymptotic
expansion only in some proper subset Ω0 of the domain Ω.

• (Boundary Layer) The problem

P :

{
εu′′ − u′ = 0, x ∈ (0, 1),
u(0) = 0, u(1) = 1

(4.4)

has the exact solution

u(x, ε) =
ex/ε − 1

e1/ε − 1
.

The expansion (4.2), reduces P to

P0 :

{
u′0 = 0,
u0(0) = 0, u0(1) = 1,

Pn :

{
u′n = u′′n−1,
un(0) = un(1) = 0

n ⩾ 1.

Unfortunately, problem P0 has no solution; this means that the original problem P
has no regular perturbation expansion.
Since ε multiplies the highest derivative, setting ε to zero (e.g. to obtain the
problem P0) drastically changes the nature of the differential equation. As seen
in Fig. 4.1, for small but nonzero ε the solution is constant everywhere except in
a narrow region of thickness O(ε) near x = 1, where the solution varies rapidly.
This is known as a boundary layer. The large derivative in the boundary layer
compensates the smallness of ε, so that the highest-order term cannot be neglected
in the boundary layer.
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Figure 4.1: Formation of a boundary layer at x = 1.

• (Rapid Oscillation) The problem

P :

{
εu′′ + u = 0, x ∈ (0, 1),
u(0) = 0, u(1) = 1

(4.5)

has the exact solution

u(x, ε) =
sin(x/

√
ε)

sin(1/
√
ε)
.

The expansion (4.2), reduces P to

P0 :

{
u0 = 0,
u0(0) = 0, u0(1) = 1,

Pn :

{
un = −u′′n−1,
un(0) = un(1) = 0

n ⩾ 1.

Again, problem P0 has no solution. As illustrated in Fig. 4.2, for small ε the exact
solution varies rapidly over the entire interval.

• (Multiple Scales) The problem

P :

{
u′′ + 2εu′ + u = 0, x ∈ (0, L),
u(0) = 1, u′(0) = −ε

has the exact solution
u(x, ε) = e−εx cos(

√
1− ε2x).

The expansion (4.2), reduces P to

P0 :

{
u′′0 + u0 = 0,
u0(0) = 1, u′0(0) = 0,
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Figure 4.2: Rapid oscillations in a singular perturbation problem.

P1 :

{
u′′1 + u1 = −2u′0,
u1(0) = 0, u′1(0) = −1,

Pn :

{
u′′n + un = −2u′n−1,
un(0) = u′n(0) = 0

n ⩾ 2.

We find u0 = cosx, u1 = −x cosx, and that un contains a term proportional to
xn cosx. We see that u1(x)ε/u0(x) = −εx = O(ε) (ε→ 0) uniformly in (0, L). The
asymptotic expansion then contains terms of the form (εx)n cosx. This problem
thus has two scales, namely x and εx, as illustrated in Fig. 4.3.
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Figure 4.3: Multiple-scale behaviour for ε = 0.1 of e−εx cos(
√
1− ε2x) (solid red) vs.

±e−εx (dashed blue).



Chapter 5

Matched Asymptotic Expansions

5.A A Simple Example

The expansion (4.2) can be used to reduce the problem

P :

{
εu′′ + (1 + ε)u′ + u = 0, x ∈ (0, 1),
u(0) = α, u(1) = β

to

P0 :

{
u′0 + u0 = 0,
u0(0) = α, u0(1) = β,

Pn :

{
u′n + un = −u′′n−1 − u′n−1,
un(0) = un(1) = 0

n ⩾ 1.

However, we see that problem P0 has no solution. The solution to the differential
equation in P0 is

u0 = Ae−x.

Clearly, one boundary cannot be satisfied and must be dropped. If we apply only the
left boundary condition, then

u0(0) = α ⇒ A = α,

whereas if we apply only the right boundary condition then

u0(1) = β ⇒ A = βe.

The exact solution to P is

(5.1)u(x, ε) =
(β − αe−1/ε)e1−x + (α− βe)e−x/ε

1− e1−1/ε
.

For small ε one finds
(5.2)u(x, ε) ∼ βe1−x + (α− βe)e−x/ε

86
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Figure 5.1: Outer solution of Eq. (5.1) for ε = 0.05, α = 0, and β = 1.

and for x > 0,
u(x, ε) ∼ βe1−x .

= uO. (5.3)

We denote the latter solution by uO since it is the leading term of the outer solution.
Equation (5.2) implies that

u(0, ε) ∼ α.

In contrast, since the e−x/ε term is not negligible for x = 0, Eq. (5.3) incorrectly
predicts

uO(0, ε) ∼ βe.

The underlying problem here is that the order in which one takes the limits x → 0
and ε→ 0 is crucial:

lim
ε→0+

lim
x→0+

u(x, ε) = α ̸= βe = lim
x→0+

lim
ε→0+

u(x, ε).

To address this problem, it is helpful to introduce a magnified scale ξ = x/ε,
which allows us to zoom in on the boundary layer. Let

w(ξ, ε)
.
= u(εξ, ε) =

(β − αe−1/ε)e1−εξ + (α− βe)e−ξ

1− e1−1/ε
.

Now expand w for small ε (holding ξ fixed):

w(ξ, ε) ∼ βe+ (α− βe)e−ξ.

In terms of the original variable, we can write this as the leading term of the inner
solution uI :

(5.4)w
(x
ε
, ε
)
∼ βe+ (α− βe)e−x/ε .

= uI0(x, ε).
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We then recover the correct left boundary condition uI0(0, ε) = α but the incorrect
right boundary condition uI0(1, ε) = βe+ (α− βe)e−1/ε ∼ βe as ε→ 0.

If we retain an extra term in the inner solution we obtain, as ε→ 0,

w(ξ, ε) ∼ βe1−εξ + (α− βe)e−ξ ∼ βe(1− εξ) + (α− βe)e−ξ,

so that
(5.5)w

(x
ε
, ε
)
∼ βe(1− x) + (α− βe)e−x/ε .

= uI1(x, ε).

Now we still obtain the correct left boundary condition uI1(0, ε) = α but the incorrect
boundary condition uI1(1, ε) = (α− βe)e−1/ε → 0 as ε→ 0, as shown in Fig. 5.2.

0
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2

0.2 0.4 0.6 0.8 1
x

u(x)

uI0(x)

uI1(x)

Figure 5.2: Inner solutions given by Eqs. (5.4) and (5.5) for ε = 0.05, α = 0, and
β = 1.

Remark: We call ξ = x/ε the inner variable. However, the question naturally arises:
what is the best choice for the inner variable? Suppose we instead chose the inner
variable to be the magnified scale ξ = x/ε2. We would then find that

w(ξ, ε)
.
= u(ε2ξ, ε) =

(β − αe−1/ε)e1−ε2ξ + (α− βe)e−εξ

1− e1−1/ε

∼ βe(1− ε2ξ) + (α− βe)(1− εξ) (ε→ 0).

Then

(5.6)w
( x
ε2
, ε
)
∼ βe(1− x) + (α− βe)

(
1− x

ε

)
.
= uI1(x, ε).

As shown in Fig. 5.3, for the case where α < βe, this inner solution satisfies
uI1(0, ε) = α and uI1(1, ε) = (α− βe)(1− 1/ε) → ∞ as ε→ 0.
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Figure 5.3: Inner solution given by Eq. (5.6) for ε = 0.05, α = 0, and β = 1.

Remark: If instead we choose the inner variable to be the magnified scale ξ = x/
√
ε,

we find

w(ξ, ε)
.
= u(

√
εξ, ε)

=
(β − αe−1/ε)e1−

√
εξ + (α− βe)e−ξ/

√
ε

1− e1−1/ε

∼ βe(1−√
εξ) (ε→ 0).

Then

(5.7)w

(
x√
ε
, ε

)
∼ βe(1− x)

.
= uI1.

As shown in Fig. 5.4, this choice leads to incorrect boundary conditions at both
endpoints: uI1(0, ε) = βe and uI1(1, ε) = 0.

Remark: The basic idea underlying the method of matched asymptotic expansions
is to find asymptotic expressions valid over different intervals and then match them
on their overlapping domains. Specifically, we can write uO from Eq. (5.3) in terms
of the inner variable ξ = x/ε and expand it for small ε, holding ξ fixed:

uO = βe1−εξ ∼ βe(1− εξ)
.
= (uO)I (ε→ 0).

Likewise, we can expand uI from Eq. (5.5) for small ε, holding x fixed:

uI(x, ε) = βe(1− x) + (α− βe)e−x/ε ∼ βe(1− x)
.
= (uI)O (ε→ 0).
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Figure 5.4: Inner solution given by Eq. (5.7) for ε = 0.05.

Notice that the inner expansion of the outer solution equals the outer expansion of
the inner solution:

(uO)I = (uI)O.

This is called the matching principle. When satisfied, the asymptotic matching
procedure has been successful.

Problem 5.1: If we instead choose the inner variable ξ = x/ε2, show that the
matching principle is not satisfied when α ̸= βe.

5.B Expansion Operators

The heuristic arguments of the previous section were based on finding approximations
to u valid on overlapping subsets of Ω and matching these expressions on this
overlap region.

Consider the function
u(x, ε) = x+ ε+ e−x/ε

for x ∈ [0, 1].
The natural choice for the outer and inner variables are the variables that appear

in the function, respectively x and ξ = x/ε.
For small ε, the outer solution (x > 0) is

uO(x, ε) = u0(x) + εu1(x) = x+ ε,
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where u0(x) = x and u1(x) = 1.
For small ε, the inner solution

uI(x, ε) = w(ξ, ε) = w0(ξ) + εw1(ξ) = e−ξ + ε(ξ + 1),

where w0(ξ) = e−ξ and w1(ξ) = ξ + 1.
In the outer region,

u(x, ε)− u0(x) = ε+ e−x/ε = O(1) (ε→ 0)

u(x, ε)− u0(x)− εu1(x) = e−x/ε = O(ε) (ε→ 0)

uniformly for x ∈ [x0, 1] for any x0 > 0.
In the inner region,

w(ξ, ε)− w0(ξ) = ε(ξ + 1) = x+ ε = O(1) (ε→ 0)

uniformly for x ∈ [0, ε].
As ε→ 0, we see there is unfortunately no overlap between the regions [x0, 1] and

[0, ε]. However, we can actually allow x0 to depend on ε, say x0 = η(ε) and still get
a valid asymptotic expansion for the outer solution, provided lim

ε→0
η(ε)/ε = ∞:

u(x, ε)− u0(x) = ε+ e−x/ε ⩽ ε+ e−η(ε)/ε = o(1).

For example, we can choose η(ε) =
√
ε. Thus, the outer solution is actually uniformly

valid on the enlarged interval [
√
ε, 1].

Similarly, the inner expansion is valid in a region larger than [0, ζ(ε)], provided
lim
ε→0

ζ(ε) = 0:

w(ξ, ε)− w0(ξ) = x+ ε ⩽ ζ(ε) + ε = O(1) (ε→ 0).

For example, we can choose ζ(ε) = ε1/3, thereby leaving an overlap region of validity
[ε1/2, ε1/3] for the inner and outer solutions.

We now introduce some formal notation. Suppose

(i) u : Ω× (0, ε0) → R, Ω ⊂ Rm;

(ii) {αn(ε)}∞n=0 is an asymptotic sequence of gauge functions;

(iii) Ω0 ⊂ Ω.

Definition: The expansion operator En
xu : Ω0× (0, a) → R relative to the asymptotic

sequence {αn(ε)}∞n=0 is defined by (En
xu)(x, ε) =

∑n
j=0 uj(x)αj(ε), where

u0(x) = lim
ε→0+

u(x, ε)

α0(ε)
,

uj(x) = lim
ε→0+

u(x, ε)− (Ej−1
x u)(x, ε)

αj(ε)
j = 1, 2, . . . , n,

provided the limits exist in Ω0.
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Remark: As in the proof of Theorem 1.3, we see that

0 = lim
ε→0

u(x, ε)− (En−1
x u)(x, ε)− un(x)αn(ε)

αn(ε)
= lim

ε→0

u(x, ε)− (En
xu)(x, ε)

αn(ε)
.

For x ∈ Ω0 we thus have

u(x, ε) = (En
xu)(x, ε) + O(αn(ε)) (ε→ 0+).

• Consider again the function u(x, ε) = x+ε+e−x/ε with αn(ε) = εn, with Ω0 = (0, 1].
We find

u0(x) = lim
ε→0+

u(x, ε)

1
= x,

u1(x) = lim
ε→0+

u(x, ε)− u0(x)

ε
= 1,

un(x) = lim
ε→0+

e−x/ε

εn
= 0 for n ⩾ 2.

Thus
(E0

xu)(x, ε) = x,
(En

xu)(x, ε) = x+ ε for n ⩾ 1.

Definition: Given the change of variable ξ = x/δ(ε), denote w(ξ, ε)
.
= u(x, ε) =

u(δ(ε)ξ, ε), and suppose {βn(ε)}∞n=0 is an asymptotic sequence of gauge functions.
The expansion operator Hn

ξ relative to the asymptotic sequence {βn(ε)}∞n=0 is
defined by (Hn

ξ u)(ξ, ε) =
∑n

j=0wj(ξ)βj(ε), where

w0(ξ) = lim
ε→0+

w(ξ, ε)

β0(ε)
,

wj(ξ) = lim
ε→0+

w(ξ, ε)− (Hj−1
ξ u)(ξ, ε)

βj(ε)
j = 1, 2, . . . , n.

• For u(x, ε) = x+ε+e−x/ε with βn(ε) = εn, we have w(ξ, ε) = u(εξ, ε) = e−ξ+ε(ξ+1),
since

w0(ξ) = lim
ε→0+

w(ξ, ε)

1
= e−ξ,

w1(ξ) = lim
ε→0+

w(ξ, ε)− w0(x)

ε
= ξ + 1,

wn(ξ) = 0 for n ⩾ 2.

Thus
(H0

ξu)(ξ, ε) = e−ξ,

(Hn
ξ u)(ξ, ε) = e−ξ + ε(ξ + 1) for n ⩾ 1.
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Remark: From the previous example we have

E0
xu = x, H0

ξu = e−ξ.

Thus

E0
xH

0
ξu = E0

xe
−ξ = E0

x(e
−x/ε) = lim

ε→0+

e−x/ε

1
= 0,

and

H0
ξE

0
xu = H0

ξ (x) = H0
ξ (εξ) = lim

ε→0+

εξ

1
= 0.

That is,
E0

xH
0
ξu = H0

ξE
0
xu.

We also found
E1

xu = x+ ε, H1
ξu = e−ξ + ε(ξ + 1).

Thus

E1
xH

1
ξu = E1

x(e
−ξ + ε(ξ + 1)) = E1

x(e
−x/ε + x+ ε) = E1

xu = x+ ε,

and

H1
ξE

1
xu = H1

ξ (x+ ε) = H1
ξ (εξ + ε) = 0 + ε lim

ε→0+

εξ + ε

ε
= ε(ξ + 1) = x+ ε.

That is,
E1

xH
1
ξu = H1

ξE
1
xu.

The statement that

(5.8)En
xH

n
ξ u = Hn

ξ E
n
xu ∀n ∈ N0

is a way of expressing the matching principle.

Remark: A generalized version of the matching principle,

En
xH

m
ξ u = Hm

ξ E
n
xu,

is sometimes used in situations where the case n = m does not work.

Definition: When the matching principle is successful, the composite expansion
operator Cn

x defined by

Cn
xu = En

xu+Hn
ξ u− En

xH
n
ξ u

can be used to generate global approximations to singular perturbation problems.
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• For u(x, ε) = x+ ε+ e−x/ε we find

C0
xu = E0

xu+H0
ξu− E0

xH
0
ξu = x+ e−ξ − 0 = x+ e−x/ε.

C1
xu = E1

xu+H1
ξu− E1

xH
1
ξu = x+ ε+ e−ξ + ε(ξ + 1)− (x+ ε) = x+ ε+ e−x/ε.

5.C The Method of Matched Asymptotic Expansions

The results of the previous section were obtained with the benefit of the exact
solution. We now attempt to ascertain these properties directly from the differential
equation. First, we must determine the location of the boundary layer. If physical
considerations do not indicate the location of the boundary layer, one may have to
resort to trial and error. If the wrong location is used, the matching will not be
successful.

• Let us revisit the problem

P :

{
εu′′ + (1 + ε)u′ + u = 0, x ∈ [0, 1],
u(0, ε) = α, u(1, ε) = β

.

Suppose we determine that the boundary layer occurs at x = 0. On substituting
the expansion (4.2) and discarding the boundary condition at 0, the outer problem
becomes

P0 :

{
u′0 + u0 = 0,
u0(1) = β,

Pn :

{
u′n + un = −u′n−1 − u′′n−1,
un(1) = 0

n ⩾ 1.

The solutions to these first-order differential equations are given by

u0(x) = βe1−x,

un(x) =

∫ 1

x

eλ−x(u′n−1(λ) + u′′n−1(λ)) dλ n ⩾ 1.

We recursively find un(x) = 0 for all n ⩾ 1.

The outer solution is thus given by

uO(x, ε) = βe1−x + O(εn) (ε→ 0)

for any n ∈ N.
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To determine the correct inner variable, try ξ = x/δ(ε), where δ(ε) = O(1) as
ε→ 0. Then

u(x, ε) = w
(x
δ
, ε
)
= w(ξ, ε),

u′(x, ε) =
1

δ
w′
(x
δ
, ε
)
=

1

δ
w′(ξ, ε),

u′′(x, ε) =
1

δ2
w′′
(x
δ
, ε
)
=

1

δ2
w′′(ξ, ε),

so that the inner problem becomes

P I :


ε

δ2
w′′ + (1 + ε)

1

δ
w′ + w = 0, x ∈ Ω = [0, 1],

w(0, ε) = α.

We have discarded the right-hand boundary condition since the right boundary lies
outside the boundary layer. The resulting system, being a second-order ordinary
differential equation with only one boundary condition, is underdetermined. The
extra constant of integration will be determined by matching to the outer solution.

There are three cases of interest:

Case (i): lim
ε→0

δ(ε)/ε = ∞
The inner problem may be written

P I :


ε

δ
w′′ + (1 + ε)w′ + δw = 0,

w(0, ε) = α.

On expressing w(ξ, ε) = w0(ξ)+O(1), the lowest-order problem becomes, noting
that ε/δ = O(1) and δ = O(1),

P I
0 :

w′
0 = 0

w0(0) = α,

which has the solution w0(ξ) = α. The leading-order behaviours of the inner
and outer solutions are then respectively given by

E0
xu = u0 = βe1−x, H0

ξu = w0 = α.

Since δ = o(1), we thus find that

E0
xH

0
ξu = E0

x

(
w0

(x
δ

))
= w0(∞) = α,

H0
ξE

0
xu = H0

ξ (u0(δξ)) = u0(0) = βe.

Since α ̸= βe in general, we see that the matching principle, Eq. (5.8), is not
satisfied.
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Case (ii): lim
ε→0

δ(ε)/ε = 0

Express the inner problem as

P I :

w′′ +
δ

ε
(1 + ε)w′ +

δ2

ε
w = 0,

w(0, ε) = α.

Since δ = O(1), the lowest-order problem becomes, expressing w(ξ, ε) = w0(ξ)+
O(1),

P I
0 :

w′′
0 = 0,

w0(0) = α.

which has the solution w0(ξ) = α+Aξ where A is a constant. The leading-order
behaviours of the inner and outer solutions are then respectively given by

E0
xu = u0 = βe1−x, H0

ξu = w0 = α + Aξ.

Since δ = o(1), we thus find that

E0
xH

0
ξu = E0

x

(
w0

(x
δ

))
= w0(∞) =

{
α if A = 0,
∞ if A > 0,
−∞ if A < 0.

H0
ξE

0
xu = H0

ξ (u0(δξ)) = u0(0) = βe.

Again, the matching condition is not satisfied.

Case (iii): δ(ε) = ε

The inner problem reduces to

P I :

w′′ + (1 + ε)w′ + εw = 0,

w(0, ε) = α,

On expressing w(ξ, ε) =
∞∑
n=0

wn(ξ)ε
n, the inner problem becomes

P I
0 :

w′′
0 + w′

0 = 0,

w0(0) = α.

P I
1 :

w′′
1 + w′

1 = −w′
0 − w0,

w1(0) = 0,
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from which we deduce that w0(ξ) = α − A0(1− e−ξ) and w1(ξ) = (A0 − α)ξ +
A1(1− e−ξ), where A0 and A1 are constants.

Thus
E0

xH
0
ξu = E0

x

(
w0

(x
ε

))
= w0(∞) = α− A0,

H0
ξE

0
xu = H0

ξ (u0(εξ)) = u0(0) = βe.

The lowest-order matching condition E0
xH

0
ξu = H0

ξE
0
xu can thus be satisfied if

we choose A0 = α− βe, so that

w0(ξ) = βe+ (α− βe)e−ξ

w1(ξ) = −βeξ + A1(1− e−ξ).

At the next order, we find, noting that u1 = 0,

E1
xH

1
ξu = E1

x

(
w0

(x
ε

)
+ εw1

(x
ε

))
= f0(x) + εf1(x),

H1
ξE

1
xu = H1

ξ (u0(εξ)) = g0(ξ) + εg1(ξ),

where

f0(x) = lim
ε→0

[
w0

(x
ε

)
+ εw1

(x
ε

)]
= lim

ε→0

[
βe+ (α− βe)e−x/ε − βex+ εA1(1− e−x/ε)

]
= βe(1− x),

f1(x) = lim
ε→0

1

ε

[
w0

(x
ε

)
+ εw1

(x
ε

)
− f0(x)

]
= lim

ε→0

1

ε

[
βe+ (α− βe)e−x/ε − βex+ εA1(1− e−x/ε)− βe(1− x)

]
= lim

ε→0

1

ε

[
(α− βe)e−x/ε + εA1(1− e−x/ε)

]
= A1,

g0(ξ) = lim
ε→0

u0(εξ) = lim
ε→0

βe1−εξ = βe,

g1(ξ) = lim
ε→0

1

ε

[
βe1−εξ − βe

]
= βe lim

ε→0

e−εξ − 1

ε
= −βeξ.

We can thus make E1
xH

1
ξu = βe(1 − x) + εA1 equal H1

ξE
1
xu = βe(1 − εξ) =

βe(1− x) by choosing A1 = 0.

We have thus recovered the inner solution, Eq. (5.5), that we previously obtained
with foreknowledge of the exact solution:

w(ξ, ε) ∼ w0(ξ) + εw1(ξ) = βe(1− εξ) + (α− βe)e−ξ.

The choice δ ∼ ε thus yields an inner variable that allows the corresponding
inner solution to be matched to the outer solution u(x, ε) ∼ βe1−x. Note that
w(0, ε) = α and u(1, ε) = β, as desired.
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Remark: With ξ = x/δ(ε), we say that the boundary layer thickness is O(δ(ε)). The
full solution can be expressed as

u(x, ε) ∼
{
uI(x, ε) near the origin,
uO(x, ε) away from the origin.

While uI and uO are valid on overlapping domains, the place to switch from one
domain to the other is not so easily determined. This difficulty can be circumvented
with the composite expansion operator:

C0
xu = E0

xu+H0
ξu− E0

xH
0
ξu.

= u0(x) + w0

(x
ε

)
− βe

= βe1−x + βe+ (α− βe)e−x/ε − βe.

= βe1−x + (α− βe)e−x/ε.

Going to higher order, we obtain the same result:

(5.9)

C1
xu = E1

xu+H1
ξu− E1

xH
1
ξu.

= u0(x) + w0

(x
ε

)
+ εw1

(x
ε

)
− βe(1− x)

= βe1−x + βe(1− x) + (α− βe)e−x/ε − βe(1− x)

= βe1−x + (α− βe)e−x/ε.

In the limit ε→ 0, we see that this composite solution obeys the desired boundary
conditions. It is instructive to compare this result with the exact solution:

u(x, ε) =
(β − αe−1/ε)e1−x + (α− βe)e−x/ε

1− e1−1/ε

∼ βe1−x + (α− βe)e−x/ε (ε→ 0).

As shown in Fig. 5.5, the matched asymptotic and exact solutions are indistinguishable
to graphical accuracy, even at relatively large values of the perturbation parameter,
such as ε = 0.1.

Remark: The correct choice of δ(ε) must be such that the terms neglected in the
outer equation are retained in P I . In the previous example, since u′′ was neglected,
along with a u′ term, in the lowest-order outer equation, both w′′ and w′ must be
retained in the lowest-order approximation to P I .



5.C. THE METHOD OF MATCHED ASYMPTOTIC EXPANSIONS 99

0
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0.2 0.4 0.6 0.8 1
x

u(x, ε)

C1
xu(x, ε)

Figure 5.5: Matched asymptotic solution and exact solution given by Eq. (5.9) for
ε = 0.1.

Remark: Typically one wants to choose δ(ε) so as to obtain the “least degenerate”
form of the inner equation in the sense that the coefficients of the differential
equation are of comparable size, to the extent possible. In our example,

ε

δ2
w′′ +

1

δ
(1 + ε)w′ + w = 0,

which can be rewritten as

w′′ +
δ

ε
(1 + ε)w′ +

δ2

ε
w = 0,

we know that δ = O(1), so
δ2

ε
= O

(
δ

ε

)
. Of the three cases

(i)
ε

δ
≺ 1,

(ii)
δ2

ε
≺ δ

ε
≺ 1,

(iii)
δ2

ε
≺ δ

ε
∼ 1,

Case (iii) is the “least degenerate”.
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• (Nonlinear ODE) [Bender & Orszag 1999, p. 463]
Consider the problem

(5.10)P :

{
εu′′ + 2u′ + eu = 0, x ∈ [0, 1],
u(0, ε) = u(1, ε) = 0.

Let us assume that the boundary layer is at x = 0 and look for an outer solution
of the form

u(x, ε) ∼
∞∑
n=0

un(x)ε
n.

On discarding the boundary condition at x = 0, we find

P0 :

{
2u′0 + eu0 = 0,
u0(1) = 0,

so that u0(x) = log
2

1 + x
.

Let the inner variable be ξ = x/δ(ε) and w(ξ, ε) = u(x, ε). The inner problem is

P I :

{
w′′ + 2

δ

ε
w′ +

δ2

ε
ew = 0,

w(0, ε) = 0.

We choose the least degenerate case
δ2

ε
≺ δ

ε
∼ 1, so that

P I :

{
w′′ + 2w′ + εew = 0,
w(0, ε) = 0,

Let us look for an inner solution of the form

w(ξ, ε) ∼
∞∑
n=0

wn(ξ)ε
n.

The lowest-order problem is

P I
0 :

{
w′′

0 + 2w′
0 = 0,

w0(0) = 0,

which has the solution w0(ξ) = A(1− e−2ξ).
Thus

E0
xH

0
ξu = E0

x

(
w0

(x
ε

))
= w0(∞) = A,

H0
ξE

0
xu = H0

ξ (u0(εξ)) = u0(0) = log 2.
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The lowest-order matching condition E0
xH

0
ξu = H0

ξE
0
xu can thus be satisfied if we

choose A = log 2, so that the inner solution is

w0(ξ) = log 2(1− e−2ξ).

The composite solution is then given by

(5.11)

C0
xu = E0

xu+H0
ξu− E0

xH
0
ξu

= u0(x) + w0

(x
ε

)
− log 2

= log
2

1 + x
− e−2x/ε log 2,

as shown in Figure 5.6.
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Figure 5.6: Matched asymptotic solution in Eq. (5.11) for ε = 0.05 compared to the
exact solution of Eq. (5.10) computed numerically with a shooting method.

• (Two boundary layers) [Bender & Orszag 1999, p. 437]
For the problem

(5.12)P :

{
εu′′ − x2u′ − u = 0, x ∈ [0, 1],
u(0, ε) = u(1, ε) = 1.

let us look for an outer solution of the form

u(x, ε) ∼
∞∑
n=0

un(x)ε
n.
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The outer problem

P0 :

{
x2u′0 + u0 = 0,
u0(1) = 1,

has the solution u0(x) = e1/x−1. We see that the left boundary condition cannot
be satisfied and therefore expect a boundary layer at x = 0.

Let the inner variable be ξ = x/δ(ε) and w(ξ, ε) = u(x, ε). The inner problem is

P I :

{ ε

δ2
w′′ − δξ2w′ − w = 0,

w(0, ε) = 1,

or

P I :

{
w′′ − δ3

ε
ξ2w′ − δ2

ε
w = 0,

w(0, ε) = 1.

We choose the least degenerate case
δ3

ε
≺ δ2

ε
∼ 1, taking δ =

√
ε:

P I :

{
w′′ −√

εξ2w′ − w = 0,
w(0, ε) = 1.

Let us look for an inner solution of the form

w(ξ, ε) ∼
∞∑
n=0

wn(ξ)ε
n.

The lowest-order problem is

P I
0 :

{
w′′

0 − w0 = 0,
w0(0) = 1,

which has the solution w0(ξ) = Beξ + (1−B)e−ξ, where B is a constant. Then

E0
xH

0
ξu = E0

x

(
w0

(
x√
ε

))
= w0(∞) =

{
0 if B = 0,
sgn(B) · ∞ if B ̸= 0,

H0
ξE

0
xu = H0

ξ (u0(εξ)) = u0(0) = ∞.

Since the outer solution diverges, no match is possible.

What went wrong here is that the outer solution u0 is actually incorrect: there
is another boundary layer at x = 1. That is, we need to drop both boundary
conditions; the outer solution then becomes u0(x) = Ae1/x, where the constant A
will be determined by asymptotic matching.
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Let us try the inner variable ζ = (1 − x)/µ(ε), with µ(ε) = O(1) and express
u(x, ε) = v(ζ, ε) = v((1 − x)/µ, ε). Then u′ = −v′/µ and u′′ = v′′/µ2, so that the
inner problem at the right boundary is

P I
R :

 ε

µ2
v′′ +

(1− µζ)2

µ
v′ − v = 0,

v(0, ε) = 1,

or

P I
R :

{
v′′ +

µ(1− µζ)2

ε
v′ − µ2

ε
v = 0,

v(0, ε) = 1.

We choose the least degenerate case
µ2

ε
≺ µ

ε
∼ 1, taking µ = ε. The inner problem

at the right boundary becomes

P I
R :

{
v′′ + (1− εζ)2v′ − εv = 0,
v(0, ε) = 1.

We express

v(ζ, ε) ∼
∞∑
n=0

vn(ζ)ε
n,

and find

P I
R :

{
v′′0 + v′0 = 0,
v0(0) = 1,

which has the solution v0(ζ) = C+(1−C)e−ζ , where C is a constant. On matching
the outer solution u0(x) = Ae1/x to the left boundary layer, we find

E0
xH

0
ξu = E0

x

(
w0

(
x√
ε

))
= w0(∞) =

{
0 if B = 0,
sgn(B) · ∞ if B ̸= 0,

H0
ξE

0
xu = H0

ξ (u0(εξ)) = u0(0) =

{
0 if A = 0,
sgn(A) · ∞ if A ̸= 0.

The matching condition thus requires A = B = 0. That is, u(x) = 0 and w0 = e−ξ.
On matching the outer solution to the right boundary layer, we find

E0
xH

0
ζu = E0

x

(
v0

(
1− x

ε

))
= v0(∞) = C.

H0
ζE

0
xu = H0

ζ (u0(1− εξ)) = u0(1) = Ae = 0.

The matching condition requires C = 0. That is, v0 = e−ζ .
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Finally, the composite solution is

(5.13)

C0
xu = E0

xu+H0
ξu+H0

ζu− E0
xH

0
ξu− E0

xH
0
ζu.

= u0(x) + w0

(
x√
ε

)
+ v0

(
1− x

ε

)
− 0− 0

= e−x/
√
ε + e−(1−x)/ε.

In Figure 5.7, we see that the boundary layer thickness at the left is wide, O(
√
ε),

and at the right is narrow. O(ε).
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Figure 5.7: Matched asymptotic solution in Eq. (5.13) for ε = 0.02 compared to the
exact solution of Eq. (5.12) computed numerically with a shooting method.

5.D Application to PDEs

Consider the following first-order linear partial differential equation in two independent
variables: {

ε[a(x, t)ut + b(x, t)ux] + c(x, t)u = d(x, t) x ∈ R, t ∈ [0,∞),
u(x, 0, ε) = f(x).

Depending on the coefficients a, b, c, and d, such a problem can lead to boundary
layers on the boundary t = 0 (initial layer) or even internal boundary layers.

Typically, if (x, t) ∈ Ω, where Ω is an n-dimensional set, boundary layers will be
(n− 1) dimensional.
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• (Burgers’ equation) [Holmes 1995, Example 2, p. 91]
For the problem

P :


∂u

∂t
+ u

∂u

∂x
= ε

∂2u

∂x2
x ∈ R, t ∈ [0,∞),

u(x, 0, ε) = φ(x).

Here the initial condition φ(x) satisfies φ′(x) ⩽ 0 for x ̸= 0. Of particular interest is
the case where φ has a jump discontinuity at x = 0: φ(0+) < φ(0−). For example,

φ(x) =

{
cL x < 0,
cR x > 0,

where cL > cR ⩾ 0.
Let us look for an outer solution of the form

u(x, ε) ∼
∞∑
n=0

un(x)ε
n.

The outer problem

P0 :


∂u0
∂t

+ u0
∂u0
∂x

= 0,

u0(x, 0, ε) = φ(x),

P1 :


∂u1
∂t

+ u0
∂u1
∂x

+ u1
∂u0
∂x

=
∂2u0
∂x2

,

u1(x, 0, ε) = 0,

can be solved by the method of characteristics. Letting λ parametrize the initial
curve u0(x, 0), s be the characteristic variable, and z = u0(x, t), we find

P0 :



dt

ds
= 1 t|s=0 = 0,

dx

ds
= u0 = z x|s=0 = λ,

dz

ds
= 0 z|s=0 = φ(λ).

Thus

P0 :


t = s,

x = sz + λ = sφ(λ) + λ,

z = φ(λ).
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We thus see that z satisfies the implicit equation z = φ(λ) = φ(x−sz) = φ(x−tz),
that is, u0 = φ(x− u0t).
Since cL > cR, this implies that the solution is multiple-valued in the region
cRt < x < cLt of an (x, t) diagram. Let us assume that there is a single smooth
curve

x = γ(t), γ(0) = 0

along which the outer solution has a jump discontinuity, often called a shock. That
is, we look for a shock layer:

u0(x, t) =

{
cL x < γ(t),
cR x > γ(t).

Accordingly, we choose an inner variable ξ =
x− γ(t)

δ(ε)
and set w(ξ, t, ε) = u(x, t, ε),

so that u(x, t, ε) = w

(
x− γ(t)

δ
, t, ε

)
. We see that

∂u

∂t
= −γ

′

δ

∂w

∂ξ
+
∂w

∂t

and
∂u

∂x
=

1

δ

∂w

∂ξ
.

The inner equation is then

−γ
′

δ

∂w

∂ξ
+
∂w

∂t
+
w

δ

∂w

∂ξ
=

ε

δ2
∂2w

∂ξ2
,

or
∂2w

∂ξ2
=
δ2

ε

∂w

∂t
+
δ

ε
(w − γ′)

∂w

∂ξ
.

We choose the least degenerate case
δ2

ε
≺ δ

ε
∼ 1 and expand

w(ξ, t, ε) ∼
∞∑
n=0

wn(ξ, t)ε
n

to find

P I
0 :

∂2w0

∂ξ2
= (w0 − γ′)

∂w0

∂ξ
.

P I
1 :

∂2w1

∂ξ2
=
∂w0

∂t
+ (w0 − γ′)

∂w1

∂ξ
+ w1

∂w0

∂ξ
.

We integrate once with respect to ξ to find

∂w0

∂ξ
=

1

2
w2

0 − γ′w0 + A(t),
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so that
dw0

1
2
w2

0 − γ′w0 + A(t)
= dξ.

Let us now match to the outer solution:

(uI)O ∼ w0

(
x− γ(t)

ε
, t

)
∼
{
w0(−∞, t) x < γ(t),
w0(∞, t) x > γ(t)

(ε→ 0),

(uO)I ∼ u0(γ(t) + εξ, t) ∼
{
cL x < γ(t),
cR x > γ(t)

(ε→ 0).

Thus
lim

ξ→−∞
w0 = cL, lim

ξ→∞
w0 = cR.

In particular this means that lim
ξ→±∞

∂w0

∂ξ
= 0. Hence, as ξ → ±∞ we find

0 =
1

2
c2R − γ′cR + A(t),

0 =
1

2
c2L − γ′cL + A(t).

On subtracting the second equation from the first, we find

0 =
1

2
c2R − c2L − γ′(cR − cL),

so that

γ′ =
1

2
(cL + cR), A(t) =

1

2
cLcR.

Thus the shock takes the form of a straight line, γ(t) = 1
2
(cL + cR)t, that separates

the trajectories cLt and cRt. We can then determine the inner solution by partial
fraction decomposition:

1

2

∫
dξ =

∫
dw0

(w0 − cL)(w0 − cR)

=
1

cL − cR

∫ [
1

w0 − cL
− 1

w0 − cR

]
dw0

=
1

cL − cR

[
log

w0 − cL
w0 − cR

+ logB(t)

]
.

Thus

w0(ξ, t) =
cL − cRE(ξ, t)

1− E(ξ, t)
,

where E(ξ, t) = B(t)e
1
2
ξ(cL−cR). To determine the constant of integration, B(t), one

must perform the matching to higher order.



Chapter 6

WKB Theory

Recall the earlier examples (4.4):

P :

{
εu′′ − u′ = 0,
u(0, ε) = 0, u(1, ε) = 1

u(x, ε) =
ex/ε − 1

e1/ε − 1
,

where the solution varies rapidly over a narrow region (the boundary layer), and (4.5):

P :

{
εu′′ + u = 0,
u(0, ε) = 0, u(1, ε) = 1

u(x, ε) =
sin(x/

√
ε)

sin(1/
√
ε)
,

where the solution oscillates rapidly over the entire domain. Both solutions exhibit
exponential behaviour, with a real exponent in the first case and an imaginary
exponent in the second.

It is natural to seek an approximate solution of the form

u(x, ε) ∼ A(x)eS(x)/δ(ε), δ(ε) = O(1).

Here S(x) is called the phase. If S is real, there is a boundary layer of thickness δ(ε),
while if S is imaginary there are rapid oscillations of wavelength ∼ δ(ε).

The above expansion can be readily generalized to higher order in δ:

(6.1)u(x, ε) ∼ exp

(
1

δ(ε)

∞∑
n=0

Sn(x)δ
n(ε)

)
.

This is known as either theWKB approximation, after Wentzel, Kramers, and Brillouin,
who popularized the technique, or the WKBJ approximation, to acknowledge earlier
work by Jeffreys.

Consider the second-order homogeneous linear differential equation{
ε2u′′ = Q(x)u x ∈ [0, 1],
u(0, ε) = A, u(1, ε) = B,
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where Q(x) ̸= 0 on [0, 1]. Substituting Eq. (6.1) leads to

ε2

(1

δ

∞∑
n=0

S ′
n(x)δ

n

)2

+
1

δ

∞∑
n=0

S ′′
n(x)δ

n

 = Q(x).

To leading order as ε→ 0 we find

ε2

δ2
S ′
0
2 +

2ε2

δ
S ′
0S

′
1 +

ε2

δ
S ′′
0 ∼ Q(x)

Since
ε2

δ
≺ ε2

δ2
∼ 1, we choose the least degenerate case δ(ε) = ε:

S ′
0
2 + ε(2S ′

0S
′
1 + S ′′

0 ) = Q(x).

The dominant balance is called the eikonal equation

S ′
0
2 = Q(x),

which has the two solutions

S0(x) = ±F (x), where F (x)
.
=

∫ x

0

√
Q(t) dt.

The higher-order balances are called transport equations:

(6.2a)2S ′
0S

′
1 = −S ′′

0 ,

(6.2b)
n∑

j =0

S ′
jS

′
n−j = −S ′′

n−1 (n ⩾ 1).

The solution to Eq. (6.2a) is immediately seen to be

S1(x) = −1

4
logQ(x) + k,

where k is arbitrary constant. The first-order WKB-approximation is then a linear
combination of the two solutions:

u(x, ε) ∼ eS0/ε+S1

∼ c1e
F (x)/ε + c2e

−F (x)/ε

4
√
Q(x)

.

We now apply the boundary conditions to express these linear combinations as

u(x, ε) ∼
A
√
F ′(0) sinh

(
F (1)− F (x)

ε

)
+B

√
F ′(1) sinh

(
F (x)

ε

)
√
F ′(x) sinh

(
F (1)

ε

) ,

noting that F (0) = 0.
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• In the special case where A = 0, B = 1, and Q(x) = −1, we see that F (x) = ix
and

u(x, ε) ∼ sinx/ε

sin 1/ε
(ε→ 0),

which is in fact the exact solution.

• In the special case where A = 0, B = 1, and Q(x) = 1, we see that F (x) = x and
one again recovers the exact solution:

u(x, ε) ∼ sinhx/ε

sinh 1/ε
, (ε→ 0).

• Let us look for a WKB solution for the problem{
εu′′ + p(x)u′ + q(x)u = 0 x ∈ [0, 1],
u(0, ε) = A, u(1, ε) = B,

where p(x) ̸= 0 on [0, 1]. We find up to first order in ε that

ε

δ2
S ′
0
2 + 2

ε

δ
S ′
0S

′
1 +

ε

δ
S ′′
0 +

1

δ
S ′
0p+ S ′

1p+ q = 0.

We choose the least degenerate case δ(ε) = ε so that 1 ∼ ε

δ
≺ ε

δ2
. Thus

1

ε
(S ′

0
2 + S ′

0p) + 2S ′
0S

′
1 + S ′′

0 + S ′
1p+ q = 0.

The eikonal equation is thus

S ′
0
2 + S ′

0p = 0,

which has roots S ′
0 = 0 and S ′

0 = −p(x), so that without loss of generality

S0(x) = 0 or S0(x) = −
∫ x

0

p(t) dt
.
= −G(x).

Thus

S1(x) = −
∫ x

0

S ′′
0 (t) + q(t)

2S ′
0(t) + p(t)

dt.

so that

S ′
0 = 0 ⇒ S1(x) = −

∫ x

0

q(t)

p(t)
dt

.
= −F (x),

and

S ′
0 = −p(x) ⇒ S1(x) = − log p(x) + F (x).
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The first-order WKB-approximation is then a linear combination of the two solutions:

u(x, ε) ∼ eS0/ε+S1

∼ c1(ε)e
−F (x) +

c2(ε)

p(x)
e−G(x)/ε+F (x) (ε→ 0).

We now apply the boundary conditions to express these linear combinations as

u(x, ε) ∼ λ(ε)p(0)AeF (1) −Bp(1)

λ(ε)p(0)eF (1) − p(1)e−F (1)
e−F (x)

+
p(0)p(1)(B − Ae−F (1))

p(x)[λ(ε)p(0)eF (1) − p(1)e−F (1)]
e−G(x)/ε+F (x) (ε→ 0),

where λ(ε)
.
= e−G(1)/ε.

Remark: For the special case A = 0, B = 1, p(x) = −1, q(x) = 0 we have G(x) =
−x, F (x) = 0, λ(ε) = e1/ε, reproducing the exact solution in Eq. (4.4):

u(x, ε) =
ex/ε − 1

e1/ε − 1
.

Remark: The popularity of the WKB method stems from its ease of use and the fact
that it works for problems with rapid variation in regions larger than thin boundary
layers. However, a major drawback with the method is that it works only for linear
ordinary differential equations.

6.A Turning Points

[Bender & Orszag 1999, p. 505]
Consider the WKB approximation for the problem

P :

{
ε2u′′ = Q(x)u,
u(0, ε) = 1, u(∞, ε) = 0

on the domain Ω = R, where Q(x) ∼ ax as x → 0, xQ(x) > 0 for x ̸= 0, and
1
x2 = o(Q(x)) as x→ ∞. The point x = 0 is called a turning point since the sign of Q
changes from negative (⇒ sinusoidal WKB solution) to positive (⇒ exponential WKB
solution) as x passes from negative to positive values. The WKB approximation for
x > 0 is

uR(x, ε) ∼ c1(ε)e
F (x)/ε + c2(ε)e

−F (x)/ε

4
√
Q(x)

(ε→ 0),

where F (x)
.
=
∫ x

0

√
Q(t) dt and the boundary condition u(∞, ε) = 0 implies that

c1 = 0. However, this approximation is clearly invalid near x = 0 since Q→ 0 there.
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Since we cannot apply the boundary condition at x = 0, we expect a boundary layer
near x = 0 which matches to WKB outer solutions uL on the left and uR on the right
of the boundary layer.

For x < 0 we have

uL(x, ε) ∼ A(ε) cos(G(x)/ε) +B(ε) sin(G(x)/ε)
4
√

|Q(x)|
(ε→ 0),

where G(x)
.
=
∫ x

0

√
|Q(t)| dt.

Introduce the inner variable ξ = x/δ(ε) and w(ξ, ε) = u(x, ε), so that the inner
equation reads

ε2

δ2
w′′ = Q(δξ)w ∼ aδξw (δ → 0).

Since the least degenerate case is
ε2

δ2
∼ aδ, we take δ(ε) =

ε2/3

a1/3
. Thus ξ = a1/3x/ε2/3

and

w′′ ∼ ξw (ε→ 0).

We recognize the latter as Airy’s equation, with general solution

uI(x, ε) = w(ξ, ε) ∼ α(ε)Ai(ξ) + β(ε) Bi(ξ)

= α(ε)Ai(a1/3x/ε2/3) + β(ε) Bi(a1/3x/ε2/3) (ε→ 0),

noting that the constants α and β that yield a match to the outer solution may
depend on the parameter ε.

Problem 6.1: Show that

Ai(ξ) ∼ 1

2
√
π
ξ−1/4e−

2
3
ξ3/2 (ξ → ∞),

Bi(ξ) ∼ 1√
π
ξ−1/4e

2
3
ξ3/2 (ξ → ∞).

On matching uI to uR we find as ε→ 0 that

(uI)O ∼ α(ε)Ai(a1/3x/ε2/3) + β(ε) Bi(a1/3x/ε2/3)

∼ ε1/6√
πa1/12

x−1/4

[
α(ε)

2
e−

2
3
a1/2x3/2/ε + β(ε)e

2
3
a1/2x3/2/ε

] (
ε2/3 ≺ x

)
,

(uR)I ∼ c2(ε)
e−F (x)/ε
4
√
Q(x)

∼ c2(ε)
e−

2
3
a1/2x3/2/ε

a1/4x1/4
(
ε2/3 ≺ x ≺ ε2/5

)
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since Q(x) ∼ ax as x → 0 and hence F (x) ∼
∫ x

0

√
at dt ∼ 2

3
a1/2x3/2 + O(x5/2/ε) as

x→ 0. A match is thus possible if β(ε) = 0 and α(ε) = 2
√
πc2(ε)/(aε)

1/6. That is,

w(ξ, ε) ∼ 2
√
πc2(ε)

(aε)1/6
Ai(ξ) (ε→ 0).

On noting from Eq. (3.3a) that Ai(0) = 1
32/3Γ(2/3)

we see that the boundary condition

w(0, ε) = 1 implies that

c2(ε) =
32/3Γ(2/3)(αε)1/6

2
√
π

,

so that

w(ξ, ε) ∼ 32/3Γ

(
2

3

)
Ai(ξ) (ε→ 0).

Similarly, the match (uI)O = (uL)I is possible if we choose

A(ε) = −B(ε) =
32/3Γ

(
2
3

)
√
2π

(aε)1/6.

The resulting matched WKB approximation to the one-turning point problem as
ε→ 0 is then

u(x, ε) ∼



32/3Γ
(
2
3

)
(aε)1/6√

2π

[
cos(G(x)/ε)− sin(G(x)/ε)

4
√

|Q(x)|

]
ε2/3 ≺ x < 0,

32/3Γ

(
2

3

)
Ai

(
a1/3x

ε2/3

)
x ≺ ε2/5,

32/3Γ
(
2
3

)
(aε)1/6

2
√
π

[
e−F (x)/ε
4
√
Q(x)

]
ε2/3 ≺ x > 0.

We note as ε → 0 that there is a nontrivial matching interval, [ε2/3, ε2/5]. The
WKB approximation can be thought of as a special case of the multiple-scale analysis
introduced in the next chapter.



Chapter 7

Multiple-Scale Analysis

7.A Secular Terms

Consider the problem for u(t, ε):

(7.1)

{
u′′ + 2εu′ + u = 0 t ∈ [0,∞),
u(0, ε) = 1, u′(0, ε) = 0,

where the primes now denote differentiation with respect to t. The exact solution is

(7.2)u(t, ε) = e−εt

[
cos
(√

1− ε2 t
)
+

ε√
1− ε2

sin
(√

1− ε2 t
)]
,

so that |u(t, ε)| ⩽ 1 + ε/
√
1− ε2 for all t ⩾ 0.

If we try a straightforward perturbation expansion

u(t, ε) ∼
∞∑
n=0

un(t)ε
n,

this yields

P0 :

{
u′′0 + u0 = 0,
u0(0) = 1, u′0(0) = 0,

Pn :

{
u′′n + un = −2u′n−1,
un(0) = u′n(0) = 0

(n ⩾ 1).

The solutions for the first two contributions are

u0(t) = cos t, u1(t) = −t cos t+ sin t,

so that

u(t, ε) ∼ cos t+ ε(sin t− t cos t) + O(ε).
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However, the amplitude of the term t cos t grows without bound, despite the fact
that the exact solution is bounded. This is known as a secularity. The perturbation
expansion is invalid since it attempts to separate the true dependence of u on t and ε
into a series containing products of functions of t and functions of ε; the exact solution
evidently cannot be written in this form. Instead, we see that for small ε there are
really two time scales, t and εt, as evident in Fig. 4.3. The method of multiple scales
provides a means of dealing with such problems.

7.B Derivative Expansion Method

The derivative expansion method is probably the most common of the various multiple
scale methods. One introduces several time (or length) scales and treats them as
independent variables:

If t is the original variable and ε is the small parameter, we introduce the auxiliary
time scales

τ1 = εt, τ2 = ε2t, . . . , τN = εN t

and express u(t, ε) = w(t, τ1, . . . , τN , ε). Then

u′ =
dw

dt
=

(
∂

∂t
+ ε

∂

∂τ1
+ ε2

∂

∂τ2
+ . . .+ εN

∂

∂τN

)
w.

Remark: The original problem is thus transformed from an ordinary differential
equation in u to a partial differential equation in w.

• Let us apply the derivative expansion method to the problem in Eq. (7.1):{
u′′ + 2εu′ + u = 0 t ∈ [0,∞),
u(0, ε) = 1, u′(0, ε) = 0,

We introduce new time scales τ1 = εt, τ2 = ε2t and let u(t, ε) = w(t, τ1, τ2, ε).
Then

u′ =
∂w

∂t
+ ε

∂w

∂τ1
+ ε2

∂w

∂τ2
.

u′′ =

(
∂

∂t
+ ε

∂

∂τ1
+ ε2

∂

∂τ2

)2

w

=
∂2w

∂t2
+ 2ε

∂2w

∂t∂τ1
+ ε2

(
2
∂2w

∂t∂τ2
+
∂2w

∂τ 21

)
+ O(ε2).

The problem then becomes:

∂2w

∂t2
+ 2ε

(
∂2w

∂t∂τ1
+
∂w

∂t

)
+ ε2

(
2
∂2w

∂t∂τ2
+
∂2w

∂τ 21
+ 2

∂w

∂τ1

)
+ w + O(ε2) = 0,

w(0, 0, 0, ε) = 1,

∂w

∂t
(0, 0, 0, ε) + ε

∂w

∂τ1
(0, 0, 0, ε) + ε2

∂w

∂τ2
(0, 0, 0, ε) = 0.
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We look for a solution to this partial differential equation of the form

w(t, τ1, τ2, ε) = w0(t, τ1, τ2) + εw1(t, τ1) + ε2w2(t) + O(ε2).

We find

ε0 :



∂2w0

∂t2
+ w0 = 0,

w0(0, 0, 0) = 1,

∂w0

∂t
(0, 0, 0) = 0,

ε1 :



∂2w1

∂t2
+ w1 = −2

∂2w0

∂t∂τ1
− 2

∂w0

∂t
,

w1(0, 0) = 0,

∂w1

∂t
(0, 0) = −∂w0

∂τ1
(0, 0, 0),

ε2 :



∂2w2

∂t2
+ w2 = −2

∂2w0

∂t∂τ2
− ∂2w0

∂τ 21
− 2

∂w0

∂τ1
− 2

∂2w1

∂t∂τ1
− 2

∂w1

∂t
,

w2(0) = 0,

∂w2

∂t
(0) = −∂w0

∂τ2
(0, 0, 0)− ∂w1

∂τ1
(0, 0).

The solution to the ε0 problem is

w0(t, τ1, τ2) = A(τ1, τ2) cos t+B(τ1, τ2) sin t,

where the initial conditions on w0 imply that A(0, 0) = 1 and B(0, 0) = 0.
The ε1 problem is then

(7.3)
∂2w1

∂t2
+ w1 = 2

(
∂A

∂τ1
+ A

)
sin t− 2

(
∂B

∂τ1
+B

)
cos t,

The only way to avoid secularities in solutions to this sinusoidal differential equation,
which is being driven at its natural frequency, is to use our freedom in choosing
the functions A and B to insist that

∂A

∂τ1
+ A = 0,

∂B

∂τ1
+B = 0,
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We thus find
A(τ1, τ2) = α(τ2)e

−τ1 ,

B(τ1, τ2) = β(τ2)e
−τ1 ,

where the initial conditions A(0, 0) = 1 and B(0, 0) = 0 imply that α(0) = 1 and
β(0) = 0. With this choice of A and B, the secular terms in Eq. (7.3) are thereby
removed and we can now solve for both w0 and w1:

w0(t, τ1, τ2) = e−τ1 [α(τ2) cos t+ β(τ2) sin t],

w1(t, τ1) = C(τ1) cos t+D(τ1) sin t.

The initial conditions on w1 then imply that C(0) = 0 and D(0) = α(0) = 1.
The ε2 equation thus becomes

∂2w2

∂t2
+w2 =

[
(2α′ + β)e−τ1 + 2(C ′ + C)

]
sin t+

[
(−2β′ + α)e−τ1 − 2(D′ +D)

]
cos t.

Again, we need to remove the secular terms:

(2α′ + β) + 2eτ1(C ′ + C) = 0,

(−2β′ + α)− 2eτ1(D′ +D) = 0.

We note that the terms involving α and β are functions of τ2 only, while the terms
involving C and D are functions of τ1 only. Hence 2α′ + β = −2eτ1(C ′ + C) and
(−2β′ + α) = 2eτ1(D′ + D) must be constants. For simplicity we choose these
constants to be zero. The system

2α′ + β = 0,

−2β′ + α = 0,

and the initial conditions α(0) = 1, β(0) = 0 then imply that α(τ2) = cos τ2
2
and

β(τ2) = sin τ2
2
.

The system
C ′ + C = 0,

D′ +D = 0,

and the initial conditions C(0) = 0, D(0) = 1 then imply that C(τ1) = 0 and
D(τ1) = e−τ1 .
Thus

w0(t, τ1, τ2) = e−τ1
[
cos
(τ2
2

)
cos t+ sin

(τ2
2

)
sin t

]
= e−τ1 cos

(
t− τ2

2

)
,

w1(t, τ1) = e−τ1 sin t.



118 CHAPTER 7. MULTIPLE-SCALE ANALYSIS

Finally, the solution to the ε2 equation, given the initial conditions w2(0) = 0 and

∂w2

∂t
(0) = −∂w0

∂τ2
(0, 0, 0)− ∂w1

∂τ1
(0, 0) = 0,

is simply w2(t) = 0.
The resulting multiple scale solution,

u(t, ε) = e−εt

[
cos

(
1− ε2

2

)
t+ ε sin t

]
+ O(ε2),

is compared with the exact solution in Fig. 7.1.

0

0.5

1

2 4 6 8 10
x

uexact(t, ε)

u(t, ε)

u2(t, ε)

e−εt

Figure 7.1: Multiple-scale solution via the derivative expansion (u) and two-variable
expansion (u2) versus exact solution uexact of Eq. (7.1) for ε = 0.4.

7.C Two-variable expansion

Instead of introducing many slow variables τn = εnt for n = 1, 2, . . . , N , it is often
more convenient to consider only two time variables: the slow variable τ = εt and the
modified fast variable

T = (1 + ε2ν2 + ε3ν3 + . . .+ εNνN)t

for some constants νj. We can then express

d

dt
=
(
1 + ε2ν2 + ε3ν3 + . . .+ εNνN

) ∂
∂T

+ ε
∂

∂t
.
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• Let us revisit Eq. (7.1):{
u′′ + 2εu′ + u = 0 t ∈ [0,∞),
u(0, ε) = 1, u′(0, ε) = 0

and introduce the time scales τ = εt and T = (1 + ε2ν)t. On letting u(t, ε) =
w(T, τ, ε) we find

u′ = (1 + ε2ν)
∂w

∂T
+ ε

∂w

∂τ
.

u′′ =

[
(1 + ε2ν)

∂

∂T
+ ε

∂

∂τ

]2
w

=
∂2w

∂T 2
+ 2ε

∂2w

∂T∂τ
+ ε2

(
2ν
∂2w

∂T 2
+
∂2w

∂τ 2

)
+ O(ε2).

The problem then becomes:

∂2w

∂T 2
+ w + 2ε

(
∂2w

∂T∂τ
+
∂w

∂T

)
+ ε2

(
2ν
∂2w

∂T 2
+
∂2w

∂τ 2
+ 2

∂w

∂τ

)
+ O(ε2) = 0,

w(0, 0, ε) = 1,

∂w

∂T
(0, 0, ε) + ε

∂w

∂τ
(0, 0, ε) + ε2ν

∂w

∂T
(0, 0, ε) = 0.

We look for a solution to this partial differential equation of the form

w(T, τ, ε) = w0(T, τ) + εw1(T, τ) + ε2w2(T, τ) + O(ε2).

We find

ε0 :



∂2w0

∂T 2
+ w0 = 0,

w0(0, 0) = 1,

∂w0

∂T
(0, 0) = 0.

ε1 :



∂2w1

∂T 2
+ w1 = −2

∂2w0

∂T∂τ
− 2

∂w0

∂T
,

w1(0, 0) = 0,

∂w1

∂T
(0, 0) = −∂w0

∂τ
(0, 0),
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ε2 :



∂2w2

∂T 2
+ w2 = −2ν

∂2w0

∂T 2
− ∂2w0

∂τ 2
− 2

∂w0

∂τ
− 2

∂2w1

∂T∂τ
− 2

∂w1

∂T
,

w2(0, 0) = 0,

∂w2

∂T
(0, 0) = −∂w1

∂τ
(0, 0)− ν

∂w0

∂T
(0, 0).

The solution to the ε0 problem is

w0(T, τ) = A(τ) cosT +B(τ) sinT,

where the initial conditions on w0 imply that A(0) = 1 and B(0) = 0.
The ε1 equation is then

(7.4)
∂2w1

∂t2
+ w1 = 2(A′ + A) sinT − 2(B′ +B) cosT.

We avoid secular terms by setting

A′ + A = 0,
B′ +B = 0,

which, using the initial conditions A(0) = 1 and B(0) = 0, yields A(τ) = e−τ and
B(τ) = 0. We thus find

w0(T, τ) = e−τ cosT

w1(T, τ) = C(τ) cosT +D(τ) sinT.

The initial conditions on w1 then imply that C(0) = 0 and D(0) = 1.
The ε2 equation thus becomes

∂2w2

∂t2
+ w2 =

[
−2(D′ +D) + (1 + 2ν)e−τ

]
cosT + 2(C ′ + C) sinT.

We remove secular terms by setting

C ′ + C = 0,

D′ +D =
1

2
(1 + 2ν)e−τ ,

with the initial conditions C(0) = 0 and D(0) = 1. We thus find C(τ) = 0 and
D(τ) = [1 + 1

2
(1 + 2ν)τ ]e−τ , so that

w(T, τ) ∼ w0 + εw1 = e−τ

{
cosT + ε

[
1 +

1

2
(1 + 2ν)τ

]
sinT

}
.
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We see, however, that this solution still contains a secular term. Fortunately we still
have enough freedom to suppress this secularity: we need only choose ν = −1/2, so
that D(τ) = e−t and

w(T, τ) ∼ w0 + εw1 = e−τ (cosT + ε sinT ).

Thus

u(t, ε) ∼ w

((
1− 1

2
ε2
)
t, εt

)
= e−εt

[
cos

(
1− 1

2
ε2
)
t+ ε sin

(
1− 1

2
ε2
)
t

]
.

We observe in Fig. 7.1 for a relatively large value of ε that this solution reproduces
the exact solution Eq. (7.2) more closely than the approximation obtained previously
by the derivative expansion method.

• (Rayleigh Oscillator) [Bender & Orszag 1999, p. 554]

For a > 0 consider the nonlinear problem{
u′′ + u = ε(u′ − 1

3
u′3),

u(0, ε) = 0, u′(0, ε) = 2a.

To remove secularities at leading-order, it is sufficient to introduce a single slow
variable, in which case the two-variable expansion and the derivative expansion methods
(with N = 1) are equivalent.

Letting τ = εt, we look for a solution of the form

u(t, ε) = w(t, τ, ε) = w0(t, τ) + εw1(t, τ) + O(ε) ε→ 0.

We find

ε0 :



∂2w0

∂t2
+ w0 = 0,

w0(0, 0) = 0,

∂w0

∂t
(0, 0) = 2a,

ε1 :



∂2w1

∂t2
+ w1 =

∂w0

∂t
− 2

∂2w0

∂t∂τ
− 1

3

(
∂w0

∂t

)3

,

w1(0, 0) = 0,

∂w1

∂t
(0, 0) = 0.
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Let us express the solution to the ε0 problem as

w0(t, τ) = A(τ) sin(t+ θ(τ)),

where the initial conditions imply that A(0) sin θ(0) = 0 and A(0) cos θ(0) = 2a.
Without loss of generality we find A(0) = 2a > 0 and θ(0) = 0.

The ε1 problem then becomes

∂2w1

∂t2
+ w1 =

(
A− 2A′ − 1

4
A3

)
cos(t+ θ) + 2Aθ′ sin(t+ θ)− 1

12
A3 cos 3(t+ θ),

where we have expressed the right-hand side directly in terms of Fourier harmonics
using the relation

cos3 t =

(
eit + e−it

2

)3

= 2Re
e3it + 3e2ite−it

8
=

1

4
(cos 3t+ 3 cos t).

To avoid secular terms we must set

A− 2A′ − 1

4
A3 = 0,

2Aθ′ = 0.

That is,
8A′ = 4A− A3 = A(2− A)(2 + A),

θ′ = 0.

Thus∫
dτ =

∫ −8dA

A(A− 2)(A+ 2)
=

∫ (
2

A
− 1

A− 2
− 1

A+ 2

)
dA = log

A2

A2 − 4
+ logα.

Hence
A2 − 4

A2
= αe−τ ,

where the constant α is seen to equal α = (a2 − 1)/a2 because of the initial condition
A(0) = 2a. Thus

A(τ) =
2a√

a2 − (a2 − 1)e−τ
> 0.

The equation θ′ = 0, along with the initial condition θ(0) = 0, implies that θ(τ) = 0
for all τ . Hence

u(t, ε) ∼ 2a sin t√
a2 − (a2 − 1)e−εt

(ε→ 0).

Since lim
τ→∞

A(τ) = 2, we see that the solution approaches a limit cycle as t → ∞, as

illustrated in Fig. 7.2.
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−2
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0

1

2

10 20 30 40 50 60

x

uexact(t, ε)

u(t, ε)

±A(εt)

Figure 7.2: Multiple-scale solution (u) of the Rayleigh Oscillator versus exact solution
uexact for a = 0.05 and ε = 0.2.



Appendix A

Series Reversion

[Morse & Feshbach 1953, p. 411]
Given the power series of a holomorphic function,

w = f(z) =
∞∑
n=1

anz
n,

with f(0) = 0 and f ′(0) = a1 ̸= 0, we now derive a general formula for the power
series of its (holomorphic) inverse function in a neighbourhood of 0:

z = f−1(w) =
∞∑
n=1

bnw
n.

Let C be a contour enclosing w. Then, using the substitution ζ = f(z) we find

f−1(w) =
1

2πi

∫
C

f−1(ζ)

ζ − w
dζ =

1

2πi

∫
C

zf ′(z)

f(z)− w
dz.

Hence

(f−1)(n)(w) =
n!

2πi

∫
C

zf ′(z)

(f(z)− w)n+1 dz =
(n− 1)!

2πi

∫
C

1

(f(z)− w)n
dz,

on integrating by parts. Thus

bn =
1

n!
(f−1)(n)(0)

=
1

2nπi

∫
C

1

fn(z)
dz =

1

n!

dn−1

dzn−1

zn

fn(z)

∣∣∣∣
z=0

=
1

n!

dn−1

dzn−1

( ∞∑
k=1

akz
k−1

)−n∣∣∣∣∣
z=0

.

For example,

b1 = a−1
1 , b2 = −a−3

1 a2, b3 = a−5
1 (2a22 − a1a3).
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boundary layer thickness, 98
branch cut, 21

composite expansion operator Cn
x , 93

derivative expansion method, 115

eikonal equation, 109
error, 3
expansion operator, 91
expansion operator Hn

ξ , 92
exponential integral, 28

Fourier integral, 49
Frobenius, 68
Frobenius method, 66

Gamma Function, 20
gauge function, 78
generalized binomial coefficient, 24
Generalized Watson’s Lemma, 38

homogeneous equation, 72

indicial equation, 69
indicial exponent, 63
inhomogeneous equation, 71
inner problem, 95
inner solution, 87
inner variable, 88
irregular singular point, 63

Laplace Transform, 34, 35
Laplace’s integral, 34
Laplace’s method, 34
little order of, 5
local analysis, 1

matching principle, 90
method of multiple scales, 115
modified fast variable, 118
moveable maximum, 47

order, 53
order of, 4, 5
ordinary point, 62
outer problem, 94
outer solution, 87

particular solution, 71
phase, 52, 108
Poincaré type, 81

regular perturbation, 82
regular singular point, 63
remainder, 3, 10
Riemann–Lebesgue Lemma, 49

saddle points, 58
secularity, 115
series
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convergence of, 10
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shock, 106
shock layer, 106
singular perturbation, 82
singular point

irregular, 63
regular, 63

slow variable, 118
stationary phase, 52
stationary point, 52
steepest descent, 55
Stirling’s formula, 49

transport equations, 109
turning points, 66
two-variable expansion, 118

uniform asymptotic approximation, 79
uniform asymptotic sequence, 80
uniform asymptotic series, 80

Watson’s Lemma, 35, 36
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