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MATH 228

A Course on Commutative Rings

James D. Lewis

R = Real numbers. Picture :
−←− ◦ +−→

Z = Integers = {0,±1,±2, . . .}

Q = Rational numbers =

{
a

b

∣
∣ a, b ∈ Z, b 6= 0 &

a1

b1
=

a2

b2
⇔ a1b2 = b1a2

}

There are inclusions
Z ⊂ Q ⊂ R,

where the inclusion Z ⊂ Q is given by n ∈ Z 7→ n
1 ∈ Q.

Description of the Real Numbers

(Note:
∐

= disjoint union)

R = Q
∐ {Irrational numbers}

|| ||

repeating
decimals
e.g. 0.235

non− repeating
decimals

↙ ↘

algebraic
irrationals

e.g.
√

2, 3
√

5

transcendental
irrationals
e.g. e, π

The algebraic irrational numbers are solutions of equations of the form:

x2 − 2 = 0 ; 3x3 − 1

2
= 0,

i.e. single variable polynomial equations with Q-coefficients.

Notation: N = {1, 2, 3, . . .} = Natural numbers.
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Axiomatic Properties of the Real Numbers

R (as well as Z, Q) has two (binary) operations +, •:

R×R
+→ R

(a, b) 7→ a + b

R×R
•→ R

(a, b) 7→ ab

Properties of [R; +, •]

(1) R is closed under +, •, i.e. a, b ∈ R ⇒ a + b, ab ∈ R. [Analogous notion: R is not
closed under

√
’s. E.g. −1 ∈ R, but

√
−1 6∈ R.]

(2) Associativity.

(a + b) + c = a + (b + c)

(ab)c = a(bc)

[Hence can write a + b + c, abc.] For example, if we denote by f+ : R × R → R
the + map, i.e., f+(a, b) = a + b, then associativity implies that f+(f+(a, b), c) =
f+(a, f+(b, c)).

(3) Commutivity.

a + b = b + a

ab = ba

[I.e. f+(a, b) = f+(b, a) and similarly f•(a, b) = f•(b, a), where f•(a, b) := ab is the
corresponding multiplication map.]

(4) Zero element. There exists an element labeled 0 ∈ R such that a+0 = a for all a ∈ R.
[Note: It will be proven that 0 is unique.]

(5) Identity element (or Unity). There exists an element labelled 1 ∈ R such that 1·a = a
for all a ∈ R. [Note: It will be proven that 1 is unique.]

(6) Additive Inverse. For any a ∈ R, there exists an element labelled −a ∈ R such that
a + (−a) = 0. [Note: It will be proven that additive inverses are unique.]

(7) Multiplicative Inverse. For any a ∈ R, a 6= 0, there exists an element labelled a−1 ∈ R
such that a ·a−1 = 1. [Note: It will be proven that multiplicative inverses are unique.]
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(8) Distributive. [Interaction of +, •.]

a(b + c) = ab + ac

(9) 1 6= 0.

Remarks 1. If a = b & c = d, then a + c = b + d and ac = bd, i.e. the operations +, •
are well-defined.

2. Given a, b ∈ R, we write

a− b := a + (−b)

and if b 6= 0, then
a

b
:= a · b−1

3. [R; +, •] is an example of a field, i.e. satisfies axiomatic properties (1) -(9) above.
[We only require axiomatic properties (1)-(4), (6), (8) to define a ring. Roughly then, a
“ring including division” amounts to a field.]

Some Consequences of the 9 Axiomatic Properties of [R; +, •]

(i) 0 is unique, i.e. there is only 1 zero.

Restatement: If 0̃ also satisfies the property that 0̃ + a = a, for all a ∈ R, then 0̃ = 0.

Reason :

0̃ = 0̃ + 0 = 0
↑ ↑

def ′n of
zero 0

def ′n of
zero 0̃

(ii) 1 is unique, i.e. there is only 1 unity. [Reason: Similar to (i) above.]

(iii) a · 0 = 0 for any a ∈ R.

Reason: We refer to the axiomatic properties (1)-(9) above. Then

a · 0 (4)
= a · (0 + 0)

(8)
= a · 0 + a · 0

Next, add −(a · 0) to both sides. Thus

0
(6)
= (a ·0)+(−(a ·0)) = (a ·0+a ·0)+(−(a ·0))

(2)
= a ·0+(a ·0+(−a ·0))

(6)
= a ·0+0

(4)
= a ·0

Therefore a · 0 = 0.
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(iv) a · b = 0⇒ a = 0 or b = 0. Reason: If a = 0, then we’re done. Therefore assume
a 6= 0, hence a−1 ∈ R exists. We must then show that b = 0. But

0
(iii)
= a−1 · 0 = a−1(a · b) (2)

= (a−1 · a)b = 1 · b (5)
= b

Hence b = 0.

(v) [Cancellation Law for Multiplication] If ac = bc and if c 6= 0, then a = b. Reason:
One shows that ac = bc ⇔ (a − b)c = 0, and then apply (iv) above. In showing that
ac = bc⇔ (a− b)c = 0, one first shows that −(bc) = (−b)c. This is an exercise left to the
reader.

(vi) [Cancellation Law for Addition] If a + c = b + c then a = b. Reason: Add “−c”
to both sides of “a + c = b + c ”.

(vii) There is no 0−1 ∈ R, i.e. there is no multiplicative inverse to 0. Restatement:
There is no number y ∈ R such that y · 0 = 1. Reason: Otherwise

0
(iii)
= y · 0 = 1,

i.e. 0 = 1, which violates axiomatic property (9).

(viii) [Uniqueness of Additive Inverse] Let a ∈ R. Then there is only one −a ∈ R.
Restatement: If a + x = 0 and a + y = 0, then x = y. Reason: a + x = 0 and a + y = 0
⇒ a + x = a + y, hence by (vi) above, x = y.

(ix) [Uniqueness of Multiplicative Inverse] Let a ∈ R with a 6= 0. Then there is only
one a−1 ∈ R. Restatement: If xa = 1 and ya = 1 with a 6= 0, then x = y. Reason: xa = 1
and ya = 1 ⇒ xa = ya, hence x = y by (v) above.

(x) −(−a) = a. Reason: (−a) + (−(−a)) = 0 and −a + a = 0. Hence −(−a) = a by
(viii) above.

(xi) Suppose a, b ∈ R. Note that a, b 6= 0 ⇔ ab 6= 0 by (iii) & (iv) above. Then
if ab 6= 0, (ab)−1 = a−1b−1. Reason: It is easy to see that (ab)(a−1b−1) = 1; moreover
(ab)(ab)−1 = 1. Thus (ab)−1 = (a−1b−1) by (ix) above.

(xi) −(a+b) = (−a)+(−b). Reason: It is easy to see that (a+b)+((−a)+(−b)) = 0;
moreover (a + b) + (−(a + b)) = 0. Hence −(a + b) = (−a) + (−b) by (viii) above.

(xii) Exercise: Show the following

1.) (−a)b = a(−b) = −(ab)

2.) (−a)(−b) = ab
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3.) (a + b)(a− b) = a2 − b2

Useful Notation: Let a ∈ R, a 6= 0 be given, and n ∈ N. Set a0 = 1, a1 = a,
a2 = a · a, . . . , an = a · · ·a

︸ ︷︷ ︸

n times

. Finally, set a−n := (a−1)n.

Summary

Assume given a set A with 2 binary operations

A×A
{+,•}−→ A

Consider these properties:

1. (Closure)

a, b ∈ A⇒
{

a + b
ab

∈ A

2. (Associativity)

a + (b + c) = (a + b) + c

a(bc) = (ab)c

3. (Commutativity)
a + b = b + a

ab = ba

4. (Zero element) There exists a (unique) element 0 ∈ A such that a + 0 = a for all
a ∈ A.

5. (Identity element = unity) There exists a (unique) element 1 ∈ A such that 1 ·a = a
for all a ∈ A.

6. (Additive inverse) For any a ∈ A, there exists a (unique) −a ∈ A such that a +
(−a) = 0.

7. (Multiplicative inverse) For any non-zero a ∈ A, there exists a (unique) a−1 ∈ A
such that a · a−1 = 1.

8. (Distributive law)
a(b + c) = ab + ac

9. 1 6= 0.

Note: 1. The uniqueness parts of properties 4, 5, 6, 7 can be proven as in the case
of [R; +, •].
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2. As a blanket statement, all the consequences (i)-(xii) for [R, +, •], likewise hold for
[A; +, •].

Definitions (i) [A, +, •] is called a field if it satisfies properties 1→ 9.

(ii) [A, +, •] is called a [commutative] ring if it satisfies properties 1, 2, 3, 4, 6, 8.

(iii) [A, +, •] is called a ring with identity (or unity), if it is a [commutative] ring that
also satisfies 5.

Note that any field is a ring, but not the other way around! For example, Z is a ring
with unity, but not a field, since 2 ∈ Z, 2 6= 0, and yet 2−1 = 1

2 6∈ Z. If we consider the
natural numbers N with addition induced from Z, then it is clear that N has no additive
inverses, and no zero element. Thus clearly N is not a ring.

Some Examples of Fields

Ex. 1: The rational numbers [Q; +, •]. Recall the rational numbers

Q =

{
a

b

∣
∣ a, b ∈ Z, b 6= 0 &

a1

b1
=

a2

b2
⇔ a1b2 = b1a2

}

Define •:
a1

b1
• a2

b2

def
=

a1a2

b1b2
∈ Q

Define +:
a1

b1
+

a2

b2

def
=

a1b2 + b1a2

b1b2
∈ Q

This gives closure, i.e.

Q×Q
+,•→Q

One must check well-definedness of +, •. If

a1

b1
=

a′
1

b′1
, viz., a1b

′
1 = a′

1b1, &
a2

b2
=

a′
2

b′2
, viz., a2b

′
2 = a′

2b2,

then we must verify that

a1a2

b1b2
=

a′
1a

′
2

b′1b
′
2

, viz., a1a2b
′
1b

′
2 = a′

1a
′
2b1b2,

and

a1b2 + b1a2

b1b2
=

a′
1b

′
2 + b′1a

′
2

b′1b
′
2

, viz., (a1b2 + b1a2)(b
′
1b

′
2) = (a′

1b
′
2 + b′1a

′
2)(b1b2)

This is left as an exercise for the reader.
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WARNING: Suppose we defined on +̃ on Q by the formula

a1

b1
+̃

a2

b2
=

a1 + a2

b1 + b2
.

Then the operation +̃ is not well-defined on Q. The reason is as follows: 1
2

= 2
4
. Thus for

example, we must require that
1

2
+̃

1

3
=

2

4
+̃

1

3
,

i.e.
2

5
=

1 + 1

2 + 3
=

2 + 1

4 + 3
=

3

7
,

i.e.
14 = 2 · 7 = 5 · 3 = 15,

which is absurd!

Ex. 2. Consider the 2 element set F2 = {0, 1} with binary operations +, • given by
the tables below.

+ | 0 | 1
−− −− −−
0 | 0 | 1
−− −− −−
1 | 1 | 0

• | 0 | 1
−− −− −−
0 | 0 | 0
−− −− −−
1 | 0 | 1

Then it is easy to verify that [F2, +, •] is a field. [For example, symmetry about the
diagonal implies commutivity; moreover “−1” = 1.]

Ex. 3. Consider the 3 element set F3 = {0, 1, 2} with binary operations +, • given
by the tables below.

+ | 0 | 1 | 2
−− −− −− −−
0 | 0 | 1 | 2
−− −− −− −−
1 | 1 | 2 | 0
−− −− −− −−
2 | 2 | 0 | 1

• | 0 | 1 | 2
−− −− −− −−
0 | 0 | 0 | 0
−− −− −− −−
1 | 0 | 1 | 2
−− −− −− −−
2 | 0 | 2 | 1

Note that “−1” = 2 and “−2” = 1. Further, 2
−1

= 2. One can easily verify that [F3, +, •]
is a field.

Ex. 4. Ex. 2. Consider the 2 element set F = {0, 5} with binary operations +, •
given by the tables below.

+ | 0 | 5
−− −− −−
0 | 0 | 5
−− −− −−
5 | 5 | 0

• | 0 | 5
−− −− −−
0 | 0 | 0
−− −− −−
5 | 0 | 5
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This is a field, with unity 5. It is a carbon copy of Ex. 2. The point here is to not get too
attached to “labels”.

We want to revisit the situation of the inclusions

Z ⊂ Q ⊂ R.

It is a fact that +, • on Z and Q come from +, • on R.

Definition. Let [A; +, •] be a ring [resp. field]. Suppose B ⊂ A is a subset that is
closed under +, • from A, in such a way that [B; +, •] is a ring [resp. field]. Then [B; +, •]
is called a subring [resp. subfield] of A.

Picture :

A×A
+,•→ A

⋃
+,• ↗ ⋃

B×B
+,•→ B

Note that any subring (resp. subfield) is itself a ring (resp. field).

Examples. 1. Z ⊂ Q is a subring.

2. Q ⊂ R is a subfield.

3. 2Z := {0,±2,±4,±6,±8, . . .} ⊂ Z is a subring. [Note that [2Z; +, •] is a ring
without unit.]

4. The odd integers {±1,±3,±5, . . .} with +, • induced from Z, do not form a ring.
[No zero element, and not closed under addition.]

WARNING Keep in mind the following:

1. [F2; +, •] 6⊂ [F3; +, •]
2. [F2; +, •] 6⊂ [R; +, •]
3. [F3; +, •] 6⊂ [R; +, •].
4. [N; +, •] ⊂ [Z; +, •] is not a subring.
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Example. Let

A =

{
p

2q

∣
∣ p, q ∈ Z & q ≥ 0

}

⊂ Q

Claim 1) A is a subring (with unit) of [Q; +, •].

2) A is not a subfield of [Q; +, •].

Reason for 1): Let p1

2q1
, p2

2q2
∈ A be given. Then

p1

2q1
· p2

2q2
=

p1p2

2q1+q2
∈ A

p1

2q1
+

p2

2q2
=

(p12
q2 + p22

q1)

2q1+q2
∈ A

Thus A is closed under +, • from Q. Next, we must show that [A; +, •] is a ring (with
unity). But we know that [Q; +, •] satisfies the associative, commutative and distributive
laws, and that A being closed under +, • from Q implies that the corresponding laws must

hold for A. Further, p
2q ∈ A ⇒ − p

2q = (−p)
2q ∈ A, i.e. one has additive inverses. Also

0 = 0
21 ∈ A and 1 = 1

20 ∈ A. Thus [A; +, •] must be a ring with unity. This implies part
1) of the claim.

Reason for 2): It suffices to find a non-zero element of A with no multiplicative inverse
in A. Note that such an inverse can be found in Q. Consider 3 = 3

20 ∈ A. If 3−1 ∈ A,
then we would have, for some p, q ∈ Z, q ≥ 0

1

3
=

p

2q
, i.e., 2q = 3p

There are two reasons why this cannot happen:

Reason (i): The Fundamental Theorem of Arithmetic (to be discussed later) implies
that integer 2q = 3p has a unique decomposition into primes. But 2q is already a prime
decomposition, which doesn’t contain the prime number 3, violating uniqueness!

Reason (ii): We must have q ≥ 1, hence 2q is even, hence 3p is even. Thus p = 2p1 is
even (p1 ≥ 1). And so 2q−1 = 3p1. Therefore q − 1 ≥ 1, hence p1 = 2p2 (p2 ≥ 1) for the
same reason, and hence 2q−2 = 3p2, and so on. Clearly this process must end, after say m
steps, with 1 = 20 = 3pm, for some pm ≥ 1, which is absurd!

In summary, 3 ∈ A, 3 6= 0 and yet 3−1 6∈ A. I.e. A is not a subfield of Q, hence part
2) of the claim follows.

Example. The Complex Numbers C.

Motivation. The equation x + 1 = 0 has no solution in N. The invented solution
x = “−1” leads to an enlargement of N to Z. In a similar vein, the quadratic equation
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x2 +1 = 0 has no solution in R. An invented solution x = “
√
−1” will lead to an extention

of R to the Complex Numbers C. Of course, (
√
−1)2 = (−

√
−1)2 = −1. We fix a choice

of
√
−1.

Definition. The Complex Numbers are given by

C :=

{

z = x +
√
−1y

∣
∣ x, y ∈ R

}

.

The Complex Numbers can be identified with the xy−plane R2 by the dictionary z =
x +
√
−1y ∈ C ↔ (x, y) ∈ R2. Further, z = x +

√
−1y = 0 ⇔ (x, y) = (0, 0), (otherwise

one would end up with
√
−1 ∈ R, which is not the case since (

√
−1)2 = −1 < 0). We

define +, • on C as follows. Let z1 = x1 +
√
−1y1, z2 = x2 +

√
−1y2 ∈ C.

z1 + z2 = (x1 + x2) +
√
−1(y1 + y2) ∈ C

z1 • z2
(
√
−1)2=−1

= (x1x2 − y1y2) +
√
−1(x1y2 + x2y1) ∈ C

It is obvious that C is closed under +, •. Further R ⊂ C, where x ∈ R 7→ z = x+0
√
−1 ∈

C. [Note that z1 = z2 ⇔ x1 = x2 & y1 = y2. This is because z1 = z2 ⇔ z1 − z2 = 0 ⇔
(x1 − x2) +

√
−1(y1 − y2) = 0⇔ (x1 − x2) = 0 & (y1 − y2) = 0.]

Example Calculations: (i) (2 + 4
√
−1) + (−5 +

√
−1) = −3 + 5

√
−1

(ii) (2− 4
√
−1) · (−5 +

√
−1) = (−10 + 4) +

√
−1(20 + 2) = −6 + 22

√
−1

Claim 1) [C; +, •] is a field.

2) [R; +, •] ⊂ [C; +, •] is a subfield. [We leave this part as an exercise for the reader.]

Reason for 1) (Outline only): The reader can easily check that associativity, commu-
tivity, and the distributive laws hold for [C; +, •]. Since R ⊂ C, it follows that 0, 1 ∈ C
and that 1 6= 0. Also z = x +

√
−1y ∈ C ⇒ −z := (−x) +

√
−1(−y) ∈ C. Next, suppose

z = x +
√
−1y ∈ C, with z 6= 0 (hence (x, y) 6= (0, 0), or x2 + y2 6= 0). Thus formally

z−1 =
1

z
=

1

x +
√
−1y

=
1

x +
√
−1y

·
(

x−
√
−1y

x−
√
−1y

)

=

(
x

x2 + y2

)

+
√
−1

( −y

x2 + y2

)

∈ C,

gives the formula for z−1, namely

z−1 :=

(
x

x2 + y2

)

+
√
−1

( −y

x2 + y2

)

.

For example
1

2 + 3
√
−1

=
2

13
− 3

13

√
−1.
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Thus in summary, all 9 axiomatic properties of a field hold for [C; +, •], and hence we are
done, i.e. [C; +, •] is a field.

Example. The reader can easily verify the following:

Q[
√
−1]

def
=

{
z = a +

√
−1b | a, b ∈ Q

}

is a subfield of C. Furthermore, Q is a subfield of Q[
√
−1].

Complex Conjugation and the Norm on C.

Conjugation. Let z = x +
√
−1y ∈ C be given. The complex conjugate of z is given

by z = x−
√
−1y.

Exercise. Show that the operation of complex conjugation is well-defined. [Hint: Use
the fact that if z1 = x1+

√
−1y1 and z2 = x2+

√
−1y2, then z1 = z2 ⇔ x1 = x2 & y1 = y2.]

Exercise: Show that z1 + z2 = z1 + z2, z1z2 = z1z2, and z1/z2 = z1/z2.

Norm. The norm is a map N : C → R+ := [0,∞) given by the formula N(z) = zz.
If we write z = x +

√
−1y, then N(z) = x2 + y2. Note that N(z) = 0⇔ z = 0.

Exercise: Show that N(z1z2) = N(z2)N(z2). [Hint: Use the results of the previous
exercise, namely z1z2 = z1z2.]

We can easily rewrite the inverse z−1 of a given non-zero z ∈ C in terms of the norm.
Namely, and observing N(z) > 0,

z−1 =
1

z
· z
z

=
z

N(z)
=

x

N(z)
+

( −y

N(z)

)√
−1 ∈ C.

Example: [Gaussian Integers] Define

Z[
√
−1] =

{
a + b

√
−1

∣
∣ a, b ∈ Z

}

Claim 1) Z[
√
−1] is a subring (with unity) of [C; +, •].

2) Z[
√
−1] is not a subfield of [C; +, •].

Reason for 1): Let z1 = a1 + b1

√
−1, z2 = a2 + b2

√
−1 ∈ Z[

√
−1] be given. Then

z1 + z2 = (a1 + a2) + (b1 + b2)
√
−1 ∈ Z[

√
−1],

and
z1z2 = (a1a2 − b1b2) + (a1b2 + b1a2)

√
−1 ∈ Z[

√
−1],

since Z is closed under +, •. Therefore Z[
√
−1] is closed under +, • from C. Therefore,

since C satisfies the associative, commutative and distributive laws, the same must hold
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for Z[
√
−1]. It is easy to see that Z[

√
−1] has additive inverses, and that Z ⊂ Z[

√
−1].

Hence 0, 1 ∈ Z[
√
−1]. Thus Z[

√
−1] is a subring of [C; +, •].

Reason for 2): If z ∈ Z[
√
−1], then N(z) ∈ Z+ := {0, 1, 2, 3, . . .}; moreover z 6= 0 ⇔

N(z) ∈ N. Now suppose that z 6= 0 and that zw = 1 for some w ∈ Z[
√
−1]. Then

N(z)N(w) = N(zw) = N(1) = 1,

and therefore N(z) = N(w) = 1. If we write z = a + b
√
−1 ∈ Z[

√
−1], then 1 = N(z) =

a2 + b2. Thus, since a, b ∈ Z, it follows that

(a, b) ∈ {(1, 0), (−1, 0), (0, 1), (0,−1)},

i.e.
z ∈ {1,−1,

√
−1,−

√
−1}.

We conclude that z ∈ Z[
√
−1] has a multiplicative inverse⇔ N(z) = 1⇔ z = ±1, ±

√
−1.

So for example 1 +
√
−1 ∈ Z[

√
−1], is non-zero, and yet does not have a multiplicative

inverse in Z[
√
−1]. Therefore Z[

√
−1] is not a subfield of C.

Exercise: Show that Z is a subring of Z[
√
−1].

Definition. Let A be a ring with unity 1 6= 0. An element a ∈ A is called a unit if
there exists b ∈ A such that ab = 1, i.e. a has a multiplicative inverse b = a−1 ∈ A. The
set of units in A is denoted by A∗.

Exercise. Show that if x, y ∈ A∗, then x−1, xy ∈ A∗. A∗ is an example of an abelian
group. In particular, A∗ is called the group of units in A. [Note that ±1 ∈ A∗.]

Example. Z∗ = {1,−1}, which is clearly is closed under multiplication and taking
multiplicative inverses.

Example. (Z[
√
−1])∗ = {1,−1,

√
−1,−

√
−1}, which again is closed under multiplica-

tion and taking multiplicative inverses.

Example. R∗ = {x ∈ R | x 6= 0}. More generally, given any field F, F∗ = {x ∈
F | x 6= 0}.

Example: Define
Q[
√

2] =
{
a + b

√
2

∣
∣ a, b ∈ Q

}

Claim. 1) Q[
√

2] is a subfield of [R; +, •].
2) Q is a subfield of Q[

√
2]. [This is an exercise for the reader.]

Reason for 1): Let z1 = a1 + b1

√
2, z2 = a2 + b2

√
2 ∈ Q[

√
2] be given. Then

z1 + z2 = (a1 + a2) + (b1 + b2)
√

2 ∈ Q[
√

2],

13



and
z1z2 = (a1a2 + b1b2) + (a1b2 + 2b1a2)

√
2 ∈ Q[

√
2],

since Q is closed under +, •. Therefore Q[
√

2] is closed under +, • from R. Therefore,
since R satisfies the associative, commutative and distributive laws, the same must hold
for Q[

√
2]. It is easy to see that Q[

√
2] has additive inverses, and that Q ⊂ Q[

√
2].

Hence 0, 1 ∈ Q[
√

2] and 1 6= 0. Thus Q[
√

2] is a subring of [R; +, •]. To show that
Q[
√

2] is a subfield, we need to verify that there are multiplicative inverses to non-zero
elements. For this, we must use the fact that

√
2 6∈ Q. We will assume this fact for

now. Note that if z = a + b
√

2 ∈ Q[
√

2], then z = 0 ⇔ a = b = 0, for if for example
z = 0 and say b 6= 0, then

√
2 = −a

b ∈ Q, contrary to the above fact. Thus it follows
that z1 = z2 ⇔ a1 = a2 & b1 = b2. In particular, the “conjugate” operation given by
z := a− b

√
2 is well-defined. [Warning: z is not complex conjugation!] One can show that

z1 + z2 = z1 + z2 ; z1z2 = z1z2.

We introduce the norm N : Q[
√

2]→ Q by the formula N(z) = zz = a2−2b2. Note again,
that N(z) = 0 ⇔ z = 0, otherwise one can show that

√
2 ∈ Q, which violates the fact.

Thus if z 6= 0, then N(z) ∈ Q and N(z) 6= 0. So formally, we have:

1

z
=

1

z

z

z
=

z

N(z)
=

(
a

N(z)

)

+

( −b

N(z)

)√
2 ∈ Q[

√
2].

This gives the formula for z−1 ∈ Q[
√

2], namely,

z−1 =

(
a

N(z)

)

+

( −b

N(z)

)

=

(
a

a2 − 2b2

)

+

( −b

a2 − 2b2

)√
2,

and we are done.

We now establish the

Fact.
√

2 6∈ Q, i.e.
√

2 is irrational.

Reason: Suppose to the contrary that
√

2 ∈ Q. Then we can write
√

2 = p
q , where

p, q ∈ N, and that the fraction p
q is in reduced form, i.e. where p & q have no common

integral factors ≥ 2. But

√
2 =

p

q
⇔
√

2q = p⇒ 2q2 = p2.

Since 2q2 is even, it follows that p2 is even, hence p = 2p1 is even (i.e. for some p1 ∈ N).
Therefore

2q2 = p2 = (2p1)
2 = 4p2

1 ⇒ q2 = 2p2
1.

By the same reasoning, q must also be even, and hence 2 is a common factor of p & q,
violating the fact that p & q have no common integral factors ≥ 2. Thus

√
2 6∈ Q, and we

are done.
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Mathematical Induction

Let P (n) be a statement about n ∈ N = {1, 2, 3, . . .}. The problem is to show that
P (n) is true for all n ∈ N.

Two approaches :







(i) Indirect approach - argue by contradiction

(ii) Direct approach - domino effect
.

Induction, Part I: Indirect Approach

Ex. 1. Claim:

Statement P (n) : 1 + 2 + . . . + n =
n(n + 1)

2
, for all n ∈ N.

Proof. If n = 1, then

LHS = 1 =
1(1 + 1)

2
= RHS, therefore P (1) is True.

If n = 2, then

LHS = 1 + 2 = 3 =
2(2 + 1)

2
= RHS, therefore P (2) is True.

Thus we know that P (1), P (2) are both true. Assume to the contrary that P (n) is in
general not true. Thus one can find a smallest positive integer N † for which P (N) fails to
be true, i.e.:

(∗) 1 + 2 + · · ·+ N 6= N(N + 1)

2
[Note N > 2]

Since N is the smallest, clearly P (N − 1) is true. Thus,

1 + 2 . . . + (N − 1) =
(N − 1)

(
(N − 1) + 1

)

2
.

i.e.

1 + · · ·+ (N − 1) =
(N − 1)N

2
.

Adding N to both sides yields:

1 + · · ·+ (N − 1) + N =
(N − 1)N

2
+ N

† This is due to the “well-ordering principle”, which says that any non-empty subset of
N has a smallest element.
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=
(N − 1)N

2
+

2N

2

=
(N + 1)N

2

i.e.

1 + · · ·+ N =
N(N + 1)

2
, violating (∗).

Therefore P (n) must be true for all n ∈ N.

Ex. 2. Every positive integer is interesting!

Restatement. P (n): “n is interesting”, n ∈ N

Proof. P (1) : 1 is interesting, because: 1 is the loneliest number you’ll ever be.†

P (2) : 2 is interesting, because: 2 can be as bad as 1, being the loneliest number to
the number 1.

P (3) : 3 = 1 + 2, therefore is interesting.

Now lets assume to contrary that P (n) is not in general true. ⇒ P (n) fails for some
smallest integer N , i.e. “N is boring”. But 1, 2, . . . (N − 1) are interesting, and N is the
?very first? dull number. Well that’s interesting! A contradiction.

Silly Example: Any (finite) collection of billiard balls are RED! Restatement: P (n):
Every n billiard balls are red, n ∈ N.

Proof. Suppose in general not true. Then P (N) fails for some smallest N . Therefore
P (N − 1) true, i.e. every set of N − 1 billiard balls are red. Consider N billiard balls:
Label them as {b1, b2, . . . , bN−1, bN}. Then:

{b1, . . . bN} = {b1, . . . , bN−1}
︸ ︷︷ ︸

N−1 balls, thus all red

⋃

{b2, . . . , bN}
︸ ︷︷ ︸

N−1 balls, thus all red

.

Hence {b1, . . . , bN} are red, being a union of red balls. I.e. P (N) must be true

Question: What is the problem with this proof?

Answer: P (1) is False! P (1): Every billiard ball is red, is clearly false!

Induction, Part II: Direct Approach

† Taken from the lyrics of Three Dog Nite.
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Given: P (n) is a statement about n ∈ N. Need to show that P (n) is true for all
n ∈ N. The procedure is this:

(1) Show that P (1) is true.

(2) Induction step: Show that P (n) true ⇒ P (n + 1) is true.

(3) Hence P (n) is true for all n ∈ N.

The procedure works like this:

(1) ⇒ P (1) true. But (2) ⇒ P (2) = P (1 + 1) true. Again, by (2): P (2) ⇒ P (3) =
P (2 + 1) true. P (3) true ⇒ P (4) = P (3 + 1) true, and so on. . .

← ← ← ← ←
↙ −−−−−−−−− ↖
↓ P (n) | Black | P (n + 1) ↑

−→ | (In) ⇒ (Out) | −→
true | Box | true

−−−−−−−−−

The “Picture” should be seen as a Domino effect:

(Push)7→ ///////|||||||

Example. Claim:
1 + 3 + 5 + · · ·+ (2n− 1) = n2.

Restatement: Let P (n) : 1 + 3 + 5 · · ·+ (2n− 1) = n2. Then P (n) true for all n ∈ N.

Proof. Case n = 1: LHS = 1 = RHS ⇒ P (1) true.

Induction Step: Assume P (n) is true, for a given n ≥ 1, i.e.

(1) 1 + 3 + 5 + . . . + (2n− 1) = n2.

Must show that P (n + 1) is true, i.e.

(2) 1 + 3 + 5 + · · ·+ (2n− 1) +
(
2(n + 1)− 1

)
= (n + 1)2.

Trick: Must make (1) look like (2). To do this, we add
(
2(n + 1)− 1

)
to both sides of (1).

Thus:
1 + 3 + 5 + · · ·+ (2n− 1) +

(
2(n + 1)− 1

)
= n2 +

(
2(n + 1)− 1

)
.

This leads to:

1 + 3 + · · ·+
(
2(n + 1)− 1

)
= n2 + 2n + 1 = (n + 1)2, ⇒ P (n + 1) True.

Thus P (n) is true for all n ∈ N.
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Division and Factoring

Euclid Division Algorithm. Let n, m ∈ Z be given with m ≥ 1. Then there exists unique
integers r, q ∈ Z with 0 ≤ r < m such that n = qm + r.

We give a geometric picture below to “explain” the existence of q, r. For simplicity,
we assume n > 0 and say n ≥ m; and we leave the geometric picture for the case n ≤ 0 to
the reader.

r←→
−−−−−−− •− − • − − • − − • − −− − −−−− • − • − − −−

0 m 2m qm n

For the uniqueness of q & r, we argue as follows. Suppose

(∗) qm + r = n = q̃m + r̃,

where q, q̃, r, r̃ ∈ Z and where 0 ≤ r, r̃ < m. We must show that q = q̃ and r = r̃. But (∗)
implies that

(q − q̃)m = r̃ − r,

hence
|q − q̃|m
︸ ︷︷ ︸

Either =0 or ≥m

= |r̃ − r| < m
︸ ︷︷ ︸

Follows from 0≤r,r̃<m

.

Thus we must have q − q̃ = r − r̃ = 0.

Definition. Given integers n & m with m 6= 0, we say that m divides n (in Z), and
in this case write m|n, if n = mq for some q ∈ Z (i.e. zero remainder). Equivalently, m is
an integral factor of n.

Example. 2|6, 3|6, 7|14, 2 6 |5, where 6 | means “does not divide”.

Definition. Assume given integers m, n ∈ Z, not both zero. The Greatest Common
Divisor (GCD) of m & n is an integer d ∈ N such that:

(1) d|n and d|m (i.e. d is a common divisor, viz., d is a factor).

(2) if `|n & `|m for some integer ` 6= 0, then `|d (i.e. d is the greatest).

Notation: d = GCD(m, n) = (m, n).

Claim. Let d = (m, n). Then d is unique. Restatement: Suppose d & d1 ∈ N both
satisfy (1) and (2) of the above definition. Then d = d1.

Reason: Use d in (1) and set ` = d1 in (2). Then d1|d. Similarly, d1 being a GCD
implies that d|d1. But

d1|d⇔ e1d1 = d for some e1 ∈ N,
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d|d1 ⇔ e2d = d1 for some e2 ∈ N.

By substitution, e1e2d = d, hence e1e2 = 1. Therefore e1 = e2 = 1, i.e. d = d1.

Claim. For any pair of integers m & n, not both zero, GCD(m, n) exists, i.e. there
exists d ∈ N satisfying (1) and (2) above.

Reason: There are essentially three methods of proof. The first is somewhat theoreti-
cal, but has the advantage of applying to more generalized situations. The second uses the
Euclidean Division Algorithm in an explicit way to compute the GCD. The third approach
is a consequence of the Fundamental Theorem of Arithmetic. We discuss the first method
(the other methods will be discussed later). We first introduce the concept of an ideal.

Step 1. Definition. A subset U ⊂ Z is called an ideal if:

(i) a, b ∈ U ⇒ a + b ∈ U , [i.e. U is closed under + from Z].

(ii) a ∈ U , b ∈ Z⇒ ba ∈ U , [i.e. U is closed under scalar multiplication from Z].

Picture:

(i)
U × U +→ U
∩ ∩ ∩
Z× Z

+→ Z

(ii)
Z× U •→ U
∩ ∩ ∩
Z× Z

•→ Z

Examples of Ideals.

(1) U = (0) := {0} ⊂ Z “zero ideal”. [0 + 0 = 0 ∈ U and b • 0 = 0 ∈ U , whenever
b ∈ Z.]

(2) U = (1) := Z. Clearly an ideal! [Complete ring of integers.]

(3) U = (2) := 2Z
def′n
= {2q | q ∈ Z} = {0,±2,±4,±6, . . .} is an ideal. [Details:

Suppose a = 2q1, b = 2q2. Then a + b = 2(q1 + q2) ∈ (2). Next, if a = 2q ∈ U and b ∈ Z,
then ba = 2(bq) ∈ U .]

(4) Fix k ∈ Z, and set U = (k) := kZ = {kq | q ∈ Z} = {0,±k,±2k,±3k, . . .}. Then
U is an ideal (exercise). [This generalizes the previous three examples, where k = 0, 1, 2.]

Example:

Definition. An ideal U ⊂ Z is said to be principal, If U = (k) For some fixed k ∈ Z.

Step II. Claim. Every ideal U ⊂ Z is principal. [In this case we call Z a PID (= a
Principal Ideal Domain).]

Reason: Let U ⊂ Z be any ideal. If U = 0 = (0), then we are done, by choosing
k = 0. So assume that U 6= (0). Note that if ` ∈ U with ` 6= 0, then `, −` = (−1) · ` ∈ U .
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Thus U ∩N 6= ∅. So choose k ∈ U ∩N to be the smallest integer ≥ 1. We want to show
that U = (k). To see this, let m ∈ U be given. Then by Euclid’s Division Algorithm,
m = qk + r, for some q, r,∈ Z, and where 0 ≤ r < k. Thus r = m− qk = m + (−q)k ∈ U ,
i.e. r ∈ U . But if r ≥ 1 then r ∈ U and r < k, which is impossible by definition of the
“smallest” k. Therefore r = 0, i.e. m = qk ∈ (k). Since m is any given element of U , it
follows that U ⊂ (k). However, (k) ⊂ U , by definition of an ideal. Hence U = (k), and
we’re done.

Step III. Conclusion of the proof of the existence of d = (m, n).

First, recall that m & n are not both zero. Let

U = {xm + yn | x, y ∈ Z}.

We leave it as an easy exercise for the reader to show that U ⊂ Z is an ideal. Note that
m = 1 ·m + 0 · n ∈ U , and n = 0 ·m + 1 · n ∈ U . Thus U 6= (0), since m & n are not
both 0. Since U is a ideal 6= (0), then by Step II, U = (k) for some k ∈ Z with k 6= 0.
Note that ±k ∈ (k) = U , hence |k| ∈ U . Put d = |k|, and note that U = (d). We want
to show that d = (m, n). But since m, n ∈ U = (d), it follows that m = d`1 and n = d`2

for some `1, `2 ∈ Z. That is, d|m & d|n. Next, since d ∈ U = {xm + yn | x, y ∈ Z},
it follows that d = x0m + y0n for some x0, y0 ∈ Z. Now suppose `|m & `|n, ` ∈ Z, i.e.
k1` = m & k2` = n, for some k1, k2 ∈ Z. Then d = x0k1` + y0k2` = ` · (x0k1 + y0k2).
Hence `|d. Therefore by definition of GCD, d = (m, n), and we’re done.

Summary. Given m, n ∈ Z, not both zero, then the unique d = (m, n) ∈ N exists;
moreover d = x0m + y0n, for some x0, y0 ∈ Z.

Definition. m, n ∈ Z, both not zero, are said to be relatively prime if (m, n) = 1.

Example. (2, 3) = 1 ⇒ 2, 3 are relatively prime. (27, 5) = 1 ⇒ 5, 27 are relatively
prime.

Notes:

(1) If m, n ∈ Z are not both zero, then:

U def
= {xm + yn | x, y ∈ Z} = (d), where d = (m, n).

(2) Here is an example of (1).

{2x + 3y | x, y ∈ Z} = (1), [Use 1 = (2, 3)].

(3) {Odd numbers} ⊂ Z is not an ideal since (odd) + (odd) = (even).

A method for calculating GCD’s. [This also leads to the existence of GCD’s.]
Assume given m, n ∈ Z, m, n ≥ 0, not both zero, say m > 0, and let d = (m, n). By
Euclid, n = qm + r, 0 ≤ r < m, q ∈ Z

20



Claim. (n, m) = (m, r).

Reason: Let d = (n, m), and d1 = (m, r). Then d|m & d|n ⇒ d|(r = n − qm), ⇒
d|m & d|r. Thus d|d1, i.e. de1 = d1, for some e1 ∈ N. Next d1|m & d1|r ⇒ d1|(n = mq +
r), ⇒ d1|m & d1|n. Thus d1|d, hence d1e2 = d, for some e2 ∈ N. Thus (e1e2)d1 = d1,
i.e. e1 = e2 = 1. Thus d = d1.

Algorithm to compute d = (n, m). Let n = qm+r, 0 ≤ r < m. If r = 0, then m = d.
So assume r > 0. Then m = q1r + r1, 0 ≤ r1 < r. Then d = (n, m) = (m, r) = (r, r1).
If r1 = 0 then d = r otherwise r1 > 0. Next r = q2r1 + r2, 0 ≤ r2 < r1. Again,
(r, r1) = (r1, r2), and so on. But r > r1 > r2 > · · ·. Eventually end up with rm+1 = 0 for
some m, hence d = rm.

Ex. Compute (240, 54).

240 = 4× 54 + 24 ⇒ (240, 54) = (54, 24)

54 = 2× 24 + 6 ⇒ (54, 24) = (24, 6)

24 = 4× 6 + 0 ⇒ (24, 6) = 6

Thus (240, 54) = 6.

Next: Find integers x & y such that 6 = x240 + y54.

Solution. Back substitute:

6 = 54− 2×
[
24 = 240− 4× 54

]

6 = (−2)× 240 + 9× 54

Thus x = −2 and y = 9 will do. Note that

6 = (−2)× 240 + 9× 54 = (−2 + 54)× 240 + (9− 240)× 54

hence x = 52 and y = −231 will also do. In other words, there are many such choices of
x & y.

Claim-Definition. Let p ∈ N, with p ≥ 2. Then p is said to be a prime if either of
the following two equivalent conditions hold for p.

(1) Whenever p|(ab), for some a, b,∈ Z, then either p|a or p|b. [This is the “true”
definition of a prime.]

(2) Whenever p = uv, for some u, v ∈ Z, then either u = ±1 (hence p = ±v) or v = ±1
(hence p = ±u). [This is the “true” definition of an irreducible.]

Claim. (1) ⇔ (2), i.e. (1) & (2) are the same statements.
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Reason: (1) ⇒ (2), i.e. assume p satisfies (1) and suppose p = uv. Must show that

u = ±1 or v = ±1. But p = uv
(1)⇒ p|u or p|v. Case 1: p|u, thus pe = u for some e ∈ Z. Thus

p = uv = p(ev). Thus ev = 1, hence e = ±1, v = ±1. Case 2: Similarly p|v ⇒ u = ±1.
Conversely, we must show that (2) ⇒ (1), i.e. suppose p satisfies (2), and that p|(ab). We
must show that either p|a or p|b. If p|a then we’re done. So lets assume p 6 |a. Therefore we
must show that p|b. Let d = (p, a). Then d|a & d|p; in particular de = p for some e ∈ N.
Since (2) holds, it follows that either d = ±1 (hence d = 1) or e = ±1 (hence e = 1).
If, for example, e = 1, then d = p, and so d|a ⇒ p|a, which is not the case. Therefore
d = 1, and hence there are integers x, y ∈ Z such that xp + ya = (p, a) = d = 1. Therefore
multiplying this equation by b gives xpb + yab = b. Since p|(ab) we have p` = ab for some
` ∈ Z. Substituting this in the above equation gives xpb + yp` = b, i.e. p(xb + y`) = b.
Since xb + y` ∈ Z, it follows that p|b, and we’re done.

We are now able to establish the

Fundamental Theorem of Arithmetic. Let n be an integer ≥ 2. Then n can be
written as a product of primes in a unique way.

Restatement. The Theorem has two parts to it, namely the existence of a prime
decomposition, and the uniqueness of that prime decomposition.

Existence: We can write n = p`1
1 · · · p`N

N , where {p1, . . . , pN} are distinct primes, and
`1, . . . , `N ∈ N.

Uniqueness: Suppose we have

p`1
1 · · · p`N

N = n = qk1
1 · · · qkr

r ,

where
{p1, . . . , pN} are distinct primes,

and
{q1, . . . , qr} are distinct primes,

and where
`1, . . . , `N , k1, . . . , kr ∈ N.

Then N = r, and up to relabelling, p1 = q1, . . . , pN = qN and `1 = k1, . . . , `N = kN .

Reason: First we show the existence of a prime decomposition by mathematical in-
duction on n ∈ N, n ≥ 2, by proving this statement:

P (n) : m is a product of primes for 2 ≤ m ≤ n.

Case n = 2: P (2) is obviously true since 2 is prime.

Induction step: We show that P (n) true ⇒ P (n + 1) true. But if n + 1 = p is prime,
then n+1 is equal to its own prime decomposition, and hence since P (n) is true, it follows
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that m has a prime decomposition for m ≤ n + 1. Thus P (n + 1) is true in the case n + 1
is prime. On the other hand, if n + 1 is not prime, then we can write n + 1 = ab, where
1 < a, b ≤ n. Since P (n) is assumed true, it follows that a = p

1
· · ·p

N1
and b = p

1
· · · p

N2

are products of primes. Therefore

n + 1 =
(
p
1
· · ·p

N1

)
·
(
p
1
· · · p

N2

)

is a product of primes.

We now establish uniqueness. It basically follows from the equivalence of the two
definitions of prime ((1) & (2) above). Recall the setting above, namely

p`1
1 · · · p`N

N
︸ ︷︷ ︸

LHS

= n = qk1
1 · · · qkr

r
︸ ︷︷ ︸

RHS

.

Since p1|LHS, it follows that p1|RHS. Hence p1|q1(q
k1−1
1 qk2

2 · · · qkr
r ), so either p1|q1 or

p1|(qk1−1
1 qk2

2 · · · qkr
r ) by (1). If p1|q1, then p1 = q1 by (2). Otherwise, continue bleeding off

a q-factor of (qk1−1
1 qk2

2 · · · qkr
r ) until we get p|qi for some i. Up to relabelling, we might as

well assume i = 1. We continue this procedure for the remaining p factors of the LHS. It
follows then that r ≥ N and that p1 = q1, . . . , pN = qN ; moreover k1 ≥ `1, . . . , kN ≥ `N .
We now redo the above argument, but interchange the role of p’s and q’s. Thus by sym-
metry reasoning, we also have r ≤ N , q1 = p1, . . . , qr = pr; moreover `1 ≥ k1, . . . , `r ≥ kr.
Therefore, r = N and p1 = q1, . . . , pN = qN and `1 = k1, . . . , `N = kN , and we’re done.

Consequence 1: There are infinitely many prime numbers.

Reason: Suppose to the contrary that there are only finitely many primes, say the
{p1 . . . pm} = all the prime numbers. Let N = 1 + (p1 · · · pm) ∈ N. Then N ≥ 2. By the
Fundamental Theorem of Arithmetic, we can write

N = p`1
1 · · · p`m

m , where `1, . . . , `m ≥ 0, and `j0 ≥ 1 for some j0 ∈ {1, . . . , m}.

Thus pj0 |N and further, pj0 |(p1 · · · pm). Hence pj0 |
(
N − (p1 · · · pn)

)
, i.e. pj0 |1, which is

impossible. Thus there can only be finitely many primes.

Consequence 2: Let p ∈ N be a prime number. Then
√

p 6∈ Q.

Reason: Lets assume to the contrary that
√

p = a/b ∈ Q, where a, b ∈ N. If we set
d = (a, b) and write a = da1, b = db1, then

a

b
=

da1

db1
=

a1

b1
, where (a1, b1) = 1.

Hence we may assume that (a, b) = 1, i.e. a/b is a fraction in reduced form. Thus:

√
p =

a

b
⇒ b
√

p = a⇒ b2p = a2.
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Therefore
p|(b2p)⇒ p|a2 p prime⇒ p|a⇒ pe = a, for some e ∈ N.

This implies that

b2p = a2 = p2e2, hence b2 = pe2 ⇒ p|b2 p prime⇒ p|b.

We deduce that p|a & p|b, hence (a, b) ≥ p > 1, a contradiction to our assumption that
(a, b) = 1. Therefore

√
p 6∈ Q.

Computing GCD’s via Prime Decomposition

Observation. Assume given d, n ∈ N such that d|n. Then the prime decomposition
of d forms part of the prime decomposition of n. This is because de = n for some e ∈ N,
and that:

[
Prime Decomposition of d

]
·
[
Prime Decomposition of e

]
=

[
Prime Decomposition of n

]
;

using the uniquess part of the Fundamental Theorem of Arithmetic.

Now let n, m ∈ N, and d = (m, n). Write:

n = p`1
1 · · · p`N

N ,

m = pk1
1 · · ·pkN

N ,

where `1, . . . , `N , k1, . . . , kN ≥ 0, and {p1, . . . , pN} are distinct primes.

Example.
6 = 21 × 31 × 50

30 = 21 × 31 × 51

Choose ri = min{`i, ki}, i = 1, . . . , N . Then clearly

d = pr1
1 · · · prN

N .

Example. GCD(27, 33) =? Solution:
33 = 31 × 111

27 = 33 × 110 . Thus d = 31 × 110 = 3.

Least Common Multiples

Definition. Let m, n ∈ Z, m, n 6= 0, be given. The Least Common Multiple of
m & n, denoted by LCM(m, n) or [m, n], is an integer ` ∈ N satisfying:

1) n|` and m|`.
2) If, for k ∈ Z, n|k and m|k, then `|k.
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Remarks. (1) As in the case of GCD’s, the LCM is unique, i.e. there is only 1
LCM(m, n).

(2) The existence of LCM(m, n) is as follows:

n = p`1
1 · · · p`N

N ,

m = pk1
1 · · ·pkN

N ,

then if we set ti = max{`i, ki}, i = 1, . . . , N , we have:

` := [m, n] = pt1
1 · · · ptN

N .

Claim.
[m, n] =

m · n
(m, n)

.

Reason: It is obvious that
m · n = p`1+k1

1 · · · p`N+kN

N ,

and that:
`i + ki = min{`i, ki} + max{`i, ki} = ri + ti.

Therefore:
m · n =

(
pr1
1 · · · prN

N

)(
pt1
1 · · · ptN

N

)
= (m, n)[m, n].

Example. (27, 33) = 3, hence

[27, 33] =
27× 33

3
= 9× 33 = 297.
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Equivalence relations

As for motivation, we mention three essential properties of equality “=” on a given
set X.

1) [Reflexivity] x = x, for any x ∈ X.

2) [Symmetry] x = y ⇒ y = x, for x, y,∈ X.

3) [Transitivity] x = y & y = z ⇒ x = z, for x, y, z ∈ X.

Notation: For a given set X, set X ×X = {(x, y) | x, y ∈ X}.

Definition. A relation R on a set X is given by a subset SR ⊂ X ×X. We say that
x is related to y via R, and write xRy, if (x, y) ∈ SR.

Example. If R is equality“=”, then

SR = {(x, y) ∈ X ×X | x = y} = {(x, x) ∈ X ×X | x ∈ X}.

Note that xRy means (x, y) ∈ SR, i.e. means that x = y. Thus equality “=” is an example
of a relation.

Definition. Let X be a set, and R a relation on X, defined by a subset SR ⊂ X×X.
Then R is called an equivalence relation on X if the following three properties hold:

1) [Reflexivity] xRx. [Equivalently, {(x, x) | x ∈ X} ⊂ SR.]

2) [Symmetry] xRy ⇒ yRx. [Equivalently, (x, y) ∈ SR ⇒ (y, x) ∈ SR.]

3) [Transitivity] xRy & yRz ⇒ xRz. [Equivalently, (x, y) ∈ SR & (y, z) ∈ SR ⇒
(x, z) ∈ SR.]

Notation: If R is an equivalence relation on a set X, we usually write “∼”, instead of
R. Thus, for x, y, z ∈ X:

1) [Reflexivity] x ∼ x.

2) [Symmetry] x ∼ y ⇒ y ∼ x.

3) [Transitivity] x ∼ y & y ∼ z ⇒ x ∼ z.

Ex. The relation R given by equality “=”, is an equivalence relation.

Ex. Let X = class of Math 228 students. We write, for students x, y ∈ X, x ∼ y if x
and y have the same sex. It is reasonably clear that ∼ is an equivalence relation.

Ex. Let X = R, and consider the relation R on R given by: xRy ⇔ x ≤ y. Then
x ≤ x, hence reflexivity holds. Also x ≤ y & y ≤ z ⇒ x ≤ z, hence transitivity holds.
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But x ≤ y 6⇒ y ≤ x. Thus symmetry fails. Therefore R is not an equivalence relation on
R.

Further Notation: Let A and B be subsets of some bigger set. If A∩B = ∅, we write
A ∪B = A

∐
B (i.e. disjoint union).

Key Example. Let X be a set. A partitioning of X is by definition a given disjoint
union.

X =
∐

α ∈ I
︸ ︷︷ ︸

I=some index set

Xα ← also called a coset
decomposition; Xα = a coset

We define an equivalence relation R = “∼” on X as follows: x ∼ y ⇔ x, y ∈ Xα, i.e. x
and y belong to the same Xα. [Details: x, x ∈ Xα ⇒ x ∼ x; x ∼ y ⇔ x, y ∈ Xα ⇔ y, x ∈
Xα ⇔ y ∼ x; x ∼ y & y ∼ z means that x, y, z ∈ Xα ⇒ x ∼ z. Also, it is easy to see that
the subset defining the relation R is given SR =

∐

α∈I Xα ×Xα.]

Ex. A
{1, 2, 3, 4}
︸ ︷︷ ︸

X

= {1, 2}
︸ ︷︷ ︸

Xα1

∐

{3}
︸︷︷︸

Xα2

∐

{4}
︸︷︷︸

Xα3

So for example, if we write ∼ to mean “equivalent to”, and 6∼ to mean “not equivalent to”,
then:

1 ∼ 1 2 ∼ 2 3 ∼ 3 4 ∼ 4
1 ∼ 2 1 6∼ 3 1 6∼ 4 2 6∼ 3
2 6∼ 4 3 6∼ 4

Ex. B Let H be the human race. Thus x ∈ H means that x is a human being. For
x, y ∈ H, we define a relation on H as follows: We write xRy if x and y are friends. It
is reasonably clear that xRx, i.e. evey human being is a friend of his(her)self, and that
xRy ⇒ yRx. However it is not the case that if xRy and yRz, then xRz, i.e. just because
x and y are friends, and y and z are friends, does not mean that x and z are friends. Thus
even though R is reflexive and symmetric, the transitivity property fails, and hence R is
not an equivalence relation on H.

Claim. All equivalence relations are given by the Key Example.

Reason: Let X be a set with a given equivalence relation ∼. We want to show that
∼ comes from a given partition of X. We begin with the following notation. For x ∈ X,
we put

Xx = {y ∈ X | y ∼ x}.
Since x ∼ x it follows that x ∈ Xx, hence

X =
⋃

x∈X

Xx.
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To arrive at a partition, viz. disjoint union (
∐

), we need the following Observation, for
any given x1, x2 ∈ X, namely:

Either: Xx1
= Xx2

, (in which case x1 ∼ x2),

or: Xx1
∩Xx2

= ∅, (in which case x1 6∼ x2).

If we assume the observation for now, then by “throwing away repeats”, we arrive at
a partition:

X =
∐

xα ∈ I
︸ ︷︷ ︸

(I= some subset⊂X)

Xxα
;

moreover it is easy to see that ∼ comes from this partition. Next, we explain why the
Observation above holds: If Xx1

∩ Xx2
6= ∅, then choose y ∈ Xx1

∩ Xx2
. Then x1 ∼ y

and y ∼ x2, hence x1 ∼ x2. Further, if z ∈ Xx1
, then z ∼ x1 and x1 ∼ x2 ⇒ z ∼ x2,

i.e. z ∈ Xx2
. Thus Xx1

⊂ Xx2
, and by similar reasoning (symmetry), it follows that

Xx2
⊂ Xx1

. Thus Xx1
= Xx2

. It is now easy to deduce the observation from this.

Ex. C Let X = Z, and for n, m ∈ Z, we write n ∼ m to mean that 2|(n −m), i.e.
n−m is even. Note that there is a natural partition of Z, namely:

Z = {Even Integers}
∐

{Odd Integers};

moreover n ∼ m is equivalent to saying that n and m are either both even or both odd.
Thus ∼ is the equivalence relation defined by this partition of Z.

? ? ? Main Example ? ? ?

Fix n ∈ N, n ≥ 2. Define a relation ∼ on Z as follows: For x, y ∈ Z, we write x ∼ y
to mean n|(x− y).

Claim. ∼ is an equivalence relation on Z.

Reason:

1) [Reflexivity] x− x = 0 = 0 · n. Thus n|(x− x), hence x ∼ x.

2) [Symmetry] x ∼ y ⇒ n|(x−y) hence qn = x−y, for some q ∈ Z. Thus (−q)n = y−x,
i.e. n|(y − x). Hence y ∼ x.

3) [Transitivity] x ∼ y & y ∼ z. Therefore n|(x−y) & n|(y−z), i.e. qn = x−y & kn =
y − z for some q, k ∈ Z. Thus x − z = (x − y) + (y − z) = qn + kn = (q + k)n. Thus
n|(x− z), and hence x ∼ z.

Continuing with this main example, we introduce “the integers modulo n”, denote by:

Zn
def
= {equivalence classes x | x ∈ Z},
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i.e. where we write x = y to mean x ∼ y, i.e. n|(x− y).

Question. What does Zn look like?

Answer. For every x ∈ Z, and by Euclid’s Division Algorithm, we have x = qn + r
where 0 ≤ r < n, and q ∈ Z. Thus

x− r = qn⇒ n|(x− r).

i.e. x ∼ r, i.e. x = r. Thus
Zn = {0, 1, 2, . . . , n− 1}.

For example n|n⇒ n = 0, and n|
(
(n + 1)− 1

)
⇒ n + 1 = 1.

In terms of coset decomposition

Z = {nZ + 0}
︸ ︷︷ ︸

0

∐

{nZ + 1}
︸ ︷︷ ︸

1

∐

· · ·
∐

{nZ + (n− 1)}
︸ ︷︷ ︸

n−1

,

where nZ + r := {qn + r | q ∈ Z}. Note that there is a natural map:

Z → Zn

x 7→ x

and diagram

Z× Z
+,•−→ Z

↓ ↓
Zn × Zn

+,•−→ Zn

In other words, we claim that there is induced +, • on Zn.

Preliminary Definition.

1) x + y
def
= x + y.

2) xy
def
= xy.

Claim. +, • on Zn are well-defined operations.

Restatement: If x ∼ x1 & y ∼ y1, then x + y ∼ x1 + y1, and xy ∼ x1y1. Equivalently,
if x = x1 and y = y1, then x + y = x1 + y1, and xy = x1y1.

Details: x = x1 ⇔ x = x1 + qn, and y = y1 ⇔ y = y1 + kn, for some q, k ∈ Z.
Thus x + y = x1 + y1 + (q + k)n, and xy = x1y1 + x1kn + y1qn + qkn2, i.e. xy =
x1y1 + (x1k + y1q + qkn)n. Thus x + y = x1 + y1, and xy = x1y1.

Claim. [Zn; +, •] is a ring with unity.
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Reason:
0 + x = 0 + x = x ; 1 · x = 1 · x = x.

Thus 0 is the zero element and 1 is the unity. Next, the commutative, distributive, and
associative laws on Z descend to the same laws on Zn. This follows from the fact that +, •
on Zn are induced from +, • on Z. Finally, x + (−x) = 0 ⇒ we have additive inverses.
Thus [Zn; +, •] satisfies the properties that define a ring with unity.

Examples of Zn

Ex. Z2 = {0, 1}.

+ | 0 | 1
−− −− −−
0 | 0 | 1
−− −− −−
1 | 1 | 0

• | 0 | 1
−− −− −−
0 | 0 | 0
−− −− −−
1 | 0 | 1

For example, −1 = 1. Since 1 is the only non-zero element, and 1 6= 0, it is clear that Z2

is a field. This example was studied earlier.

Ex. Z3 = {0, 1, 2}.

+ | 0 | 1 | 2
−− −− −− −−
0 | 0 | 1 | 2
−− −− −− −−
1 | 1 | 2 | 0
−− −− −− −−
2 | 2 | 0 | 1

• | 0 | 1 | 2
−− −− −− −−
0 | 0 | 0 | 0
−− −− −− −−
1 | 0 | 1 | 2
−− −− −− −−
2 | 0 | 2 | 1

For example, −1 = 2, −2 = 1. Now since 2
−1

= 2, hence all non-zero elements have
multiplicative inverses, it follows that Z3 is a field. This example was studied earlier as
well.

Ex. Z4 = {0, 1, 2, 3}.

+ | 0 | 1 | 2 | 3
−− −− −− −− −−
0 | 0 | 1 | 2 | 3
−− −− −− −− −−
1 | 1 | 2 | 3 | 0
−− −− −− −− −−
2 | 2 | 3 | 0 | 1
−− −− −− −− −−
3 | 3 | 0 | 1 | 2

• | 0 | 1 | 2 | 3
−− −− −− −− −−
0 | 0 | 0 | 0 | 0
−− −− −− −− −−
1 | 0 | 1 | 2 | 3
−− −− −− −− −−
2 | 0 | 2 | 0 | 2
−− −− −− −− −−
3 | 0 | 3 | 2 | 1
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Note that the group of units is given by Z∗
4 = {1, 3}. For example 3

−1
= 3. However 2 is

not a unit, by the multiplication table. In fact 2 · 2 = 0. The element 2 is an example of a
zero divisor (or “divisor of zero”). Clearly Z4 is not a field.

Ex. Z5 = {0, 1, 2, 3, 4}.
+ | 0 | 1 | 2 | 3 | 4
−− −− −− −− −− −−
0 | 0 | 1 | 2 | 3 | 4
−− −− −− −− −− −−
1 | 1 | 2 | 3 | 4 | 0
−− −− −− −− −− −−
2 | 2 | 3 | 4 | 0 | 1
−− −− −− −− −− −−
3 | 3 | 4 | 0 | 1 | 2
−− −− −− −− −− −−
4 | 4 | 0 | 1 | 2 | 3

• | 0 | 1 | 2 | 3 | 4
−− −− −− −− −− −−
0 | 0 | 0 | 0 | 0 | 0
−− −− −− −− −− −−
1 | 0 | 1 | 2 | 3 | 4
−− −− −− −− −− −−
2 | 0 | 2 | 4 | 1 | 3
−− −− −− −− −− −−
3 | 0 | 3 | 1 | 4 | 2
−− −− −− −− −− −−
4 | 0 | 4 | 3 | 2 | 1

For example −1 = 4, −2 = 3, −3 = 2, −4 = 1. Also 2
−1

= 3, 3
−1

= 2, 4
−1

= 4. Thus it
is easy to see that Z5 is a field.

Ex. Z6 = {0, 1, 2, 3, 4, 5}.
+ | 0 | 1 | 2 | 3 | 4 | 5
−− −− −− −− −− −− −−
0 | 0 | 1 | 2 | 3 | 4 | 5
−− −− −− −− −− −− −−
1 | 1 | 2 | 3 | 4 | 5 | 0
−− −− −− −− −− −− −−
2 | 2 | 3 | 4 | 5 | 0 | 1
−− −− −− −− −− −− −−
3 | 3 | 4 | 5 | 0 | 1 | 2
−− −− −− −− −− −− −−
4 | 4 | 5 | 0 | 1 | 2 | 3
−− −− −− −− −− −− −−
5 | 5 | 0 | 1 | 2 | 3 | 4
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• | 0 | 1 | 2 | 3 | 4 | 5
−− −− −− −− −− −− −−
0 | 0 | 0 | 0 | 0 | 0 | 0
−− −− −− −− −− −− −−
1 | 0 | 1 | 2 | 3 | 4 | 5
−− −− −− −− −− −− −−
2 | 0 | 2 | 4 | 0 | 2 | 4
−− −− −− −− −− −− −−
3 | 0 | 3 | 0 | 3 | 0 | 3
−− −− −− −− −− −− −−
4 | 0 | 4 | 2 | 0 | 4 | 2
−− −− −− −− −− −− −−
5 | 0 | 5 | 4 | 3 | 2 | 1

Note that from the • table, that we have Z∗
6 = {1, 5}, (here 5

−1
= 5). Also, 3 ·4 = 0, 3 ·2 =

0. Thus {2, 3, 4} are examples of zero divisors. It is obvious that Z6 is not a field.

Examples Z4 and Z6 provide motivation for the following definition,

Definition. Let A be a ring with unity 1 6= 0. A zero divisor is an element x ∈ A
with the property that xy = 0 for some y ∈ A, y 6= 0. [Note: 0 ∈ A is a zero divisor since
1 · 0 = 0.]

Ex. The zero divisors in Z4 are {0, 2}. [Furthermore, the units are {1, 3}, hence
Z4 = {Units} ∐ {Zero Divisors}.]

Ex. The zero divisors in Z6 are {0, 2, 3, 4}. [Furthermore, the units are {1, 5}, hence
Z6 = {Units} ∐ {Zero Divisors}.]

Important Remark. Let A be a ring with unity 1 6= 0. Then a unit can never be
a zero divisor. For if x ∈ A∗ is a unit, and if y ∈ A is given such that xy = 0, then
0 = x−10 = x−1xy = y. Thus xy 6= 0 for any y ∈ A with y 6= 0.

Definition. Let A be a ring with unity 1 6= 0. Then A is called an integral domain
if A has no non-zero zero divisors. [Restatement: If A is a ring with unity 1 6= 0, then A
is an integral domain ⇔

[
{xy = 0} ⇒ {x = 0 or y = 0, for any x, y ∈ A}

]
.]

Remarks and Examples. (i) Z is an integral domain.

(ii) Any field F is an integral domain. For if x ∈ F is non-zero, then x is a unit, hence
not a zero divisor. [Hence Z2, Z3, Z5, being fields, are integral domains.]

(iii) We will eventually show that Zn = {Zero Divisors} ∐ {Units}, as can be easily
verified in the cases n = 2, 3, 4, 5, 6. This is not the case for general rings, such as the
integers Z!
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Now recall that the group of units in Zn is denoted by Z∗
n. Also recall that for

n, m ∈ N, n, m are relatively prime if (n, m) := GCD(n, m) = 1.

Claim. Z∗
n = {x | (x, n) = 1}.

Ex. Suppose n = p is prime. Then Z∗
p = {1, 2, . . . , p− 1} = the non-zero elements of

Zp. Thus Zp is a field.

Ex. Z∗
4 = {1, 3}. [Using (1, 4) = (3, 4) = 1, (2, 4) = 2.]

Ex. Z∗
6 = {1, 5}. [Using (1, 6) = (5, 6) = 1, (2, 6) = 2, (3, 6) = 3, (4, 6) = 2.]

Reason for the Claim: Suppose that (x, n) = 1. Then 1 = ax + bn for some a, b ∈ Z.
Thus:

1 = ax + bn = ax + bn
︸︷︷︸

=0

= a · x, i.e. 1 = a · x,

hence x is a unit, i.e. x ∈ Z∗
n. [In this case a = x−1.] Conversely, suppose that x ∈ Z∗

n,
i.e. x · y = 1, for some y ∈ Zn. Thus

xy − 1 = x · y − 1 = 0, i.e. n|(xy − 1).

Hence xy − 1 = qn for some q ∈ Z, or equivalently, xy + (−q)n = 1. Now let d = (x, n).
then d|x and d|n. Therefore d|

(
xy + (−q)n

)
, i.e. d|1. Thus since d ∈ N, it follows that

d = 1. In other words, (x, n) = 1, and the claim is proven.

Claim.
Zn = Z∗

n

∐

{Zero Divisors}.

Reason: Let x ∈ Zn be given, with x 6∈ Z∗
n, and further let d = (x, n). Then we know

by the above claim that d ≥ 2. So write x = ud and n = vd, and note that 1 ≤ v < n,
since d ≥ 2. Therefore v 6= 0, and yet

v · x = vx = uvd = u · n = 0.

Hence x is a zero divisor.

Ex. 4 ∈ Z6 is a zero divisor, since (4, 6) = 2 > 1. Note that 6 = v · d, where v = 3
and d = 2 as in the above discussion (and where x = 4, n = 6). According to the above
discussion v · x = 0. This is the same as 3 · 4 = 12 = 2 · 6 = 0, which is obvious!

Claim. The following statements are equivalent, for n ∈ N, n ≥ 2:

1) Zn is a field.

2) Zn is an integral domain.

3) n = p is prime.
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Reason: The basic idea is this. If n = p is prime, then we learned that Zp is a field,
hence an integral domain. However, if n is not prime, then n = a · b, where 1 < a < n, 1 <
b < n. Thus ab = n = 0 and yet a, b 6= 0. Thus Zn has non-zero zero divisors (which
cannot be units), hence is neither a field, nor an integral domain.

Ex. Find the units and zero divisors of Z12. Solution: Z∗
12 = {1, 5, 7, 11}. The zero

divisors are the remaining elements in Z12, namely {0, 2, 3, 4, 6, 8, 9, 10}.

Ex. Find the multiplicatve inverse of 3 in Z17. [Note: Observe that Z17 is a field,

since 17 is prime. Thus 3
−1

can be found in Z17.] Solution: Since (3, 17) = 1, it follows
that 1 = 3x + 17y for some x, y ∈ Z. Therefore modulo 17, we have 1 = 3x + 17y = 3x.

Hence x = 3
−1

. Therefore we are done if we know x. But we learned how to solve for x
and y earlier, by back substitution. First of all, by Euclid’s Division:

17 = 5× 3 + 2

3 = 1× 2 + 1

Thus by back substitution we have:

1 = 3− 1×
[
2 = 17− 5× 3

]
= 6 · 3− 17, x = 6, y = −1.

In particular, 3
−1

= 6.

Examples of Subrings of Zn

Ex. 2Z6
def
= {2 · 0, 2 · 1, 2 · 2, 2 · 3, 2 · 4, 2 · 5} = {0, 2, 4}. The corrsponding +, • tables

are:

+ | 0 | 2 | 4
−− −− −− −−
0 | 0 | 2 | 4
−− −− −− −−
2 | 2 | 4 | 0
−− −− −− −−
4 | 4 | 0 | 2

• | 0 | 2 | 4
−− −− −− −−
0 | 0 | 0 | 0
−− −− −− −−
2 | 0 | 4 | 2
−− −− −− −−
4 | 0 | 2 | 4

The tables imply that 2Z6 is closed under +, • from Z6, and that there is a zero element

and additive inverses. Further 4 is the unity 6= 0, and 2
−1

= 2. It follows that 2Z6 is a
subring of Z6; moreover 2Z6 is a field, even though Z6 isn’t!

Ex. 4Z8 = {0, 4} is a subring of Z8, as one can deduce from the +, • tables below:

+ | 0 | 4
−− −− −−
0 | 0 | 4
−− −− −−
4 | 4 | 0

• | 0 | 4
−− −− −−
0 | 0 | 0
−− −− −−
4 | 0 | 0
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Note that there is no unity, hence 4Z8 is not a field. In fact, all the elements {0, 4} of 4Z8

are zero divisors!

Ex. 5Z10 = {0, 5}, with corresponding tables below, is a subring of Z10.

+ | 0 | 5
−− −− −−
0 | 0 | 5
−− −− −−
5 | 5 | 0

• | 0 | 5
−− −− −−
0 | 0 | 0
−− −− −−
5 | 0 | 5

It is easy to see that 5 is the unity, and that 5Z10 is a field, even though Z10 is not a field.
Note that one can form a dictionary between the two fields:

5Z10 = {0, 5} ↔ {0, 1} = Z2.

Such dictionaries will be explored in more detail later.

We recall that any field is an integral domain; however the converse statement is false.
There are examples of integral domains that are not fields. [Take the ring of integers Z,
for example.] However, for Zn, we recall that Zn is a field ⇔ Zn is an integral domain.
Furthermore, as a set, Zn is finite. This leads us to the following partial converse result:

Claim. Any finite integral domain is a field. [Restatement: Let A be an integral
domain, and assume that A is finite. Let x ∈ A, x 6= 0 be given. Then there is an element
y ∈ A such that xy = 1 ∈ A.]

Reason: Let x ∈ A, x 6= 0 be given, and consider the subset Σ ⊂ A given by

Σ := {xn | n ∈ N} = {x = x1, x2, x3, . . .}.

Since A, and hence also Σ, is finite, we must have repeats in the powers {xn}n∈N. In other
words, for some k, m ∈ N with k > m, xm = xk. Therefore xm(xk−m− 1) = xk − xm = 0.
Since x 6= 0 and A is an integral domain, xm 6= 0 and therefore xk−m−1 = 0, or xk−m = 1.
Note that k−m ∈ N. If k−m = 1, then x = 1, and hence y := x−1 = 1 ∈ A. If k−m ≥ 2,
then k −m− 1 ∈ N and x · xk−m−1 = xk−m = 1. Thus y := x−1 = xk−m−1 ∈ A, and we
are done.

We want to impress upon the reader the relationship between the three fundamental
areas below.

Algebra

↗↙ ↖↘

Number
Theory

→
← Geometry
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We will study the relationship of Algebra to Geometry later on. For the time being, we
will consider an application of Algebra to Number Theory.

The Euler Phi Function

Definition. The Euler Phi function is a map ϕ : N→ N given by the prescription:

ϕ(n) = #
{
m ∈ N

∣
∣ 1 ≤ m ≤ n & (m, n) = 1

}
.

Note that ϕ(1) = 1. The connection between this map and ring theory is given by the
following observation:

Observation: For n ∈ N, n ≥ 2, we have ϕ(n) = #Z∗
n.

Ex. If p ∈ N is prime, then ϕ(p) = #Z∗
p = #{1, 2, . . . , p− 1} = p− 1.

Ex. ϕ(4) = ϕ(22) = #Z∗
4 = #{1, 3} = 2 = 22 − 21.

Ex. ϕ(6) = ϕ(2 · 3) = #Z∗
6 = #{1, 5} = 2 = ϕ(2) · ϕ(3).

Ex. ϕ(8) = ϕ(23) = #Z∗
8 = #{1, 3, 5, 7} = 4 = 23 − 22.

The essential properties of this map ϕ follow from the two claims below.

Claim 1. Let m, n ∈ N. If (m, n) = 1, then ϕ(m · n) = ϕ(m) · ϕ(n).

Claim 2. If p ∈ N is prime, and if m ∈ N is given, then ϕ(pm) = pm − pm−1. [For
example, if m = 1, then ϕ(p) = ϕ(p1) = p1 − p0 = p− 1.]

We will postpone the reason for the claims for now, by first showing how these two
claims allow us to “compute” ϕ(n) for any n ∈ N. To do this, for n ≥ 2, write n =
p`1
1 · · · p`N

N , where {p1, . . . , pN} are distinct primes and `1, . . . , `N ∈ N. Then by applying
the two claims repeatedly, we arrive at:

ϕ(n) = ϕ(p`1
1 ) · · ·ϕ(p`N

N ) =
(
p`1
1 − p`1−1

1

)
· · ·

(
p`N

N − p`N−1
N

)
.

Ex. ϕ(28) = ϕ(22 · 7) = ϕ(22) · ϕ(7) =
(
22 − 21

)
· (7− 1) = 12.

Proof of Claim 1 (Outline only)

Let m, n ∈ N be integers ≥ 2, and consider

Zm × Zn := {(x, y) | x ∈ Zm, y ∈ Zn}.
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We want to compare the product ring Zm × Zn, (where Zm × Zn has componentwise +
and •†), to Zmn. The following notation seems useful. Let z ∈ Z be given. We write zn

to mean z modulo n, i.e. zn = z ∈ Zn, i.e. as an element of the ring Zn. We construct
a map Φ : Zmn → Zm × Zn by the formula Φ(zmn) = (zm, zn). Note that Φ is well-
defined, for if wmn = zmn, then (mn)|(w − z), hence m|(w − z) and n|(w − z). Thus
Φ(wmn) = (wm, wn) = (zm, zn) = Φ(zmn). As an example calculation, if e.g. m = 3
and n = 2, then Φ(56) = (53, 52) = (23, 12). Note that Zmn and Zm × Zn contain the
same number of elements, namely mn. The map Φ has the nice property that it preserves
ring structures and unity, namely Φ takes (+, •) to (+, •) and Φ(1mn) = (1m, 1n). Φ
is an example of a ring homomorphism, that which will be discussed later on. Next,
if Φ(zmn) = (0m, 0n), then m|z and n|z; moreover, by the Fundamental Theorem of
Arithmetic, if (m, n) = 1, then (mn)|z, hence zmn = 0mn. From here, it is easy to deduce
that Φ is one-to-one, in the case (m, n) = 1. Since Zmn and Zm×Zn have the same number
of elements, this translates to saying that in the case where (m, n) = 1, Φ : Zmn → Zm×Zn

is a bijective homomorphism, called an isomorphism. We record this result:

Chinese Remainder Theorem. If m, n are relatively prime integers ≥ 2, then

Φ : Zmn
∼→ Zm × Zn,

is an isomorphism.

Now let us assume (m, n) = 1. Then the fact that Φ preserves ring structures and
unity implies that Φ preserves units, in particular

Φ : Z∗
mn

∼→
(
Zm × Zn

)∗
,

is an isomorphism (of groups). Finally, it is reasonably obvious that
(
Zm×Zn

)∗
= Z∗

m×Z∗
n.

Therefore, since (m, n) = 1,

ϕ(m · n) = #Z∗
mn = #

(
Zm × Zn

)∗
= #Z∗

m · #Z∗
n = ϕ(m) · ϕ(n).

This proves claim 1.

Proof of Claim 2

First of all, for 1 ≤ N ≤ pm, we can write N = q · p + r, where 0 ≤ r ≤ p− 1. Note
that q is in the range q = 0, . . . , pm−1. Furthermore, it is easy to see that

(N, pm) = 1⇔ (N, p) = 1⇔ N = qp + r, where 1 ≤ r ≤ p− 1, 0 ≤ q ≤ pm−1 − 1.

Thus
#{N | 1 ≤ N ≤ pm, & (N, pm) = 1} = (p− 1)pm−1 = pm − pm−1.

This establishes claim 2.

† Where (xm, yn)+(um, vn) = (xm+um, yn+vn), (xm, yn)•(um, vn) = (xm ·um, yn ·vn),
with unity (1m, 1n) and zero element (0m, 0n).
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Solutions of Equations in Rings

Let A be an integral domain. Fix a, b ∈ A, with a 6= 0. Let x be an indeterminate
(i.e. a variable).

Claim. The equation ax + b = 0 has at most one solution in A.

Reason: Suppose that u, v ∈ A both satisfy this equation, i.e.

au + b = 0
av + b = 0

Then subtracting gives a(u − v) = 0. But a 6= 0 and A is an integral domain. Therefore
u− v = 0, i.e. u = v.

Remark. If A = F is a field, then ax + b = 0, with a 6= 0, has a unique solution in F.
Namely, x = a−1(−b) ∈ F.

Ex. Let A = Z. Then for example, 2x + 1 = 0 has no solution in Z. However, this
equation has a solution in Q, namely x = − 1

2
.

This leads us to the concept of a quotient field. Assume given an integral domain A
with unity 1 ∈ A. The quotient field of A, denoted by K := Quot(A), is given by the
following prescription†:

K =

{
a

b

∣
∣ a, b ∈ A, b 6= 0, &

a1

b1
=

a2

b2
⇔ a1b2 = b1a2 in A

}

.

Note that we can view A ⊂ K as a subring, by the identification a ∈ A 7→ a
1 ∈ K.

It is obvious by this construction that K is a field. Thus for an integral domain A, with
a, b ∈ A and a 6= 0, the equation ax + b = 0 always has a (unique) solution in K, namely
x = − b

a ∈ K.

Ex. Quot(Z) = Q.

Ex. Let F be a field. Then Quot(F) = F.

Quadratic Equations over a Field F

For motivation, suppose we consider the quadratic equation

ax2 + bx + c = 0, (a 6= 0),

† In some texts, the construction of quotient fields begins with pairs (a, b) ∈ A2, with
b 6= 0, for which (a1, b1) ∼ (a2, b2)⇔ a1b2 = b1a2 in A, and eventually identify a

b
↔ (a, b).

We could do it this way, but lets not.
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with a, b, c ∈ R (or in C). Then the quadratic formula gives

x =
−b±

√
b2 − 4ac

2a
∈ C.

If we try to solve the same equation over a given field F, i.e., where a, b, c ∈ F, then we
may run into the problem where 2 = 0 ∈ F, and so the above quadratic formula would not
work. [For example 2 = 0 ∈ Z2.] It seems natural to detemine those fields where such a
formula would still work. This leads us to the following:

Assume given a F with unity 1F ∈ F, we consider the map

Φ : Z→ F, Φ(m) = m · 1F :=







1F + · · ·+ 1F
︸ ︷︷ ︸

m times

if m > 0

0 if m = 0
(−1F) + · · ·+ (−1F)
︸ ︷︷ ︸

|m| times

if m < 0

Φ has the following “nice” properties:

1) Φ(n + m) = Φ(n) + Φ(m), i.e. Φ preserves addition (+). [Reason: Φ(n + m) =
(n + m) · 1F = n · 1F + m · 1F = Φ(n) + Φ(m).]

2) Φ(n · m) = Φ(n) · Φ(m), i.e. Φ preserves multiplication (•). [Reason: Φ(n · m) =
(n ·m) · 1F = (n · 1F) · (m · 1F) = Φ(n) · Φ(m).]

3) Φ(1) = 1F, i.e. Φ preserves unity.

Properties 1), 2) and 3) are the conditions that define Φ as a ring homomorphism. A
natural question is whether one can “count” in F, or put differently, whether Φ is one-
to-one. As we will see below, a way of measuring this is by introducing the kernel of the
homomorphism Φ:

ker Φ := {n ∈ Z | Φ(n) = 0}.

Note that Φ(0) = 0, hence 0 ∈ ker Φ. However, Φ(1) = 1F 6= 0, hence 1 6∈ kerΦ. Therefore
ker Φ 6= Z.

Claim. ker Φ is an ideal in Z.

Reason: We must show the following:

(A) m, n ∈ ker Φ⇒ m+n ∈ ker Φ. [Restatement: Φ(m) = Φ(n) = 0⇒ Φ(m+n) = 0.]

(B) m ∈ kerΦ and n ∈ Z ⇒ Φ(n · m) = 0. [Restatement: Φ(m) = 0 & n ∈ Z ⇒
Φ(n ·m) = 0.]

Details:
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(A) Given Φ(m) = Φ(n) = 0, then Φ(m + n) = Φ(m)
︸ ︷︷ ︸

=0

+ Φ(n)
︸ ︷︷ ︸

=0

= 0.

(B) Given Φ(m) = 0 and n ∈ Z, then Φ(n ·m) = Φ(n) · Φ(m)
︸ ︷︷ ︸

=0

= 0.

This proves the claim.

Since kerΦ ⊂ Z is an ideal, it must be of the form ker Φ = (k) := {q · k | q ∈ Z} for
some integer k ≥ 0. Furthermore k 6= 1 since kerΦ 6= (1) = Z.

Ex. F = Z5,

Φ : Z→ Z5, Φ(m) = m.

Note that Φ(m) = 0⇔ m = 0⇔ 5|m. Thus kerΦ = {q · 5 | q ∈ Z} = (5).

Ex. F = R. Then Φ : Z ↪→ R is the inclusion. Therefore kerΦ = 0 = (0).

Claim. Consider the map Φ : Z→ F, where F is a field. Then:

(i) If ker Φ = 0, then Φ is one-to-one.

(ii) If ker Φ 6= 0, then ker Φ = (p) for some prime p ∈ N.

Reason: (i) We first observe that Φ(0) = 0. Next 0 = Φ(x + (−x)) = Φ(x) + Φ(−x),
hence Φ(−x) = −Φ(x). Now suppose ker Φ = 0, and that Φ(x) = Φ(y) for some x, y ∈ Z.
Then Φ(x−y) = Φ(x+(−y)) = Φ(x)+Φ(−y) = Φ(x)−Φ(y) = 0, hence x−y ∈ ker Φ = 0,
i.e. x− y = 0, or x = y. Thus Φ is one-to-one.

(ii) We recall that ker Φ 6= (1), hence ker Φ = (n) for some integer n ≥ 2. There is an
induced map Φ : Zn → F completing the diagram below:

Z
Φ−→ F

↓ Φ↗

Zn

Namely, Φ is defined by the formula Φ(m) = Φ(m). We must first check that Φ is well-
defined. Suppose that m1 = m2. We must show that Φ(m1) = Φ(m2). But m1 = m2 ⇔
n|(m1 − m2) ⇔ m1 − m2 ∈ ker Φ ⇔ Φ(m1 − m2) = 0 ⇔ Φ(m1) = Φ(m2). Thus Φ is
well-defined. Next, one can show that ker Φ = 0 ∈ Zn, and in particular this implies that
Φ : Zn ↪→ F is a one-to-one homomorphism of rings (where in particular, addition and
multiplication of rings is preserved). Since F is a field, hence an integral domain, it follows
that Zn is an integral domain (hence a field). Therefore n = p is prime. This leads us to
the following way of characterizing fields:
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Definition. Assume given a field F and corresponding homomorphism Φ : Z → F.
We define the characteristic of F by the formula:

Char(F) =

{
0 if ker Φ = (0)
p > 0 if ker Φ = (p), p a prime

.

Ex. Char(R) = Char(C) = Char(Q) = 0. Char(Z2) = 2, Char(Z3) = 3, Char(Z5) =
5, and more generally, Char(Zp) = p for a prime p ∈ N.

Remark. If Char(F) = 0, then one can think of Φ as identifying N ⊂ F, and hence one
can “count” in the field F. On the contrary, if Char(F) = p > 0, then one can think of Φ as
identifying Zp ⊂ F, in which case one cannot “count” in F (i.e. this: 1, 1+1 = 2, . . . , p = 0,
is cyclic).

Back to Quadratic Equations

We want to solve the equation

ax2 + bx + c = 0,

where x is a variable, and a, b, c ∈ F, a 6= 0. We first observe that Char(F) 6= 2 ⇔ 2 6=
0 ∈ F⇔ 2−1 ∈ F. We will restrict ourselves to the case where Char(F) 6= 2. Also, we will
write, for λ ∈ F, λ 6= 0, 1

λ instead of λ−1. Thus formally we can solve for x:

ax2 + bx + c = 0⇔ 1

a

(

ax2 + bx + c = 0

)

= 0⇔
(

x +
b

2a

)2

+
c

a
− b2

4a2
= 0

⇔
(

x +
b

2a

)2

+
4ac− b2

4a2
= 0⇔ x =

−b±
√

b2 − 4ac

2a
⇔ x =

−b±
√

∆

2a
,

where ∆ = b2 − 4ac ∈ F. The essential problem here is that
√

∆ may not belong to F.

Ex. F = R, x2 + 1 = 0, (here a = c = 1, b = 0). Then ∆ = −4, hence
√

∆ =
√
−4 6∈

R; moreover there is no solution of this equation in R. [Note that the solution lies in C,
which is a quadratic field extension of R. We will revisit this idea later.]

Now suppose for example, that
√

∆ ∈ F, i.e. there exists δ ∈ F such that δ2 = ∆.
Then we can solve for x ∈ F, namely:

x =
−b±

√
∆

2a
=
−b± δ

2a
; (or we can write x = 2−1a−1

(
− b±

√

b2 − 4ac
)
).

Ex. F = Z5, and the equation:

x2 + 2x + 2 = 0.
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[Here we interpret a = 1, b = 2, c = 2.] Then ∆ = 4− 8 = 4− 3 = 1. Thus
√

∆ = ±1 =
{1,−1 = 4} ⊂ Z5. Thus by the quadratic formula,

x = 2
−1

(−2± 1)
−3=2
= 2

−1{2, 22
= 4) = {1, 2}.

Ex. F = Z5, and the equation:

x2 − 2 = 0.

[Here we interpret a = 1, b = 0, c = −2.] Then ∆ = 8 = 3. Consider the table of values:

0
2

= 0
1
2

= 1
2
2

= 4
3
2

= 4
4
2

= 1

It is clear that neither 2 nor 3 appear in the righthand column of this table. Thus x2−2 = 0
has no solution in Z5, and

√
∆ 6∈ Z5.

This leads us to:

Main Theorem. For any given quadratic equation over a given field F, namely:

ax2 + bx + c = 0, (a, b, c ∈ F, a 6= 0),

there is a field extension F̃ of F, i.e. a field F̃ for which F ⊂ F̃ is a subfield, such that the
quadratic equation has a solution in F̃.

Ex. x2 + 1 = 0, F = R. The solutions x are ±
√
−1 ∈ C. In this case C = F̃ = R̃.

It is worthwhile mentioning the:

Fundamental Theorem of Algebra. Any polynomial equation of the form:

anxn + an−1x
n−1 + · · ·+ a1x + a0 = 0,

[where a0, . . . , an ∈ C, n ∈ N, an 6= 0, and x is an indeterminate], has a solution in C.

Rather than prove the main theorem above, we will illustrate it by an example.

Example. Consider the equation

x2 + x + 1 = 0,
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with coefficients in Z2, i.e. a = 1, b = 1, c = 1. Set p(x) = x2 + x + 1, and note that
p(0) = 1 6= 0, p(1) = 3 = 1 6= 0. Thus the quadratic equation p(x) = 0 has no solution in
F = Z2. As in the case of inventing a solution ±

√
−1 to x2+1 = 0 in the previous example,

we “invent” a solution to p(x) = 0, and call it α. Note that α 6∈ Z2 since p(α) = 0, i.e.

α2 + α + 1 = 0.

Note that ±1 = 1 in Z2. Thus α2 = −α − 1 = α + 1. For F = Z2, set F̃ = Z2[α] :=
{a + bα | a, b ∈ Z2}. Note that F̃ = {0, 1, α, 1 + α} has 4 elements. Addition and
multiplication are defined in the obvious way:

(a + bα) + (c + dα) = (a + c) + (b + d)α ∈ F̃,

(a + bα) · (c + dα) =
(
ac + bd[α2 = α + 1]

)
+ (ad + bc)α = (ac + bd) + (ad + bc + bd)α ∈ F̃.

Since F̃ has only 4 elements, we can easily give the +, • tables below.

+ | 0 | 1 | α | 1 + α
−− −− −− −− −−
0 | 0 | 1 | α | 1 + α
−− −− −− −− −−
1 | 1 | 0 | 1 + α | α
−− −− −− −− −−
α | α | 1 + α | 0 | 1
−− −− −− −− −−

1 + α | 1 + α | α | 1 | 0

• | 0 | 1 | α | 1 + α
−− −− −− −− −−
0 | 0 | 0 | 0 | 0
−− −− −− −− −−
1 | 0 | 1 | α | 1 + α
−− −− −− −− −−
α | 0 | α | 1 + α | 1
−− −− −− −− −−

1 + α | 0 | 1 + α | 1 | α

Note that α−1 = α+1 and that (1+α)−1 = α. For example α(1+α) = α2+α = (α+α)+1 =
2α + 1 = 0 · α + 1 = 1. It is obvious that F̃ is a field and that Z2 = F ⊂ Z2[α] = F̃ is a
subfield. Finally, by construction, x2 + x + 1 = 0 has a solution in F̃. Note: Consider the
diagram:

Z
Φ−→ Z2[α]

↓ Φ↗

Z2
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It is easy to see that Φ gives the inclusion of Z2 in Z2[α], hence Φ is one-to-one, and that
char(Z2[α]) = 2.

Polynomial Rings

Let A be a ring, and x an indeterminate. A polynomial with coefficients in A is given
by a formal sum:

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0, a0, . . . , an ∈ A,

where n is an integer ≥ 0. It is convenient to rewrite p(x) in the form:

p(x) =
n∑

i=0

aix
i; where a0x

0 := a0.

The zero polynomial is the polynomial where all the coefficients ai’s are zero. If an 6= 0,
we define deg p(x) = n. The degree of the zero polynomial is taken to be −∞.

Ex. p(x) = a0 6= 0 ⇒ deg p(x) = 0. p(x) = a1x + a0, a1 6= 0,⇒ deg p(x) = 1.
p(x) = a2x

2 + a1x + a0, a2 6= 0,⇒ deg p(x) = 2. We now put:

A[x] =
{
Polynomials with coefficients in A

}
.

[Note: If A has unity 1 ∈ A, then we write xd for 1 · xd.]

Addition and Multiplication of Polynomials:

+: Let
p(x) = anxn + · · ·+ a1x + a0

q(x) = bmxm + · · ·+ b1x + b0

}

∈ A[x] be given. We can always arrange for

m = n, for if say m < n, then we can declare bm+1 = · · · bn = 0 and write q(x) =
bnxn + · · · b1x + b0. Thus we can write:

p(x) =
∑n

i=0 aix
i

q(x) =
∑n

i=0 bix
i

}

⇒ p(x) + q(x)
def
=

n∑

i=0

(ai + bi)x
i = (an + bn)xn + · · ·+ (a0 + b0).

•: Again, let
p(x) = anxn + · · ·+ a1x + a0

q(x) = bmxm + · · ·+ b1x + b0

}

∈ A[x] be given. Then we define:

p(x) · q(x) = anbmxn+m + (anbm−1 + bman−1)x
n+m−1 + · · ·

+
( ∑

i+j=k

aibj

)
xk + · · ·+ (a1b0 + b1a0)x + a0b0.

Using summation notation, this becomes:

p(x) · q(x) =
n+m∑

k=0

( ∑

i+j=k

aibj

)
xk ∈ A[x].
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Claim. A[x] is a ring under +, • defined above; moreover A ⊂ A[x] is a subring.
Furthermore, A has a unity ⇔ A[x] has a unity. [We leave this claim as an exercise for
the reader.]

Remarks. (i) It is obvious that deg
(
p(x) + q(x)

)
≤ max

{
deg p(x), deg q(x)

}
. For

example in Z[x]:

deg





x3 + x + 1
+

2x2 + 6



 = deg(x3 + 2x2 + x + 7) = 3 = max
{

deg(x3 + x + 1)
︸ ︷︷ ︸

3

, deg(2x2 + 6)
︸ ︷︷ ︸

2

}
.

deg





x2 + x + 1
+

−x2 + 2x + 4



 = deg(3x+5) = 1 < 2 = max{deg(x2 + x + 1)
︸ ︷︷ ︸

2

, deg(−x2 + 2x + 4)
︸ ︷︷ ︸

2

}.

deg
(
(x3+x+1)+(x3 +6)

)
= deg(2x3+x+7) = 3 = max

{
deg(x3 + x + 1)
︸ ︷︷ ︸

3

, deg(x3 + 6)
︸ ︷︷ ︸

3

}
.

(ii) Write p(x) = anxn + · · ·+ a0, q(x) = bmxm + · · ·+ b0 ∈ A[x], where an, bm 6= 0.
Thus deg p(x) = n, and deg q(x) = m. Recall the product p(x) · q(x) looks like:

p(x) · q(x) = anbmxn+m + lower degree terms . . . .

then it is easy to see that

deg
(
p(x) · q(x)

)
≤ deg p(x) + deg q(x).

To see how we can get a strict inequality (<), observe that it could happen that anbm = 0,
even though an, bn 6= 0 [i.e. A need not be an integral domain!]

Ex. Let p(x) = 2x2, q(x) = 2x2 + 1 ∈ Z4[x]. Then 2 6= 0 ∈ Z4 and hence deg p(x) =
deg q(x) = 2. But

p(x) · q(x) = 4x4 + 2x2 = 2x2,

since 4 = 0 in Z4. Thus deg
(
p(x) · q(x)

)
= 2 < 4 = deg p(x) + deg q(x). Note that Z4 is

not an integral domain.

(iii) It is obvious that if A is an integral domain, then:

deg
(
p(x) · q(x)

)
= deg p(x) + deg q(x).

As an application of (iii) above, we arrive at:

Claim. (1) A is an integral domain ⇔ A[x] is an integral domain.

(2) If A is an integral domain, then
(
A[x]

)∗
= A∗.
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Reason: (1) Since A ⊂ A[x] is a subring, it follows that A[x] an integral domain⇒ A
an integral domain; moreover if A has unity 1 6= 0, then this same unity 1 6= 0 is a unity for
A[x]. Now lets suppose that A is an integral domain, and assume given p(x), q(x) ∈ A[x]
such that p(x) · q(x) = 0. We must show that p(x) = 0 or q(x) = 0. But

−∞ def
= deg 0 = deg

(
p(x) · q(x)

) A an

=
Integral Domain

deg p(x) + deg q(x).

Therefore either deg p(x) = −∞ (hence p(x) = 0), or deg q(x) = −∞ (hence q(x) = 0).
This proves part (1).

(2) Assume that A is an integral domain, and that p(x), q(x) ∈ A[x] are given such
that p(x) · q(x) = 1 (⇒ p(x), q(x) ∈

(
A[x]

)∗
). Then:

0 = deg 1 = deg
(
p(x) · q(x)

) A an

=
Integral Domain

deg p(x)
︸ ︷︷ ︸

≥0

+ deg q(x)
︸ ︷︷ ︸

≥0

.

Therefore deg p(x) = deg q(x) = 0, i.e. 0 6= p(x) = p ∈ A, 0 6= q(x) = q ∈ A, and that
p · q = 1 ∈ A. Therefore p(x) = p ∈ A∗ and q(x) = q ∈ A∗. Thus

(
A[x]

)∗ ⊂ A∗ and

clearly A∗ ⊂
(
A[x]

)∗
. Hence

(
A[x]

)∗
= A∗, and we’re done.

Ex.
(
Z[x]

)∗
= Z∗ = {1,−1}. This is because Z is an integral domain.

Ex. Let F be a field (hence an integral domain). Then
(
F[x]

)∗
= F∗ = {x ∈ F | x 6=

0}. Note that since
(
F[x]

)∗ 6= {p(x) ∈ F[x] | p(x) 6= 0}, it follows that F[x] is not a field.

[E.g.
(
Z2[x]

)∗
= Z∗

2 = {1}. Thus for example x, x + 1 have no multiplicative inverses in
Z2[x].]

The assumption that A is an integral domain in the above claim is essential:

Ex.
(
Z4[x]

)∗ 6= Z∗
4. For example (2x + 1)2 = 1, hence (2x + 1) ∈

(
Z4[x]

)∗
. Note that

Z4 is not an integral domain.

Summary

Let A be a ring. Then:

1) A[x] is a ring and A ⊂ A[x] is a subring.

2) If A has unity 1 ∈ A, then A[x] has the same unity 1 ∈ A[x].

3) A is an integral domain ⇔ A[x] is an integral domain.

4) If A is an integral domain, then
(
A[x]

)∗
= A∗.
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Evaluation of Polynomials

Let A be a ring, and p(x) = anxn + · · · + a1x + a0 ∈ A[x]. Fix ξ ∈ A. We set
p(ξ) = anξn + · · ·+ a1ξ + a0 ∈ A.

Definition. ξ ∈ A is said to be a root of p(x) if p(ξ) = 0.

Ex. p(x) = x2 − 1 ∈ Z[x]. Then p(±1) = 0, hence {1,−1} are roots of p(x).

Ex. p(x) = x2 + 1 ∈ Z2[x]. (Note: x2 = 1 ·x2.) Then p(1) = 1
2
+ 1 = 0, p(0) = 1 6= 0.

1 is a root of p(x). [Note that x2 + 1 = x2 + 2x
︸︷︷︸

=0

+1 = (x + 1)2.]

Ex. Warning. In general, i.e. over general fields F, polynomials (in F[x]) are not
functions. For instance p(x) = x2 + x ∈ Z2[x] is not the zero polynomial, and yet p(x)
takes the value 0 on Z2, i.e. p(0) = 0, p(1) = 0.

Definition. Let F be a field, and F[x] the corresponding polynomial ring. A non-
constant polynomial p(x) ∈ F[x] is said to be irreducible, if p(x) cannot be factored as a
product p(x) = f(x) · g(x), where f(x), g(x) ∈ F[x] and where deg f(x) < deg p(x) and
deg g(x) < deg f(x).

Remark. If p(x) ∈ F[x] is non-constant, and not irreducible, then p(x) is said to be
reducible.

Ex. Any polynomial of degree 1 in F[x] is irreducible. (Why?)

Ex. In Q[x], x2 + 1 = 1
2
(2x2 + 2) is not a “proper” factorization. In fact, x2 + 1 is

irreducible in Q[x]. [Reason below.]

Ex. x2 + 1 is reducible in Z2[x]. Recall earlier that we noted: x2 + 1 = (x + 1)2. In
this case, if we write p(x) = x2 + 1, then p(x) = f(x) · g(x) where f(x) = g(x) = x + 1.
Also deg p(x) = 2, whereas deg f(x) = deg g(x) = 1.

Ex. x2 + 1 is irreducible in R[x] (hence it is likewise irreducible in Q[x]). Reason:
Suppose to the contrary that x2 + 1 = f(x) · g(x) is reducible, i.e. where deg f(x) =
deg g(x) = 1. Then we can write f(x) = a1x+a0 and g(x) = b1x+b0, where a0, a1, b0, b1 ∈
R; moreover from the equation x2 + 1 = f(x) · g(x), it is easy to see that a0, a1, b0, b1 6= 0.

Hence x = −a0

a1
is a real root of f(x), and therefore

(
− a0

a1

)2
+ 1 = f

(
− a0

a1

)
· g

(
− a0

a1

)
= 0.

But −a0

a1
∈ R⇒

(
− a0

a1

)2
+ 1 ≥ 1. Therefore x2 + 1 must be irreducible.

Ex. x2 +1 is reducible in C[x]. In this case x2 +1 = (x+
√
−1)(x−

√
−1),

√
−1 ∈ C.

Finding Q-roots of Polynomials in Z[x]
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Assume given p(x) ∈ Z[x], where we can assume is in the form:

p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0, a0, . . . , an ∈ Z, a0 6= 0, an 6= 0.

Suppose that p(r) = 0 for some r ∈ Q. As before, we can assume that r = k
m , where

k, m ∈ Z and that GCD(k, m) = 1. [Note that a0 6= 0 ⇒ r 6= 0; in particular k, m 6= 0.]
Thus:

0 = p

(
k

m

)

= an

(
k

m

)n

+ an−1

(
k

m

)n−1

+ · · ·+ a1

(
k

m

)

+ a0.

Multiplying both sides by mn yields:

0 = mn · 0 = mnp

(
k

m

)

= ankn + an−1k
n−1m + · · ·+ a1kmn−1 + a0m

n.

Therefore:

(I) a0m
n = k

(
− ankn−1 − an−1k

n−2m− · · · − a1m
n−1

)
.

(II) ankn = m
(
− an−1k

n−1 − · · · − a1kmn−2 − a0m
n−1

)
.

Note that by using (k, m) = 1 and the Fundamental Theorem of Arithmetic:

k|RHS of (I) ⇒ k|(a0m
n)

(k,m)=1⇒ k|a0.

m|RHS of (II) ⇒ m|(ankn)
(k,m)=1⇒ m|an.

Upshot: The only candidates for Q-roots of p(x) = anxn + · · · + a1x + a0 ∈ Z[x],
(where a0, an 6= 0), are rational numbers r ∈ Q of the form:

r ∈
{

k

m

∣
∣ k, m ∈ Z, (k, m) = 1, and where k|a0 & m|an

}

.

[Remark. The assumption that the constant term a0 6= 0 is very mild. If for example
a0 = 0 but say a1 6= 0, then we can write p(x) = anxn+· · ·+a1x = x·(anxn−1 + · · ·+ a1)

︸ ︷︷ ︸

constant term a1 6=0

.]

Observation: p(x) is said to be a monic polynomial if a1 = 1, i.e. p(x) = xn +
an−1x

n−1 + · · ·+a1x+a0. In this case, the only Q-roots of a monic polynomial p(x) ∈ Z[x]
are Z-roots. This is because in the Upshot above, r is of the form r = k

m where m|(an = 1),
hence m = ±1, i.e. r = ±k ∈ Z.

Ex. Let p(x) = x2 − 2 ∈ Z[x]. Then the only candidates for Q-roots of p(x) are of
the form r = k/m where k|2 and m|1, i.e. of the form {±1,±2}. Clearly none of these are
roots of p(x). Note that p(x) has real roots, namely ±

√
2. Thus we have given another

reason why
√

2 6∈ Q.

48



Ex: Show that the real number 3
√

3 6∈ Q. Solution: Notice that 3
√

3 is a root of the
equation x3 − 3 = 0. Thus 3

√
3 6∈ Q ⇔ p(x) has no Q-roots, where p(x) = x3 − 3. But

the only candidates for Q-roots of p(x) are where r = k/m, k|3, m|1, i.e. of the form
{±1,±3}, and clearly none of these are roots of p(x). [Note: p(x) also has two C-roots,
which are complex conjugates of each other.]

Example. Let p(x) = x4 + 2x3 − 2x2 − 2x + 4 ∈ Z[x]. The candidates for Q-roots
are r = k/m, where k|4 and m|1, i.e. of the form {±1,±2,±4}. One checks that p(±1),
p(±4) and p(2) are all non-zero, and that p(−2) = 0. Thus r = −2 is the only Q-root.
An elementary fact that we will show later [Euclid] is that p(r) = 0⇔ (x− r) is a factor
of p(x) (in Q[x]). In our case, (x + 2) = (x − (−2)) is a factor of p(x). We now do long
division:

x3 − 2x + 2
−− − −− − −− − −− − −−

x + 2

)

x4 + 2x3 − 2x2 − 2x + 4

x4 + 2x3

−− − −− − −− − −− − −−
−2x2 − 2x + 4
−2x2 − 4x
−− − −− − −−

2x + 4
2x + 4
−− − −−

0

Thus we have
p(x) = (x + 2)(x3 − 2x + 2).

If we view p(x) ∈ Q[x] via the subring inclusion Z[x] ⊂ Q[x], then it is easy to see that
x + 2 is irreducible in Q[x] (In fact, even in Z[x], but we will not pursue this line of
enquiry here). It is easy to see that likewise x3 − 2x + 2 is irreducible in Q[x]. We use
the fact that x3 − 2x + 2 has no Q-roots (Why? Hint: the only candidates for Q-roots of
x3 − 2x + 2 ∈ Z[x] are {±1,±2}), together with:

Claim. Let F be a field. Then any polynomial p(x) ∈ F[x] of degree 2 or 3, is
irreducible in F[x]⇔ p(x) has no root in F.

Reason: Suppose p(x) = f(x) · g(x) is reducible, i.e. where deg f(x) < deg p(x),
deg g(x) < deg p(x). Then since deg p(x) = 2 or 3, it follows that either deg f(x) = 1 or
deg g(x) = 1. Suppose that e.g. deg f(x) = 1. Then f(x) = ax + b where a, b ∈ F and
a 6= 0. Thus f(− b

a ) = 0, hence p(−a
b ) = 0 as well. Thus p(x) has a root in F, namely

−a
b
∈ F. Therefore, if p(x) has no root in F, it must be irreducible.

Remark. The above claim relies on the assumption that deg p(x) ≤ 3. For example,
the degree 4 polynomial (x2 + 1)2 ∈ R[x] is clearly reducible in R[x], and yet has no root
in R.
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Ex. Factor p(x) = x3 + x2 + 3 ∈ Z5[x] as far as possible (i.e. into a product of
irreducibles). Solution: We look for roots of p(x), where we recall that p(x), being of
degree 3, is reducible ⇔ p(x) has a root in F := Z5. We need only check among the five
values in Z5 for a root of p(x) in Z5. Note that p(1) = 0, hence (x + 4) = (x − 1) is a
factor of p(x) (by Euclid). We find the quotient factor q(x) by long division:

x2 + 2x + 2
−− − −− − −− − −−

x + 4

)

x3 + x2 + 3

x3 + 4x2

−− − −− − −− − −−
2x2 + 3 [Use − 3 = 2]
2x2 + 3x [Use 8 = 3]
−− − −− − −−

−3x + 3
−3x + 3 [Use 2 = −3]
−− − −−

0

Thus
p(x) = x3 + x2 + 3 = (x + 4)

︸ ︷︷ ︸

(x−1)

(x2 + 2x + 2)
︸ ︷︷ ︸

q(x)

Again, we recall that q(x), being of degree 2, is reducible ⇔ q(x) has a root in F := Z5.
We observe that q(1) = 5 = 0. Hence again, x − 1 = x + 4 is a factor of q(x). Again, by
long division:

x + 3
−− − −− − −−

x + 4

)

x2 + 2x + 2

x2 + 4x
−− − −− − −−

3x + 2 [Use − 2 = 3]
3x + 2
−− − −−

0

Thus
(x3 + x2 + 3) = (x + 4)2(x + 3) = (x− 1)2(x− 2),

gives the decomposition of p(x) into irreducibles†.

† Alternatively, since p(1) = p(2) = 0, it follows that both (x − 1) and (x − 2) are
factors of p(x). Since p(3) and p(4) are both non-zero, it follows that p(x) has either
(x − 1) or (x − 2) as a double factor. But this can be detected by the formal derivative
p′(x) = 3x2 +2x. In this case p′(1) = 0 and p′(2) 6= 0. Thus x = 1 is a double root. Hence
p(x) = (x− 1)2(x− 2).
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Euclid’s Division Algorithm for Polynomials over Fields

Euclid’s Algorithm. Let F be a field, with corresponding polynomial ring F[x]. As-
sume given f(x), g(x) ∈ F[x], with g(x) 6= 0. Then there exists unique polynomials
q(x), r(x) ∈ F[x], such that f(x) = q(x) · g(x) + r(x), where deg r(x) < deg g(x).

Reason: There are two parts to the reasoning, namely the existence part, and the
uniqueness part.

Existence. Let d = deg f , m = deg g ≥ 0. If m > d, then we can write f(x) =
0 · g(x) + f(x), i.e. q(x) = 0 and r(x) = f(x), with deg r(x) = d < m = deg g(x). Thus we
may assume that d ≥ m. We can write

f(x) = adx
d + · · ·+ a0, g(x) = bmxm + · · ·+ b0, ad, bm 6= 0.

We are going to argue by induction on the degree of f , the initial cases of deg f ≤ 1 being
‘obvious’. Set

h(x) = f(x)− ad

bm
xd−mg(x).

Then it is obvious that deg h < deg f . Hence by induction on degree,

f(x)− ad

bm
xd−mg(x) = h(x) = q1(x) · g(x) + r(x),

where deg r(x) < deg g(x). Thus

f(x) =

(
ad

bm
xd−m + q1(x)

︸ ︷︷ ︸

Call this q(x)

)

· g(x) + r(x),

and we have now established the existence part.

Uniqueness. Suppose that

f(x) = q(x) · g(x) + r(x) = q̃(x) · g(x) + r̃(x),

where deg r(x), deg r̃(x) < deg g(x). Then:

(
q(x)− q̃(x)

)
· g(x) = r̃(x)− r(x),

and hence
deg

(
q(x)− q̃(x)

)
+ deg g(x)

︸ ︷︷ ︸

deg≥deg g(x), or deg=−∞

= deg
(
r̃(x)− r(x)

)

︸ ︷︷ ︸

deg<deg g(x)

By comparison of degrees on both sides, and with the assumption that deg g(x) ≥ 0, it
is clear that deg

(
q(x) − q̃(x)

)
= −∞, hence q(x) − q̃(x) = 0, ⇒ r̃(x) − r(x) = 0, i.e.

q(x) = q̃(x) and r(x) = r̃(x). This establishes uniqueness.
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Ex. f(x) = x3 + x + 1, g(x) = x + 1 ∈ Q[x]. We long divide:

x2 − x + 2 = q(x)
−− − −− − −− − −− − −−

x + 1

)

x3 + x + 1

x3 + x2

−− − −− − −− − −− − −−
−x2 + x + 1
−x2 − x

−− − −− − −−
2x + 1
2x + 2

−− − −−
−1 = r(x)

Thus

f(x) = (x2 − x + 2)
︸ ︷︷ ︸

q(x)

· (x + 1)
︸ ︷︷ ︸

g(x)

+ (−1)
︸︷︷︸

r(x)

.

A Consequence of Euclid’s Algorithm: Let p(x) ∈ F[x], r0 ∈ F be given. Then r0 is a
root of p(x)⇔ (x− r0) is a factor of p(x) [i.e. p(x) = q(x) · (x− r0) for some q(x) ∈ F[x]].

Reason: By applying Euclid’s algorithm to p(x)↔ f(x), (x− r0)↔ g(x), we have

p(x) = q(x) · (x− r0) + r, deg r < deg(x− r0) = 1.

Thus r ∈ F. If r0 is a root, then:

0 = p(r0) = q(r0)(r0 − r0) + r = r, ⇒ r = 0.

Thus r0 a root ⇒ (x − r0) is a factor of p(x). Conversely, if (x − r0) is a factor of p(x),
then p(x) = q(x) · (x − r0) for some q(x) ∈ F[x], and hence p(r0) = q(r0)(r0 − r0) = 0.
Thus r0 is a root ⇔ (x− r0) is a factor of p(x).

Ex. Let p(x) = x5 + x2 + x + 1 ∈ Z2[x]. Factor p(x) as far as possible in Z2[x].
Solution: We do this by trial and error. If we can find a root of p(x) in Z2, then by
the above consequence, we will have found a factor of p(x). Note that p(1) = 0, hence
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(x− 1) = (x + 1) is a factor of p(x). We long divide:

x4 + x3 + x2 + 1
−− − −− − −− − −− − −−

x + 1

)

x5 + x2 + x + 1

x5 + x4

−− − −− − −− − −− − −−
x4 + x2 + x + 1
x4 + x3

−− − −− − −−
x3 + x2 + x + 1
x3 + x2

−− − −− − −− − −−
x + 1
x + 1
−− − −−

0

Thus

p(x) = (x + 1) (x4 + x3 + x2 + 1)
︸ ︷︷ ︸

Call this q(x)

.

Again, we have q(1) = 0, thus (x + 1) is a factor of q(x). We again long divide:

x3 + x + 1
−− − −− − −− − −− − −−

x + 1

)

x4 + x3 + x2 + 1

x4 + x3

−− − −− − −− − −− − −−
x2 + 1
x2 + x
−− − −− − −−

x + 1
x + 1

−− − −− − −−
0

Thus

p(x) = (x + 1) · q(x) = (x + 1)2 (x3 + x + 1)
︸ ︷︷ ︸

Call this h(x)

.

Note that since deg h(x) = 3, it follows from an earlier result that h(x) is irreducible in
Z2[x]⇔ h(x) has no root in Z2. But h(0) = h(1) = 1 6= 0, hence p(x) = (x+1)2(x3+x+1)
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is a factorization into irreducibles in Z2[x]. Thus this is as far as we can factor p(x) in
Z2[x].

Definition. Let p(x) ∈ F[x] be a non-zero polynomial, and suppose p(r) = 0 for
some r ∈ F [⇒ (x − r) is a factor of p(x)]. Let ` ∈ N be the largest integer for which
p(x) = (x− r)`q(x), where q(x) ∈ F[x] satisfies q(r) 6= 0. Then ` is called the multiplicity
of the root r.

Exercise. Notation as in the above definition. Show that r ∈ F is a root of p(x) of
multiplicitity `⇔

p(m)(r) =

{
0 if 0 ≤ m ≤ `− 1
6= 0 if m = `

,

where p(0)(r) = p(r) and for m ∈ N,

p(m)(r) =
dm

dxm
p(x)

∣
∣
x=r

.

[If p(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0 ∈ F[x], then

dp(x)

dx
= nanxn−1 + (n− 1)an−1x

n−2 + · · ·+ a1 ∈ F[x]

is the formal derivative.]

Ex. Recall the previous example, where

p(x) = (x− 1)2 (x3 + x + 1)
︸ ︷︷ ︸

Call this q(x)

∈ Z2[x].

Then the multiplicity of of the root 1 is 2, since q(1) 6= 0.

Claim. Let A be an integral domain, and p(x) ∈ A[x] a polynomial of degree d ≥ 0.
Then p(x) has at most d roots in A (including multiplicity as a polynomial in K[x], where
K = Quot(A)).

Ex. p(x) = (x − 1)(x2 − 1) = (x − 1)(x − 1)(x + 1) = (x − 1)2(x + 1) ∈ Z[x].
deg p(x) = 3, with roots 1 (multiplicity 2) and −1 (multiplicity 1). Thus 3 roots in Z,
including multiplicity.

Ex. p(x) = 2x − 1 ∈ Z[x]. Then deg p(x) = 1, and yet p(x) has no root in Z. [Note
however that p(x) has a root in Q.]

Ex. p(x) = (x− 1)(x2 + 1) ∈ R[x]. deg p(x) = 3, and yet p(x) has only 1 root in R.
Note that as a polynomial over C, p(x) = (x− 1)(x−

√
−1)(x +

√
−1) ∈ C[x] has 3 roots

in C.
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Reason for the claim: We will argue by induction on deg p(x) ≥ 0. Observe that
deg p(x) = 0 ⇒ 0 6= p(x) ∈ A, hence 0 roots. Also recall that if deg p(x) = 1, then p(x)
has at most 1 root in A. [Recall that in this case, deg p(x) = 1⇒ p(x) has exactly 1 root
in K := Quot(A).] We now assume that deg p(x) = d ≥ 2 and that the claim holds for
all polynomials of degree < d. Note that A[x] ⊂ K[x], so that if we show that p(x) has
at most d roots in K, then clearly it has at most d roots in A. Thus we may assume that
A = K is a field, with p(x) ∈ K[x] of degree d ≥ 2. If p(x) has no roots in K, then we’re
done. So assume p(r1) = 0 for some r1 ∈ K. Therefore (x− r1) is a factor of p(x) in K[x],
i.e. p(x) = (x − r1) · q(x), where q(x) ∈ K[x] has degree = d − 1. By induction on d,
q(x) has at most d− 1 roots in K, say {r2, . . . , rk} (including multiplicity), where k ≤ d.
Therefore q(x) = (x− r2) · · · (x− rk) · h(x) for some h(x) ∈ K[x], where h(x) has no roots
in K. Therefore p(x) = (x− r1)(x− r2) · · · (x− rk) · h(x); moreover, for r ∈ K,

p(r) = 0⇔ (r − r1) · · · (r − rk) · h(r)
︸︷︷︸

h(r)6=0

= 0⇔ (r − rj) = 0 for some 1 ≤ j ≤ k.

Thus {r1, . . . , rk} are precisely the roots of p(x) in K, and hence p(x) has k ≤ d roots in
K (including multiplicity).

Ex. The above claim requires A to be an integral domain. For example, consider
p(x) = x3 − x ∈ Z8[x]. Then p(x) has 5 roots in Z8, namely {0, 1, 3, 5, 7}, and yet
deg p(x) = 3. Note that Z8 is not an integral domain.

We now reformulate the earlier statement of the Fundamental Theorem of Algebra,
which says that C is algebraically closed, namely:

Theorem. Let p(x) ∈ C[x] be a polynomial of degree d ≥ 1. Then p(x) can be
factored in a unique way:

p(x) = c(x− r1) · · · (x− rd),

where c, r1, . . . , rd ∈ C, and c 6= 0.

The following picture is what we have in mind to work out for F[x], where F is a field,
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and to illustrate the analogy betwen Z and F[x].

Z | F[x]
−−−−−−−−−− | − −− − −−−−−−

Quot(Z) = Q,

[
Rational
Numbers

]

| Quot(F[x]) = F(x) = Polynomial
Polynomial 6=0 ,

[
Rational
Functions

]

Integral Domain | Integral Domain

Euclidean Division | Euclidean Division

Primes = Irreducibles | Primes = Irreducibles (?)

PID = Principal Ideal Domain | Principal Ideal Domain (?)

Existence of GCD′s | Existence of GCD′s (?)

Fundamental Theorem
of Arithmetic

| Fundamental Theorem
of Arithmetic

(?)

[The items marked with a (?) is what we have yet to work out.]

Definition. (i) Let f(x), g(x) ∈ F[x] be given. We say that f divides g (or f is a
factor of g), and write it as f |g, if g(x) = q(x) · f(x) for some q(x) ∈ F[x].

(ii) Assume given f(x), g(x) ∈ F[x], not both zero. d(x) ∈ F[x] is said to be a
common divisor of f and g, if d|f and d|g.

(iii) A common divisor d(x) of f and g is said to be the Greatest Common Divisor
(GCD) of f & g if whenever d1 is a common divisor of f and g, then d1|d. [Notation d =
GCD(f, g) = (f, g).]

Claim. Let d = (f, g). Then d is unique up to mutiplication by a unit in F[x].
Restatement: Suppose that d1 is also a GCD of f and g. Then d = cd1 for some non-zero
c ∈ F.

Reason: By definition of GCD’s, we have that d|d1 and d1|d. That is, u1 · d = d1 and
u2 · d1 = d, for some u1, u2 ∈ F[x]. Therefore (u1u2) · d = d, i.e. u1 · u2 = 1. This implies
that u1, u2 ∈ F[x]∗ = F∗, and we’re done.

Claim. For any pair f & g ∈ F[x], not both zero, d = GCD(f, g) exists.

Reason: This will be established in three steps, paralleling the situation for the inte-
gers. As before, we first introduce the concept of an ideal.

Step I. Definition. A subset U ⊂ F[x] is called an ideal if:

(i) a, b ∈ U ⇒ a + b ∈ U , [i.e. U is closed under + from F[x]].
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(ii) a ∈ U , b ∈ F[x]⇒ ba ∈ U , [i.e. U is closed under scalar multiplication from F[x]].

Picture:

(i)
U × U +→ U
∩ ∩ ∩

F[x]× F[x]
+→ F[x]

(ii)
F[x]× U •→ U
∩ ∩ ∩

F[x]× F[x]
•→ F[x]

Examples of Ideals.

(1) Fix an h(x) ∈ F[x], and set U = (h) := hF[x] = {h · q | q ∈ F[x]}. For example,
(1) = F[x], (0) = 0. Also, if c ∈ (F[x])∗ = F∗, then (c) = F[x]. It is easy to see that
U is an ideal. [Details: Let f1 = q1 · h, f2 = q2 · h ∈ U , g ∈ F[x] be given. Then
f1 + f2 = (q1 + q2) · h ∈ U , and g · f1 = (g · q1) · h ∈ U .]

(2) Let f, g ∈ F[x] be given as in the claim. Then U0 := {q · f + k · g | q, k ∈ F[x]}
is an ideal. [Details: Let f1 = q1 · f + k1 · g, f2 = q2 · f + k2 · g ∈ U0, h ∈ F[x] be given.
Then f1 + f2 = (q1 + q2) · f + (k1 + k2) · g ∈ U0, and h · f1 = (h · q1) · f + (h · k1) · g ∈ U0.]
Note that f = 1 · f + 0 · g ∈ U0, and likewise g = 0 · f + 1 · g ∈ U0.

Definition. An ideal U ⊂ F[x] is said to be principal, if U = (h) for some fixed
h ∈ F[x].

Step II. Claim. Every ideal U ⊂ F[x] is principal. [In this case we call F[x] a PID
(= a Principal Ideal Domain).]

Reason: Let U ⊂ F[x] be any ideal. We might as well assume that U 6= (0) and
U 6= (1), since (0), (1) are principal. Since U 6= (0), it follows that there exists a non-zero
h ∈ U of smallest degree. Thus deg h ≥ 0; moreover deg h = 0 ⇔ h ∈ F∗ ⇔ (h) = (1).
Thus it is clear that deg h ≥ 1. We want to show that U = (h). To see this, let f ∈ U be
given. Then by Euclid’s Division Algorithm, f = qh + r, for some q, r,∈ F[x], and where
deg r < deg h. Thus r = f−q ·h = f +(−q) ·h ∈ U , i.e. r ∈ U . But if deg r ≥ 0 then r ∈ U
and deg r < deg h, which is impossible by definition of the “smallest degree” h. Therefore
r = 0, i.e. f = q · h ∈ (h). Since f is any given element of U , it follows that U ⊂ (h).
However, (h) ⊂ U , by definition of an ideal. Hence U = (h), and we’re done.

Step III. Conclusion of the proof of the existence of d = (f, g).

First, recall that f & g are not both zero. Recall the ideal

U0 = {q · f + k · g | q, k ∈ F[x]},

and further recall that f, g ∈ U0. Thus U0 6= (0), and hence by Step II, U0 = (d) for some
d ∈ F[x] with d 6= 0. We want to show that d = (f, g). But since f, g ∈ U0 = (d), it
follows that f = d · `1 and g = d · `2 for some `1, `2 ∈ F[x]. That is, d|f & d|g. Next, since
d = d · 1 ∈ U0 = {q · f + k · g | q, k ∈ F[x]}, it follows that d = q0 · f + k0 · g for some
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q0, k0 ∈ F[x]. Now suppose d1|f & d1|g, for some d1 ∈ F[x], i.e. k1 · d1 = f & k2 · d1 = g,
for some k1, k2 ∈ F[x]. Then d = q0 · f + k0 · g = (k1q0 + k2k0) · d1. Hence d1|d. Therefore
by definition of GCD, d = (f, g), and we’re done.

Summary. Given f, g ∈ F[x], not both zero, then d = (f, g) ∈ F[x] exists and is
unique up to multiplication by a unit; moreover d = q0 · f + k0 · g, for some q0, k0 ∈ F[x].

Definition. f, g ∈ F[x], both not zero, are said to be relatively prime if (f, g) = 1.

Ex. In Q[x], or R[x] or C[x], f := x + 1, g := x2 + 1 are relatively prime. This can
easily be deduced from the fact that

1 =
1

2
(x2 + 1) − (x− 1)

2
· (x + 1).

[Another approach to this is to use an analogue of the Fundamental Theorem of Arithmetic
for F[x], to be discussed shortly. Note that in C[x], x2 + 1 = (x +

√
−1)(x −

√
−1), and

that x + 1, x +
√
−1 and x−

√
−1 are distinct primes (irreducibles).]

We defined the concept of an ideal in the special cases where the rings in question
were Z and F[x]. The definition of an ideal for a general ring A requires a little more care:

Definition. Let A be a ring. A subring U ⊂ A is called an ideal if A • U ⊂ U , i.e.
for any a ∈ A, and b ∈ U , the product a · b ∈ U .

Exercise. Let A be a ring, and fix a ∈ A. Show that (a) := {b · a | b ∈ A} is an ideal
in A.

How does this definition compare with the earlier definitions of an ideal in the case
where A = Z or F[x]? The answer is given by:

Claim. Suppose that the ring A has unity 1 ∈ A. Then a subset U ⊂ A is an ideal
if either of the two equivalent statements hold:

1) U ⊂ A is a subring and A • U ⊂ U .

2) x, y ∈ U and z ∈ A⇒ x + y, z · x ∈ U .

Reason: It is clear that 1) ⇒ 2). Conversely, if U satisfies 2), then we must show that
U ⊂ A is a subring. Going through the properties required of a subring, the bottom line
is to show the existence of additive inverses. This is easy, since ±1 ∈ A, hence for any
x ∈ U , −x = (−1) · x ∈ U . This establishes the claim.

Now based on our understanding of ideals in the integral domains Z and F[x], we now
introduce:
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Definition. Let A be an integral domain. Then A is called a Principal Ideal Domain,
or PID for short, if every ideal U ⊂ A is principal, i.e. U = (a) for some a ∈ A.

Ex. Z and F[x] are PID’s.

For the next definition, we need the following notation. Let A be a ring, and assume
given a, b ∈ A. We say that a divides b, denoted by a|b, if a · c = b for some c ∈ A.

Definition. Let A be an integral domain.

1) An element a ∈ A, a 6∈ A∗, a 6= 0 is said to be irreducible, if whenever a = uv for
some u, v ∈ A, then either u ⊂ A∗ or v ∈ A∗.

2) An element p ∈ A, p 6∈ A∗, p 6= 0, is said to be prime if whenever p|(ab), then
either p|a or p|b.

The following definition is a generalization of the statement of the Fundamental The-
orem of Arithmetic for integral domains.

Definition. Let A be an integral domain. Then A is called a Unique Factorization
Domain (UFD) if, for any given non-zero a ∈ A with a 6∈ A∗, a can be factored in the
form:

a = b`1
1 · · · b`N

N ,

where {b1, . . . , bN} are distinct† irreducible elements of A and `1, . . . , `N ∈ N. Moreover,
this decomposition is required to be unique, in the sense that if we also have a = qk1

1 · · · qkr
r ,

where {q1, . . . , qr} are distinct irreducibles and k1, . . . , kr ∈ N, then r = N , and up to
relabelling, q1 = (unit) · b1, . . . , qN = (unit) · bN , and k1 = `1, . . . , kN = `N .

Ex. Z is a UFD.

Theorem. Any PID is a UFD. (Proof Later.) Thus for example, F[x] is a UFD.

We will first give a direct argument as to why F[x] is a UFD, based on a similar
argument for Z. We first observe the following:

Claim. An element h ∈ F[x] is prime ⇔ it is irreducible.

Reason: Let us first assume that h is prime, and that h = u · v, u, v ∈ F[x]. Then
h|(u · v) ⇒ h|u or h|v. If for example, h|u, then h · k = u for some k ∈ F[x]. Therefore
h = u ·v = h ·k ·v. Hence k ·v = 1, hence v ∈ (F[x])∗. Therefore h prime⇒ h is irreducible.
Conversely, suppose that h is irreducible, and that h|(a · b), a, b ∈ F[x]. If h|a then we’re
done. So we may assume that h 6 |a. Let d = (h, a). Then d|h and h irreducible ⇒ (up
to × (unit), either d = h or d = 1. But d = h ⇒ h|a, which is not the case. Therefore

† I.e. bi 6= (unit) · bj for i 6= j.
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d = 1, hence 1 = k1 · h + k2 · a, for some k1, k2 ∈ F[x]. Thus multiplication by b gives
b = b · k1 · h + k2 · a · b. But h|

(
b · k1 · h + k2 · a · b

)
, hence h|b, and we’re done.

Theorem. F[x] is a UFD.

Reason: If we go back to the proof of the similar statement for Z (Fundamental
Theorem of Arithmetic), one can see that the uniqueness statement hinges on showing
that prime is the same as irreducible, and that the proof of uniqueness for an irreducible
decomposition in F[x] is essentually the same for the uniquess of a prime decomposition in
Z. Since we have verified that this is the case for F[x], viz. prime = irreducible, we need
only verify the existence of an irreducible decomposition. Let f ∈ F[x] be nonconstant
(i.e. f 6∈ F; equivalently, f 6= 0, and is not a unit; or equivalently, deg f ≥ 1). If deg f = 1,
then f is irreducible, hence equal to its own irreducible decomposition. Therefore we
may assume d = deg f ≥ 2, and proceed by induction by assuming the existence of an
irreducible decomposition for polynomials of degree ≤ d− 1. So given f of degree d ≥ 2,
either f is irreducible (hence it is equal to its own irreducible decomposition), or f = g ·h,
where deg g, deg h ≤ d − 1. But by induction, g and h have irreducible decompositions,
hence so does f . Thus F[x] is a UFD.

Another reason why Z and F[x] are UFD’s, is from the following:

Theorem. PID ⇒ UFD.

Warning. There are examples of UFD’s that are not PID’s. [For example, the poly-
nomial ring in two variables: F[x, y]. More on this later.]

Reason for the Theorem: This will involve four steps.

Step I. Let A be an integral domain. Then (a) = (b) ⇔ a = u · b, where u ∈ A∗.
[Reason: If (a) = (b), then a = a · 1 ∈ (a) = (b) and b = b · 1 ∈ (b) = (a). Thus a = u · b
and b = v · a for some u, v ∈ A. Thus a = (u · v) · a. Note that either a, b are both zero, or
both non-zero. If a = b = 0 then a = (unit)·b. So assume a, b 6= 0. Then u · v = 1, hence
u, v ∈ A∗, and hence a = (unit)·b. Conversely, if a = (unit)·b, then it is an easy exercise
to show that (a) = (b).]

Step II. Now assume that A is a PID, and suppose that we are given an ascending
“chain” of ideals in A of the form:

U1 ⊂ U2 ⊂ U3 ⊂ · · · ⊂ Un ⊂ Un+1 ⊂ · · · ⊂ A.

Then for some N ∈ N, we have UN = UN+1 = UN+2 = · · ·, i.e. the chain stabilizes. [A is
an example of a Noetherian ring.] [Reason: Put U =

⋃

n∈N Un ⊂ A. Then it is an easy
exercise to verify that U is an ideal in A. But since A is a PID, we must have that U = (b)
for some b ∈ A. Thus b = b · 1 ∈ (b) = U =

⋃

n∈N Un, and hence b ∈ UN for some N ∈ N.
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Thus U = (b) ⊂ UN ⊂ U , hence UN = U . Hence UN ⊂ UN+1 ⊂ UN+2 ⊂ · · · ⊂ U ⇒ UN =
UN+1 = UN+2 = · · ·.]

Ex. In Z, (0) ⊂ (p) ⊂ (1) = Z is a chain of ideals.

Step III. Existence of an Irreducible Decomposition.

Now assume that A is a PID, and let a ∈ A be given with a 6= 0 and a 6∈ A∗.

Claim. Can write a = b1 · · · bm, where b1, . . . , bm are irreducible, (but not necessarily
distinct).

Reason: Let us assume to the contrary that such a decomposition doesn’t exist. Then
we can assume this situation:

a = a1 · b1 a1, b1 6∈ A∗

b1 = a2 · b2 a2, b2 6∈ A∗

b2 = a3 · b3 a3, b3 6∈ A∗

b3 = a4 · b4 a4, b4 6∈ A∗

& so on . . .

Then we arrive at a chain of ideals that never stabilizes, viz.:

(a) ⊂ (b1) ⊂ (b2) ⊂ (b3) ⊂ · · ·
6= 6= 6= 6=

This obviously violates the result in Step II. Hence we arrive at an irreducible decomposi-
tion a = b1 · · · bm as claimed.

Step IV. Uniqueness of the Irreducible Decomposition

Everything hinges on showing that prime = irreducible for a PID A. It is an easy
exercise to show that prime ⇒ irreducible†. We will show that irreducible ⇒ prime. Let
p ∈ A be irreducible, and assume that p|(a ·b) for some a, b ∈ A. We can assume that p 6 |a,
otherwise we’re done. Consider the ideal U := {x · p + y · a | x, y ∈ A}. Since A is a PID,
it follows that U = (d) := {k · d | k ∈ A}, for some d ∈ A. Note that p = 1 · p + 0 · a ∈ U ,
and a = 0 · p + 1 · a ∈ U . Further, since U = (d), it follows that d|p and d|a. Thus d · e = p
for some e ∈ A; moreover p irreducible ⇒ either d ∈ A∗ or e ∈ A∗. If e ∈ A∗, then
d = e−1 · p. Hence d|a⇒ (e−1 · p)|a⇒ p|a, which is not the case. Therefore d ∈ A∗. Note
that d = x0 · p + y0 · a for some x0, y0 ∈ A. Hence

1 =
(
d−1 · x0
︸ ︷︷ ︸

x1

)
· p +

(
d−1 · y0
︸ ︷︷ ︸

y1

)
· a = x1 · p + y1 · a, x1, y1 ∈ A.

† Let p ∈ A be prime, and suppose p = u · v, for some u, v ∈ A. Then p = u · v ⇒
p|(u · v) ⇒ p|u or p|v. If p|u say, then p · e = u, thus p = u · v = p · e · v. Thus
e · v = 1,⇒ e, v ∈ A∗. In particular p = u · v where v ∈ A∗. Thus p is irreducible.
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Now multiply both sides by b, viz.:

b = x1 · p · b + y1 · (a · b).

But p|(a · b) and p|(x1 · p · b)⇒ p|
(
x1 · p · b + y1 · (a · b)

)
, i.e. p|b, and we’re done.

Ex. We give an example of an integral domain that is not a UFD (hence not a PID).
Let A = {a + b

√
−5 | a, b ∈ Z}. One can easily verify that A is a subring of C, hence A

must be an integral domain. However, it is easy to show that 2, 3, 1 +
√
−5, 1−

√
−5 are

irreducible elements† in A, and that:

2 · 3 = 6 = (1 +
√
−5) · (1−

√
−5)

gives two different irreducible decompositions of 6. Hence A is not a UFD.

Exercise. Let A be a UFD, K = Quot(A) and p(x) ∈ A[x] a monic polynomial.
Show that any K-root of p(x) must be an A-root.

† For z ∈ A, consider the norm N(z) = zz. Then N(z) ≥ 0 is an integer; moreover
N(z) = 1 ⇔ z ∈ A∗ ⇔ z = ±1. Further, N(z) < 5 ⇒ z ∈ Z. So for example,
z ·w = 2⇒ N(z)N(w) = N(z ·w) = N(2) = 4, hence z, w ∈ Z, and therefore either z = ±1
or w = ±1. Thus 2 ∈ A is irreducible. A similar story holds for 3, 1 +

√
−5, 1−

√
−5.
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Appendix: Gauss’s Lemma

We prove in this section that Z[x] is a UFD, and more generally, if A is a UFD then
A[x] is a UFD. This is a consequence of Gauss’s Lemma. For example, as a consequence,
we know that F[x] being a UFD ⇒ F[x, y] :=

(
F[x]

)
[y] is a UFD, where F[x, y] is the

ring of polynomials in the variables x and y. Thus by induction the polymonial ring in
n variables F[x1, . . . , xn], is a UFD. For n ≥ 2, one can argue that F[x1, . . . , xn] is not a
PID. For example the ideal (x, y) := {x ·f(x, y)+y ·g(x, y) | f, g ∈ F[x, y]} is not principal.
Thus Gauss’s Lemma also provides examples of UFD’s that are not PID’s.

Formulation of the Lemma

Let A be a UFD, and K = Quot(A) be its quotient field. Fix an irreducible p ∈ A.
For any given non-zero a ∈ A, we can write a = pνq, where q ∈ A, ν ≥ 0 is an integer,
and where (p, q) = 1. Now let b ∈ A be also non-zero, and write b = pµk, (p, k) = 1, µ
an integer ≥ 0. Then a

b = pν−µ q
k , where p is relatively prime to both numerator q and

denominator k, and where ν − µ ∈ Z. Thus for any non-zero element ξ ∈ K, we can write
ξ = p`h, where ` ∈ Z, h ∈ K and where p is relatively prime to both the numerator and
denominator of h. Let f(x) = anxn + · · ·+a0 ∈ K[x] be a non-zero polynomial. We define
the p-content of f(x) by the prescription cp(f) = pν , where ν ∈ Z is the minimum integer
among the list {νi | ai 6= 0, ai = pνiki, where p is relatively prime to both numerator and
denominator of ki ∈ K}. We define the content of f to be

c(f) =
∏

p irreducible

cp(f).

[Note that cp(f) and hence c(f) are defined only up to multiplication by units in A.]

Ex. Let f(x) = 1
4x3 + 3x2 + 1

6x + 7 ∈ Q[x]. Then for any prime p ∈ Z:

cp(f) =







1 if p 6= 2, 3
1
22 = 1

4
if p = 2

1
3 if p = 3

Thus cp(f) = 1
4 · 13 = 1

12 . Note that f = cp(f)·f1, where f1 = 12·f = 3x3+36x2+2x+84 ∈
Z[x], and where c(f1) = 1.

It is reasonably obvious that for any non-zero f ∈ K[x], f = c(f) ·f1, where f1 ∈ A[x],
and c(f1) = 1. In fact, for any non-zero h ∈ K[x], c(h) = 1⇒ h ∈ A[x].

Gauss’s Lemma. Let f, g ∈ K[x] be non-zero polynomials. Then c(f ·g) = c(f)·c(g).

Proof: Note that for any non-zero a ∈ K and non-zero h ∈ K[x], c(a ·h) = a · c(h). In
particular, if we write f = c(f)·f1 and g = c(g)·g1, then c(f ·g) = c(f)·c(g)⇔ c(f1·g1) = 1.
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Thus we may assume that c(f) = c(g) = 1 (hence f, g ∈ A[x]) and show that c(f · g) = 1.
Now write

f = anxn + · · ·+ a0, an 6= 0, a0, . . . , an ∈ A,

g = bmxm + · · ·+ b0, bm 6= 0, b0, . . . , bm ∈ A.

It suffices to show that cp(f · g) = 1 for all irreducible p ∈ A. Fix an irreducible p ∈ A.
Since cp(f) = cp(g) = 1, it follows that there is a smallest 0 ≤ r ≤ n, 0 ≤ s ≤ m for which
p is relatively prime to both ar and bs, i.e. (p, ar) = 1 and (p, bs) = 1, and yet p|ai for
i < r and p|bj for j < s. But in the product f · g, the constant term in front of xr+s is

∑

i+j=r+s

aibj =
(
arbs + [

∑

i+j=r+s,i<r

aibj +
∑

i+j=r+s,j<s

aibj]
)
.

Note that p
∣
∣[
∑

i+j=r+s,i<r aibj +
∑

i+j=r+s,j<s aibj ], hence p 6
∣
∣
(∑

i+j=r+s aibj

)
, other-

wise p|(arbs), which implies that either p|ar or p|bs. Thus c(f · g) = 1.

Now let f ∈ A[x] be a non-constant polynomial. Then it is easy to see that c(f) ∈ A,
and that we can write

f = c(f) · f1 = p`1
1 · · · p`N

N hk1
1 · · ·hkM

M ,

where c(f) = p`1
1 · · · p`N

N is the irreducible decomposition in A of c(f), {p1, . . . , pN} being
distinct irreducibles (up to times a unit) in A, `1, . . . , `n, k1, . . . , kM ∈ N, h1, . . . , hM ∈
A[x], c(h1) = · · · = c(hM ) = 1, {h1, . . . , hM} distinct irreducibles (up to times a unit) as
elements in K[x]. One can argue that this decomposition is unique, and hence A[x] is a
UFD.

Ex. Recall, as a consequence, Z[x] is a UFD. We can factor for example f = 12x3 −
48x2 + 6x + 36 ∈ Z[x] into irreducibles as follows:

cp(f) =

{
1 if p 6= 2, 3
2 if p = 2
3 if p = 3

Thus c(f) = 6, and f = 6 · (2x3 − 8x2 + x + 6), where c(2x3 − 8x2 + x + 6) = 1. We wish
to show that 2x3 − 8x2 + x + 6 is irreducible in Q[x], and this amounts to showing that
2x3− 8x2 + x + 6 has no Q-roots (being of degree 3). But the only candidates for Q-roots
are {±1,±2,±3,±6,± 1

2 ,± 3
2}, and none of these turn out to be roots of 2x3− 8x2 + x+ 6.

Thus
f = 2 · 3 · (2x3 − 8x2 + x + 6)

gives the irreducible decomposition of f in Z[x].
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Ring Homomorphisms

Assume given rings A, B with respective unities 1A, 1B . A ring homomorphism is a
map T : A→ B which satisfies the following: (Assume given any a1, a2 ∈ A)

1) T (a1 + a2) = T (a1) + T (a2),

2) T (a1 · a2) = T (a1) · T (a2),

3) T (1A) = 1B.

Remarks. Let T : A→ B be a ring homomorphism. Then:

(i) T (0) = 0. [Reason: T (0) = T (0 + 0) = T (0) + T (0)⇒ T (0) = 0.]

(ii) For any a, b ∈ A, T (a−b) = T (a)−T (b). [Reason: First 0 = T (0) = T (b+(−b)) =
T (b) + T (−b), hence T (−b) = −T (b). Thus T (a − b) = T (a + (−b)) = T (a) + T (−b) =
T (a)− T (b).] Exercise: Show that a ∈ A∗ ⇒ T (a) ∈ B∗.

(iii) The image of T , namely Im(T ) = T (A) := {T (a) | a ∈ A}, is a subring of B.
[This is an exercise for the reader.]

(iv) The kernel of T , defined by ker T = {a ∈ A | T (a) = 0}, is an ideal in A. [This
is an exercise for the reader.]

Ex. Consider the map T : Z → Zn given by T (m) = m ∈ Zn. Then T (m1 + m2) =
m1 + m2 = m1 +m2 = T (m1)+T (m2); T (m1 ·m2) = m1 ·m2 = m1 ·m2 = T (m1) ·T (m2);
T (1) = 1. Hence T is a ring homomorphism. Note that Im(T ) = Zn and that ker T =
{m ∈ Z | T (m) = 0} = {m ∈ Z | n|m} = (n).

Ex. Let A = Z2 = {0, 1}, B = 5Z10 = {0, 5}. Recall that both A and B are
fields. Consider the map T : A → B given by T (0) = 0, T (1) = 5. Then T is a ring
homomorphism (in fact an isomorphism, as will be defined below). [Note that Im(T ) = 5Z5

and kerT = 0.]

Ex. Let A = Q[x], B = Q. Consider the map T : Q[x] → Q given by T (p(x)) =
p(1) ∈ Q. Then T is a ring homomorphism. [Reason: T

(
f(x)+g(x)

)
=

(
f(x)+g(x)

)
(1) =

f(1) + g(1) = T (f(x)) + T (g(x)); T
(
f(x) · g(x)

)
=

(
f(x) · g(x)

)
(1) = f(1) · g(1) =

T (f(x)) ·T (g(x)); T (1) = 1.] Since T (r) = r for all r ∈ Q, it follows that Im(T ) = Q. Note
that kerT = {p(x) ∈ Q[x] | p(1) = 0} = {p(x) ∈ Q[x] | (x−1)|p(x)} = {q(x)·(x−1) | q(x) ∈
Q[x]} =

(
(x− 1)

)
.

For the next example, we need the following result:

Claim. A ring A with unity 1 6= 0 is a field ⇔ the only ideals in A are (0) and
(1) = A.

Reason: First, suppose A is a field, and U 6= (0) is an ideal. Then there is an x ∈ U
such that x 6= 0. Since A is a field, it follows that x−1 ∈ A, and therefore 1 = x−1 ·x ∈ U ,
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by definition of an ideal. Hence U = (1) = A. Conversely, suppose that the only ideals in
A are (0) and A, and let x ∈ A be given, with x 6= 0. The (x) := {y · x | y ∈ A} is an
ideal in A. Since x = 1 · x ∈ (x), it follows that (x) 6= (0). Thus (x) = (1) = A. Hence
y · x = 1 for some y ∈ A. Therefore A is a field.

Ex. Let F be a field, B a ring with unity 1 6= 0, and T : F→ B a ring homomorphism.
Then kerT = 0. [Reason: Since T (1) = 1, it follows that ker T 6= F. Since kerT is an ideal
in F, it follows that ker T = (0) = 0.]

Definition-Claim. Assume given A, B rings with unity, and T : A → B a ring
homomorphism. Then T is 1 − 1 (or injective), if either of the two equivalent conditions
hold:

1) T (a) = T (b)⇒ a = b, (a, b ∈ A).

2) ker T = 0.

[Reason: This is based on the observation that T (a) = T (b) ⇔ T (a) − T (b) = 0 ⇔
T (a−b) = 0⇔ a−b ∈ ker T .] The notation for a 1−1 map is T : A ↪→ B, or T : A >→ B.

Definition. A ring homomorphism T : A→ B is onto (or surjective), if Im(T ) = B.
Notation: T : A→> B.

Definition-Claim. A ring homomorphism T : A → B is said to be bijective (or an
isomorphism) if either of the following two equivalent conditions hold:

1) T is 1− 1 and onto. [Written T : A >→> B, or as in 2) below.]

2) There is a ring homomorphism S : B→ A such that T (S(b)) = b for all b ∈ B and
S(T (a)) = a for all a ∈ A. [Written T : A

∼→ B, or as in 1) above.]

[The equivalence of 1) and 2) is an exercise† for the reader.]

Ex. Any ring homomorphism T : F→ B, where F is a field, is injective.

Ex. A homomorphism T : A → A is called an endomorphism. An isomorphism
T : A

∼→ A is called an automorphism.

Preimages of homomorphisms. Let T : A→ B be a ring homomorphism. Let UB be
an ideal in B, and put

UA = T−1(UB) := {a ∈ A | T (a) ∈ UB}.

† For example, assumimg 1), it is easy to construct S : B → A, namely, for b ∈ B,
there exists a unique a ∈ A such that T (a) = b. Define S(b) = a. S is a homomorphism,
since T (1A) = 1B (⇒ S(1B) = 1A), and if b1 = T (a1), b2 = T (a2), then T (a1 + a2) =
T (a1)+T (a2) = b1+b2 and T (a1 ·a2) = T (a1) ·T (a2) = b1 ·b2. Thus S(b1+b2) = a1 +a2 =
S(b1) + S(b2), S(b1 · b2) = a1 · a2 = S(b1) · S(b2).
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Claim. UA is an ideal in A, called the inverse image ideal (of UB).

Reason: Since A (and B) is a ring with unity, it suffices to show that for any x, y ∈ UA,
and z ∈ A, x + y, z · x ∈ UA. But T (x), T (y) ∈ UB , hence T (x + y) = T (x) + T (y) ∈ UB ,
and T (z · x) = T (z) · T (x) ∈ UB . Thus x + y, z · x ∈ UA.

Ex. Put UB = (0) ⊂ B. Then UA = ker T , hence kerT is an ideal in A.

Quotient Rings

Given a ring A and an ideal U ⊂ A, we introduce a relation ∼ on A as follows:

a ∼ b⇔ a− b ∈ U .

Claim. ∼ is an equivalence relation on A.

Reason: First, a − a = 0 ∈ U ⇒ a ∼ a. Secondly a ∼ b ⇔ a − b ∈ U ⇒ b − a =
−(a − b) ∈ U ⇒ b ∼ a. Thirdly, if a ∼ b and b ∼ c, then a − b, b − c ∈ U , hence
a− c = (a− b) + (b− c) ∈ U , i.e. a ∼ c.

Definition-Claim. Let A be a ring and U ⊂ A an ideal. The quotient ring of A by
U is given by:

A/U = {a | a ∈ A & where a = b⇔ a ∼ b, i.e. a− b ∈ U},

and where +, • on A/U is induced from the corresponding +, • on A.

Ex. A = Z and U = (n), for some given integer n ≥ 2. Then A/U = Z/(n) = Zn.

Ex. U = (0) ⊂ A. A/U = A/(0) = A.

Ex. U = A. A/U = A/A = {0}.

Details of the Claim: First observe that there is a map A → A/U , a 7→ a. The
definition of +, • on A/U is governed by the “commutative” diagram below:

(x, y) 7→ x + y, x · y
A×A

+,•−→ A
↓ ↓ ↓ ↓

A/U ×A/U +,•−→ A/U
(x, y) 7→ x + y, x · y

Namely x + y := x + y, x · y := x · y. We must verify that +, • on A/U is well-defined.
That is, if x1 = x2 and y1 = y2, then x1 + y1 = x2 + y2 and x1 · y1 = x2 · y2. Put more
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explicitly, if x1−x2, y1−y2 ∈ U , must show that (x1 +y1)− (x2 +y2), x1 ·y1−x2 ·y2 ∈ U .
But

(x1 + y1)− (x2 + y2) = (x1 − x2)
︸ ︷︷ ︸

∈U

+ (y1 − y2)
︸ ︷︷ ︸

∈U

∈ U .

Next, if x1 = x2 + u, y1 = y2 + v, for some u, v ∈ U , then:

x1x2 = x2y2 + x2 · v + y2 · u + u · v
︸ ︷︷ ︸

∈U

.

Therefore x1y1 − x2y2 ∈ U . Next, since +, • on A/U is induced from +, • on A, it follows
that the associative, commutative and distributive laws hold for A/U (since they hold for
A). Likewise, we have 0 and additive inverses −x = (−x). Thus A/U is a ring. Note that
if U 6= A, then A/U is a ring with unity 1 ∈ A, provided that A has unity 1 ∈ A.

Remark. It is instructive to describe the equivalence relation for the ring A above
(with ideal U ⊂ A) in terms of coset decompositions. Recall that x ∼ y ⇔ x − y ∈ U ,
equivalently, x ∈ y + U := {y + u | u ∈ U}. That is, {x ∈ A | x ∼ y} = y + U . Note that
for x, y ∈ A, either x + U = y + U (in which case x ∼ y), or {x + U} ∩ {y + U} = ∅ (in
which case x 6∼ y). Moreover, for some subset I ⊂ A:

A =
⋃

x∈A

{x + U} =
∐

x∈I

{x + U}.

Claim. Let A be a ring with unity 1 ∈ A, and U ⊂ A an ideal such that U 6= A.
Then the natural map T : A→ A/U , given by T (x) = x ∈ A/U is a ring homomorphism;
moreover kerT = U .

Reason: First of all, by definition T (1) = 1, i.e. T preserves unity. Next:

T (x + y)
def
= x + y = x + y

def
= T (x) + T (y).

T (x · y)
def
= x · y = x · y def

= = T (x) · T (y).

Thus T is a ring homomorphism. The statement ker T = U is easy to prove, and is left for
the reader.

Exercise. Assume given a ring homomorphism T : A → B. Show that T can be
factored in the diagram below:

A
T−→ A

(onto) ↓ ↑ (1− 1)

A/ kerT
T ∼−→ Im(T ),
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where T is an isomorphism.

From Primes to Ideals in Rings

We want to explain a natural progression from primes to ideals in rings, as indicated
in the diagram below:

Primes/Irreducibles
in Z

↔ Ideals in
Rings A

↖↘ ↗↙
Primes/Irreducibles

in Rings A

Definition-Claim. Let A be a ring with unity 1 6= 0. An ideal P ⊂ A is said to be
prime, if P 6= (1) and either of the two equivalent conditions hold:

1) A/P is an integral domain.

2) Given x, y ∈ A, then x · y ∈ P ⇒ x ∈ P or y ∈ P.

Reason: [Note that 1 6= 0 in A/P ⇔ P 6= (1), which is the case for a prime ideal.] For
x ∈ A, let x ∈ A/P be the corresponding element. Lets assume that A/P is an integral
domain, and that x, y ∈ A are given such that x · y ∈ P. Then 0 = x · y = x · y. But

x · y = 0⇒ x = 0 (⇒ x ∈ P), or y = 0 (⇒ y ∈ P).

Thus we have shown that 1) ⇒ 2). Next, suppose that 2) holds and that x · y = 0. Then
x · y ∈ P. Thus either x ∈ P ⇒ x = 0 or y ∈ P ⇒ y = 0. Thus 2) ⇒ 1), and we’re done.

Ex. A. Let U ⊂ Z be an ideal. Recall that U = (n) for some integer n ≥ 0. Then U is
prime ⇔ either n = 0, or n = p is prime. This is because Z/(0) = Z, and that for n ≥ 2,
Zn is an integral domain ⇔ n = p is prime.

Definition-Claim. Let A be a ring with unity 1 6= 0. An idealM⊂ A is said to be
maximal, if M 6= (1) and either of the two equivalent conditions hold:

1) A/M is a field.

2) For any ideal U ⊂ A withM⊂ U , either U =M or U = A.

Reason: [Note that 1 6= 0 in A/M⇔M 6= (1), which is the case for a maximal ideal.]
Suppose that 1) holds and that U is an ideal withM⊂ U , but U 6=M. Choose x ∈ U such
that x 6∈ M. Then x 6= 0 in A/M. Thus there exists y ∈ A/M such that y ·x = 1 ∈ A/M.
This is the same as saying that 1−y ·x ∈ M. Thus 1 ∈ y ·x+M⊂ U . Hence U = (1) = A.
We have just shown that 1)⇒ 2). Conversely, suppose that 2) holds, and let x ∈ A/M be
given such that x 6= 0 ∈ A/M (⇒ x 6∈ M). Put U = {y · x + m | y ∈ A, m ∈ M}. Then
one can easily verify that U is an ideal, withM⊂ U (since 0 · x + m ∈ U for all m ∈ M),
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and with x = 1 · x + 0 ∈ U . Thus U 6=M, and hence U = A. Therefore 1 = y · x + m for
some y ∈ A and m ∈ M. Therefore modulo M, y · x + m = 1 ∈ A/M. But m = 0 in
A/M, hence y · x = 1, i.e. A/M is a field. Thus 2) ⇒ 1), and we’re done.

Remark. Since every field is an integral domain, it follows that any maximal ideal is
prime. However, not every prime ideal is maximal. [Compare Ex. A above with Ex. B
below.]

Ex. B. The maximal ideals in Z are the ideals of the form (p) where p is prime. This
is because for n ≥ 2, Zn is a field ⇔ n = p is prime.

The Ring F[x]

Let F be a field, and U ⊂ F[x] an ideal. Recall that F[x] is a PID, and hence
U =

(
f(x)

)
for some f(x) ∈ F[x].

Claim. (1) U is prime ⇔ either U = (0), or U =
(
p(x)

)
, where p(x) is prime (=

irreducible).

(2) U is maximal ⇔ U =
(
p(x)

)
, where p(x) is prime (= irreducible).

Reason: First, since F[x] is an integral domain, and that F[x]/(0) = F[x], it follows
that (0) is a prime ideal. Next ,suppose that p(x) ∈ F[x] is prime, and that h(x) ∈ F[x]
is given such that h(x) 6= 0 ∈ F[x]/

(
p(x)

)
, i.e. h(x) 6∈

(
p(x)

)
, i.e. p(x) 6 |h(x). Then

since p(x) is prime and p(x) 6 |h(x), it follows that
(
p(x), h(x)

)
= 1. Therefore 1 =

`(x) · p(x) + k(x) · h(x) for some `(x), k(x) ∈ F[x]. Thus modulo
(
p(x)

)
,

1 = k(x) · h(x),

i.e. h(x)
−1

= k(x) ∈ F[x]/
(
p(x)

)
. Therefore F[x]/

(
p(x)

)
is a field, and hence

(
p(x)

)
is

maximal. Note that if U =
(
f(x)

)
, where f(x) is not prime (hence not irreducible), then

f(x) = g(x) · h(x), where f(x) 6 |g(x) and f(x) 6 |h(x). Therefore g(x) 6= 0 and h(x) 6= 0
in F[x]/U , and yet g(x) · h(x) = f(x) = 0 ∈ F[x]/U . Therefore F[x]/U has non-zero zero
divisors, and hence it is neither an integral domain, nor a field.

Summary

(I) The prime ideals in Z are:

(0), {(p) | p ∈ N prime}
︸ ︷︷ ︸

maximal

.

(II) The prime ideals in F[x] are:

(0), {
(
p(x)

)
| p(x) ∈ F[x] prime}

︸ ︷︷ ︸

maximal

.
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Ex. Consider F = R, and p(x) = x2 + 1 ∈ R[x]. Then p(x) is irreducible in R[x],
since it has no real roots, hence R[x]/

(
p(x)

)
is a field. Let x be the image of x ∈ R[x]

under the map:

R[x]→ R[x]
(
p(x)

) =: R[x] := {a + bx | x2 + 1 = 0}.

Consider the map T : C → R[x] given by T (a + b
√
−1) = a + bx. Then T is in fact an

isomorphism. Thus the complex numbers can be reconstructed via quotient rings.

Ex. Let F = Z2, and p(x) = x2 + x + 1 ∈ Z2[x]. Then recall that p(x) is irreducible
in Z2[x] since it has no roots in Z2. Therefore Z2[x]/

(
p(x)

)
is a field. Let α be the image

of x ∈ Z2 under the natural map:

Z2[x]→ Z2[x]
(
p(x)

) =: Z2[α], (where 0 = p(α) = α2 + α + 1).

Then Z2[α] is the field we discussed earlier regarding solutions of quadratic equations, and
here it is reconstructed via quotient rings.
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Applications of Algebra to Geometry

Ruler and Compass Constructions

The Tools

(I) Euclidean Ruler: Can draw a line through any two distinct points P and Q in the
Euclidean plane R2.

↔
PQ :

/
•Q
/

/
/
•P

/

(II) Euclidean Compass: Assume given two distinct points P and Q in E. Can draw
a circle with center P passing through Q.

CP (Q) :

Q
•

P • −→
)

Key Example Constructions

1) Perpendicular bisector of a line segment PQ. Draw CP (Q) and CQ(P ). Then

CP (Q)∩CQ(P ) = {R, S}. Now draw
↔
RS. It intersects PQ perpendicularly at the midpoint

of this segment. Thus we can bisect a segment using ruler and compass.

|
×R
|
|
|

− − − • − −− • − −− • − − −
P | Q

|
|
×S
|

2) Construct a perpendicular to a given line `, through a given point X ∈ `. Choose
any P ∈ `, with P 6= X. Draw CX(P ). Then CX(P )∩` = {P, Q}. Now use 1) to construct
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a perpendicular bisector of PQ.

|
|
|

− − − • − −− • − −− • − − −
Q X P

∣
∣

|
3) Given three distinct points {P, Q, R}, can construct a rectangle | |PQST , such

that length(PT ) = length(PR). Construct `1 perpendicular to
↔

PQ at P . Draw CP (R)

to arrive at T in the diagram below. Next, draw `2 perpendicular to
↔

PT at T , and then

draw `3 perpendicular to
↔

PQ at Q. Then set S = `2 ∩ `3.

|`1 |`3

R
• | |

∖
| |

P • − − − −− −−•Q
| |
| |

T • − −− − −−− •S −− `2

| |
Exercise. We introduce a relation on the set of line segments in the plane R2. Namely

PQ ∼= TS ⇔ length(PQ) = length(TS). Show that ∼= is an equivalence relation.

4) Segment Construction Theorem. Given a line segment PQ, and a ray
→

AB, one can

construct a point C on
→

AB by ruler and compass, such that PQ ∼= AC.

•Q
/

/
/
•P

A • − − − −×C −−−−−− •B − →

To carry out the construction, do the following: Construct a rectangle | |PAST , as in

3), such that PT ∼= PQ. Next, draw CA(S). Then CA(S) ∩
→

AB = C.

Angles

The notation, 6 BAC is used to describe an angle:

/ˆ

B•
/

A•/−−−−−•C−−→
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We consider the angle measure map m : {Angles ⊂ E} → [0, 360), and say that 6 BAC ∼=
6 DEF ⇔ m 6 BAC = m 6 DEF . Again, one argues that ∼= is an equivalence relation.

5) Angle Construction Theorem. In ruler and compass geometry, there is the following
analogue of the segment construction theorem (which we won’t prove†): Assume given

6 BAC and a ray
→

PQ in R2. Then by ruler and compass, one can construct a point R in
R2 such that 6 RPQ ∼= 6 BAC.

/ˆ

B•
/

A•/−−−−−•C−−→

•R

P • − − −− − − •Q −−−− →

For the next part, the following notation is useful. Given the angle and line segment
below:

/ˆ

B•
/

A•/−−−−−•C−−→

P • − −− − −− •Q

We write 6 A for 6 BAC, if there is no possibility of confusion; and write PQ for the length
of PQ.

Congruence of Triangles

Assume given (triangles) 4ABC and 4DEF .

B•
/\

/ \
/ \

/ \
A
•−−−−•

C

E•
/\

/ \
/ \

D
•−−−•

F

Suppose that the dictionary:
A ↔ D
B ↔ E
C ↔ F

† If for simplicity of argument, we consider the case of an acute 6 BAC, i.e. m 6 BAC <
90, then consider this construction: Draw CA(B) and CC(B). Then CA(B) ∩ CC(B) =

{B, D}. Next, draw
→

BD. Then
→

BD ∩
→

AC = T say. By segment construction, construct

a point M on
→

PQ such that PM ∼= AT . Next, construct a line ` perpendicular to
→

PQ at
M . Construct R on ` such that RM ∼= BT . Then 6 RPQ ∼= 6 BAC.
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induces the following:

6 A ∼= 6 D
6 B ∼= 6 E
6 C ∼= 6 F

and
AB

DE
=

BC

EF
=

AC

DF
.

Then we say that 4ABC and 4DEF are similar triangles, and in this case we write
4ABC ∼ 4DEF .

Exercise. Show that ∼ is an equivalence relation on the set of triangles in the plane
R2.

There is the following well-known AAA Similarity Theorem: If the dictionary:

A ↔ D
B ↔ E
C ↔ F

induces:
6 A ∼= 6 D
6 B ∼= 6 E
6 C ∼= 6 F

,

then 4ABC ∼ 4DEF .

Recall the following well known result, that the sum of the measures of the (interior)
angles of a triangle add up to 180. Thus:

180− (m 6 A + m 6 B) = m 6 C
180− (m 6 D + m 6 E) = m 6 F

.

In particular, this leads to the AA Similarity Theorem: If two pairs of corresponding angles
of two triangles are congruent, then the triangles are similar.

Algebra with Ruler and Compass, Part I

Assume given a, b ∈ R, with a > 0, b > 0, and the quantities a, b, 1 represented by the
lengths of any given line segments, such as below:

A • − −
a
−−− •B

•
|

1 |
|
•

•D
/

b/
/
•C

I.e. AB = a, CD = b.
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(a) The sum “a+ b”. Use segment construction to arrive at a point Q on the ray
→

AB,
such that BQ = CD.

A • − −
a
−−− •B −−−−−

︸ ︷︷ ︸

b

•Q −−− →

Thus AQ = a + b, i.e. AQ represents “a + b”.

(b) Multiplicative inverse 1
a . Choose any 6 QAR. Then segment construct B, D on

→
AQ, and C on

→
AR, such that AC = AD = 1 and such that AB = a. Duplicate (viz.

construct S) 6 ABC to 6 ADS (angle construction theorem). Set E =
→

AR ∩
→

DS

S• •R

\/
E•
/\

/ \
/ \

/ \
/ \

C • \
/\ \

/ \ \
/ \ \

/ \ \
A • − − − • B − D • − −− − − •Q −− →

Then using the dictionary:

A ↔ A
B ↔ D
C ↔ E

with 6 A ∼= 6 A, 6 B ∼= 6 D, it follows by the AA Theorem that 4ABC ∼ 4ADE. Thus

1

a
=

AD

AB
=

AE

AC
=

AE

1
= AE,

hence AE represents 1/a.

(c) The product ab. We use essentually the same kind of diagram as in (b), duplicating
6 PY X to 6 PWZ (i.e. constructing the point Z in the process via the angle duplication
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theorem process) viz.:

/

W •
/\

/ \
/ \

/ \
/ \

Y • \
/\ \

/ \ \
/ \ \

/ \ \
P • − −− • X − Z • − − −− − •Q −− →

\

Where PX = a, PY = 1, PW = b. Using the dictionary:

P ↔ P
X ↔ Z
Y ↔ W

to establish the similarity, viz.: 4PXY ∼ 4PZW , it follows that:

PZ

a
=

PZ

PX
=

PW

PY
=

b

1
,

hence PZ = ab, i.e. PZ represents ab. Note that b/a = b · 1
a , and by (b) and (c) above,

we can now construct a segment representing b/a.

(d) Square root of a > 0. Constructing
√

a:

|
•S
|
|
|
|
|
|

P • − −− −−
︸ ︷︷ ︸

1

•Q−− •M −−−−−−−−
︸ ︷︷ ︸

a

•R

First construct collinear P −Q−R, i.e. Q between P and R, such that PQ = 1, QR = a.
[This involves the segment constructions PQ and QR.] Next, bisect PR in a point M .
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Thus 2 ·PM = 1+a, or equivalently PM = 1+a
2 . Draw ` perpendicular to

↔
PR at Q. Draw

CM (R) to arrive at the point S above. Since S is a point on a circle through {P, R, S}, with
diameter line segment PR, it is well-known that m 6 RSQ + m 6 PSQ = 90. Furthermore,
since 4PQS is a right angle triangle, and the sum of the measures of the (interior) angles
of a triangle add up to 180, it follows that m 6 SPQ + m 6 PSQ = 90. Therefore

m 6 RSQ + m 6 PSQ = 90
m 6 SPQ + m 6 PSQ = 90

}

⇒ m 6 SPQ = m 6 RSQ.

Using the AA Similarity Theorem applied to the dictionary:

P ↔ S
Q ↔ Q
S ↔ R

It follows that 4PQS ∼ 4SQR. Therefore:

1

QS
=

PQ

QS
=

SQ

QR
=

QS

a
.

Hence (QS)2 = a, i.e. QS =
√

a, and thus QS represents
√

a.

Algebra with Ruler and Compass, Part II

Recall that given a, b ∈ R, a > 0, b > 0, we can construct segments representing
the quantities a + b, 1

a (and more generally b
a ), ab, and

√
a, by ruler and compass. By

segment construction, these values can be transplanted on the ray
→
01, on the x-axis in the

Euclidean plane R2. Now given any x ∈ R, with x > 0, we can view x ∈
→
01 ⊂ R2. Thus

we can draw C0(x) to get “−x” on the x-axis
↔
01 = R.

↑
|
|
|
|

− − −x • − −− •0 −−− •x −− →
|
|
|
|

Next, for a given real number y > 0, w can find a point Q on the ray
→
−x0 such that the

length(−xQ) = y. Thus Q represents “y − x” = y + (−x) on R =
↔
01.
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y−x

↓
← − − −−x • − − − − •0 −−−−−

︸ ︷︷ ︸

y

•Q −−− →

Next, suppose x, y ∈ R, x > 0, y > 0. To construct (−x)y, do the following on

R =
↔
01 ⊂ R2:

(−x)
draw C0(−x)7→ x

•y7→ xy
draw C0(xy)7→ − (xy).

Thus the esential idea in doing “algebra” on R by ruler and compass, is to start with

values in R, identified with
↔
01 ⊂ R2, and using ruler and compass on R2, transplant

the new values back on R =
↔
01. In this way, the ruler and compass constructions define

+, • operations on R synthetically, giving R the structure of a field. Furthermore, we can
also construct

√
a for real a > 0. The following picture summarizes what we have just

described:

a, b ∈ R
a, b > 0

}

⇒





Ruler & Compass
Operations

on R2



 ⇒
{

a + b, ab, 1/b, a/b√
a, −a, a− b

A Special Field

Given 0, 1 ∈ R, we construct the subfield of R generated by {0, 1} under the “algebra”
of ruler and compass constructions.

Definition. Let L be the subfield of R generated by {0, 1} under the following
operations: a + b, −b, ab, 1/a if a 6= 0, and

√
a if a > 0.

Remarks. (1) Q ⊂ L is a subfield.

(2) For example

√
2, 4
√

3 :=

√√
3, 8
√

5 :=

√
√√

5,

√
2 +
√

3

10 + 12(4
√

5)
,

√

4
√

3 +
√

8 + 5,

are elements of L.

(3) Fact: π, e 6∈ L.

We introduce the L-plane L2 := L × L = {(x, y) ∈ R2 | x, y ∈ L}. We will later
see that L is “much smaller” than R, in the sense that L is countable, whereas R is
uncountable; however from the “naked eye”, L and R, and similarly L2 and R2, “look the
same”.
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Definitions. (i) (x, y) ∈ R2 is called an L-point if (x, y) ∈ L2.

(ii) A line ` ⊂ R2 is called an L-line if it contains two distinct L-points.

(iii) An L-circle is a circle centered at an L-point and whose radius ∈ L.

(iv) An L-equation is an equation of the form:

Ax + By + C = 0 or x2 + y2 + Dx + Ey + F = 0,

where A, B, C, D, E, F ∈ L.

Claim. ` ⊂ R2 is an L-line ⇔ ` is the graph of some L-equation of the form
Ax + By + C = 0, where (A, B) 6= (0, 0).

Reason: Assume ` is an L-line, and let P = (p1, p2), Q = (q1, q2) ∈ ` ∩ L2, with
P 6= Q. Thus either p1 6= q1 or p2 6= q2. Lets assume say p1 6= q1, and set m = p2−q2

p1−q1
.

Then ` is given by y−p2

x−p1
= m, or y − p2 = m(x − p1). Thus Ax + By + C = 0, where

A = m, B = −1, C = p2 −mp1 ∈ L, i.e. ` is the graph of an L-equation. Conversely, if
` is the graph of an L-equation of the form Ax + By + C = 0, with A, B, C ∈ L, and say
B 6= 0, then P := (0,−C/B), Q := (1,−(C + A)/B) ∈ ` ∩ L2 are two distinct L-points.
Thus ` is an L-line.

Claim. C ⊂ R2 is an L-circle ⇔ C is the graph of some L-equation of the form
x2 + y2 + Dx + Ey + F = 0, where D, E, F ∈ L, and D2 + E2 − 4F > 0.

Reason: Suppose that C is an L-circle. Thus C is centered at some P = (p1, p2) ∈ L2,
with radius r ∈ L, r > 0. Thus C is the graph of the equation (x− p1)

2 + (y − p2)
2 = r2.

Equivalently:
x2 + y2 + (−2p1)

︸ ︷︷ ︸

=:D∈L

x + (−2p2)
︸ ︷︷ ︸

=:E∈L

y + (p2
1 + p2

2 − r2)
︸ ︷︷ ︸

=:F∈L

= 0.

Thus C is the graph of an L-equation. Conversely, given an L-equation of the form:

x2 + y2 + Dx + Ey + F = 0, D, E, F ∈ L, D2 + E2 − 4F > 0,

we complete the square to get:

(
x− (−D/2)

)2
+

(
y − (−E/2)

)2
=

D2 + E2 − 4F

4
.

Thus C is an L-circle, with center P := (−D/2,−E/2) ∈ L2, and radius

r :=

√

D2 + E2 − 4F

4
∈ L.

Claim. Let `, `1 ⊂ R2 be distinct L-lines, and let C, C1 ⊂ R2 be distinct L-circles.
Then, assuming non-empty intersections, we have:
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(i) ` ∩ `1 ∈ L2.

(ii) C ∩ C1 ⊂ L2.

(iii) ` ∩ C ⊂ L2.

Reason: Consider the L-equations:

` : Ax + By + C = 0
`1 : A1x + B1y + C1 = 0
C : x2 + y2 + Dx + Ey + F = 0
C1 : x2 + y2 + D1x + E1y + F1 = 0

(i) We can assume that

det

[
A B
A1 B1

]

6= 0,

so that by Cramer’s rule,

` ∩ `1 =

(det

[
−C B
−C1 B1

]

det

[
A B
A1 B1

] ,

det

[
A −C
A1 −C1

]

det

[
A B
A1 B1

]

)

∈ L2.

(ii) Subtracting the equation for C1 from the equation for C leads to:

(D −D1)x + (E −E1)y + (F − F1) = 0,

where one can argue that either D − D1 6= 0 or E − E1 6= 0. [This is because the circles
must have different centers, i.e. (−D/2,−E/2) 6= (−D1/2,−E1/2).] Let us suppose that
say D −D1 6= 0. Then we can solve for x, viz.:

(?) x =

(
E1 − E

D −D1

)

y +

(
F1 − F

D −D1

)

.

Substituting this for x in the equation for C yields:

[(
E1 − E

D −D1

)

y +

(
F1 − F

D −D1

)]2

+ y2 + D

[(
E1 −E

D −D1

)

y +

(
F1 − F

D −D1

)

+Ey

]

+ F = 0.

Equivalently,

[(
E1 −E

D −D1

)2

+ 1

︸ ︷︷ ︸

=:a∈L, Note: a>0

]

y2 +

[

2

(
E1 −E

D −D1

)(
F1 − F

D −D1

)

+ D

(
E1 − E

D −D1

)

+ E

︸ ︷︷ ︸

=:b∈L

]

y
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+

[(
F1 − F

D −D1

)2

+ D

(
F1 − F

D −D1

)

+F

︸ ︷︷ ︸

=:c∈L

]

= 0.

We can solve for y in the above quadratic equation, by the quadratic formula. Since
C ∩C1 6= ∅ is assumed, the two (including multiplicity) y-roots must be real. In particular
∆ := b2 − 4ac ≥ 0. But the coefficients a, b, c ∈ L, and hence so is

√
∆ ∈ L. In particular

the y-roots ∈ L, and the corrsponding values of x from (?) belong to L. Thus C ∩C1 ∈ L2.

(iii) Solve for y in terms of x, or x in terms of y, from the equation Ax + By + C = 0.
Then substitute it in for y, or x, in the equation x2 + y2 + Dx + Ey + F = 0. Now use
the quadratic formula, and the fact that L is closed under

√
a for a ∈ L, a > 0, to deduce

that ` ∩ C ∈ L2. The details are similar to that in (ii) above.

Another way of stating the above claim is this: For any L-line ` ⊂ R2, and L-circle
C ⊂ R2, put ` = ` ∩ L2, and C = C ∩ L2. Then†:

` ∩ `1 = ` ∩ `1, C ∩ C1 = C ∩ C1, ` ∩ C = ` ∩ C.

The upshot is that all ruler and compass constructions in R2 can be carried out in L2.

Some Field Theory: Quadratic Extensions

Let F ⊂ R be a subfield, and assume given k ∈ F such that
√

k 6∈ F.

Ex. F := Q ⊂ R is a subfield, k := 2 ∈ Q, and yet
√

2 6∈ Q.

Ex. F = R, k := −1 ∈ R, and yet
√
−1 6∈ R.

We put

F[
√

k]
def
= {x + y

√
k ∈ C | x, y ∈ F}.

[We will show that F[
√

k] is a field, called a quadratic field extension of F.]

Ex. R[
√
−1] = C.

Ex. The subfield Q[
√

2] ⊂ R was studied earlier.

Claim. F[
√

k] is a subfield of C, containing F as a subfield. [Note: If k > 0, then
likewise F[

√
k] is a subfield of R.]

† Let ` ⊂ R2 be an L-line, with two distinct L-points P, Q ∈ `. Then it follows that
{P + λ · (Q− P ) | λ ∈ L} ⊂ `. Also, if C ⊂ R2 is an L-circle with L-point P = (p1, p2)
as center, and with radius 0 < r ∈ L, then for any q1 ∈ L with |q1 − p1| ≤ r, there exists
q2, q̃2 ∈ L such that q2 ≤ p2 ≤ q̃2 and that Q := (q1, q2), Q̃ := (q1, q̃2) ∈ C. From the
point of view of point-set topology, this implies that ` (resp. C) is dense in ` (resp. C).
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Reason: It is reasonably clear that the inclusions F ⊂ F[
√

k] ⊂ C are inclusions of
subrings [exercise for the reader]. Thus we need only verify the existence of multiplicative
inverses for nonzero elements of F[

√
k]. We first observe that since

√
k 6∈ F, the following

is true:

1) If z = x + y
√

k ∈ F[
√

k], then z = 0 ⇔ x = y = 0. [Reason: If z = 0 and y = 0,
then 0 = x + 0

√
k ⇒ x = 0, a fortiori z = 0. So assume that z = 0, but that y 6= 0. Then√

k = −xy−1 ∈ F, which violates
√

k 6∈ F. Hence z = 0⇔ x = y = 0.]

2) For z = x+y
√

k ∈ F[
√

k], put z = x−y
√

k (conjugate† of z). Then conjugation ( ) is
a well-defined operation on F[

√
k]. [Reason: Let z1 = x1 +y1

√
k, z2 = x2 +y2

√
k ∈ F[

√
k].

Then z1 = z2 ⇔ z1−z2 = 0⇔ (x1−x2)+(y1−y2)
√

k = 0⇔ x1 = x2 & y1 = y2 ⇔ z1 = z2.]

3) We define the norm map N : F[
√

k]→ F by the formula N(z) = zz. For example,
if z = x+y

√
k, then N(z) = x2−ky2. Then N(z) = 0⇔ z = 0. [Reason: If N(z) = y = 0,

then x = 0, a fortiori z = 0. So assume that N(z) = 0 but that y 6= 0. Then k = ( x
y
)2, i.e.√

k = ±(x
y ) ∈ F, which violates

√
k 6∈ F. Therefore N(z) = 0⇔ z = 0.]

Now assume given z ∈ F[
√

k], with z 6= 0. Then N(z) ∈ F and N(z) 6= 0. Note
that N(z)−1 ∈ F, and that z ·N(z)−1 ∈ F[

√
k]. Furthermore, z ·

(
z ·N(z)−1

)
= 1, hence

z−1 = z ·N(z)−1 ∈ F[
√

k]. Thus F[
√

k] is a subfield of C.

Remarks. (a) For a subfield F ⊂ R and k ∈ F, k > 0 given, with
√

k 6∈ F, then
F[
√

k] ⊂ R is a subfield of R. This will be the situation regarding subfields of L from
ruler and compass geometry.

(b) Note that z = z, and that z = z ⇔ z ∈ F. The following properties of conjugation
and norm, introduced above, are easy to verify:

(i) For z1, z2 ∈ F[
√

k], z1z2 = z1z2.

(ii) For z1, z2 ∈ F[
√

k], N(z1z2) = N(z1)N(z2). [Note: This follows from (i) above.
N(z1z2) = z1z2z1z2 = z1z2z1z2 = (z1z1)(z2z2) = N(z1)N(z2).]

The following examples will serve as motivation for the next claim.

Ex. Let f(x) = x2 + x + 1 ∈ R[x] be given. Then

f(x) = 0⇔ x =
−1±

√
−3

2
.

Let z = −1+
√
−3

2 ∈ R[
√
−3] ∈ C. Then z = −1−

√
−3

2 ∈ R[
√
−3], and f(z) = f(z) = 0.

† Note that for z ∈ R[
√
−1], z is complex conjugation. For z ∈ Q[

√
2], the conjugate z

is not complex conjugation.
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Ex. Let f(x) = x2 + x− 1
4 ∈ Q[x]. Then

f(x) = 0⇔ x =
−1±

√
2

2
.

Let z = −1+
√

2
2 ∈ Q[

√
2] ∈ R. Then z = −1−

√
2

2 ∈ Q[
√

2], and f(z) = f(z) = 0.

Claim. Assume given a field F, k ∈ F, with
√

k 6∈ F. Let f(x) ∈ F[x], and suppose
that f(z) = 0 for some z ∈ F[

√
k]. Then f(z) = 0. [Thus f(z) = 0⇔ f(z) = 0.]

Reason: Write f(x) = anxn + an−1x
n−1 + · · ·+ a1x + a0, with a0, . . . , an ∈ F. Then

aj = aj for all j = 0, . . . , n. Let z ∈ F[
√

k], with f(z) = 0. Then:

0 = f(z) = f(z) = anzn + an−1zn−1 + · · ·+ a1z + a0 = anzn + an−1z
n−1 + · · ·+ a1z + a0

= anzn + an−1z
n−1 + · · ·+ a1z + a0 = f(z).

The Ruler and Compass Field L

Recall that L ⊂ R is the subfield generated by 0 and 1 under the operations:

a + b, −a,
a

b
(b 6= 0), ab,

√
a (a > 0).

Thus, for example

√
√√

12,
√√

2−
√

3,
√√

10−
√

14 + 15,−
√

2/
√

3 are elements of L.

Definition. Assume given an increasing “tower” of subfields:

Q = F0 ⊂ F1 ⊂ F2 ⊂ F3 ⊂ · · · ⊂ Fn ⊂ R,
6= 6= 6= 6= 6= 6=

where Fj+1 = Fj [
√

kj+1], kj+1 ∈ Fj , kj+1 > 0, with
√

kj+1 6∈ Fj . We say that Fn is an
L-subfield of order n. [Note that Fn ⊂ L.]

Remark. There is only one F0, namely F0 = Q; however there are many possible Fn’s
for a given n ≥ 1. For example, Q[

√
2], Q[

√
3] represent two different F1’s.

Examples of Towers:

Q ⊂
6=

Q[
√

2] ⊂
6=

(
Q[
√

2]
)[√√

2
]
⊂
6=

(
(
Q[
√

2]
)
[
√√

2]

)[√
√√

2

]

⊂
6=

|| || || ||

F0 ⊂
6=

F1 ⊂
6=

F2

6 ||
F2

⊂
6=

F3

6 ||
F3

· · ·

|| || || ||

Q ⊂
6=

Q[
√

2] ⊂
6=

(
Q[
√

2]
)[√

3
]

⊂
6=

(
(
Q[
√

2]
)
[
√

3]

)[
√√

3

]

⊂
6=
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Basic Observation 1: x ∈ Fn ⇔ x is obtained from Q by applying at most n
√

operations.

Ex. x =

√
√√

2 ∈ F3 :=

(
(
Q[
√

2]
)[√√

2
])

)[√
√√

2

]

Basic Observation 2: x ∈ L ⇒ x ∈ Fn for some Fn. [Reason: x is obtained from
{0, 1} ⊂ Q via a finite number of the operations: ±, •,÷,

√
+ve.]

Definition. x ∈ L is an L-number of order n if x ∈ Fn for some Fn. I.e. x is obtained
from {0, 1} ⊂ Q via ±, •,÷ and by at most n applications of

√
+ve.

Ex.
√

2+5
√

3√
2
∈

(
Q[
√

2]
)[√

3
]

has order 2.

Ex.

√
√√

10 +
√

10 has order 3.

Key Claim I. Assume given a subfield F ⊂ R, and k ∈ F, with
√

k 6∈ F. Let
p(x) = x3 + ax2 + bx + c ∈ F[x] be given, and suppose that p(z) = 0 for some z ∈ F[

√
k].

Then p(r) = 0 for some r ∈ F.

Reason: Write z = a + b
√

k, a, b ∈ F, and recall the conjugate z = a− b
√

k, the norm
N(z) = zz ∈ F, and that p(z) = 0 ⇔ p(z) = 0. Note that z = z ⇔ b = 0 ⇔ z ∈ F. Thus
if z = z, just set r = z ∈ F. Therefore we can assume that z 6= z, and hence z, z are two
distinct roots of p(x). Put g(x) = (x−z)(x−z) = x2−(z+z)x+zz = x2+(−2a)x+N(z) ∈
F[x]. By Euclid division, p(x) = q(x)g(x) + r0(x), where q(x), r0(x) ∈ F[x], and where
deg r0(x) ≤ 1. Thus

r0(z) = p(z)− q(z)g(z) = 0 = p(z)− q(z)g(z) = r0(z).

In particular r0(x) has two distinct roots, namely z and z. But recall that r0(x) ∈ F[x] ⊂
(
F[
√

k]
)
[x] has at most one root in F[

√
k], or r0 = 0. Thus it is clear that r0 = 0, hence

p(z) = q(x)g(x). Taking degrees, it is clear that deg q(x) = 1. Next, we recall that
q(x) ∈ F[x] has exactly one root r ∈ F. Thus p(r) = q(r)g(r) = 0, and we’re done†.

As a consequence of the above claim, we arrive at:

Key Claim II. Let p(x) = x3 + ax2 + bx + c ∈ Q[x] be given. Suppose that p(z) = 0
for some z ∈ L. Then p(r) = 0 for some r ∈ Q.

† Another argument, using the Fundamental Theorem of Algebra, goes as follows. First
reduce to the case where z 6= z are roots of p(x). We can then factor p(x) = x3 + ax2 +
bx+ c = (x− z)(x− z)(x− r), for some r ∈ C. But c = −rN(z), where N(z) = z · z ∈ F×.
Thus r = − c

N(z) ∈ F.
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Reason: z ∈ L ⇒ z = zn ∈ Fn for some Fn (and some n). But by definition, Fn

comes from a tower:

Q = F0⊂
6=

F1⊂
6=

F2⊂
6=

· · · ⊂
6=

Fn−1⊂
6=

Fn,

where Fj = Fj−1[
√

kj ], (kj ∈ Fj−1,
√

kj 6∈ Fj−1), j = 1, . . . , n. Thus p(x) ∈ Q[x] ⊂ Fn[x]
and p(zn) = 0, (some zn ∈ Fn) ⇒ p(zn−1) = 0 for some zn−1 ∈ Fn−1. This is a
consequence of the key claim I above. Applying the claim again, it follows that p(zn−2) = 0
for some zn−2 ∈ Fn−2 and so on. We eventually arrive at p(z0) = 0 for some z0 ∈ F0 = Q.
Now put r = z0.

Back to Ruler and Compass

Bisecting an Angle

/ˆ

B•
/

/ •T

A•/−−−−−−•C′−−•C−−→

It is easy to bisect any given angle. For example, given 6 BAC in the above picture, draw

CA(B) to get C ′ on the ray
−→
AC. Then bisect BC ′ in T . Finally, draw

−→
AT .

The Impossible Constructions

(I) Trisection. It is not possible to be able to trisect any angle† by ruler and compass.
The reasoning goes as follows:

1) Recall that all ruler and compass constructions can be done in the L-plane. Further,
if it were possible to trisect any angle by ruler and compass, then one could trisect the
angle 60◦.

/ˆ

( 1
2 ,

√
3

2 )
•

/
/

(0,0)•/−−•
( 1
2

,0)
−−−→

Note that (0, 0), ( 1
2
, 0), ( 1

2
,
√

3
2

) are L-points, i.e. belong to L2. This makes 6 60◦ an

“L-angle”, i.e. the union of the two “L-rays”:
−→

(0, 0), ( 1
2 , 0)

⋃
−→

(0, 0), ( 1
2 ,

√
3

2 ), where by

† Certain angles can be trisected by ruler and compass, such as the 90◦ angle.

86



definition an L-ray is of the form
−→
PQ, where P , Q are L-points. Let A = (0, 0). Then

ruler and compass construction in the L-plane enables us to find L-points D and F (with
F the projection of D on the horizontal axis), such that cos 20◦ = AF

AD .

/ˆ

( 1
2 ,

√
3

2 )
•

/
/ •D

A:=(0,0)•/−−•
( 1
2

,0)
−−•F −→

Thus y := cos 20◦ ∈ L. We now need some trig. Recall that:

cos(α± β) = cos α cos β ∓ sin α sin β,

[Hence: cos(2θ) = cos2 θ − sin2 θ (double angle identity).]

sin(α± β) = sin α cos β ± cos α sin β

[Hence: sin(2θ) = 2 sin θ cos θ (double angle identity).]

cos2 θ + sin2 θ = 1. (Pythagorean)

Thus:

cos(3θ) = cos(2θ + θ) = cos(2θ) cos θ − sin(2θ) sin θ = [cos2 θ − sin2 θ] cos θ − 2 sin2 θ cos θ

=
[
cos2 θ − (1− cos2 θ)

]
cos θ − 2(1− cos2 θ) cos θ

Thus:

cos(3θ) = 4 cos3 θ − 3 cos θ.

Next,
1

2
= cos 60◦ = cos

(
3× 20◦

)
= 4 cos3(20◦)− 3 cos(20◦) = 4y3 − 3y.

Hence
1

2
= 4y3 − 3y ⇒ 8y3 − 6y − 1 = 0.

Now put w = 2y, and note that w3 − 3w − 1 = 0. Then y ∈ L ⇒ w ∈ L. The upshot is
that if we could trisect 6 60◦, then w ∈ L is a root of p(x) = x3 − 3x − 1 ∈ Z[x]. Thus
p(x) must have a root in Q. But the only candidates for Q-roots of p(x) are ±1, and in
this case, neither ±1 is a root of p(x). Thus it is impossible to trisect 6 60◦ by ruler and
compass, and hence it is impossible to be able to trisect any angle by ruler and compass!
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(II) Duplication of the cube. † Given any line segment AB with length `1 = AB, is
it possible to construct by ruler and compass a line segment CD with length `2 = CD such
that `3

2 = 2`3
1? The answer is NO.

For if it were possible to duplicate the cube, then we could certainly duplicate the
length 1 “L-line segment” AB := (0, 0), (0, 1), to arrive at another “L-line segment” CD
(i.e. C, D are L-points) with length ` := CD ∈ L satisfying `3 = 2 · 13 = 2. I.e. ` ∈ L is a
root of p(x) := x3−2 ∈ Z[x]. Thus p(x) has a Q-root. But the only candidates for Q-roots
of p(x) are ±1 and ±2, and neither of these are roots of p(x). Thus it is impossible to be
able to duplicate the cube by ruler and compass!

Key Review Points of this Section

1) Let F be a subfield of R, and let k ∈ F be given such that
√

k 6∈ F. Then F[
√

k] :=
{a + b

√
k | a, b ∈ F} is a subfield of C (and a subfield of R if k > 0). Moreover F[

√
k]

contains F as a subfield.

2) Given the setting in 1), let p(x) ∈ F[x] be a degree 3 polynomial. Let z ∈ F[
√

k].
Then:

(i) p(z) = 0⇔ p(z) = 0 (where if z = a + b
√

k, then z = a− b
√

k).

(ii) p(z) = 0⇒ p(r) = 0 for some r ∈ F.

3) Recall that L ⊂ R is the subfield of R generated from {0, 1} by ±, •,÷,
√

+ve. Let
p(x) ∈ Q[x] be a degree 3 polynomial, and suppose that p(z) = 0 for some z ∈ L.
Then p(r) = 0 for some r ∈ Q.

† The volume of a cube with dimensions `− `− ` is `3. Thus the geometric meaning of
this is to be able to duplicate the volume of a cube, namely from dimensions `1 − `1 − `1

with volume `3
1 to dimensions `2 − `2 − `2 with volume `3

2 = 2`3
1.
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Appendix: Countability and Uncountability Results

Definition. A set S is said to be countable, if either it is finite, or there is a bijective
map T : N → S. If we put xn = T (n), n ∈ N, then S can be enumerated in the form
S = {x1, x2, x3, . . .}.

Claim. (i) Let S be a countable set, and W ⊂ S a subset. Then W is likewise
countable.

(ii) Let I be a countable set, and assume given for each i ∈ I, a countable set Wi.
Then

⋃

i∈I Wi is countable.

Reason: (i) We can assume that S = {x1, x2, x3, . . .}. Let j1 ∈ N be the smallest
integer for which xj1 ∈ W . Next, let j2 be the smallest integer > j1 for which xj2 ∈ W ,
and so on. Then we can write W = {xj1 , xj2 , xj3 , . . .}, with n ∈ N corresponding to xjn

.
Clearly W is countable.

(ii) We can assume that I = N and write Wi = {xi1 , xi2 , xi3 , . . .}. We consider the
array:

W1 : x11
x12

x13
x14

x15
· · ·

W2 : x21
x22

x23
x24

x25
· · ·

W3 : x31
x32

x33
x34

x35
· · ·

W4 : x41
x42

x43
x44

x45
· · ·

W5 : x51
x52

x53
x54

x55
· · ·

: : : : : : · · ·
We count along the diagonals (and throw away repeats):

↗↗↗↗↗↗ · · ·
↗↗↗↗↗ · · ·
↗↗↗↗ · · ·
↗↗↗ · · ·
: :

Thus:
{y1, y2, y3, y4, y5, y6, . . .} = {x11

, x21
, x12

, x31
, x22

, x13
, . . .}

Every element xij
will appear as some ym for some m ∈ N. Thus

⋃
Wi is countable.

Consequences: (1) Z is countable. [Reason: Z = −N ∪ {0} ∪N, a countable union of
countable.]

(2) Q+ = {r ∈ Q | r > 0} is countable, and hence by the same reasoning as in (1), Q
is countable. [Reason: Consider the array:

1
1

1
2

1
3

1
4

1
5
· · ·

2
1

2
2

2
3

2
4

2
5 · · ·

3
1

3
2

3
3

3
4

3
5
· · ·

4
1

4
2

4
3

4
4

4
5 · · ·

5
1

5
2

5
3

5
4

5
5
· · ·

: : : : : · · ·
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Again, count along the diagonals (and throw away repeats).]

(3) Let Q = {C-roots of all polynomials p(x) ∈ Q[x]}. Then Q is countable. [Note: Q
is in fact a subfield of C, called the algebraic closure of Q in C.] [Reason: Using countable
unions of countable sets are countable, we can first argue that as a set, Q[x] is countable.
This is because

[
Q[x]

]

n
:= {p(x) ∈ Q[x] | deg p(x) ≤ n} ' Qn+1, the bijection given by

(a0, . . . , an) ∈ Qn+1 7→ p(x) = anxn+· · ·+a1x+a0 ∈ Q[x], the fact that Qn+1 is countable
(first show that Q2 is countable as in (5) below, and then use induction on n ∈ N) and
that Q[x] =

⋃∞
n=0

[
Q[x]

]

n
is a countable union. Next, the roots of any p(x) ∈ Q[x] is finite

(bounded by deg p(x)), hence countable. Thus again Q is a countable union of countable
sets, hence itself must be countable!]

(4) L is countable. [Reason: L is a subset of the countable Q.]

(5) the L-plane L2 ⊂ R2 is countable. [Reason: L2 =
⋃

x∈L{x} × L, a countable
union of countable sets!]

In contrast to the above results is:

Claim. R is uncountable (i.e. not countable).

Reason: Assume to the contrary that R is countable. Then so is the interval subset
(0, 1) ⊂ R. For simplicity, we will work in base 2 where a digit for example of the form
0.11011 is the same as 1

2
+ 1

22 + 0
23 + 1

24 + 1
25 . Thus (0, 1) assumed countable means that

it can be enumerated in the form (0, 1) = {x1, x2, x3, x4, . . .}, where:

x1 : = 0.x11x12x13x14 . . .
x1 : = 0.x11x12x13x14 . . .
x2 : = 0.x21x22x23x24 . . .
x3 : = 0.x31x32x33x34 . . .
x4 : = 0.x41x42x43x44 . . .
: : :

and xij ∈ {0, 1}. Now set y = 0.y1y2y3y4 . . ., where yj =

{
1 if xjj = 0
0 if xjj = 1

. Then it is

obvious that y ∈ (0, 1) and yet y does not appear in the enumerated description of (0, 1)
above. Thus R must be uncountable!
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Appendix: Ordered Fields

The real numbers is an example of an ordered field under <. The axiomatic properties
of < on R are as follows:

(1) Trichotomy. For any a, b ∈ R, exactly one of the following holds:

(i) a < b

(ii) a = b

(iii) b < a

(2) Transitivity. a < b and b < c⇒ a < c.

Interaction with the binary operations:

(3) a > 0 and b > 0⇒ ab > 0.

(4) a < b⇒ a + c < b + c for all c ∈ R.

Claim. a < b and c < d⇒ a + c < b + d

Reason: Applying (4) first, and then (2) above, we have

a + c < b + c < b + d, ⇒ a + c < b + d.

Claim. a < b⇔ b− a > 0.

Reason: By (4) above, a < b⇔ 0 = a + (−a) < b + (−a), i.e. b− a > 0.

Claim. a < b and c > 0⇒ ac < bc.

Reason: a < b⇒ b− a > 0, hence by (3), c(b− a) > 0, and thus ac < bc.

Claim. a > 0⇔ −a < 0.

Reason: Since −(−a) = 0, it sufices to show that a > 0⇒ −a < 0. But by (4) above,
a > 0⇒ 0 = a + (−a) > 0 + (−a) = −a, i.e. −a < 0.

Claim. 1 > 0.

Reason: Suppose to the contrary that 1 6> 0. Then by (1) above, and since 1 6= 0 (R is
a field!), we must have 1 < 0. Hence −1 > 0 by the above claim. Thus 1 = (−1)(−1) > 0
by (3) above, a contradiction to 1 6> 0. Thus 1 > 0.

Claim. a > 0⇔ a−1 > 0.
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Reason: Since (a−1)−1 = a, it suffices to show that a > 0⇒ a−1 > 0. Suppose to the
contrary that a > 0 and yet a−1 < 0. Then −a−1 > 0, and hence −1 = a ·

(
− a−1

)
> 0,

i.e. 1 < 0, which is not the case.

Definition. Let S be a set. An order relation “<” on S is a relation† satisfying the
following:

(1) Trichotomy. For any a, b ∈ S, exactly one of the following holds:

(i) a < b

(ii) a = b

(iii) b < a

(2) Transitivity. a < b and b < c⇒ a < c.

Definition. Suppose F is a field, and assume that as a set F is ordered with given
order relation <. Then [F; +, •, <] is an ordered field if:

(3) a > 0 and b > 0⇒ ab > 0.

(4) a < b⇒ a + c < b + c for all c ∈ F.

Remarks. (a) It is obvious that the above claims for [R; +, •, <], likewise hold for an
ordered field [F; +, •, <].

(b) Any subset S ⊂ R is an ordered set.

(c) Any subfield of R is an ordered field. [Thus for example, Q, Q[
√

2] are ordered
fields.]

(d) Z2 is not an ordered field. [Reason: If 1 > 0, then 0 = 1 + 1 > 1 + 0, i.e. 1 < 0,
which violates trichotomy!]

(e) [Generalization of (d).] Any ordered field F is infinite. More precisely, the char-
acteristic, Char(F) = 0.

Reason: Since [F; +, •, <] is ordered, we know that 1 > 0. Hence 2 := 1+1 > 0+1 = 1.
Likewise 3 := 2 + 1 > 1 + 1 = 2, 4 := 1 + 3 > 1 + 2 = 3, and so on. Thus by transitivity,

1 < 2 < 3 < 4 < 5 < 6 < 7 < · · · ,

is a subset of distinct elements. [In short N ↪→ F, i.e. one can “count” in F.]

† As defined earlier in the notes, around the time we defined equivalence relations.
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(f) Not every infinite field is an ordered field†† For example:

Claim. C is not an ordered field. [Note that Char(C) = 0.]

Reason: Suppose to the contrary that C is ordered, with order relation <. Since√
−1 6= 0, it follows from trichotomy that either

√
−1 > 0 or

√
−1 < 0. But if

√
−1 > 0,

then −1 = (
√
−1)2 > 0 by (3) above, which is not the case. On the other hand, if

√
−1 < 0,

then −
√
−1 > 0, and thus −1 = (−

√
−1)2 > 0, which again cannot happen. Therefore

trichotomy fails, i.e. C cannot be ordered.

†† For example, the class of fields in characteristic p > 0 that are “algebraically closed”.
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MATH 228 SAMPLE MIDTERM EXAM #1

Instructor: James D. Lewis

This is a closed book exam. No calculators.

All questions have equal weight.

1. Prove by induction:

P (n) : 1 + 3 + 5 + · · ·+ (2n− 1) = n2,

for all integers n ≥ 1.

2. (i) Find all the units in Z8.

(ii) Find the multiplicative inverse of 71 in Z88.

(iii) Find one zero divisor in Z142.

3. (i) Show that

A
def
=

{
p + q

√
3

∣
∣ p, q ∈ Q

}
,

is a subfield of R. [You may assume the class result that
√

3 is irrational.]

4. Consider the subset 3Z12 = {0, 3, 6, 9} ⊂ Z12.

(i) Show that 3Z12 is a subring of Z12.

(ii) What is the unity element of 3Z12?

(iii) Find all units and zero divisors of 3Z12.
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MATH 228 SAMPLE MIDTERM EXAM #2

Instructor: James D. Lewis

This is a closed book exam. No calculators.

All questions have equal weight.

1. Assume given a ring A with unity, consisting of 4 distinct elements: A = {a, b, c, d},
and where addition and multiplication are given by the tables below.

+ || a | b | c | d |
== == == == ==
a || c | d | a | b |
−− −− −− −− −−
b || d | a | b | c |
−− −− −− −− −−
c || a | b | c | d |
−− −− −− −− −−
d || b | c | d | a |
−− −− −− −− −−

• || a | b | c | d |
== == == == ==
a || c | a | c | a |
−− −− −− −− −−
b || a | d | c | b |
−− −− −− −− −−
c || c | c | c | c |
−− −− −− −− −−
d || a | b | c | d |
−− −− −− −− −−

Answer the following:

(i) Which of {a, b, c, d} is the zero element?

(ii) Which of {a, b, c, d} is the unity?

(iii) Which of {a, b, c, d} is the additive inverse of b?

(iv) Find all units in A.

(v) Find all zero divisors in A.

2. (i) Find all the units in Z14.
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(ii) Compute d = GCD(97, 105) and find integers x and y such that d = x ·97+y ·105.

(iii) Find the multiplicative inverse of 97 in Z105.

3. Show that
√

15 is irrational.

4. Let C = {z = x+iy | x, y ∈ R} be the field of complex numbers (and where i =
√
−1),

as introduced in class. We also recall the subring A ⊂ C of Gaussian integers given
by

A = {z = x + iy ∈ C | x, y ∈ Z}.
We introduce a relation ∼ on C by the rule:

z1 ∼ z2 if z1 − z2 ∈ A.

Show that ∼ is an equivalence relation on C.
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MATH 228 SOLUTIONS TO SAMPLE MIDTERM EXAM #1

1. Prove by induction:

P (n) : 1 + 3 + 5 + · · ·+ (2n− 1) = n2,

for all integers n ≥ 1.

Solution: Case n = 1: 1 = 12 ⇒ P (1) is true. Induction Step: Show that P (n) true
⇒ P (n + 1) true. Simply add 2n + 1 = (2(n + 1) − 1) to both sides of statement P (n).
Thus:

1 + 3 + 5 + · · ·+ (2n− 1) + (2(n + 1)− 1) = n2 + 2n + 1 = (n + 1)2.

Thus P (n) true ⇒ P (n + 1) true, and we’re done.

2. (i) Find all the units in Z8.

Answer: {1, 3, 5, 7}.

(ii) Find the multiplicative inverse of 71 in Z88.

Answer: First, by Euclid,

88 = 1× 71 + 17
71 = 4× 17 + 3
17 = 5× 3 + 2
3 = 1× 2 + 1

⇒
1 = 3− 2 = 3− (17− 5× 3)

= 6× 3− 17 = 6× (71− 4× 17)− 17
= 6× 71− 25× 17 = 6× 71− 25× (88− 71)
= 31× 71− 25× 88

Thus 71
−1

= 31 ∈ Z88

(iii) Find one zero divisor in Z142 (other than 0).

Answer Choose any non-zero m ∈ Z142 such that (m, 142) > 1. For example 71 will
do. [Note: 71 · 2 = 142 = 0.]

3. (i) Show that

A
def
=

{
p + q

√
3

∣
∣ p, q ∈ Q

}
,

is a subfield of R. [You may assume the class result that
√

3 is irrational.]
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Solution: Set z = p + q
√

3, w = a + b
√

3 ∈ A, i.e. where p, q, a, b ∈ Q. Then:

z + w = (p + a)
︸ ︷︷ ︸

∈Q

+ (q + b)
︸ ︷︷ ︸

∈Q

√
3 ∈ A.

z · w = (p · a + 3q · b)
︸ ︷︷ ︸

∈Q

+ (p · b + q · a)
︸ ︷︷ ︸

∈Q

√
3 ∈ A.

Thus A is closed under +, • from R, and hence the associative, commutative and distribu-
tive laws hold for A, since the same laws hold for R. Note that Q = {p+0·

√
3 | p ∈ Q} ⊂ A.

Thus 0, 1 ∈ A and 1 6= 0. Also we have additive inverses: −z = (−p) + (−q)
√

3 ∈ A.
Finally, since

√
3 6∈ Q, it follows that

z = p + q
√

3 = 0⇔ p = q = 0⇔ p2 − 3q2 = 0.

Thus if z = p + q
√

3 6= 0, then from the formal calculation:

1

z
=

(
1

p + q
√

3

)(
p− q

√
3

p− q
√

3

)

=

(
p

p2 − 3q2

)

+

( −q

p2 − 3q2

)√
3,

it follows that z−1 is given by the formula:

z−1 =

(
p

p2 − 3q2

)

+

( −q

p2 − 3q2

)√
3 ∈ A.

Thus A is a subfield of R.

4. Consider the subset 3Z12 = {0, 3, 6, 9} ⊂ Z12.

(i) Show that 3Z12 is a subring of Z12.

Solution: The +, • tables are:

+ || 0 | 3 | 6 | 9 |
== == == == ==
0 || 0 | 3 | 6 | 9 |
−− −− −− −− −−
3 || 3 | 6 | 9 | 0 |
−− −− −− −− −−
6 || 6 | 9 | 0 | 3 |
−− −− −− −− −−
9 || 9 | 0 | 3 | 6 |
−− −− −− −− −−
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• || 0 | 3 | 6 | 9 |
== == == == ==
0 || 0 | 0 | 0 | 0 |
−− −− −− −− −−
3 || 0 | 9 | 6 | 3 |
−− −− −− −− −−
6 || 0 | 6 | 0 | 6 |
−− −− −− −− −−
9 || 0 | 3 | 6 | 9 |
−− −− −− −− −−

Since the values in the tables belongs to 3Z12, it follows that 3Z12 is closed under +, •
from Z12 Thus the associative, commutative and distributive laws hold for 3Z12, since they
hold for Z12. Obviously 0 ∈ 3Z12 is the zero element, and there are additive inverses. [E.g.
−3 = 9, −6 = 6, etc.] Thus 3Z12 is a subring of Z12

(ii) What is the unity element of 3Z12?

Answer: From the (•) table, 9 is the unity.

(iii) Find all units and zero divisors of 3Z12.

Answer: From the (•) table,
(
3Z12

)∗
= {3, 9}. The zero divisors are {0, 6}.
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MATH 228 SOLUTIONS TO SAMPLE MIDTERM EXAM #2

1. Assume given a ring A with unity, consisting of 4 distinct elements: A = {a, b, c, d},
and where addition and multiplication are given by the tables below.

+ || a | b | c | d |
== == == == ==
a || c | d | a | b |
−− −− −− −− −−
b || d | a | b | c |
−− −− −− −− −−
c || a | b | c | d |
−− −− −− −− −−
d || b | c | d | a |
−− −− −− −− −−

• || a | b | c | d |
== == == == ==
a || c | a | c | a |
−− −− −− −− −−
b || a | d | c | b |
−− −− −− −− −−
c || c | c | c | c |
−− −− −− −− −−
d || a | b | c | d |
−− −− −− −− −−

Answer the following:

(i) Which of {a, b, c, d} is the zero element?

Answer: c

(ii) Which of {a, b, c, d} is the unity?

Answer: d

(iii) Which of {a, b, c, d} is the additive inverse of b?

Answer: d

(iv) Find all units in A.

Answer: {b, d}
(v) Find all zero divisors in A.

Answer: {c, a}
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2. (i) Find all the units in Z14.

Answer: {1, 3, 5, 9, 11, 13}.
(ii) Compute d = GCD(97, 105) and find integers x and y such that d = x ·97+y ·105.

Solution: By Euclid:

105 = 1× 97 + 8
97 = 12× 8 + 1

}

⇒ (105, 97) = 1.

Next, by back substitution:

1 = 97− 12× (105− 97) = 13× 97 + (−12)× 105.

Thus x = 13 and y = −12 will do.

(iii) Find the multiplicative inverse of 97 in Z105.

Answer: By the previous part, 97
−1

= 13.

3. Show that
√

15 is irrational.

Solution: Suppose to the contrary that
√

15 ∈ Q. Then we can write
√

15 = p/q,
where p, q ∈ N, and (p, q) = 1. Thus 15q2 = p2. Next, 15 = 3 · 5, and hence 3|p and
5|p. Therefore by the Fundamental Theorem of Arithmetic 15|p, and so p = 15 · p1. Thus
15q2 = (15)2p2

1, i.e. q2 = 15p2
1. By the same reasoning, 15|q, and hence (p, q) ≥ 15, which

violates (p, q) = 1. Therefore
√

15 6∈ Q.

4. Let C = {z = x+iy | x, y ∈ R} be the field of complex numbers (and where i =
√
−1),

as introduced in class. We also recall the subring A ⊂ C of Gaussian integers given
by

A = {z = x + iy ∈ C | x, y ∈ Z}.
We introduce a relation ∼ on C by the rule:

z1 ∼ z2 if z1 − z2 ∈ A.

Show that ∼ is an equivalence relation on C.

Solution: Let z ∈ C. Then z − z = 0 + i0 ∈ A, hence z ∼ z. Next, for z, w ∈ C,

z ∼ w ⇔ z − w ∈ A⇔ w − z = −(z − w) ∈ A⇔ w ∼ z.

Finally, for z, w, v ∈ C, z ∼ w and w ∼ v ⇒ z − w ∈ A and w − v ∈ A. Thus

z − v = (z − w)
︸ ︷︷ ︸

∈A

+ (w − v)
︸ ︷︷ ︸

∈A

∈ A.

Hence z ∼ v, and we’re done.
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Sample Problems 1

In the exercises below you may assume Q, R, C are fields.

1. Consider the 3 element set F3 = {0, 1, 2} with binary operations +, • given by the
tables below.

+ | 0 | 1 | 2
−− −− −− −−
0 | 0 | 1 | 2
−− −− −− −−
1 | 1 | 2 | 0
−− −− −− −−
2 | 2 | 0 | 1

• | 0 | 1 | 2
−− −− −− −−
0 | 0 | 0 | 0
−− −− −− −−
1 | 0 | 1 | 2
−− −− −− −−
2 | 0 | 2 | 1

Verify that [F3, +, •] is a field. [Note: For the associative and distributive laws, just
do a couple sample calculations for each.]

2. Verify that A
def
= {a + b

√
−1 | a, b ∈ Q} is a subfield of the complex numbers C.

3. Let A = { p
2q

∣
∣ p, q ∈ Z and q ≥ 0}. Recall that A is a subring (with unity) of Q.

Compute the group of units A∗.

4. Prove by induction that

1 + 5 + 9 + · · ·+ (4n + 1) = (2n + 1)(n + 1)

for all integers n ≥ 0.

5. Prove by induction that

1 +
1

2
+

1

4
+ · · ·+ 1

2n
=

2n+1 − 1

2n

for all integers n ≥ 0.
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Sample Problems 2

1. Compute the GCD (750, 495) by the Euclidean division algorithm method done in
class.

2. Compute the GCD (11232, 2268) by the Euclidean division algorithm method done in
class.

3. Compute GCD (144, 756) and LCM [144, 756] by factoring into products of primes.

4. If a, b ∈ N are relatively prime, show that

[a, b] = a · b.

[Hint: This is easier than it looks.]

5. Find integers x and y for which d = (19, 7) is a combination of the form

d = x · 7 + y · 19.

6. Without factoring into primes, compute [192, 66].
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Sample Problems 3

1. Consider the ring A = {0, a, b, c} of 4 distinct elements, with multiplication table
below:

• | 0 | a | b | c
−− −− −− −− −−
0 | 0 | 0 | 0 | 0
−− −− −− −− −−
a | 0 | 0 | b | a
−− −− −− −− −−
b | 0 | b | c | b
−− −− −− −− −−
c | 0 | a | b | c

Answer the following:

(i) Is there a unity for A? [If so, what element is it?]

(ii) If the answer to (i) is yes, compute the group of units A∗.

(iii) Compute the zero divisors in A.

(iv) Is A an integral domain? [State your reasons.]

(v) Is A a field? [State your reasons.]

2. (i) Compute the group of units, and zero divisors in Z15.

(ii) Find the multiplicative inverse of 23 in Z30.

(iii) By first showing that 3Z15
def
= {0, 3, 6, 9, 12} ⊂ Z15 is a subring of Z15, show that

3Z15 is a field.

3. Define a relation ∼ on the real numbers R as follows: x ∼ y ⇔ x = 2qy for some
integer q ∈ Z. Verify that ∼ is an equivalence relation.

4. Find all values x in Z8 which satisfy the equation x2 = 1.

5. Show that
√

30 is irrational.
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Sample Problems 4

Find all solutions of the given equations in the given field Zp.

1. 5x + 66 = 0 in Z101.

2. x2 + 3x + 2 = 0 in Z5.

3. x2 + 10x + 24 = 0 in Z101.

4. x2 = 2 in Z7.

5. x2 = 18 in Z31.

Perform the indicated operation.

6. (4x + 3)(5x + 6) in Z7[x].

7. (2x3 + 3x2 − 5x + 1)/(x + 4) in Z7[x] (long division).

8. (4x2 + 7x + 3) + (8x2 + 5x + 11) in Z12[x].

Factor completely into a product of irreducibles.

9. x2 + 6x + 1 in Z7[x].

10. x4 + 9x2 + 7 in Z11[x].

11. Explain why x3 + 3x + 2 is irreducible in Z5[x].
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Sample Problems 5

[1.] (i) Show that 2x3 + 3x2 + x− 1 has no rational roots.

(ii) Show that x3 − 3x− 1 has no rational roots.

(iii) Determine the rational root(s) of p(x) = x4 +3x3− 3x2− 10x− 3 and factor p(x)
as a product of irreducibles in Q[x]. [Hint: Use (ii).]

[2.] Let F be a field, and f(x) ∈ F[x] a polynomial of degree 1. Prove that f(x) is
irreducible.

[3.] (i) Let T : Q[x]→ Q be the map given by p(x) ∈ Q[x] 7→ T (p(x)) := p(0) ∈ Q. Show
that T is a ring homomorphism. Describe the kernel, ker T . Also, what is the image
of T?

(ii) Explain why the map g : R→ R given by g(t) = t2, is not a ring homomorphism.

[4.] Let A be a ring, and fix a ∈ A. Show that (a) := {ba | b ∈ A} is an ideal in A.

[5.] Give an example of a ring A, and a non-zero element a ∈ A for which (a) = 0. [Hint:
Choose A to be a suitable subring of Z4.]

[6.] Let f : Z12 → Z4 be given by the prescription f(x12) = x4.

(i) Show that f is a well defined ring homomorphism.

(ii) Compute the kernel, ker f .

[7.] Give an example of the following: An integral domain A and an ideal U ⊂ A such
that the quotient ring A/U is not an integral domain.
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Solutions to Sample Problems 1

In the exercises below you may assume Q, R, C are fields.

1. Consider the 3 element set F3 = {0, 1, 2} with binary operations +, • given by the
tables below.

+ | 0 | 1 | 2
−− −− −− −−
0 | 0 | 1 | 2
−− −− −− −−
1 | 1 | 2 | 0
−− −− −− −−
2 | 2 | 0 | 1

• | 0 | 1 | 2
−− −− −− −−
0 | 0 | 0 | 0
−− −− −− −−
1 | 0 | 1 | 2
−− −− −− −−
2 | 0 | 2 | 1

Verify that [F3, +, •] is a field. [Note: For the associative and distributive laws, just
do a couple sample calculations for each.]

Solution: We must verify the 9 properties for a field. The values in the tables belong
to the set F3, hence F3 is closed under +, •. Also, the tables are symmetric about the
diagonal, hence commutivity holds as well. Since the set has 3 elements, it follows that
1 6= 0. Of course all elements of F3 are preserved under multiplication by 1, and addition
by 0. Thus 1 is the unity and 0 is the zero element. Next, “−0” = 0, “−1” = 2, and

“−2” = 1. Hence we have additive inverses. Also “1
−1

” = 1 and “2
−1

” = 2, and so we
have multiplicative inverses for non-zero elements. The only thing left to check are the
associative and distributive laws. We just do a sample of calculations here:

Associativity. (1 + 2) + 1 = 0 + 1 = 1 = 1 + 0 = 1 + (2 + 1).

(1 • 2) • 1 = 2 • 1 = 2 = 1 • 2 = 1 • (2 • 1).

Distributive. 2 • (1 + 2) = 2 • 0 = 0 = 2 + 1 = 2 • 1 + 2 • 2.

2. Verify that A
def
= {a + b

√
−1 | a, b ∈ Q} is a subfield of the complex numbers C.

Solution: We first check closure of A under +, • from C. Let z = a + b
√
−1, w =

c + d
√
−1 ∈ A. Note that a, b, c, d ∈ Q, hence (a + c), (b + d), (ac − bd), (ad + bc) ∈ Q.

Therefore
z + w = (a + c) + (b + d)

√
−1 ∈ A,
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zw = (ac− bd) + (ad + bc)
√
−1 ∈ A.

Thus A is closed under +, • from C, and since the commutative, associative and distribu-
tive laws hold for C, the same laws must hold for A. Note that Q ⊂ A, where r ∈ Q is the
same as r + 0

√
−1 ∈ A. Thus 1, 0 ∈ A and 1 6= 0. So we have a unity and zero element.

Next, z = a+b
√
−1 ∈ A⇒ −z := (−a)+(−b)

√
−1 ∈ A. Hence we have additive inverses.

Finally, we must show that we have multiplicative inverses of non-zero elements. We recall
from class notes, that given z = a + b

√
−1 ∈ A, it is the case that z = 0 ⇔ a = b = 0.

Further, it is clear that z 6= 0 ⇒ a2 + b2 6= 0. Now assume that z 6= 0. Then from the
formal calculation:

1

z
=

1

a + b
√
−1

=

(
1

a + b
√
−1

)(
a− b

√
−1

a− b
√
−1

)

=

(
a− b

√
−1

a2 + b2

)

,

we arrive at the formula for z−1, namely:

z−1 =

(
a

a2 + b2

)

+

( −b

a2 + b2

)√
−1 ∈ A.

3. Let A = { p
2q

∣
∣ p, q ∈ Z and q ≥ 0}. Recall that A is a subring (with unity) of Q.

Compute the group of units A∗.

Solution: Let x ∈ A. Recall that x is a unit if there exists y ∈ A such that xy = 1.
If we write x = p1

2q1
and y = p2

2q2
, then:

xy = 1⇔ p1p2

2q1+q2
= 1⇔ p1p2 = 2q1+q2 .

But p1, p2, p1p2 are integers, and 2q1+q2 is the prime decomposition of p1p2. Hence p1 (and
p2) must be a power of 2. What that means is that x = ±2q for some q ∈ Z. Thus:

A∗ = {±2q | q ∈ Z} = {. . . ,± 1

16
,±1

8
,±1

4
,±1

2
,±1,±2,±4,±8,±16, . . .}.

4. Prove by induction that

1 + 5 + 9 + · · ·+ (4n + 1) = (2n + 1)(n + 1)

for all integers n ≥ 0.

Solution: Let P (n) be the statement

1 + 5 + 9 + · · ·+ (4n + 1)
︸ ︷︷ ︸

LHS

= (2n + 1)(n + 1)
︸ ︷︷ ︸

RHS

, n = 0, 1, 2, . . . .

Case n = 0: LHS = 4 · 0 + 1 = 1 = (2 · 0 + 1)(0 + 1), hence P (0) is true.
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Induction Step (P (n) true ⇒ P (n+1) true): We assume given that P (n) is true, and
add

(
4(n + 1) + 1

)
to both LHS and RHS. Thus:

1 + 5 + 9 + · · ·+
(
4(n + 1) + 1

)
= (2n + 1)(n + 1) +

(
4(n + 1) + 1

)
,

i.e.

1+5+9+ · · ·+
(
4(n+1)+1

)
= 2n2 +7n+6 = (2n+3)(n+2) =

(
2(n+1)+1

)(
(n+1)+1

)
.

Hence P (n + 1) is true. This completes the induction step, and hence the proof.

5. Prove by induction that

1 +
1

2
+

1

4
+ · · ·+ 1

2n
=

2n+1 − 1

2n

for all integers n ≥ 0.

Solution: Let P (n) be the statement

1 +
1

2
+

1

4
+ · · ·+ 1

2n
︸ ︷︷ ︸

LHS

=
2n+1 − 1

2n
︸ ︷︷ ︸

RHS

, n = 0, 1, 2, . . . .

Case n = 0: LHS = 1
20 = 1 = 21−0−1

20 , hence P (0) is true.

Induction Step (P (n) true ⇒ P (n+1) true): We assume given that P (n) is true, and
add 1

2n+1 to both LHS and RHS. Thus:

1 +
1

2
+

1

4
+ · · ·+ 1

2n+1
=

2n+1 − 1

2n
+

1

2n+1
,

i.e.

1 +
1

2
+

1

4
+ · · ·+ 1

2n+1
=

2n+1 − 1

2n
+

1

2n+1

=
2 · (2n+1 − 1) + 1

2n+1
=

2n+2 − 2 + 1

2n+1
=

2(n+1)+1 − 1

2(n+1)
.

Hence P (n + 1) is true. This completes the induction step, and hence the proof.
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Solutions to Sample Problems 2

1. Compute the GCD (750, 495) by the Euclidean division algorithm method done in
class.

Solution: By Euclidean division,







750 = 1 × 495 + 255
495 = 1 × 255 + 240
255 = 1 × 240 + 15
240 = 16 × 15 + 0







⇒ (750, 495) = 15.

2. Compute the GCD (11232, 2268) by the Euclidean division algorithm method done in
class.

Solution: By Euclidean division,







11232 = 4 × 2268 + 2160
2268 = 1 × 2160 + 108
2160 = 20 × 108 + 0






⇒ (11232, 2268) = 108.

3. Compute GCD (144, 756) and LCM [144, 756] by factoring into products of primes.

Solution: By factoring into primes, we have:

144 = 243270

756 = 223371

}

⇒ (144, 756) = 223270 = 36
[144, 756] = 243371 = 3024

4. If a, b ∈ N are relatively prime, show that

[a, b] = a · b.

[Hint: This is easier than it looks.]

Solution: Recall that a, b are relatively prime ⇔ (a, b) = 1. Therefore, from the
formula in class, we have:

[a, b] =
a · b
(a, b)

= a · b.
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5. Find integers x and y for which d = (19, 7) is a combination of the form

d = x · 7 + y · 19.

Solution: By Euclidean division,







19 = 2 × 7 + 5
7 = 1 × 5 + 2
5 = 2 × 2 + 1






⇒ (19, 7) = 1.

We now back substitute:

1 = 5− 2×
[
2 = 7− 1× 5

]
= (−2)× 7 + 3×

[
5 = 19− 2× 7

]
= (−8)× 7 + 3× 19.

Thus x = −8 and y = 3 will work.

6. Without factoring into primes, compute [192, 66].

Solution: From the formula in class, we have:

[192, 66] =
192× 66

(192, 66)
.

By Euclid, 





192 = 2 × 66 + 60
66 = 1 × 60 + 6
60 = 10 × 6 + 0






⇒ (192, 66) = 6.

Thus

[192, 66] =
192× 66

6
= 11× 192 = 2112.
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Solutions to Sample Problems 3

1. Consider the ring A = {0, a, b, c} of 4 distinct elements, with multiplication table
below:

• | 0 | a | b | c
−− −− −− −− −−
0 | 0 | 0 | 0 | 0
−− −− −− −− −−
a | 0 | 0 | b | a
−− −− −− −− −−
b | 0 | b | c | b
−− −− −− −− −−
c | 0 | a | b | c

Answer the following:

(i) Is there a unity for A? [If so, what element is it?]

YES: The element c.

(ii) If the answer to (i) is yes, compute the group of units A∗.

A∗ = {c, b}.
(iii) Compute the zero divisors in A.

Zero divisors = {0, a}.
(iv) Is A an integral domain? [State your reasons.]

NO, since A has a zero divisor 6= 0, namely a.

(v) Is A a field? [State your reasons.]

NO, since any field is necessarily an integral domain.

2. (i) Compute the group of units, and zero divisors in Z15.

Z∗
15 = {1, 2, 4, 7, 8, 11, 13, 14}. Zero divisors = {0, 3, 5, 6, 9, 10, 12}.

(ii) Find the multiplicative inverse of 23 in Z30.

First of all, we use Euclid and back substitution to express 1 = (23, 30) in terms of a
linear combination of 23 and 30.

30 = 1× 23 + 7
23 = 3× 7 + 2
7 = 3× 2 + 1

}

⇒

1 = 7− 3× 2
= 7− 3× (23− 3× 7)
= 10× 7− 3× 23
= 10× (30− 23)− 3× 23
= (−13)× 23 + 10× 30
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Thus 23
−1

= (−13) = (−13 + 30) = 17.

(iii) By first showing that 3Z15
def
= {0, 3, 6, 9, 12} ⊂ Z15 is a subring of Z15, show that

3Z15 is a field.

From the +, • tables below:

+ | 0 | 3 | 6 | 9 | 12
−− −− −− −− −− −−
0 | 0 | 3 | 6 | 9 | 12
−− −− −− −− −− −−
3 | 3 | 6 | 9 | 12 | 0
−− −− −− −− −− −−
6 | 6 | 9 | 12 | 0 | 3
−− −− −− −− −− −−
9 | 9 | 12 | 0 | 3 | 6
−− −− −− −− −− −−
12 | 12 | 0 | 3 | 6 | 9

• | 0 | 3 | 6 | 9 | 12
−− −− −− −− −− −−
0 | 0 | 0 | 0 | 0 | 0
−− −− −− −− −− −−
3 | 0 | 9 | 3 | 12 | 6
−− −− −− −− −− −−
6 | 0 | 3 | 6 | 9 | 12
−− −− −− −− −− −−
9 | 0 | 12 | 9 | 6 | 3
−− −− −− −− −− −−
12 | 0 | 6 | 12 | 3 | 9

It is clear that 3Z15 is closed under +, • from Z15 (since all values in the tables are elements
in 3Z15). Therefore since the associative, commutative and distributive laws hold for Z15,
the same laws also hold for 3Z15. [Note that symmetry about diagonals also implies
commutivity.] It is clear that 0 is the zero element, and that there are additive inverses
[e.g. −3 = 12, −6 = 9, etc.]. Finally, from the (•) table, 6 6= 0 is the unity. Moreover
multiplicative inverses for non-zero elements follows from the fact that 6 appears in every
(•) column corresponding to a non-zero element. Thus 3Z15 is a field.

3. Define a relation ∼ on the real numbers R as follows: x ∼ y ⇔ x = 2qy for some
integer q ∈ Z. Verify that ∼ is an equivalence relation.

First, x = 20 · x ⇒ x ∼ x. Next, x = 2qy ⇔ y = 2−qx; moreover q ∈ Z ⇔ −q ∈ Z.
Therefore x ∼ y ⇔ y ∼ x. Finally, suppose that x ∼ y and y ∼ z. Then x = 2q1y and
y = 2q2z, for some q1, q2 ∈ Z. Therefore x = 2q1+q2z, hence x ∼ z.

4. Find all values x in Z8 which satisfy the equation x2 = 1.
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From the table of values:
x | x2

−− | −−
0 | 0
1 | 1
2 | 4
3 | 1
4 | 0
5 | 1
6 | 4
7 | 1

It follows that {1, 3, 5, 7} satisfies the equation x2 = 1.

5. Show that
√

30 is irrational.

Suppose to the contrary that
√

30 ∈ Q. Then we can write
√

30 = p/q, where p, q ∈ N,
and where GCD(p, q) = 1. Thus 30 · q2 = p2, and 30 = 2 · 3 · 5 is a product of distinct
primes (multiplicity 1). By the Fundamental Theorem of Arithmetic, 2, 3, 5 must be prime
factors of p, hence 30|p, i.e. p = 30 · p1 for some p1 ∈ N. Thus 30 · q2 = p2 = 302p2

1,
hence q2 = 30 · p1. By the same reasoning, 30|q, hence GCD(p, q) ≥ 30, which violates
GCD(p, q) = 1. Thus

√
30 6∈ Q.
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Solutions to Sample Problems 4

Find all solutions of the given equations in the given field Zp.

1. 5x + 66 = 0 in Z101.

Solution: There will be only one solution. Observe that 101 − 20 · 5 = 1, hence

5
−1

= −20. Thus x = (−20) · (−66) = 1320 = 1320− 13 · 101 = 7. [Alternatively,
5x = −66 = 101− 66 = 35. Thus x = 7.]

2. x2 + 3x + 2 = 0 in Z5.

Solution: ∆ = 3
2 − 4 · 2 = 1, and 2

−1
= 3, since 2 · 3 = 6 = 1. Thus by the quadratic

formula, x = 3(−3± 1) = {−6,−12} = {4, 3}.

3. x2 + 10x + 24 = 0 in Z101.

Solution: ∆ = 100 − 4 · 24 = 4, and 2
−1

= 51, since 2 · 51 = 102 = 1. Thus by the
quadratic formula, x = 51(−10± 2) = {−408,−612} = {97, 95}.

4. x2 = 2 in Z7.

Solution: ∆ = 1. Further 2
−1

= 4, since 2 ·4 = 8 = 1. Thus by the quadratic formula,
x = {4,−4} = {4, 3}.

5. x2 = 18 in Z31.

Solution: ∆ = 4 · 18 = 72 = 10. In this case, solving x2 = 10, viz.
√

10 seems no

easier than solving the original equation x2 = 18. Note that 7
2

= 49 = 18, hence the two
roots (which are guaranteed by the quadratic formula) are {7,−7} = {7, 22}.

Perform the indicated operation.

6. (4x + 3)(5x + 6) in Z7[x].
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Solution: (4x + 3)(5x + 6) = 20x2 + 39x + 18 = 6x2 + 4x + 4.

7. (2x3 + 3x2 − 5x + 1)/(x + 4) in Z7[x] (long division).

2x2 + 2x + 4
−− − −− − −− − −− − −−

x + 4

)

2x3 + 3x2 − 5x + 1

2x3 + x2

−− − −− − −− − −− − −−
2x2 − 5x + 1
2x2 + x

−− − −− − −−
4x + 1
4x + 2

−− − −−
6

Thus

(2x3 + 3x2 − 5x + 1) = (x + 4)(2x2 + 2x + 4) + 6.

8. (4x2 + 7x + 3) + (8x2 + 5x + 11) in Z12[x].

Solution: (4x2 + 7x + 3) + (8x2 + 5x + 11) = 12x2 + 12x + 14 = 2.

Factor completely into a product of irreducibles.

9. x2 + 6x + 1 in Z7[x].

Solution: The trick is to find a root of this polynomial in Z7, either by the quadratic

formula, or by a good guess. Note that ∆ = 36 − 4 = 32 = 4, and that 2
−1

= 4. By the
quadratic formula, the roots are 4 · (−6± 2) = {−16,−32} = {5, 3}. Thus

x2 + 6x + 1 = (x− 5)(x− 3)

gives the factorization into irreducibles.

10. x4 + 9x2 + 7 in Z11[x].

Solution: First, replace x2 by y, and solve the quadratic equation y2 + 9y + 7 = 0. In

this case ∆ = 81− 28 = 53 = 9, and 2
−1

= 6, since 2 · 6 = 12 = 1. Thus by the quadratic
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formula, y = 6·(−9±3) = {−36,−72} = {8, 5}. Thus so far x4+9x2+7 = (x2−8)(x2−5).
Note the following table of values:

x | x2

−− | −−
0 | 0
1 | 1
2 | 4
3 | 9
4 | 5
5 | 9
6 | 3
7 | 5
8 | 9
9 | 4
10 | 1

From the table, it is obvious that x2 − 8 has no root in Z11, hence being of degree 2, it
must be irreducible. On the other hand, the table implies that x2 − 5 has roots {4, 7},
hence factors into (x− 4)(x− 7). Thus:

x4 + 9x2 + 7 = (x2 − 8)(x− 4)(x− 7)

is the factorization into irreducibles.

11. Explain why x3 + 3x + 2 is irreducible in Z5[x].

Solution: Since we are dealing with a degree three polynomial, it suffices to show that
f(x) := x3 + 3x + 2 has no root in Z5. This is clear from the table of values:

x | f(x)
−− | −−
0 | 2
1 | 1
2 | 1
3 | 3
4 | 3
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Solutions to Sample Problems 5

[1.] (i) Show that 2x3 + 3x2 + x− 1 has no rational roots.

Solution: Set f(x) := 2x3+3x2+x−1. The only candidates for Q-roots are {±1,± 1
2}.

We evaluate: f(1) = 5, f(−1) = −1, f(1/2) = 1/2, f(−1/2) = −1. Thus f has no Q-roots.

(ii) Show that x3 − 3x− 1 has no rational roots.

Solution: The only candidates for Q-roots are ±1, and neither of these are roots of
x3 − 3x− 1.

(iii) Determine the rational root(s) of p(x) = x4 +3x3− 3x2− 10x− 3 and factor p(x)
as a product of irreducibles in Q[x]. [Hint: Use (ii).]

Solution: The only candidates for Q-roots are ±1,±3. It is easy to check that p(−3) =
0, and hence x + 3 = (x − (−3)) is a factor of p(x). Since none of the other candidates
turn out to be roots, we long divide:

x3 − 3x − 1
−− − −− − −− − −− − −−

x + 3

)

x4 + 3x3 − 3x2 − 10x − 3

x4 + 3x3

−− − −− − −− − −− − −−
−3x2 − 10x − 3
−3x2 − 9x
−− − −− − −−

−x − 3
−x − 3
−− − −−

0

Thus p(x) = (x + 3)(x3 − 3x− 1) gives the decomposition into irreducibles, using the fact
that the degree 3 polynomial x3−3x−1 has no Q-roots by (ii) above, hence is irreducible.

[2.] Let F be a field, and f(x) ∈ F[x] a polynomial of degree 1. Prove that f(x) is
irreducible.

Solution: Suppose that f = h · g. then 1 = deg f = deg h + deg g. Thus either
(deg h, deg g) = (1, 0) (hence g ∈ F∗), or (deg h, deg g) = (0, 1) (hence h ∈ F∗). Thus f is
irreducible.
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[3.] (i) Let T : Q[x]→ Q be the map given by p(x) ∈ Q[x] 7→ T (p(x)) := p(0) ∈ Q. Show
that T is a ring homomorphism. Describe the kernel, ker T . Also, what is the image
of T?

Solution: If p(x) = p ∈ Q, then p(0) = p, hence T (1) = 1, and Im(T ) = Q. Next,
T (f +g) := (f +g)(0) = f(0)+g(0) = T (f)+T (g), and T (f ·g) := (f ·g)(0) = f(0) ·g(0) =
T (f) ·T (g). Thus T is a ring homomorphism. Finally, T (f) = 0⇔ f(0) = 0⇔ x = (x−0)
is a factor of f . Thus ker T = (x) ⊂ Q[x].

(ii) Explain why the map g : R→ R given by g(t) = t2, is not a ring homomorphism.

Solution: For example g(1 + 1) = g(2) = 4 6= 2 = g(1) + g(1). Thus g is not a ring
homomorphism.

[4.] Let A be a ring, and fix a ∈ A. Show that (a) := {ba | b ∈ A} is an ideal in A.

Solution: First of all, if b1a, b2a ∈ (a), and c ∈ A, then b1a+b2a = (b1+b2)a ∈ (a) and
c(b1a) = (cb1)a ∈ (a). Thus (a) is closed under multiplication by elements in A, and closed
under addition from A. In particular, the associative, commutative, and distributive laws,
which hold for A, must likewise hold for (a). Also ba ∈ (a) ⇒ −(ba) = (−b)a ∈ (a), and
0 = 0 · a ∈ (a). Hence (a) has a zero element, and additive inverses. In particular, (a) is a
subring of A for which A · (a) ⊂ (a). This makes (a) an ideal in A.

[5.] Give an example of a ring A, and a non-zero element a ∈ A for which (a) = 0. [Hint:
Choose A to be a suitable subring of Z4.]

Solution: Put A = 2Z4 = {0, 2} ⊂ Z4, and let a = 2. Then (2) = (0) in A.

[6.] Let f : Z12 → Z4 be given by the prescription f(x12) = x4.

(i) Show that f is a well defined ring homomorphism.

Solution: Suppose that y12 = x12. We must show that f(y12) = f(x12), i.e. y4 = x4.
But y12 = x12 ⇔ 12|(y − x)⇒ 4|(y − x)⇒ y4 = x4. Thus f is well-defined.

(ii) Compute the kernel, ker f .

Solution: ker f = {x12 | x4 = 0} = {x12 | 4|x} = 4 · Z12 = {0, 4, 8} ⊂ Z12.

[7.] Give an example of the following: An integral domain A and an ideal U ⊂ A such
that the quotient ring A/U is not an integral domain.

Solution: Choose any n ∈ N with n not prime, say n = 4. Set U = (n) and A = Z.
then A is an integral domain, and yet A/U = Zn = Z4 is not an integral domain.
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SAMPLE FINAL EXAM #1

Time: 2 hours Instructor: James D. Lewis

Z = integers, Q = rationals, R = reals, C = complex numbers

[1.] Factor
f(x) = x4 + 2x3 + 2x2 + 2x + 1 ∈ Z3[x]

into a product of irreducibles.

[2.] Find all irreducible polynomials of degree 3 in Z2[x].

[3.] Consider the map T : Q[x]→ R given by T (f(x)) = f(
√

2) ∈ R.

(i) Verify that T is a ring homomorphism.

(ii) Find ker(T ), i.e. find a d(x) ∈ Q[x] such that ker(T ) = (d(x))
def
= {h(x) ·

d(x) | h(x) ∈ Q[x]}.
(iii) Find Im(T ).

[4.] (i) Find all units in Z18.

(ii) Compute 31
−1

in Z60.

[5.] Let
f(x) = 2x5 + 5x4 + 4x3 + 7x2 + 7x + 2 ∈ Q[x].

Factor f(x) into a product of irreducibles.

[6] Let A = {a + b
√

5 | a, b ∈ Z}. Verify that A is a subring of R. Is A a field? [You
must explain your reasoning.]

[7.] Let f(x) = x3 + 2x2 + x + 3 ∈ Q[x]. Explain why no combination of the form
a + b

√
2 + c

√
3, a, b, c ∈ Q, can be a root of f(x).

[8.] Consider the quotient ring

A =
Z2[x]

(
x2 + 1

) ,

and where we write x for the image of x in A via the homomorphism Z2[x] → A.
Compute all units and all zero divisors of A.
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SAMPLE FINAL EXAM #2

Time: 2 hours Instructor: James D. Lewis

Z = integers, Q = rationals, R = reals, C = complex numbers

[1.] (i) Explain why x2 + x + 1 is the only irreducible polynomial of degree 2 in Z2[x].
[Hint: First list all the polynomials of degree 2 in Z2[x].]

(ii) Factor p(x) = x6 + x4 + x + 1 ∈ Z2[x] into a product of irreducibles. [Hint: First
divide p(x) by the polynomial in (i).]

[2.] Let p(x) = 2x3 + 21x2 − 5 ∈ Q[x]. Factor p(x) as a product of irreducibles in Q[x].

[3.] Let i =
√
−1 ∈ C, and consider the map T : R[x]→ C given by T (p(x)) = p(i) ∈ C.

(i) Verify that T is a ring homomorphism.

(ii) Find ker(T ), i.e. find a d(x) ∈ R[x] such that ker(T ) = (d(x))
def
= {h(x) ·

d(x) | h(x) ∈ R[x]}.
(iii) Find Im(T ).

[4.] Let T : A → B be a ring homomorphism, and let U ⊂ B be an ideal. [Here A and
B are rings with unity.] Show that T−1(U) is an ideal in B. [Recall T−1(U) = {a ∈
A | T (a) ∈ U}.]

[5.] Let A = {a + b
√

2 | a, b ∈ Z}.
(i) Explain why A is a subring of R.

(ii) Find the units A∗ in A.

(iii) Is A a field? An integral domain? [Please explain.]

(iv) Find the units (A[x])∗ in A[x].

[6.] Consider the polynomial p(x) = x3 − 3x2 + 2x− 1 ∈ Q[x].

(i) Explain why p(x) is irreducible in Q[x].

(ii) Is Q[x]/(p(x)) a field?

(iii) For any g ∈ Q[x], let g ∈ Q[x]/(p(x)) be the corresponding class. Find the
multiplicative inverse of x in Q[x]/(p(x)).

[7.] (i) Find all units Z∗
25 in Z25.

(ii) Find all zero divisors in Z14.
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(iii) Find 29
−1

in Z147.

[8.] (i) Compute GCD(66, 220).

(ii) Let U = {n66 + m220 | n, m ∈ Z}. Show that U is an ideal in Z.

(iii) Let U be given in (ii). Find a positive integer d such that U = (d).
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SOLUTIONS TO SAMPLE FINAL EXAM #1

[1.] Factor
f(x) = x4 + 2x3 + 2x2 + 2x + 1 ∈ Z3[x]

into a product of irreducibles.

Solution: Note that f(0) = 1, f(1) = 2, f(2) = 0, and therefore (x− 2) is a factor of
f(x). Long division gives us

f(x) = (x− 2) (x3 + x2 + x + 1)
︸ ︷︷ ︸

q(x)

.

But q(2) = 0, and hence (x− 2) is a factor of q(x). [Alternatively, f ′(x) = x3 + x + 2 ⇒
f ′(2) = 0, f ′′(2) = 2 6= 0, hence (x − 2) is a double root.] Again, by long division,
q(x) = (x + 2)(x2 + 1). Note that x2 + 1 has no root in Z3, hence x2 + 1 is irreducible in
Z3[x]. Thus

f(x) = (x + 2)2(x2 + 1)

gives the irreducible decomposition.

[2.] Find all irreducible polynomials of degree 3 in Z2[x].

Solution: The degree 3 polynomials in Z2[x] are x3 +x2 +x+1, x3 +x+1, x3 +x2 +x,
x3 +x2 +1, x3 +1, x3 +x2, x3 +x, and x3. Among this list, only x3 +x+1 and x3 +x2 +1
don’t have a root in Z2. Thus x3+x+1 and x3+x2+1 are the only degree three irreducible
polynomials in Z2[x].

[3.] Consider the map T : Q[x]→ R given by T (f(x)) = f(
√

2) ∈ R.

(i) Verify that T is a ring homomorphism.

Solution: Clearly T (r) = r for any r ∈ Q. Thus T (1) = 1, i.e. preserves unities. Next,
T (f + g) = (f + g)(

√
2) = f(

√
2) + g(

√
2) = T (f) + T (g). Finally, T (f · g) = (f · g)(

√
2) =

f(
√

2)g(
√

2) = T (f)T (g).

(ii) Find ker(T ), i.e. find a d(x) ∈ Q[x] such that ker(T ) = (d(x))
def
= {h(x) ·

d(x) | h(x) ∈ Q[x]}.
Solution: Note that

√
2 6∈ Q⇒ deg d(x) ≥ 2. If we put d(x) = x2−2, then it is obvious

that d(
√

2) = 0, hence d(x) ∈ kerT , and that for any h(x) ∈ kerT , h(x) = q(x)d(x)+r(x),
where deg r(x) ≤ 1. But r(

√
2) = h(

√
2) − q(

√
2)d(
√

2) = 0, hence r(x) = 0. Thus
ker T = (d(x)), where d(x) = x2 − 2.

(iii) Find Im(T ).
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Solution: Im(T ) = Q[
√

2] := {a + b
√

2 | a, b ∈ Q}.

[4.] (i) Find all units in Z18.

Solution: Z∗
18 = {1, 5, 7, 11, 13, 17}.

(ii) Compute 31
−1

in Z60.

Solution: By applying Euclidean division and back substitution, we arrive at 1 =

15× 60− 29× 31. Thus 31
−1

= −29 = 60− 29 = 31.

[5.] Let
f(x) = 2x5 + 5x4 + 4x3 + 7x2 + 7x + 2 ∈ Q[x].

Factor f(x) into a product of irreducibles.

Solution: We first look for Q-roots of f(x), the candidates being {±1,±2,± 1
2}. It

is obvious that f(+ve) > 0, so we evaluate f on the negative candidates. In this case
f(−2) = f(− 1

2
) = 0. Long division gives us

f(x) = (x + 2)(2x4 + x3 + 2x2 + 3x + 1) = (x + 2)(x +
1

2
)(2x2 + 2x + 2).

= (x + 1)(2x + 1)(x2 + x + 1).

Note that {±1,±2,± 1
2} are not roots of x2+x+1, and therefore x2+x+1 has no Q-roots.

Thus x2 + x + 1 is irreducible in Q[x], and hence f(x) = (x + 1)(2x + 1)(x2 + x + 1) gives
the irreducible decomposition.

[6] Let A = {a + b
√

5 | a, b ∈ Z}. Verify that A is a subring of R. Is A a field? [You
must explain your reasoning.]

Solution: Set z = p + q
√

5, w = a + b
√

5 ∈ A, i.e. where p, q, a, b ∈ Z. Then:

z + w = (p + a)
︸ ︷︷ ︸

∈Z

+ (q + b)
︸ ︷︷ ︸

∈Z

√
5 ∈ A.

z · w = (p · a + 5q · b)
︸ ︷︷ ︸

∈Z

+ (p · b + q · a)
︸ ︷︷ ︸

∈Z

√
5 ∈ A.

Thus A is closed under +, • from R, and hence the associative, commutative and distribu-
tive laws hold for A, since the same laws hold for R. Note that Z = {p+0·

√
5 | p ∈ Z} ⊂ A.

Thus 0, 1 ∈ A and 1 6= 0. Also we have additive inverses: −z = (−p)+(−q)
√

5 ∈ A. Thus
A is a subring of R. It is not a subfield though. For example, if we let z = p + q

√
5 ∈ A,

and consider the conjugate z = p − q
√

5, and put N(z) = z · z = p2 − 5q2 ∈ Z, then
zw = 1 ⇒ N(zw) = N(z)N(w) = N(1) = 1. Thus N(z) = N(w) = ±1. In other words,
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if z ∈ A∗, then N(z) = ±1. So for example 2 6∈ A∗, since N(2) = 4 6= ±1. Thus A is a
subring, but not a subfield of R.

[7.] Let f(x) = x3 + 2x2 + x + 3 ∈ Q[x]. Explain why no combination of the form
a + b

√
2 + c

√
3, a, b, c ∈ Q, can be a root of f(x).

Solution: If z := a + b
√

2 + c
√

3 is a root of f(x) for some a, b, c ∈ Q, then such a z
belongs to the subfield L ⊂ R introduced in the rule and compass constructions. Therefore
f(x) would have to have a Q-root. But the only candidates of Q-roots of f(x) are ±1,±3,
and neither of these turn out to be roots of f(x). Thus such a root z above cannot exist.

[8.] Consider the quotient ring

A =
Z2[x]

(
x2 + 1

) ,

and where we write x for the image of x in A via the homomorphism Z2[x] → A.
Compute all units and all zero divisors of A.

Solution: All the elements of A = Z[x] are given by {0, 1, x, x + 1}. Note that
x2 = −1 = 1. The multiplication table is given below:

• | 0 | 1 | x | x + 1
−− −− −− −− −−
0 | 0 | 0 | 0 | 0
−− −− −− −− −−
1 | 0 | 1 | x | x + 1
−− −− −− −− −−
x | 0 | x | 1 | x + 1
−− −− −− −− −−

x + 1 | 0 | x + 1 | x + 1 | 0

Thus it is clear that the units A∗ = {1, x} and the zero divisors are {0, x + 1}.
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SOLUTIONS TO SAMPLE FINAL EXAM #2

[1.] (i) Explain why x2 + x + 1 is the only irreducible polynomial of degree 2 in Z2[x].
[Hint: First list all the polynomials of degree 2 in Z2[x].]

Solution: All polynomials in Z2[x] of degree 2 are: x2 + x + 1, x2 + x, x2 + 1, x2, and
all except x2 + x + 1 have a root in Z2. Thus x2 + x + 1 is the only irreducible degree 2
polynomial in Z2[x].

(ii) Factor p(x) = x6 + x4 + x + 1 ∈ Z2[x] into a product of irreducibles. [Hint: First
divide p(x) by the polynomial in (i).]

Solution: By long division, p(x) = (x4 +x3 +x2 +1)(x2 +x+1). But x4 +x3 +x2 +1
has 1 as root, hence x + 1 is a factor. Again, by long division:

p(x) = (x2 + x + 1)(x + 1)(x3 + x + 1).

This is a decomposition into irreducibles, since x3 + x + 1 has no root in Z2.

[2.] Let p(x) = 2x3 + 21x2 − 5 ∈ Q[x]. Factor p(x) as a product of irreducibles in Q[x].

Solution: The candidates for Q-roots of p(x) are {±1,±5,± 1
2
,± 5

2
}. Among these

candidates, one sees that p(− 1
2 ) = 0, and thus x + 1

2 is a factor of p(x). By long division:

p(x) = (x +
1

2
)(2x2 + 20x− 10) = (2x + 1)(x2 + 10x− 5).

But the only candidates for Q-roots of x2 + 10x − 5 are ±1,±5 and neither of these are
roots. Thus x2+10x−5 is irreducible, and hence the above is an irreducible decomposition.

[3.] Let i =
√
−1 ∈ C, and consider the map T : R[x]→ C given by T (p(x)) = p(i) ∈ C.

(i) Verify that T is a ring homomorphism.

Solution: Clearly T (r) = r for any r ∈ R. Thus T (1) = 1, i.e. preserves unities.
Next, T (f + g) = (f + g)(

√
−1) = f(

√
−1) + g(

√
−1) = T (f) + T (g). Finally, T (f · g) =

(f · g)(
√
−1) = f(

√
−1)g(

√
−1) = T (f)T (g).

(ii) Find ker(T ), i.e. find a d(x) ∈ R[x] such that ker(T ) = (d(x))
def
= {h(x) ·

d(x) | h(x) ∈ R[x]}.
Solution: d(x) = x2 + 1.

(iii) Find Im(T ).

Solution: Im(T ) = C.
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[4.] Let T : A → B be a ring homomorphism, and let U ⊂ B be an ideal. [Here A and
B are rings with unity.] Show that T−1(U) is an ideal in B. [Recall T−1(U) = {a ∈
A | T (a) ∈ U}.]

Solution: Let a, b ∈ T−1(U), and c ∈ A be given. Then T (a + b) = T (a) + T (b) ∈ U ,
and T (ca) = T (c)T (a) ∈ U . Thus T−1(U) is an ideal in A.

[5.] Let A = {a + b
√

2 | a, b ∈ Z}.
(i) Explain why A is a subring of R.

Solution: Set z = p + q
√

2, w = a + b
√

2 ∈ A, i.e. where p, q, a, b ∈ Z. Then:

z + w = (p + a)
︸ ︷︷ ︸

∈Z

+ (q + b)
︸ ︷︷ ︸

∈Z

√
2 ∈ A.

z · w = (p · a + 2q · b)
︸ ︷︷ ︸

∈Z

+ (p · b + q · a)
︸ ︷︷ ︸

∈Z

√
2 ∈ A.

Thus A is closed under +, • from R, and hence the associative, commutative and distribu-
tive laws hold for A, since the same laws hold for R. Note that Z = {p+0·

√
2 | p ∈ Z} ⊂ A.

Thus 0, 1 ∈ A and 1 6= 0. Also we have additive inverses: −z = (−p)+(−q)
√

2 ∈ A. Thus
A ⊂ R is a subring (with unity 1 6= 0).

(ii) Find the units A∗ in A.

Solution: For z = p + q
√

2, define z = p − q
√

2, and the norm N(z) = z · z =
p2 − 2q2 ∈ Z. Then for z, w ∈ A, zw = 1 ⇒ N(z)N(w) = N(zw) = N(1) = 1, hence
N(z) = N(w) = ±1. Thus z ∈ A∗ ⇒ N(z) = ±1. Conversely, if N(z) = ±1, then
z−1 = ±z ∈ A. Thus

A∗ = {z ∈ A | N(z) = ±1} = {p + q
√

2 | p2 − 2q2 = ±1, p, q ∈ Z}.

(iii) Is A a field? An integral domain? [Please explain.]

Solution: By the decription of A∗ in (ii) above,
√

2 6∈ A∗, and therefore A is not a
field. However, by (i), A is a subring of R, with unity 1 6= 0. Thus A cannot have any
non-zero zero divisors (being a subring of R). Thus A is an integral domain.

(iv) Find the units (A[x])∗ in A[x].

Solution: (A[x])∗ = A∗, since A is an integral domain.

[6.] Consider the polynomial p(x) = x3 − 3x2 + 2x− 1 ∈ Q[x].

(i) Explain why p(x) is irreducible in Q[x].

Solution: The only candidates for Q-roots of p(x) are ±1, and neither are roots. Hence
p(x), being of degree 3, must be irreducible.
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(ii) Is Q[x]/(p(x)) a field?

Solution: YES, since from class notes, p(x) being irreducible implies that (p(x)) is a
maximal ideal, hence Q[x]/(p(x)) a field.

(iii) For any g ∈ Q[x], let g ∈ Q[x]/(p(x)) be the corresponding class. Find the
multiplicative inverse of x in Q[x]/(p(x)).

Solution: In Q[x]/(p(x)), p(x) = x3−3x2+2x−1 = 0. Equivalently, x3−3x2+2x = 1.
Factoring out an x-term gives us: x(x2 − 3x + 2) = 1. Thus x−1 = x2 − 2x + 2.

[7.] (i) Find all units Z∗
25 in Z25.

Solution: Z∗
25 = {1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24}.

(ii) Find all zero divisors in Z14.

Solution: {0, 2, 4, 6, 7, 8, 10, 12}.

(iii) Find 29
−1

in Z147.

Solution: By Euclidean division and back substitution, 1 = 71× 29− 14× 147. Thus

29
−1

= 71.

[8.] (i) Compute GCD(66, 220).

Solution: 66 = 2× 3× 11, 220 = 22 × 5× 11. Thus GCD(66, 220) = 2× 11 = 22.

(ii) Let U = {n66 + m220 | n, m ∈ Z}. Show that U is an ideal in Z.

Solution: Let z = n66+ m220, z1 = n166+ m220, z2 = n266 + m2220 ∈ U , and k ∈ Z
be given. Then z1 +z2 = (n1 +n2)66+(m1 +m2)220 ∈ U and kz = (kn)66+(km)220 ∈ U .
Thus U is an ideal.

(iii) Let U be given in (ii). Find a positive integer d such that U = (d).

Solution: From class notes, U = {n66 + m220 | n, m ∈ Z} =
(
GCD(66, 220)

)
= (22),

i.e. d = 22.
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MATH 228 (A1) MIDTERM EXAM

Instructor: James D. Lewis

Wednesday, November 1, 2000

? ? ? ? ? ? ? ? ?? Closed Book. No Calculators. ? ? ? ? ? ? ? ? ??

N = {1, 2, 3, . . .} ; Z = Integers ; C = Complex Numbers

1. Prove by induction on n ∈ N that

1 + 4 + 7 + · · ·+ (3n− 2) =
(3n2 − n)

2
.

2. (i) Find all the units in Z30.

(ii) Find the multiplicative inverse of 92 in Z201.

(iii) Given that 5Z20 = {0, 5, 10, 15} is a subring of Z20, find all units and zero divisors
in 5Z20.

3. (i) Show that

A
def
= {p + q

√
−2 | p, q ∈ Z},

is a subring of C. [Note that A is contained in C, since
√
−2 =

√
2 ·
√
−1 ∈ C.]

(ii) Compute the units A∗ for the ring A in (i). Is A a subfield of C? (Please explain.)

4. Consider the relation ∼ on the set N×N, given by the prescription:

(a, b) ∼ (c, d)⇔ a · b = c · d.

(i) Show that ∼ is an equivalence relation.

(ii) Find all elements (a, b) ∈ N×N such that (a, b) ∼ (2, 2).
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MATH 228 (A1) MIDTERM EXAM SOLUTIONS

Instructor: James D. Lewis

Wednesday, November 1, 2000

? ? ? ? ? ? ? ? ?? Closed Book. No Calculators. ? ? ? ? ? ? ? ? ??

N = {1, 2, 3, . . .} ; Z = Integers ; C = Complex Numbers

[10] 1. Prove by induction on n ∈ N that

1 + 4 + 7 + · · ·+ (3n− 2) =
(3n2 − n)

2
.

Solution: Let P (n) be te statement:

1 + 4 + 7 + · · ·+ (3n− 2)
︸ ︷︷ ︸

LHS

=
(3n2 − n)

2
︸ ︷︷ ︸

RHS

.

Then for n = 1, we have LHS = (3 · 1− 2) = 1 and RHS = (3·12−1)
2

= 1. Thus P (1) is true.
We now show that P (n) true ⇒ P (n + 1) true. If we add (3(n + 1)− 2) = 3n + 1 to both
sides of P (n), then the new LHS becomes 1+4+7+ · · ·+(3(n+1)− 2) and the new RHS

becomes (3n2−n)
2 + 3n + 1 = 3n2−n+6n+2

2 = 3n2+5n+2
2 = 3(n+1)2−(n+1)

2 . Thus we arrive at:

1 + 4 + 7 + · · ·+ (3(n + 1)− 2) =
(3(n + 1)2 − (n + 1))

2
,

i.e. P (n + 1) holds.

[10] 2. (i)[3/3] Find all the units in Z30.

Solution: [Note that 30 = 2 · 3 · 5, and hence the Euler-Phi function value is ϕ(30) =
2 · 4 = 8. Thus there will be 8 units in all.]

Z∗
30 = {x | (x, 30) = 1} = {1, 7, 11, 13, 17, 19, 23, 29}.

(ii)[4/4] Find the multiplicative inverse of 92 in Z201.

Solution: By Euclidean division, we have:

201 = 2× 92 + 17
92 = 5× 17 + 7
17 = 2× 7 + 3
7 = 2× 3 + 1

130



Thus by back substitution, we have:

1 = 7− 2× 3 = 7− 2× (17− 2× 7) = 5× 7− 2× 17 = 5× (92− 5× 17)− 2× 17

= 5× 92− 27× 17 = 5× 92− 27× (201− 2× 92) = 59× 92− 27× 201.

Thus 92
−1

= 59.

(iii)[3/3] Given that 5Z20 = {0, 5, 10, 15} is a subring of Z20, find all units and zero
divisors in 5Z20.

Solution: The multiplication table is given below:

• | 0 | 5 | 10 | 15
−− −− −− −− −−
0 | 0 | 0 | 0 | 0
−− −− −− −− −−
5 | 0 | 5 | 10 | 15
−− −− −− −− −−
10 | 0 | 10 | 0 | 10
−− −− −− −− −−
15 | 0 | 15 | 10 | 5

It it obvious from the table that 5 is the unity, and that the units are {5, 15}, and zero
divisors are {0, 10}.

[10] 3. (i)[5/5] Show that

A
def
= {p + q

√
−2 | p, q ∈ Z},

is a subring of C. [Note that A is contained in C, since
√
−2 =

√
2 ·
√
−1 ∈ C.]

Solution: Let z1 = p1 + q1

√
−2, z2 = p2 + q2

√
−2 ∈ A. Then:

z1 + z2 = (p1 + p2)
︸ ︷︷ ︸

∈Z

+ (q1 + q2)
︸ ︷︷ ︸

∈Z

√
−2 ∈ A,

z1 · z2 = (p1p2 − 2q1q2)
︸ ︷︷ ︸

∈Z

+ (p1q2 + p2q1)
︸ ︷︷ ︸

∈Z

√
−2 ∈ A.

Thus A closed under +, • from C, and the associative, commutative, distributive laws
holding for C, implies that the same laws must hold for A. Note that Z ⊂ A, by the
identification p ∈ Z 7→ p + 0

√
−2 ∈ A. Thus for example 0, 1 ∈ A. Also z = p + q

√
−2 ∈

A⇒ −z = (−p) + (−q)
√
−2 ∈ A. Thus A ⊂ C is a subring (with unity as well).

(ii)[5/5] Compute the units A∗ for the ring A in (i). Is A a subfield of C? (Please
explain.)
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Solution: For z = p+ q
√
−2, set N(z) = z · z = p2 +2q2. Note that N(z) is an integer

≥ 0. Recall from class notes that N(z1z2) = N(z1)N(z2), for any z1, z2 ∈ A. Thus if
z1z2 = 1, it follows that N(z1)N(z2) = N(z1z2) = N(1) = 1, hence N(z1) = N(z2) = 1.
Thus z ∈ A∗ ⇔ N(z) = 1 ⇔ z = ±1. In particular A∗ = {1,−1}. Thus for example√
−2 ∈ A has no multiplicative inverse, and hence A is not a subfield of C.

[10] 4. Consider the relation ∼ on the set N×N, given by the prescription:

(a, b) ∼ (c, d)⇔ a · b = c · d.

(i)[6/6] Show that ∼ is an equivalence relation.

Solution: Since a · b = a · b it follows that (a, b) ∼ (a, b) [⇒ reflexivity]. Next (a, b) ∼
(c, d) ⇔ a · b = c · d ⇔ c · d = a · b ⇔ (c, d) ∼ (a, b) [⇒ symmetry holds]. Finally,
(a, b) ∼ (c, d) & (c, d) ∼ (e, f)⇔ a · b = c · d & c · d = e · f ⇒ a · b = e · f ⇒ (a, b) ∼ (e, f)
[⇒ transitivity holds].

(ii)[4/4] Find all elements (a, b) ∈ N×N such that (a, b) ∼ (2, 2).

Solution: We are looking at {(a, b) ∈ N ×N | a · b = 4}. This gives us (4, 1), (2, 2)
and (1, 4).
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MATH 228 FINAL EXAM December, 2000

? ? ? ? ?? [This is a closed book exam. No Calculators.]? ? ? ? ??

Z = integers, Q = rationals, R = reals, C = complex numbers
A∗ = units in a ring A

[1. (15 pts)] (i) Find all the units
(
Z7[x])∗ in Z7[x].

(ii) Find all the zero divisors in Z10.
(iii) Let A = Z[y]. Find all the units

(
A[x])∗ in A[x]. [Here x, y are variables.]

[2. (10 pts)] Find all values a, b ∈ Z3 for which the polynomial

p(x) = x3 + ax + b ∈ Z3[x]

is irreducible.

[3. (10 pts)] Let
U = {756 · x + 232 · y | x, y ∈ Z}.

(i) Show that U is an ideal in Z.
(ii) Find d ∈ N such that U = (d).

[4. (10 pts)] Factor p(x) = 2x5 − 3x4 − x2 − 5x− 2 into a product of irreducibles in Q[x].

[5. (10 pts)] Consider the quotient ring Q[x] := Q[x]/
(
p(x)

)
, where p(x) = x3 − x2 + x− 1.

(i) Find the multiplicative inverse of x in Q[x].
(ii) Find two non-zero zero divisors in Q[x].

[6. (10 pts)] Show that
√

3+
√

5 6∈ Q. [Hint: First verify the identity:
[
(
√

5+
√

3)2−8
]2−60 = 0.]

[7. (15 pts)] Let A and B be rings with unity, and assume given a ring homomorphism T : A→ B.

(i) Show that if a ∈ A∗, then T (a) ∈ B∗.
(ii) Show that ker T is an ideal in A.

[8. (20 pts)] Let n, m be integers ≥ 2, and consider the ring A = Zn × Zm, with componentwise
addition and multiplication given by

(xn, ym) + (un, vm) = ((x + u)n, (y + v)m)

(xn, ym) • (un, vm) = ((xu)n, (yv)m),

and with unity (1n, 1m) ∈ A, and zero element (0n, 0m) ∈ A. Let T : Znm → A be
the map given by

T (xnm) = (xn, xm).

(i) Show that T is well-defined.
(ii) Show that T is a ring homomorphism.
(iii) Show that ker T = (k) := {q · k | q ∈ Znm}, where k = LCM(n, m) (= least

common multiple).
(iv) Explain why T is an isomorphism (i.e. ker T = 0 and the image Im(T ) = A) in

the case that (m, n) = 1.
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MATH 228 FINAL EXAM SOLUTIONS December, 2000

? ? ? ? ?? [This is a closed book exam. No Calculators.]? ? ? ? ??

Z = integers, Q = rationals, R = reals, C = complex numbers
A∗ = units in a ring A

[1.] (i) Find all the units
(
Z7[x])∗ in Z7[x]. [Solution:

(
Z7[x])∗ = Z∗

7 = {1, 2, 3, 4, 5, 6}.]
(ii) Find all the zero divisors in Z10. [Solution: {0, 2, 4, 5, 6, 8}.]
(iii) Let A = Z[y]. Find all the units

(
A[x])∗ in A[x]. [Here x, y are variables.]

[Solution:
(
A[x])∗ = A∗ =

(
Z[y]

)∗
= Z∗ = {1,−1}.]

[2.] Find all values a, b ∈ Z3 for which the polynomial

p(x) = x3 + ax + b ∈ Z3[x]

is irreducible. [Solution: There are 9 polynomials to consider. Among those, only
x3+2x+1 and x3+2x+2 are the polynomials with no roots in Z3. Hence (a, b) = (2, 1),
(2, 2) are the only values of a and b for which p(x) is irreducible.]

[3.] Let
U = {756 · x + 232 · y | x, y ∈ Z}.

(i) Show that U is an ideal in Z. [Solution: For x, y, x1, y1, x2, y2, z ∈ Z, we have
(756x1+232y1)+(756x2+232y2) = 756(x1+x2)+232(y1 +y2) ∈ U . z(756x+232y) =
756(zx) + 232(zy) ∈ U .]
(ii) Find d ∈ N such that U = (d). [Solution: d = (756, 232) = 4.]

[4.] Factor p(x) = 2x5−3x4−x2−5x−2 into a product of irreducibles in Q[x]. [Solution:
The only candidates for Q-roots are {±1,±2,± 1

2}, and one checks that 1 and − 1
2 are

roots. By long division, p(x) = (2x + 1)(x − 2)(x3 + x + 1). Note that x3 + x + 1
has no Q-roots, since the only candidates are ±1. Thus this gives the irreducible
decomposition.]

[5.] Consider the quotient ring Q[x] := Q[x]/
(
p(x)

)
, where p(x) = x3 − x2 + x− 1.

(i) Find the multiplicative inverse of x in Q[x]. [Solution: We have x(x2 − x + 1) =
x3 − x2 + x = 1. Thus x−1 = (x2 − x + 1).]
(ii) Find two non-zero zero divisors in Q[x]. [Solution: Note that p(1) = 0, thus
(x−1) is a factor of p(x). In particular, by long division, p(x) = (x−1)(x2 +1). Thus
(x− 1)(x2 + 1) = 0 ∈ Q[x]. Hence x− 1, x2 + 1 are zero divisors.]

[6.] Show that
√

3+
√

5 6∈ Q. [Hint: First verify the identity:
[
(
√

5+
√

3)2−8
]2−60 = 0.]

[Solution: Set p(x) = (x2 − 8)2 − 60 = x4 − 16x2 + 4. Then the only candidates for
Q-roots of p(x) are {±1,±2,±4}. It is obvious that

√
5 +
√

3 is not equal to any of
these. Alternatively, none of these candidate roots turn out to be roots of p(x).]

[7.] Let A and B be rings with unity, and assume given a ring homomorphism T : A→ B.
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(i) Show that if a ∈ A∗, then T (a) ∈ B∗. [Solution: Let a, b ∈ A be given such that
ab = 1A. Then 1B = T (1A) = T (ab) = T (a)T (b). Thus T (A∗) ⊂ B∗.]
(ii) Show that ker T is an ideal in A. [Solution: Let a, b ∈ kerT and c ∈ A. Then
T (a + b) = T (a) + T (b) = 0 + 0 = 0⇒ a + b ∈ ker T . Next, T (ca) = T (c)T (a) =
T (c) · 0 = 0⇒ ca ∈ ker T .]

[8.] Let n, m be integers ≥ 2, and consider the ring A = Zn × Zm, with componentwise
addition and multiplication given by

(xn, ym) + (un, vm) = ((x + u)n, (y + v)m)

(xn, ym) • (un, vm) = ((xu)n, (yv)m),

and with unity (1n, 1m) ∈ A, and zero element (0n, 0m) ∈ A. Let T : Znm → A be
the map given by

T (xnm) = (xn, xm).

(i) Show that T is well-defined. [Solution: We observe that xnm = ynm ⇔ (nm)|(x−
y)⇒ n|(x− y) & m|(x− y)⇒ T (xnm) = (xn, xm) = (yn, ym) = T (ynm).]

(ii) Show that T is a ring homomorphism. [Solution: T (xnmynm) = T ((xy)nm) =

((xy)n, (xy)m) = (xn, xm) • (yn, ym) = T (xnm)T (ynm); T (xnm + ynm) = T ((x + y)nm) =

((x + y)n, (x + y)m) = (xn, xm) + (yn, ym) = T (xnm) + T (ynm); T (1nm) = (1n, 1m).]
(iii) Show that ker T = (k) := {q · k | q ∈ Znm}, where k = LCM(n, m) (= least

common multiple). [Solution: Let k = LCM(n, m). Since n|k and m|k, it is obvious
that T (knm) = (kn, km) = (0n, 0m), hence (k) ⊂ ker T . On the other hand, if T (qnm) =
(0n, 0m), then n|q and m|q. Thus k|q, by definition of LCM. Hence kerT ⊂ (k), i.e.
ker T = (k).]

(iv) Explain why T is an isomorphism (i.e. ker T = 0 and the image Im(T ) = A) in
the case that (m, n) = 1. [Solution: By (iii), ker T = LCM(n, m) = nm = 0 ∈ Znm, where
we use the fact that (m, n) = 1 ⇒ LCM(n, m) = nm. Thus T is one-to-one. But A and
Znm have the same number of elements. Thus T must be onto as well.]
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INDEX

[Students are encouraged to supply the appropriate page numbers of the following
index topics, for quick reference]

Associative law,
Characteristic (of a field),
Chinese remainder theorem,
Commutative law,
Complex numbers (C),
Conjugate,
Countability (of sets),
Degree (of a polynomial),
Distributive law,
Duplication of the cube problem,
Equivalence relation,
Euclid’s division algorithm,
Euler Phi function (ϕ),
Field,
Finite field,
Finite integral domains (are fields),
Fundamental theorem of algebra,
Fundamental theorem of arithmetic,
Gaussian integers,
Gauss’s lemma,
Greatest common divisor (GCD),
Homomorphism,
Ideal, prime, maximal,
Induction,
Integers (Z), modulo n (Zn),
Integral domain,
Inverse, additive, multiplicative,
Irrational number,
Irreducible,
Isomorphism,
Kernel,
Least common multiple (LCM),
L-field (ruler and compass field),
Noetherian,
Norm,
Polynomial,
Prime,
Principal ideal domain (PID),
Quadratic equation, formula,
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Quadratic field extension,
Quotient ring,
Rational numbers (Q),
Rational roots of polynomials in Z[x],
Real numbers (R),
Relatively prime,
Ring,
Root (of a polynomial),
Ruler and compass,
Subring, subfield,
Trisection problem,
Uncountability (of the reals),
Unique factorization domain (UFD),
Unit (and Group of units),
Unity,
Zero element,
Zero divisor,
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INDEX OF NOTATION

⊂ : Subset, contained in or equal to

⊂
6=

: Contained in but not equal to

(n, m) : = GCD(m, n), greatest common divisor
[m, n] : = LCM[m, n], least common multiple

a|b : a divides b, a is a factor of b
F : Field
N : Natural numbers {1, 2, 3, . . .}
Z : Integers {0,±1,±2,±3, . . .}
Q : Rational numbers
R : Real numbers
C : Complex numbers

F[
√

k] : Quadratic extension of the field F given by {a + b
√

k | a, b ∈ F}
Zn : Integers mod n
A∗ : (Group of) units
(a) : Ideal generated by a ∈ A, (a) = {b · a | b ∈ A}

A[x] : Polynomial ring over A
F[x] : Polynomial ring over the field F
F(x) : Rational function field

Quot(A) : Quotient field of an integral domain A
A/U : Quotient ring
PID : Principal ideal domain

UFD : Unique factorization domain
⋃

, ∪ : Union
∐

: Disjoint union
⋂

, ∩ : Intersection
ker : Kernel

Char(F) : Characteristic of a field
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