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1 Linear Programming

Objective function: Linear function (cost) to be minimized.

Constraints: Linear inequalities or equalities on decision variables.

Feasible solution: Decision variables that satisfy the constraints.

Feasible set: Set of all feasible solutions.

Optimal value: Desired minimum.

Optimal solution: A feasible solution that achieves the optimal value.

Optimal set: Set of all optimal solutions.

Cost vector: Vector of cost weights for each decision variable.

Standard form:
minimize c⊺x

subject to Ax = b,

x ≥ 0.

1. Elimination of free variables.

2. Elimination of inequality constraints.
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2 Geometry

Polyhedron:
{x ∈ Rn : Ax ≥ b}.

Polyhedron in standard form:

{x ∈ Rn : Ax = b,x ≥ 0}.

Hyperplane:
{x ∈ Rn : a⊺x = b}.

Half space:
{x ∈ Rn : a⊺x ≥ b}.

Convex function: f(tp+ (1− t)q) ≤ tf(p) + (1− t)f(q) for all t ∈ [0, 1], p, q.

Convex combination:
∑k

i=1 tixi, where the nonnegative weights ti sum up to 1.

Convex hull: the set of all convex combinations.

Convex set: contains all convex combinations of points p, q in the set.

Absolute values: Minimize
∑n

i=1 ci |xi|, where all ci ≥ 0:

|xi| → x+
i + x−

i , xi → x+
i − x−

i .

Active constraint: holds with equality.

Extreme point: not a convex combination of two distinct points of the polyhedron.

Vertex: lies on separating hyperplane.

Basic solution: all equality constraints active, for a total of n linearly independent
active constraints.

Extreme point=vertex=basic feasible solution.

Adjacent basic solutions in Rn: share n−1 linearly independent active constraints.

Edge: line segment joining two adjacent basic feasible solutions.

2



Basic solutions in standard-form (feasible if xB ≥ 0):

i) Aj1 , . . . ,Ajm are linearly independent;

ii) if i ̸= j1, . . . , jm, then xi = 0.

B = [Aj1 , . . . ,Ajm ], xB =

 xj1
...

xjm


xB = B−1b.

Degenerate: more than n constraints are active at x.

Degenerate basic solution in standard-form: some zero basic variables.

Contains a line.

Theorem 2.7: Suppose that the polyhedron P = {x ∈ Rn : a⊺
ix ≥ bi, i = 1, . . . , k} is

nonempty. Then the following are equivalent:

(i) P does not contain a line.

(ii) P has at least one extreme point.

(iii) The set {a1, . . . ,ak} contains n linearly independent vectors.

Theorem 2.9: Consider the linear programming problem of minimizing c⊺x over a
polyhedron P . Suppose that P has at least one extreme point. Then either the
optimal cost equals −∞ or P has an optimal extreme point.

Remark: Nonempty polyhedra that are bounded or in standard form always have
an extreme point!
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3 The Simplex Method

Basic components of jth simplex direction (feasible if nondegenerate):

dB = −B−1Aj.

Reduced cost:
cj = cj + c⊺BdB = cj − c⊺BB

−1Aj.

Reduced cost of basic variable: 0.

Optimality: if c ≥ 0, x is optimal. If x is optimal and nondegenerate, then c ≥ 0.

Phase II: full tableau constructed from negative cost, reduced costs c, xB, and
B−1A.

Entering variable: negative reduced cost cj.

Exiting variable: minimize xji/ui, where u = −dB = B−1Aj.

Bland’s rule: if there is more than than one choice for the entering or exiting vari-
able, always choose the one with the lowest subscript.

Phase I: look for an initial basic feasible solution by considering the auxillary prob-
lem

minimize
m∑
i=1

yi

subject to Ax+ y = b,

x,y ≥ 0.

Optimization: omit from the tableau any artificial column that is a positive multiple
of another column.
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4 Duality

Primal vs. Dual:

minimize c⊺x

subject to a⊺
ix ≤ bi, i ∈ M1,

a⊺
ix ≥ bi, i ∈ M2,

a⊺
ix = bi, i ∈ M3,

xj ≤ 0, j ∈ N1,

xj ≥ 0, j ∈ N2,

xj free, j ∈ N3,

maximize b⊺p

subject to pi ≤ 0, i ∈ M1,

pi ≥ 0, i ∈ M2,

pi free, i ∈ M3,

A⊺
jp ≥ cj, j ∈ N1,

A⊺
jp ≤ cj, j ∈ N2,

A⊺
jp = cj, j ∈ N3.

minimize maximize
≤ bi ≤ 0

constaints ≥ bi ≥ 0 variables
= bi free
≤ 0 ≥ cj

variables ≥ 0 ≤ cj constraints
free = cj

Primal \ Dual Finite optimum Unbounded Infeasible

Finite optimum Possible Impossible Impossible
Unbounded Impossible Impossible Possible
Infeasible Impossible Possible Possible

Theorem 4.3 (Weak duality): If x is a feasible solution to the primal problem and p
is a feasible solution to the dual problem, then

p⊺b ≤ c⊺x.

Corollary 4.3.2: Let x and p be feasible solutions to the primal and dual problems,
respectively, and suppose that p⊺b = c⊺x. Then x and p are optimal solutions.

Theorem 4.4 (Strong duality): If a linear programming problem has an optimal
solution, so does its dual, and the respective optimal costs are equal.

Theorem 4.5 (Complementary slackness): Let x and p be feasible solutions to the
primal and dual problem, respectively. Then x and p are optimal solutions if and
only if

pi(a
⊺
ix− bi) = 0, for all i = 1, . . . ,m

and
(cj −A⊺

jp)xj = 0, for all j = 1, . . . , n.
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Theorem 4.6 (Farkas’ lemma): Let A be an m× n matrix and let b ∈ Rm. Exactly
one of the following alternatives holds:

(i) Ax = b has a solution x ≥ 0;

(ii) A⊺p ≥ 0 has a solution p with p⊺b < 0.

5 Sensitivity Analysis

Look for conditions under which B remains optimal:

1. feasibility: xB = B−1b ≥ 0;

2. optimality: c⊺ = c⊺ − c⊺BB
−1A ≥ 0.

Dual simplex method (c ≥ 0):

Entering variable: lowest subscript with negative pivot-row entry vj that
minimizes cj/−vj.

Exiting variable: lowest subscript with negative basic variable.
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