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Preface

The figures in this text were drawn with the vector graphics language Asymptote

(freely available at http://asymptote.sourceforge.net).
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Chapter 1

Linear Programming

[Bertsimas & Tsitsiklis 1997]
Optimization is an important area of applied mathematics that is widely used in

many areas of society, including industry, business, science, and economics. Some
optimization problems involve an infinite number of variables (like those that arise in
the calculus of variations that you may encounter in a mechanics course). However,
in this course, we focus on optimization problems that involve maximizing or mini-
mizing a function of a finite number of variables subject to finitely many inequality
(or equality) constraints. In particular, we will examine the case where both the
function and the constraints are linear functions of their arguments. This subject is
often confusingly called linear programming , even though it it deals more with lin-
ear algebra and geometry than the technical aspects of computer programming. The
term “programming” is used here in the sense of detailed military logistics planning,
stemming from the work of George Danzig in the US Air Force and at the RAND Cor-
poration just after the end of World War II. The alternative term linear optimization
is perhaps a more suitable name.

To illustrate what linear programming is all about, let us begin with a simple
optimization problem:

• A farmer has 25 hectares of land on which to grow barley or corn. He earns $600
for each hectare of barley and $500 for each hectare of corn. Harvesting the barley
requires 20 hours of labour per hectare, and harvesting the corn requires 10 hours
of labour per hectare. The farmer can afford 200 hours of labour. How can he
maximize his profit?

To help us answer this question, let us define the decision variables that express
the choices facing the farmer: how many hectares of barley to grow (B) and how many
hectares of corn (C) to grow. We are told that the profit is f(B,C) = 600B + 500C.

There are four constraints in the problem. First, the total number of hectares
is B + C ≤ 25. Second, the total amount of labour is limited: 20B + 10C ≤ 200.
Finally, since you cannot plant negative hectares of grain, we know that B ≥ 0 and
C ≥ 0.

6
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Remark: It is helpful to illustrate this linear programming problem graphically. In
the following graph, the shaded (green+gray) region in the B–C plane depicts the
constraints B + C ≤ 25, B ≥ 0, C ≥ 0, which is further refined by the constraint
20B + 10C ≤ 200 to the green triangle. The green triangle represents the feasible
set , which is the collection of all feasible solutions (B,C) that satisfy the four given
constraints.
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Remark: Let us now consider the behaviour of the objective function f(B,C) =
600B + 500C as B and C vary over the box [0, 25]× [0, 25] in the B–C plane.



8 CHAPTER 1. LINEAR PROGRAMMING

One notices that the function takes on its maximum value over the green region
at the vertex (0, 20) and its minimum value at the vertex (0, 0). The graph illustrates
that the solution to the farmer’s maximization problem occurs at B = 0 and C = 20.
That is, in order to maximize his profit, the farmer should only plant 20 hectares of
corn; this will use up all 200 hours of his labour but reward him with a tidy profit of
$10 000.

Remark: Notice that the extrema of the objective function occur at vertices of the
feasible set.

Remark: Another feature that we notice in this example is the first constraint
B + C ≤ 25 was superfluous and can be removed from the problem. In some
applications, the removal of such superfluous constraints can make solving linear
programming problems much more efficient!

Remark: An optimization problem to an objective function f of n decision variables
x = (x1, . . . , xn) ∈ Rn, over the feasible set F ⊂ Rn of solutions satisfying all of
the constraints, can be written symbolically as

max
x∈F

f(x)

or
min
x∈F

f(x).

https://www.math.ualberta.ca/~bowman/m373/fig/t1.html
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• For example, in the problem

max
x1,x2

x21+x22≤1

(x2
1 + x2

2),

the feasible set is the unit disk. This is an example of a nonlinear optimization
problem: both the objective function f(x1, x2) = x2

1+x2
2 and constraint x2

1+x2
2 ≤ 1

are nonlinear in the decision variables x1 and x2.

Definition: The optimal value is the desired extreme (maximum or minimum) value
(if it exists) of the objective function.

Definition: A feasible solution x∗ that extremizes the objective function is called an
optimal feasible solution, or simply an optimal solution.

Definition: The optimal set is the set of optimal solutions; that is, the set of feasible
solutions at which the objective function f takes on its optimal value (if it exists).

Remark: In the above problem, the optimal value is 1 and the set of optimal solutions
is the unit circle.

Remark: In determining optimal solutions, one considers only points x that are
feasible.

• For the problem
max

x21+x22≤1

x2≥0

(x2
1 + x2

2),

the optimal set is the upper half circle.

• For the problem
max
x≥−1
x≤1

(x2 + 2),

the feasible set is [−1, 1], the optimal value is 3, and x = −1 and x = 1 are the
optimal solutions.

• For the problem
min
x≥−1
x≤3
y≤2

(x2 + y2),

the feasible set is {(x, y) : x ∈ [−1, 3], y ∈ (−∞, 2]}, the optimal value is 0 and the
optimal solution is (0, 0).
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• For the problem

max
x>0

1

x
,

the feasible set is (0,∞); we say that the optimal value is ∞, but there are no
optimal solutions (the optimal set is empty).

• For the problem

min
x>0

1

x
,

the feasible set is again (0,∞); we say that the optimal value is 0, but there are
still no optimal solutions.

Remark: There is no need to study maximization and minimization problems sepa-
rately, because maximizing f is equivalent to minimizing −f .

Remark: In typical real-life problems, determining the optimal set is often even more
important that knowing the optimal value. For example, if you are asked to solve
an optimization problem to maximize profit, it doesn’t help much to know the
optimal value if you don’t know how to achieve it!

Remark: Solving an optimization problem means finding the optimal value and all
optimal solutions.

Remark: Various outcomes to an optimization problem are possible:

The problem may be


infeasible (no feasible solutions)

feasible


no optimal solutions

optimal solutions

{
finitely many

infinitely many

Problem 1.1: Suppose you are asked to produce two kinds of meals: economy and
deluxe. The economy meal sells for $3/kg and the deluxe version sells for $4/kg.
The ingredients are rice and lamb. The economy version should contain at most
25% lamb (by weight), while the deluxe version should contain at least 50% lamb.
The cost of rice is $1/kg, whereas lamb costs $2/kg. You have 300 kg of rice and
100 kg of lamb available. Formulate a linear programming problem that determines
how much rice and lamb should you put into each dish to maximize your profit,
assuming that all of the prepared dishes sell.
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Let the decision variables re and rd represent the weight of rice in the economy and
deluxe dishes respectively, and ℓe and ℓd represent the corresponding weights of lamb. The
objective function is f(re, rd, ℓe, ℓd) = 3(re + ℓe) + 4(rd + ℓd) − (re + rd) − 2(ℓe + ℓd). One
wants to maximize this function subject to the constraints

re + rd ≤ 300,

ℓe + ℓd ≤ 100,

ℓe ≤
1

4
(re + ℓe),

ℓd ≥ 1

2
(rd + ℓd),

and
re, ℓe, rd, ℓd ≥ 0.

1.A Linear programming problems

Definition: A function f : Rn → R is linear if it can be expressed as

f(x1, . . . , xn) =
n∑

i=1

cixi,

for some real numbers ci.

Remark: Equivalently, a function f : Rn → R is linear if

f(αx+ βy) = αf(x) + βf(y)

for all vectors x and y and real numbers α and β.

Definition: A linear constraint on the variables x1, . . . , xn has one of the following
forms, where a1, . . . , an and b are real numbers:

• linear equalities, such as
n∑

i=1

aixi = b;

• linear inequalities, such as
n∑

i=1

aixi ≥ b.
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Definition: Although for n > 1, Rn is not an ordered field, it is nevertheless possible
to introduce a partial ordering on Rn component-wise: given two vectors x =
(x1, . . . , xn) and y = (y1, . . . , yn) where xi ≤ yi for all i, we say x ≤ y. Similarly,
x ≥ y means that xi ≥ yi for all i. Corresponding definitions hold for strict
inequalities, with ≤ replaced by < and ≥ replaced by >.

Definition: In a linear programming problem, one seeks to minimize a linear cost
function c⊺x =

∑n
j=1 cjxj over all vectors x = (x1, . . . , xn) in Rn, subject to a set

of linear equality and inequality constraints. The vector c = (c1, . . . , cn) is called a
cost vector and we denote its transpose by c⊺. Note that c⊺x = c·x.
That is, a linear programming problem is of the form

minimize c⊺x

subject to a⊺
ix ≤ bi, i ∈ M1,

a⊺
ix ≥ bi, i ∈ M2,

a⊺
ix = bi, i ∈ M3,

xj ≤ 0, j ∈ N1,

xj ≥ 0, j ∈ N2,

(1.1)

where M1, M2, M3, N1, and N2 are finite sets of integers, and the variables x =
(x1, . . . , xn) are called decision variables . When x satisfies all of the given constraints,
it is called a feasible solution or feasible vector . If there are no restrictions on the
sign of xj, i.e., j does not belong to N1 ∪N2, we say that xj is a free or unrestricted
variable. The linear function f(x) = c⊺x is called the objective function or cost
function. A feasible solution x∗ that minimizes the objective function is called an
optimal feasible solution or optimal solution. The value c⊺x∗ is the optimal cost .

Problem 1.2: By introducing an appropriate coefficient matrix A and target vec-
tor b, show that (1.1) can be rewritten in the compact form

minimize c⊺x

subject to Ax ≥ b.

1.B Standard form

A linear programming problem of the form

minimize c⊺x

subject to Ax = b,

x ≥ 0.

is said to be in standard form.
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Remark: If we let A1, . . . ,An represent the column vectors of the matrix A, the
constraint Ax = b can be written as

n∑
j=1

Ajxj = b.

The goal is to synthesize the target vector b from a nonnegative amount xj of each
resource Aj, such that the cost

∑n
j=1 cjxj is minimized, where cj is the unit cost

of the jth resource.

• The diet problem. Suppose that there are n different foods and m different
nutrients. The following table indicates the nutritional content of a unit of each
food:

food 1 · · · food n
nutrient 1 a11 · · · a1n

...
...

...
nutrient m am1 · · · amn

LetA be them×nmatrix with entries aij, so that its jth columnAj represents the
nutritional content of the jth food. Let b be the vector expressing the requirements
of an ideal diet. The standard-form problem aims to mix nonnegative quantities xj

of the available foods to achieve an ideal diet at minimal cost. The condition for
synthesizing the ideal diet is

n∑
j=1

Ajxj = b.

If b instead represents the minimal requirements of an adequate diet, the constraint
becomes

n∑
j=1

Ajxj ≥ b.

1.C Reduction to standard form

Using the following procedures, it is possible to reduce any linear programming prob-
lem to standard form:

1. Elimination of free variables : Each free variable xj can be replaced by the
difference x+

j − x−
j of two additional nonnegative variables x+

j and x−
j (every

real number can be expressed as the difference of two nonnegative numbers).
This removes xj from the problem but adds two new constraints: x+

j ≥ 0 and
x−
j ≥ 0.
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2. Elimination of inequality constraints : Given an inequality constraint of the form

n∑
j=1

aijxj ≤ bi,

we introduce a nonnegative slack variable si to obtain the standard-form con-
straints

n∑
j=1

aijxj + si = bi,

si ≥ 0.

Likewise, for each constraint of the form

n∑
j=1

aijxj ≥ bi,

we introduce a nonnegative surplus variable si, such that

n∑
j=1

aijxj − si = bi,

si ≥ 0.

Since they work similarly, we will often refer to slack and surplus variables
collectively as (generic) slack variables.

• For the linear programming problem

minimize x1 + 2x2

subject to x1 + 3x2 ≤ 2,

2x1 + x2 = 1,

x1 ≥ 0,

an equivalent problem in standard form is

minimize x1 + 2x+
2 − 2x−

2

subject to x1 + 3x+
2 − 3x−

2 + x3 = 2,

2x1 + x+
2 − x−

2 = 1,

x1 ≥ 0,

x+
2 ≥ 0,

x−
2 ≥ 0,

x3 ≥ 0,
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For example, for the feasible solution (x1, x2) = (1,−1) to the original problem,
the standard-form problem has a corresponding feasible solution (x1, x

+
2 , x

−
2 , x3) =

(1, 0, 1, 4) (not unique), with the same cost. Conversely, the feasible solution
(x1, x

+
2 , x

−
2 , x3) = (2, 1, 4, 9) to the standard-form problem corresponds to the solu-

tion (x1, x2) = (2,−3) to the original problem at the same cost.

1.D Strict inequalities

Linear programming problems are typically formulated with nonstrict inequalities.
Nevertheless, a problem involving strict inequality constraints such as

a⊺x > b

can be handled by first solving the linear programming problem obtained by replacing
the above inequality with the nonstrict version

a⊺x ≥ b

and then checking whether or not an optimal solution x∗ to this modified problem
satisfies a⊺x∗ > b. If it does not, then an optimal feasible solution does not exist, but
there exist feasible solutions arbitrarily close to x∗.



Chapter 2

The Geometry of Linear
Programming

2.A Polyhedra

Definition: A convex polyhedron is a set that can be described in the form

{x ∈ Rn : Ax ≥ b},

where A is an m× n matrix and b is a vector in Rm.

Remark: By the arguments used to reduce a linear programming problem to stan-
dard form, a convex polyhedron can be equivalently defined as a set

{x ∈ Rn : Ax = b,x ≥ 0}.

Remark: A convex polyhedron can either extend to infinity or can be contained in
a finite region.

Definition: A set S ⊂ Rn is bounded if there exists some constant K such that
|x|≤ K for every element x ∈ S. Typically, we will use the Euclidean norm
|x|=

√∑n
i=1 x

2
i .

Definition: Let a ∈ Rn,a ̸= 0 and b ∈ R. Then

1. The set {x ∈ Rn : a⊺x = b} is called a hyperplane.

2. The set {x ∈ Rn : a⊺x ≥ b} is called a half space.

Notice that the hyperplane is the boundary of the corresponding half space and is
perpendicular to a.

16
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Remark: In R3, the xy plane (z = 0) is the hyperplane a·x = 0 corresponding
to a = (0, 0, 1) and b = 0. Everything lying on or above that (z ≥ 0) is a half
space. Everything lying on or below that (z ≤ 0) is another half space. Thus, the
hyperplane z = 0 divides the space R3 into two half spaces whose union makes up
all of R3.

Remark: A convex polyhedron can thus be expressed as an intersection of half spaces.

Definition: The graph of a function f : Rn → R is the set of ordered pairs

{(x, f(x)) : x ∈ Rn}.

Remark: The graph of f is just the set of values taken on by the function

F : Rn → Rn+1, F (x) = (x, f(x)).

2.B Review of convexity for functions f : R → R
Definition: A function f : R → R is convex (sometimes called concave up) on an

interval I ∈ R if its graph on every subinterval [p, q] of I lies below or on the secant
line segment joining (p, f(p)) and (q, f(q)).

Definition: A function f is concave (sometimes called concave down) on an interval
I if −f is convex on I.

Remark: Since the equation of the line through (p, f(p)) and (q, f(q)) is

y = f(p) +
f(q)− f(p)

q − p
(x− p),

the definition of convex says

f(x) ≤ f(p) +
f(q)− f(p)

q − p
(x− p) for all x ∈ [p, q], p, q ∈ I. (2.1)

This condition may be rewritten by re-expressing the linear interpolation of f
between p and q on the right-hand side of (2.1):

f(x) ≤
(
q − x

q − p

)
f(p) +

(
x− p

q − p

)
f(q) for all x ∈ [p, q], p, q ∈ I. (2.2)

It is sometimes convenient to introduce the parameter t =
q − x

q − p
, in terms of

which we may express x = q − (q − p)t and

x− p

q − p
=

(q − p)− (q − p)t

q − p
= 1− t.

This allow us to restate (2.2) in parametric form:

f(tp+ (1− t)q) ≤ tf(p) + (1− t)f(q) for all t ∈ [0, 1], p, q ∈ I. (2.3)
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2.C Convexity for functions f : Rn → R
Definition: Given points p, q ∈ Rn, the set {tp+ (1− t)q : t ∈ [0, 1]} describes the
line segment with endpoints p and q.

Definition: A set S ⊂ Rn is convex if for every p, q ∈ S the line segment joining p
and q is contained entirely within S.

Definition: A function f : Rn → R is convex if for every p, q and t ∈ [0, 1] we have
f(tp+ (1− t)q) ≤ tf(p) + (1− t)f(q).

Remark: Equivalently, a function is convex if its graph lies below or on the secant
line segment joining (p, f(p)) and (q, f(q)).

Definition: A function f : Rn → R is concave if for every p, q and t ∈ [0, 1] we have
f(tp+ (1− t)q) ≥ tf(p) + (1− t)f(q).

Definition: An affine function f : Rn → R has the form f(x) = a⊺x + c for some
constant c.

Remark: The only functions that are both convex and concave are affine functions.

Remark: A real-valued function f has a local minimum at p if f(q) ≥ f(p) for all q
sufficiently near p.

Remark: A real-valued function f has a global minimum at p if f(q) ≥ f(p) for
all q.

Remark: For convex functions on convex sets, the following theorem establishes that
local minima are also global minima.

Theorem 2.1: Let f : Rn → R be a convex function and let S ⊂ Rn be a convex set.
A local minimum of f at a point of S is actually a global minimum over S.

Proof: Given a local minimum m of f at x ∈ S, suppose that there exists a point
y ∈ S where f(y) < m. Then since f is convex,

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y) < tm+ (1− t)m = m

for every t ∈ [0, 1), noting that tx+ (1− t)y lies in the convex set S. As t → 1− we
then see that f has values less than m at points arbitrarily close to x, contradicting
the fact that f has a local minimum at x. Thus there are no such points y. That is,
the local minimum of f at x is actually a global minimum.
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2.D The convex hull

Definition: Let x1, . . . ,xk ∈ Rn, t1, . . . , tk ≥ 0, and
∑k

i=1 ti = 1. Then

1. The vector
∑k

i=1 tixi is a convex combination of the vectors x1, . . . ,xk.

2. The convex hull of the vectors x1, . . . ,xk is the set of all convex combinations of
these vectors. Equivalently, it is the smallest convex polyhedron that contains
the points x1, . . . ,xk.

Remark: Every half space H = {x ∈ Rn : a⊺x ≥ b} is convex: let x,y ∈ H.
For every t ∈ [0, 1] we see that a⊺(tx + (1 − t)y) ≥ tb + (1 − t)b = b. That is,
tx+ (1− t)y ∈ H. Thus H is convex.

Theorem 2.2 (Properties of Convex Sets):

(i) The intersection of convex sets is convex.

(ii) Every convex polyhedron {x ∈ Rn : Ax ≥ b ∈ Rm} is a convex set.

(iii) A convex combination of a finite number of elements of a convex set also belongs
to that set.

(iv) The convex hull of a finite number of points is a convex set.

Proof:

(i) Consider a collection of convex sets Si, where i belongs to some index set I. If

x,y ∈
⋂
i∈I

Si then for each i ∈ I and t ∈ [0, 1], we know from the convexity of Si

that tx+ (1− t)y ∈ Si. Therefore tx+ (1− t)y ∈
⋂
i∈I

Si. Thus
⋂
i∈I

Si is convex.

(ii) Since a convex polyhedron is an intersection of half spaces, which we have seen
are convex, this follows from (i).

(iii) By the definition of convexity, a convex combination of two elements of a convex
set S lies in that set. Now suppose that every convex combination of k ≥ 2
elements of S belongs to S. Given a nontrivial convex combination

∑k+1
i=1 tixi

of k + 1 elements xi of S, where ti ∈ [0, 1) for i = 1, . . . , k + 1, such that∑k+1
i=1 ti = 1, we express

k+1∑
i=1

tixi = tk+1xk+1 + (1− tk+1)
k∑

i=1

ti
1− tk+1

xi.
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The summation in the second term belongs to S since it is a convex combination
of k elements of S:

∑k
i=1 ti =

∑k+1
i=1 ti − tk+1 = 1 − tk+1. Thus

∑k+1
i=1 tixi

is a convex combination of two elements of S and is therefore also in S. By
induction, a convex combination of any finite number of elements of a convex
set also belongs to that set.

(iv) Let y =
∑k

i=1 αixi and z =
∑k

i=1 βixi be two elements of the convex hull S of

points x1, . . . ,xk, where the non-negative weights αi and βi satisfy
∑k

i=1 αi =∑k
i=1 βi = 1. Then for t ∈ [0, 1],

ty + (1− t)z = t
k∑

i=1

αixi + (1− t)
k∑

i=1

βixi =
k∑

i=1

[tαi + (1− t)βi]xi

is a convex combination of x1, . . . ,xk, noting that

k∑
i=1

[tαi + (1− t)βi] = t
k∑

i=1

αi + (1− t)
k∑

i=1

βi = t+ (1− t) = 1.

That is, ty + (1− t)z belongs to S. We conclude that S is a convex set.

2.E Piecewise linear convex objective functions

Definition: A function f : Rn → R is piecewise linear if it is linear on each of a finite
number of intervals of Rn.

• The absolute value function

|x| =
{

x if x ≥ 0,
−x if x < 0

is piecewise linear.

Remark: Although we stated earlier that we will focus on objective functions that
are linear, one can easily generalize the methods we will develop to functions that
are piecewise linear . We will then be able to apply linear programming to problems
of the form

minimize max
i=1,...,m

(c⊺ix+ di)

subject to Ax ≥ b.

Since max
i=1,...,m

(c⊺ix+ di) is the smallest number M such that M ≥ c⊺ix+di for all i,

the above optimization problem is equivalent to the linear programming problem

minimize M

subject to M ≥ c⊺ix+ di, i = 1, . . . ,m,

Ax ≥ b.
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Theorem 2.3 (Piecewise convex functions): Let f1, . . . fm : Rn → R be convex func-
tions. Then the function f(x) = max

i=1,...,m
fi(x) is also convex.

Proof: Let t ∈ [0, 1]. Since

f(tp+ (1− t)q) = max
i=1,...,m

fi(tp+ (1− t)q)

≤ max
i=1,...,m

[tfi(p) + (1− t)fi(q)]

≤ t max
i=1,...,m

fi(p) + (1− t) max
i=1,...,m

fi(q)

= tf(p) + (1− t)f(q).

for all p and q, we see that f is indeed convex.

• Since the absolute value function f(x) = |x| = max{x,−x}, we see from Theo-
rem 2.3 that the absolute value function is convex (as well as piecewise linear).

Remark: Piecewise linear convex functions can be used to approximate more general
functions.

Remark: In addition to handling piecewise linear convex objective functions, we can
also handle piecewise affine constraints like

max
i=1,...,m

(e⊺
ix+ di) ≤ b

by rewriting them as separate constraints e⊺
ix+ di ≤ b, i = 1, . . . ,m.

Problem 2.1: Consider functions f, g : [a, b] → R. Is it true that

max
x∈[a,b]

[f(x) + g(x)] = max
x∈[a,b]

f(x) + max
x∈[a,b]

g(x)?

Prove or provide a counterexample.

The statement is false: consider for example f(x) = x and g(x) = 1−x on [0, 1]. We see
that max

x∈[0,1]
[f(x)+g(x)] = 1 but max

x∈[0,1]
f(x)+ max

x∈[0,1]
g(x) = 1+1 = 2. We can only guarantee

that

max
x∈[a,b]

[f(x) + g(x)] ≤ max
x∈[a,b]

f(x) + max
x∈[a,b]

g(x).
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2.F Problems involving absolute values

Consider problems of the form

minimize
n∑

j=1

cj |xj|

subject to Ax ≥ b,

where x = (x1, . . . , xn) and the cost coefficients cj are positive. Although the objec-
tion function here is easily shown to be piecewise linear and convex (being the sum
of piecewise linear convex functions) and therefore can be handled in the manner just
described, a more efficient method is available. We can use the fact that |xj| is the
smallest number Mj that is an upper bound for both xj and −xj to rewrite the linear
programming problem as:

minimize
n∑

j=1

cjMj

subject to Ax ≥ b,

xj ≤ Mj, j = 1, . . . , n,

−xj ≤ Mj, j = 1, . . . , n.

An alternative method is to replace each occurrence of |xj| with x+
j + x−

j and then
each of the remaining occurrences of xj with x+

j − x−
j , where x+

j and x−
j are new

nonnegative decision variables:

minimize
n∑

j=1

cj
(
x+
j + x−

j

)
subject to Ax+ −Ax− ≥ b,

x+,x− ≥ 0,

where x+ = (x+
1 , . . . , x

+
n ) and x− = (x−

1 , . . . , x
−
n ). The equivalence of these two

formulations follows from the observation that at an optimal solution, for each j one
of x+

j or x−
j must be zero (otherwise we could decrease both variables, preserving

feasibility and reducing the cost), from which it follows that |xj| = x+
j + x−

j .

Remark: A similar argument shows that one can apply this technique to any linear
programming problem of the form

minimize
n∑

j=1

cj |xj|+
n∑

j=1

djxj

subject to
n∑

j=1

Aj |xj|+
n∑

j=1

Bjxj ≤ b,

where each cj and all entries in each Aj are nonnegative.
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Problem 2.2:

Reformulate the problem

minimize x1 + |x2 − 1|
subject to |x1 + 1|+|x2| ≤ 2.

Let x1 + 1 = x+1 − x−1 and replace |x1 + 1| by x+1 + x−1 . Let x2 = x+2 − x−2 , replacing
|x2| by x+2 + x−2 . Finally, let x2 − 1 = x+3 − x−3 , replacing |x2 − 1| with x+3 + x−3 . We obtain
the equivalent linear programming problem

minimize x+1 − x−1 − 1 + x+3 + x−3
subject to x+1 + x−1 + x+2 + x−2 ≤ 2,

x+2 − x−2 − x+3 + x−3 = 1,

x+1 , x
−
1 , x

+
2 , x

−
2 , x

+
3 , x

−
3 ≥ 0.

Note that we can ignore the additive constant −1 in the objective function for the purposes

of finding optimal solutions (but we would need to account for this constant in computing

the optimal cost).

2.G Extreme points

Definition: Let P be a convex polyhedron. A point x ∈ P is an extreme point if
it cannot be expressed as a convex combination of two other points of P . That
is, a point x ∈ P is an extreme point of P if we cannot find two distinct points
y, z ∈ P and a scalar t ∈ (0, 1) such that x = ty + (1− t)z.

Definition: Let P be a convex polyhedron. A vector x ∈ P is a vertex of P if P
lies entirely on one side of some hyperplane {y : c⊺y = c⊺x}, intersecting the
hyperplane only at x. That is x ∈ P is a vertex of P if there exists some c such
that c⊺x < c⊺y for all y ∈ P,y ̸= x.

Definition: Consider a polyhedron P ∈ Rn defined in terms of

a⊺
ix ≥ bi i ∈ M1,

a⊺
ix ≤ bi i ∈ M2,

a⊺
ix = bi i ∈ M3.

If a vector x satisfies a⊺
ix = bi for some i in M1,M2, or M3, we say that the

corresponding constraint is active at x.
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Figure 2.1: The polyhedron {(x1, x2, x3) : x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0}.

• Given the polyhedron {(x1, x2, x3) : x1 + x2 + x3 = 1, x1, x2, x3 ≥ 0} shown in
Figure 2.1, which constraints are active at the points A,B,C,D,E?
A: x1 + x2 + x3 = 1, x2 = 0, x3 = 0

B: x1 + x2 + x3 = 1, x1 = 0, x3 = 0

C: x1 + x2 + x3 = 1, x1 = 0, x2 = 0

D: x1 = 0, x2 = 0, x3 = 0

E: x1 + x2 + x3 = 1, x3 = 0

Theorem 2.4 (Active constraints): Let x ∈ Rn and I = {i : a⊺
ix = bi} be the set of

indices of active constraints at x. Then the following are equivalent:

(i) There exists n vectors in the set {ai : i ∈ I} that are linearly independent.

(ii) The span of the vectors {ai : i ∈ I} is Rn.

(iii) The system of equations a⊺
iy = bi, i ∈ I, has the unique solution y = x.

(i) ⇐⇒ (ii): Suppose that n of the vectors ai, i ∈ I, are linearly independent. The
subspace spanned by these vectors is n dimensional and is therefore Rn. Conversely,
suppose that the vectors {ai : i ∈ I} span Rn. Then n of these vectors form a basis
of Rn and must therefore be linearly independent.

https://www.math.ualberta.ca/~bowman/m373/fig/active.html
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(iii) ⇐⇒ (ii): Suppose that x1 and x2 are distinct solutions to the system of
equations a⊺

ix = bi, i ∈ I. Then d = x1 − x2 ∈ Rn satisfies a⊺
id = 0 for all i ∈ I.

That is, d ̸= 0 is orthogonal to every ai, i ∈ I, and therefore cannot be expressed
as a linear combination of these vectors. That is, {ai : i ∈ I} do not span all of
Rn. Conversely, if the vectors ai, i ∈ I, do not span all of Rn, choose a nonzero
vector d orthogonal to the subspace they span, so that a⊺

id = 0 for all i ∈ I. For
every solution x to the system of equations a⊺

ix = bi, i ∈ I, the vector x + d will
then be a distinct solution to the same system of equations.

Definition: Consider a convex polyhedron P defined by linear equality and inequality
constraints, and let x ∈ Rn. Then the vector x is a basic solution if

1. all equality constraints are active;

2. there are n linearly independent active constraints at x.

Definition: If x is a basic solution that satisfies all of the constraints, we say that it
is a basic feasible solution.

Remark: A feasible solution x is basic iff n linearly independent constraints are
active at x.

• Given the polyhedron P shown in Figure 2.1, which of the points A,B,C,D,E are
feasible, basic, or basic feasible solutions?
A: basic feasible

B: basic feasible

C: basic feasible

D: nonbasic infeasible

E: nonbasic feasible

Q. What would happen if the equality constraint x1+x2+x3 = 1 were to be replaced
by the constraints x1 + x2 + x3 ≤ 1 and x1 + x2 + x3 ≥ 1?

A. The point D would become a basic solution (but still infeasible).

Remark: Whether a point is a basic solution or not may depend on the way that
the polyhedron is represented!
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• Given the polygon in Figure 2.2, which of the points A,B,C,D,E, F,G,H are
basic, nonbasic, feasible, or basic feasible solutions?
A: basic

B: basic

C: basic feasible

D: basic feasible

E: basic feasible

F : basic feasible

G: nonbasic infeasible

H: nonbasic feasible

A

B C

D

E

F

G

H

P

x1

x2

Figure 2.2: Examples of basic solutions.

Remark: So far, we have introduced two geometric definitions (extreme point, ver-
tex) and one algebraic condition (basic feasible solution). The following theorem
shows that these three definitions are actually equivalent, so that these concepts
can be used interchangeably!

Theorem 2.5 (Characterization of Vertices): Let P be a nonempty convex polyhedron
and let x ∈ P . Then the following are equivalent:

(i) x is a vertex;

(ii) x is an extreme point;

(iii) x is a basic feasible solution.
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Proof: Represent P as a set of equality constraints a⊺
ix = bi and inequality

constraints a⊺
ix ≥ bi.

Vertex ⇒ Extreme point:
Let x ∈ P be a vertex. Then there exists c ∈ Rn such that c⊺x < c⊺y for every
point y in P not equal to x. If y and z are any two such points and t ∈ (0, 1),
then c⊺x = c⊺(tx + (1 − t)x) < c⊺(ty + (1 − t)z). Hence x ̸= ty + (1 − t)z. That
is, x cannot be expressed as a convex combination of any two other points of P ; it is
therefore an extreme point.

Extreme point ⇒ Basic feasible solution:
Let x ∈ P and I = {i : a⊺

ix = bi}. If x were not a basic feasible solution, there would
not exist n linearly independent vectors in the set {ai : i ∈ I}, which would therefore
span a proper subset of Rn. Choose a nonzero vector d ∈ Rn orthogonal to each of
the vectors in this set, so that a⊺

id = 0 for each i ∈ I. For ϵ > 0 consider the points
y = x + ϵd and z = x− ϵd. We see that a⊺

iy = a⊺
i z = bi for each i ∈ I. Moreover,

for j /∈ I, we know that a⊺
jx > bj. If we choose ϵ so that ϵ

∣∣a⊺
jd

∣∣ < a⊺
jx − bj for all

j /∈ I, then a⊺
jy = a⊺

jx + ϵa⊺
jd > bj and likewise a⊺

jz = a⊺
jx − ϵa⊺

jd > bj for each
j /∈ I. Thus, y and z also belong to P . But then x = (y + z)/2 could not be an
extreme point of P .

Basic feasible solution ⇒ Vertex:
Let x be a basic feasible solution of P , I = {i : a⊺

ix = bi}, and c =
∑
i∈I

ai. Then

c⊺x =
∑
i∈I

a⊺
ix =

∑
i∈I

bi.

For any y ∈ P we know that a⊺
iy ≥ bi, so that

c⊺y =
∑
i∈I

a⊺
iy ≥

∑
i∈I

bi = c⊺x. (2.4)

That is, x is an optimal solution to the problem of minimizing c⊺y over P . Equality
in (2.4) holds iff a⊺

iy = bi for all i ∈ I. But this system of equations has a unique
solution since x is a basic feasible solution, with n linearly independent constraints
active at x. That is, equality holds in (2.4) only at the unique minimizer x. This
means that x is a vertex of P .

Corollary 2.5.1: Given a finite number of linear constraints, there can only be a
finite number of basic solutions.

Proof: Suppose that k ≥ n constraints are imposed on a basic solution x ∈ Rn. We
know that n linearly independent constraints must be active at x, uniquely defining
a point in Rn. Different basic solutions correspond to different sets of n linearly
independent active constraints chosen from the k imposed constraints. Therefore, an
upper bound to the number of basic solutions is

(
k
n

)
.
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Remark: The number of basic feasible solutions, while finite, can be very large: the
unit hypercube {x ∈ Rn : 0 ≤ xj ≤ 1, j = 1, . . . , n} has 2n constraints but 2n basic
feasible solutions.

Q. What about a half space in R2? How many basic solutions are there?

Definition: Two distinct basic solutions to a set of linear constraints in Rn are
adjacent if they share n− 1 linearly independent active constraints.

• In Figure 2.2, D and E are adjacent to B, also A and C are adjacent to D.

Definition: The line segment joining two adjacent basic feasible solutions is called
an edge.

2.H Polyhedra in standard form

To find the basic solutions for a given convex polyhedron, it is convenient to express it
in the standard form {x ∈ Rn : Ax = b,x ≥ 0}, where without loss of generality A
is an m× n matrix with linearly independent rows (which requires m ≤ n).

Remark: Every basic solution must satisfy the m linear independent equality con-
straints Ax = b; this provides us with m active constraints. To obtain a total
of n active constraints, we need to choose n −m of the n decision variables to be
zero such that the resulting set of n active constraints is linearly independent. The
following theorem gives us some insight as to how this can be accomplished.

Theorem 2.6: Consider the constraints Ax = b and x ≥ 0, where the m × n
matrix A has linearly independent rows. A vector x ∈ Rn is a basic solution iff
Ax = b and there exist indices j1, . . . , jm such that

(i) the columns Aj1 , . . . ,Ajm are linearly independent;

(ii) xi = 0 for all i ̸= j1, . . . , jm.

Proof: Suppose that Ax = b and conditions (i) and (ii) hold at some x ∈ Rn.
Then

m∑
i=1

Ajixji =
n∑

i=1

Aixi = Ax = b.
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The linear independence of the columnsAj1 , . . . ,Ajm implies that the solution xj1 , . . . , xjm

of this system of m equations is unique. Since the remaining n−m decision variables
are zero, we see that the solution x = (x1, . . . , xn) in Rn satisfies n linearly indepen-
dent active constraints. Furthermore, all m equality constraints are active. Thus, x
is a basic solution.

Conversely, suppose that x is a basic solution. Denote the nonzero components
of x by xj1 , . . . , xjk . Since x is a basic solution, the system of equations formed by

the active constraints
∑n

i=1Aixi =
∑k

i=1Ajixji = b and xi = 0, i ̸= j1, . . . , jk has a
unique solution. If the columns Aj1 , . . . ,Ajk were linearly dependent, we could find

scalars λi (not all zero) such that
∑k

i=1Ajiλi = 0, so that
∑k

i=1Aji(xji + λi) = b,
contradicting the uniqueness of the solution. Thus the columns Aj1 , . . . ,Ajk are lin-
early independent, which implies that k ≤ m. But sinceA hasm linearly independent
rows, it must have a total of m linearly independent columns. Hence there exist m−k
additional columns Ajk+1

, . . . ,Ajm of A such that the m columns Aj1 , . . . ,Ajm are
linearly independent. Since the decision variables corresponding to the other columns
of A are zero, we see that conditions (i) and (ii) are both satisfied.

Remark: The previous theorem suggests the following procedure for finding all basic
solutions.

Procedure for constructing basic solutions

1. Choose m linearly independent columns Aj1 , . . . ,Ajm .

2. Let xi = 0 for all i ̸= j1, . . . , jm.

3. Solve the system of m equations Ax = b for the unknowns xj1 , . . . , xjm .

If a basic solution constructed according to this procedure is nonnegative, then
it is a basic feasible solution. Every basic feasible solution is a basic solution, and
can thus be obtained from this procedure.

Definition: If x is a basic solution, the variables xj1 , . . . , xjm are called basic vari-
ables ; the remaining variables are called nonbasic. The columns Aj1 , . . . ,Ajm are
called the basic columns and, since they are linearly independent, they form a basis
of Rm. We will sometimes refer to bases being distinct : distinct bases involve dif-
ferent sets {j1, . . . , jm} of basic indices ; if two bases involve the same set of indices
in a different order, they will be viewed as equivalent.

By arranging them basic columns next to each other, we obtain anm×mmatrixB
called a basis matrix , which is invertible. We also define a vector xB composed of



30 CHAPTER 2. THE GEOMETRY OF LINEAR PROGRAMMING

the m unknown basic variables:

B = [Aj1 , . . . ,Ajm ], xB =

 xj1
...

xjm


The basic variables xj1 , . . . , xjm are uniquely determined by solving the equation

BxB = b:
xB = B−1b.

−1 0 1 2 3 4 5
x1

−3

−2

−1

0

1

2

3x2

Figure 2.3: Determining basic solutions.

Problem 2.3: Find the vertices of the polyhedron P defined by

x1 − x2 ≤ 2,

x1 + 2x2 ≤ 5,

x1, x2 ≥ 0,

illustrated in Figure 2.3.

To put this problem in standard form, we need to add two slack variables x3 and x4,
yielding a total of n = 4 decision variables satisfying m = 2 equality constraints:

A =

[
1 −1 1 0
1 2 0 1

]
, b =

[
2
5

]
.

Now we consider all possible choices for the basis matrix B, corresponding to all possible
ways of choosing two linearly independent column vectors from A.
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For j1 = 1 and j2 = 2:

B =

[
1 −1
1 2

]
, xB =

[
1 −1
1 2

]−1[
2
5

]
=

1

3

[
2 1
−1 1

][
2
5

]
=

[
3
1

]
.

This corresponds to the basic solution x = (3, 1, 0, 0). Since all elements of x are nonnega-
tive, we see that this is actually a basic feasible solution, corresponding to the vertex (3, 1)
in Figure 2.3.

For j1 = 1 and j2 = 3:

B =

[
1 1
1 0

]
, xB =

[
1 1
1 0

]−1[
2
5

]
=

1

−1

[
0 −1
−1 1

][
2
5

]
=

[
5
−3

]
.

This corresponds to the basic solution x = (5, 0,−3, 0). Since the third element of x is
negative, we see that this basic solution, corresponding to the dot at (5, 0) in Figure 2.3, is
infeasible.

For j1 = 1 and j2 = 4:

B =

[
1 0
1 1

]
, xB =

[
1 0
1 1

]−1[
2
5

]
=

1

1

[
1 0
−1 1

][
2
5

]
=

[
2
3

]
.

This corresponds to the basic solution x = (2, 0, 0, 3). Since all elements of x are nonnega-
tive, we see that this is actually a basic feasible solution, corresponding to the vertex (2, 0)
in Figure 2.3.

For j1 = 2 and j2 = 3:

B =

[
−1 1
2 0

]
, xB =

[
−1 1
2 0

]−1[
2
5

]
=

1

−2

[
0 −1
−2 −1

][
2
5

]
=

[
5/2
9/2

]
.

This corresponds to the basic solution x = (0, 5/2, 9/2, 0). Since all elements of x are
nonnegative, we see that this is actually a basic feasible solution, corresponding to the
vertex (0, 5/2) in Figure 2.3.

For j1 = 2 and j2 = 4:

B =

[
−1 0
2 1

]
, xB =

[
−1 0
2 1

]−1[
2
5

]
=

1

−1

[
1 0
−2 −1

][
2
5

]
=

[
−2
9

]
.

This corresponds to the basic solution x = (0,−2, 0, 9). Since the second element of x is
negative, we see that this basic solution, corresponding to the dot at (0,−2) in Figure 2.3,
is infeasible.

For j1 = 3 and j2 = 4:

B =

[
1 0
0 1

]
, xB =

[
1 0
0 1

]−1[
2
5

]
=

1

1

[
1 0
0 1

][
2
5

]
=

[
2
5

]
.

This corresponds to the basic solution x = (0, 0, 2, 5). Since all elements of x are nonnega-
tive, we see that this is actually a basic feasible solution, corresponding to the vertex (0, 0)
in Figure 2.3.

We thus see that our procedure has found all
(
n
m

)
=

(
4
2

)
= 6 basic solutions, and

determined that four of them are feasible, precisely as observed in Figure 2.3.
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2.I Correspondence of bases and basic solutions

Different basic solutions correspond to different bases. However, two different bases
may lead to the same basic solutions, e.g., when b = 0.

Definition: Two basis matrices are adjacent if they share all but one basic column.
Adjacent basic solutions can always be obtained from two adjacent bases. Con-
versely, if two adjacent bases lead to distinct basic solutions, the latter are adjacent.

• In Prob. 2.3, we see that adjacent basis matrices produce adjacent basic solutions.

2.J Degeneracy

Definition: A basic solution x ∈ Rn is degenerate if more than n constraints are
active at x.

(a)

(b)

E

C

D

Figure 2.4: (a) a convex polyhedron in R3; (b) a convex polyhedron in R2.

https://www.math.ualberta.ca/~bowman/m373/fig/pyramid.html


2.J. DEGENERACY 33

• Which of the basic solutions illustrated in Figure 2.4 are degenerate and which are
feasible?
A: degenerate basic feasible
B: nondegenerate basic feasible
C: degenerate basic feasible
D: degenerate basic infeasible
E: nondegenerate basic feasible

Remark: Consider the standard-form polyhedron P = {x ∈ Rn : Ax = b,x ≥ 0},
whereA is anm×n matrix. Let x be a basic solution. The vector x is a degenerate
basic solution if more than n−m of the components of x are zero.

Remark: Since in standard form the n − m nonbasic variables of a basic solution
must be zero, a basic solution is degenerate iff at least one of the basic
variables is zero.

Remark: Degeneracy is not a purely geometric property. Consider the polyhedron

P =


x1

x2

x3

 : x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1, x2, x3 ≥ 0

 .

Which of the following basic solutions are degenerate? Here n = 3 and m = 2.(
1 1 0

)⊺
: nondegenerate (3 active constraints)(

0 0 1
)⊺
: degenerate (4 active constraints)

Now consider the polyhedron represented by the same set but with the constraint
x2 ≥ 0 relaxed:

P =


x1

x2

x3

 : x1 − x2 = 0, x1 + x2 + 2x3 = 2, x1, x3 ≥ 0

 .

Now which of the following are degenerate? Here n = 3 and m = 2.(
1 1 0

)⊺
: nondegenerate (3 active constraints)(

0 0 1
)⊺
: nondegenerate (3 active constraints)

Remark: For standard-form representations, if a basic solution is degenerate, it is
degenerate under every standard-form representation.
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Remark: We construct basic solutions by choosing n linearly independent constraints
to be satisfied with equality. Degeneracy arises when additional constraints are also
satisfied with equality at that basic solution.

2.K Existence of extreme points

Definition: A polyhedron P ⊂ Rn contains a line if there exists a vector x ∈ P and
a nonzero vector d ∈ Rn such that x+ td ∈ P for all scalars t ∈ R.

P

(a)

Q

(b)

Figure 2.5: (a) P contains a line; (b) Q does not contain a line.

Remark: A bounded polyhedron does not contain a line.

Remark: A convex polyhedron in standard form is contained in the positive orthant
and hence does not contain a line.

Remark: Notice for n > 1 that a half space in Rn contains a line, but has no extreme
points. The following theorem states that these two properties are equivalent.

Theorem 2.7: Suppose that the polyhedron P = {x ∈ Rn : a⊺
ix ≥ bi, i = 1, . . . , k} is

nonempty. Then the following are equivalent:

(i) P does not contain a line.

(ii) P has at least one extreme point.

(iii) The set {a1, . . . ,ak} contains n linearly independent vectors.
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Proof:
(i) ⇒ (ii): Let x be an element of P and let I = {i : a⊺

ix = bi}. If n of the
vectors ai, i ∈ I, are linearly independent then x is a basic feasible solution (extreme
point). Otherwise, these vectors span a proper subspace of Rn. Let d ̸= 0 be a vector
orthogonal to this subspace, so that a⊺

id = 0 for every i ∈ I. Consider y = x + td
for t ∈ R. For i ∈ I, we know that a⊺

iy = a⊺
ix + ta⊺

id = a⊺
ix = bi. That is, all

constraints active at x remain active on the line L = {x + td : t ∈ R}. However,
since P contains no lines, its boundary must have an intersection with L at some
point x+ Td, where a new constraint, say a⊺

j (x+ Td) = bj for some j /∈ I, becomes
active. Now j /∈ I implies that a⊺

jx ̸= bj, so a⊺
jd ̸= 0 and hence aj is not a linear

combination of ai, i ∈ I. Thus, by moving from x to x+ Td, we have increased the
number of linearly independent active constraints by at least one. Using induction,
we then see on repeating this argument that we will eventually reach a basic solution
where n linearly independent constraints are active. Since these movements are always
confined within P , such a point is a basic feasible solution (extreme point).

(ii) ⇒ (iii): If P has an extreme point x, then by definition (of a basic feasible
solution) there exists n linearly independent active constraints at x, corresponding
to n linearly independent active constraint vectors.

(iii) ⇒ (i): Suppose n of the vectors ai are linearly independent. Let us relabel
them a1, . . . ,an. If P were to contain a line {x + td : t ∈ R}, where d ̸= 0, then
a⊺
i (x + td) ≥ bi for all i and all t ∈ R. The only way that can happen is if a⊺

id = 0
for all i. The linear independence of the vectors ai then implies that d = 0. This
contradiction establishes that P cannot contain a line.

Corollary 2.7.1: Every nonempty bounded convex polyhedron has at least one basic
feasible solution.

Corollary 2.7.2: Every nonempty convex polyhedron in standard form has at least
one basic feasible solution.

2.L Optimality of extreme points

Theorem 2.8: Consider the linear programming problem of minimizing c⊺x over a
convex polyhedron P . Suppose that P has at least one extreme point and that there
exists an optimal solution. Then there exists an optimal solution that is an extreme
point of P .

Proof: Express P = {x ∈ Rn : Ax ≥ b}. Let v be the minimal value of
the cost c⊺x. Consider the polyhedron Q = {x ∈ Rn : Ax ≥ b, c⊺x = v}, the
(nonempty) set of all optimal solutions. By Theorem 2.7, we see that P contains
no lines, and hence Q ⊂ P also contains no lines and therefore has an extreme
point, say x∗. If x∗ were not also an extreme point of P , there would exists points
y, z ∈ P distinct from x∗ and some t ∈ (0, 1) such that x∗ = ty+ (1− t)z and hence
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v = c⊺x∗ = tc⊺y + (1 − t)c⊺z ≥ tv + (1 − t)v = v since v is the optimal cost. Then
c⊺y = c⊺z = v, so that y and z would both belong to Q. But this would contradict
the fact that x∗ is an extreme point of Q. Thus the optimal solution x∗ is also an
extreme point of P .

Remark: By keeping track of the costs in Theorem 2.7 as we move towards an
extreme point, one can prove a strengthened version of Theorem 2.8, which shows
that if the optimal cost is finite, the existence of an optimal solution is guaranteed:

Theorem 2.9: Consider the linear programming problem of minimizing c⊺x over a
convex polyhedron P . Suppose that P has at least one extreme point. Then either
the optimal cost equals −∞ or P has an optimal extreme point.

Remark: Since every linear programming problem can be transformed into an equiv-
alent standard-form problem, and every nonempty convex polyhedron in standard
form has at least one extreme point (Corollary 2.7.2), we can further simplify this
result to:

Corollary 2.9.1: Consider the linear programming problem of minimizing c⊺x over
a nonempty convex polyhedron P . Then either the optimal cost equals −∞ or
there exists an optimal solution at an extreme point of P .

Remark: The previous result does not hold for nonlinear cost functions. Consider
the problem of minimizing 1/x subject to x ≥ 1: the optimal cost is 0 but an
optimal solution does not exist!



Chapter 3

The Simplex Method

In this chapter we develop a general method, called the simplex method for solving
linear programming problems written in standard form. A simplex extends the notion
of a triangle in R2 or a tetrahedron in R3 to arbitrary dimensions:

Definition: A n-simplex is a convex polyhedron in Rn that is the convex hull of its
n+ 1 vertices vi ∈ Rn, i = 0, . . . , n:{

t0v0 + . . .+ tnvn :
n∑

i=0

ti = 1, ti ≥ 0, i = 0 . . . , n

}
.

Definition: The standard n-simplex in Rn+1 is the n-simplex obtained when the
vectors vi are chosen to be the unit vectors ei:{

(t0, . . . , tn) ∈ Rn+1 :
n∑

i=0

ti = 1, ti ≥ 0, i = 0 . . . , n

}
.

The standard n-simplex always lies in the first orthant.

We will develop the simplex method for the standard-form problem

minimize c⊺x

subject to Ax = b,

x ≥ 0.

Let P be the corresponding feasible set and A ∈ Rm×n have m linearly independent
rows. We will continue to denote the ith row of A as ai and the jth column of A
as Aj.

Definition: Let x be an element of the convex polyhedron P . A nonzero vector
d ∈ Rn is a feasible direction at x if there exists a positive scalar t for which
x+ td ∈ P .

37
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• Which of the directions in the following figure are feasible?

Remark: Let x ∈ Rn be a basic feasible solution for the linear programming problem
Ax = b, x ≥ 0 associated with basis matrix B composed of columns {j1, . . . , jm}
of A. Suppose we move from x to x+ td by selecting a nonbasic variable xj (which
is initially 0 since j /∈ {j1, . . . , jm}) and increasing it by t > 0. That is, we choose
dj = 1 and set di = 0 for all other nonbasic indices i ̸= j. The remaining (basic)
components of d still need to be determined. Since we are only interested in feasible
solutions, we require A(x+ td) = b. Thus,

A(x+ td) = b

Ax = b

}
⇒ Ad = 0 ⇒

n∑
i=1

Aidi =
m∑
i=1

Ajidji +Aj = BdB +Aj = 0,

where
dB = −B−1Aj

contains the basic components (dj1 , . . . , djm) of d.

Definition: The direction vector d constructed above is called the jth simplex direc-
tion.

So far, the equality constraints are guaranteed to be satisfied along this direction.
How about the inequality constraints: x ≥ 0?

Q. Are they respected for nonbasic variables?

A. Yes, since the nonbasic variables are initially zero and only the jth one is adjusted,
by a positive amount t.
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Remark: For the basic variables, we distinguish the following cases:

(i) x is a nondegenerate basic feasible solution. Then xB > 0, yielding xB+tdB > 0
for sufficiently small t. Thus d is a feasible direction.

(ii) x is a degenerate basic feasible solution. Then d is not always a feasible direc-
tion. It is possible that a basic variable xji is zero and dji is negative.

• Let n = 3,m = 1, n−m = 2 and A = [1, 1, 1], b = 1. Let us visualize the feasible
set on the two-dimensional plane x1 + x2 + x3 = 1, where its edges are associated
with the nonnegativity constraints [x1, x2, x3] ≥ 0.

• Let n = 5,m = 3, n−m = 2. In the following figure, we can visualize the feasible
region by focusing on the two-dimensional set defined by the constraint Ax = b.
The edges of the feasible set are associated with the nonnegativity constraints
x ≥ 0.

Q. What kind of solution occurs at point E?
nondegenerate basic feasible solution

Q. What are the basic and nonbasic variables at E?
nonbasic: x1 and x3 basic: x2, x4, x5

Q. Consider the direction obtained by increasing x1 while holding x3 zero. Is this a
simplex direction? Yes.

https://www.math.ualberta.ca/~bowman/m373/fig/visualization.html
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x1 = 0

x2 = 0

x3 = 0

x5 = 0
x4 = 0

E

G

F

Q. Is it also feasible? Yes.

Q. What kind of solution occurs at point F? Degenerate basic feasible solution.

Q. Give examples of basic and nonbasic variables at F .
nonbasic: x3 and x4 basic: x1, x2, x5
nonbasic: x3 and x5 basic: x1, x2, x4
nonbasic: x4 and x5 basic: x1, x2, x3

Q. Suppose the nonbasic variables are x3 and x5. Consider the direction obtained by
increasing x3 while holding the other nonbasic variable x5 = 0 (d3 = 1, d5 = 0).
Is this a simplex direction? Yes.

Q. Is it also feasible? No.

Remark: We need to know the effect on the cost when moving by an amount t in
the jth simplex direction d. The change in the cost is

c⊺(x+ td)− c⊺x = tc⊺d.

Definition: Let cB = (cj1 , . . . , cjm) be the basic cost vector . The rate of cost change
c⊺d along the jth simplex direction d is

c⊺d = c⊺BdB + cj = cj − c⊺BB
−1Aj.

Here cj represents the change in the cost per unit increase in the non basic variable
variable xj and the term c⊺BB

−1Aj represents the cost of the compensating change
in the basic variables required to satisfy the constraint Ax = b.
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Definition: Let x be a basic solution, B be an associated basis matrix, and cB be
the associated costs of the basic variables. For each j, we define the reduced cost cj
of the variable xj:

cj = cj − c⊺BB
−1Aj.

Problem 3.1: Consider the linear programming problem

minimize c1x1 + c2x2 + c3x3 + c4x4

subject to x1 + x2 + x3 + x4 = 2,

2x1 + + 3x3 + 4x4 = 2,

x1, x2, x3, x4 ≥ 0 .

Compute the reduced cost c3 of moving in the 3rd simplex direction from the basic
solution associated with the basis matrix

B =

[
1 1
2 0

]
.

From the constraint matrix

A =

[
1 1 1 1
2 0 3 4

]
,

we see that A1 =

[
1
2

]
and A2 =

[
1
0

]
are linearly independent: they form a basis of R2.

Let b = (2, 2). We now determine the basic variable vector

xB = B−1b =
1

−2

[
0 −1
−2 1

][
2
2

]
=

[
1
1

]
,

which corresponds to the nondegenerate basic feasible solution x = (1, 1, 0, 0). The simplex
direction corresponding to increasing the nonbasic variable x3 has nonbasic components
d3 = 1 and d4 = 0 and basic components[

d1
d2

]
=

[
dj1
dj2

]
= dB = −B−1A3 = − 1

−2

[
0 −1
−2 1

][
1
3

]
=

[
−3/2
1/2

]
.

Then the reduced cost of moving in the 3rd simplex direction is

c3 = c3 + c⊺BdB = c3 + [ c1 c2 ]

[
−3/2
1/2

]
= −3

2
c1 +

1

2
c2 + c3.

Definition: Let ei denote the ith unit vector.
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Remark: What is the reduced cost of a basic variable? We find

cji = cji − c⊺BB
−1Aji = cji − c⊺Bei = cji − cji = 0.

That is, the reduced cost of every basic variable is zero, so we never need to compute
the reduced cost of a basic variable!

Definition: The reduced cost vector is given by c⊺ = c⊺ − c⊺BB
−1A.

Is there a relationship between the reduced cost and an optimal solution?

Theorem 3.1: Consider a basic feasible solution x associated with a basis matrix B,
and let c be the corresponding reduced cost vector. Then

(i) if c ≥ 0, x is optimal.

(ii) if x is optimal and nondegenerate, then c ≥ 0.

Proof:
Let y be an arbitrary feasible solution. The difference vector d = y−x satisfies

Ad = Ax−Ay = b− b = 0. That is,

BdB +
∑
j∈N

Ajdj = 0,

where N is the set of nonbasic indices. Thus

dB = −
∑
j∈N

B−1Ajdj.

The change in the cost by moving from x to y is therefore

c⊺y − c⊺x = c⊺d = c⊺BdB +
∑
j∈N

cjdj =
∑
j∈N

(cj − c⊺BB
−1Aj)dj =

∑
j∈N

cjdj.

Thus, cj is the rate of cost change along the jth simplex direction. Note for every
j ∈ N that the nonbasic variable xj = 0 and yj ≥ 0, so dj ≥ 0 for all j ∈ N .

i) Given c ≥ 0, we then see that

c⊺y − c⊺x =
∑
j∈N

cjdj ≥ 0.

That is, x is an optimal basic feasible solution.
ii) Suppose that x is a nondegenerate basic feasible solution and that cj < 0

for some j. Since the reduced cost of a basic variable is always zero, xj must be a
nonbasic variable. Since x is nondegenerate and cj < 0, the jth simplex direction is
a feasible direction of cost decrease and therefore x is not optimal.
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Remark: If x is a degenerate optimal basic feasible solution, it is still possible that
cj < 0 for some nonbasic index j.

Problem 3.2: Let x be a basic feasible solution of a linear programming problem Π
written in standard form, with associated basis matrix B and set of nonbasic
indices N . Let y be any feasible solution to Π and consider the difference vector
d = y − x.

(a) Prove that dj ≥ 0 for every j ∈ N .

(b) If dj = 0 for every j ∈ N , prove that y = x.

(c) If the reduced cost cj of every nonbasic variable xj is positive, use parts (a) and
(b) to prove that x is the unique optimal solution to Π.

(d) Suppose that Π is nondegenerate and that x is an optimal solution to Π. If the
reduced cost cj of some nonbasic variable xj is zero, prove that Π does not have
a unique optimal solution.

Definition: A basis matrix B is optimal if both of the following conditions are
satisfied:

1. feasibility: xB ≥ 0;

2. nonnegativity of the reduced costs: c ≥ 0.

Remark: The basic solution corresponding to an optimal basis matrix is feasible and
satisfies the optimality conditions c ≥ 0. It is therefore an optimal solution. On
the other hand, in the degenerate case, having an optimal basic solution does not
necessarily mean that the reduced costs are nonnegative.

3.A Development of the simplex method

For now, assume that every basic feasible solution is nondegenerate. Suppose that we
are at a basic feasible solution x, for which we have computed the reduced costs cj
of the nonbasic variables. Then

• if all of them are nonnegative, according to Theorem 3.1, we have an optimal
solution and we stop;

• if the reduced cost cj of some nonbasic variable xj is negative, the jth simplex
direction d is a feasible direction of cost decrease. This direction is obtained by
letting dj = 1, di = 0 for i /∈ {j, j1, . . . , jm}, and dB = −B−1Aj.
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Remark: In moving along this direction d, the nonbasic variable xj becomes positive,
while all other nonbasic variables are fixed at zero. We describe this situation by
saying that xj (or Aj) enters or is brought into the basis.

Q. How far should we move along the direction d?

A. We want to move as far as possible in this direction, while staying inside the
polyhedron.

Remark: Suppose we move from x → x + td. The maximum possible value of t is
given by

t∗ = max{t ≥ 0 : x+ td ∈ P}.

Can we provide a formula for t∗? The only condition on t is to keep x+td feasible.
Since Ad = 0, we know that A(x + td) = Ax + tAd = Ax = b is always satisfied.
That is, the equality constraints are never violated. It remains to check whether the
entries of x+ td are nonnegative. There are two cases:

1. If d ≥ 0, then x + td ≥ 0 for all t ≥ 0. The vector x + td never becomes
infeasible, so t∗ = ∞.

2. If di < 0 for some i, the constraint xi + tdi ≥ 0 becomes t ≤ −xi/di. This
condition must hold for every i such that di < 0. For each nonbasic variable xi,
di is nonnegative: either di = 1 or di = 0. We therefore only need to consider
the basic components {dji : i = 1, . . . ,m} of d:

t∗ = min
i=1,...,m:
dji

<0

(
−xji

dji

)
.

Note that t∗ ≥ 0 since xji ≥ 0 at a basic feasible solution. At a nondegenerate
basic feasible solution one has the stronger result that xji > 0 and hence t∗ > 0.

Remark: If a finite and positive t∗ is found, one can move to the new feasible solution
y = x + t∗d. Since xj = 0 and dj = 1, we have yj = t∗ > 0. Furthermore, on
letting ℓ be a minimizing index:

t∗ = −xjℓ

djℓ
= min

i=1,...,m:
dji

<0

(
−xji

dji

)
we see that

djℓ < 0 and yjℓ = xjℓ + t∗djℓ = 0.

We observe that the ℓth (previously basic) variable has now become zero, whereas
the jth (previously nonbasic) variable has become positive. This suggests that Aj

should replace Ajℓ in the basis. That is, we replace the old basis matrix B with

B = [Aj1 , . . . ,Ajℓ−1,Aj,Ajℓ+1, . . . ,Ajm ].
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Equivalently, the basis indices {j1, . . . , jm} are replaced by {j1, . . . , jm}, where

ji =

{
ji if i ̸= ℓ,
j if i = ℓ.

We say that xjℓ (or Ajℓ) exits the basis and xj (or Aj) enters the basis .

• Let us revisit Problem 3.1 and consider the basic feasible solution x = (1, 1, 0, 0) for
which we found the reduced cost of the nonbasic variable x3 is c3 = −3

2
c1+

1
2
c2+c3.

Suppose that c = (2, 0, 0, 0). Then c3 = −3 is negative, so we can reduce the
cost by moving in the corresponding simplex direction d = (−3/2, 1/2, 1, 0). As t
increases, the only component of x + td that decreases is the first one, since only
d1 < 0. The largest possible value of t is t∗ = −x1/d1 = 2/3, which takes us to the
point y = x + 2d/3 = (0, 4/3, 2/3, 0). At this point, the variable x3 has entered
the basis and the variable x1 has exited. Note that the columns A3 = (1, 3) (which
replaces A1 in the basis matrix) and A2 = (1, 0) are linearly independent and they
therefore form a new basis matrix constructed from the column indices j = (3, 2):

B =

[
1 1
3 0

]
.

Notice also that y is the basic feasible solution corresponding to B:

B−1b =
1

−3

[
0 −1
−3 1

][
2
2

]
=

[
2/3
4/3

]
.

The following theorem establishes that these observations hold generally.

Theorem 3.2:

(i) The columns {Aji
: i = 1, . . . ,m} are linearly independent, and hence B is a

basis matrix.

(ii) The vector y = x + t∗d is a basic feasible solution associated with the basis
matrix B.

Proof: (i) If the vectors {Aji
: i = 1, . . . ,m} were linearly dependent, then there

would exist coefficients λ1, . . . , λm, not all zero, such that

m∑
i=1

λiAji
= 0.

On multiplying this statement by B−1, the vectors B−1Aji
would then be seen to

be linearly dependent. Since B−1B = 1, where 1 is the m ×m identity matrix and
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the ith column of B is Aji , we know that B−1Aji is just the ith unit vector ei, so
that {B−1Aji

: i ̸= ℓ} = {B−1Aji : i ̸= ℓ} = {ei : i ̸= ℓ} are linearly independent.
Moreover, B−1Aj is linearly independent of these vectors: its ℓth component is the
positive value −djℓ while their ℓth components are all zero. This is a contradiction.

(ii) We note that y ≥ 0, Ay = b, and yi = 0 for i ̸= j1, . . . , jm. From (i), we know
that the columns of B are linearly independent. Thus, y is a basic feasible solution
corresponding to B.

3.B An iteration of the simplex method

1. Start with a basis consisting of the basic columns Aj1 , . . . ,Ajm , and an associ-
ated basic feasible solution x.

2. Compute the reduced costs cj = cj − c⊺Bu for all nonbasic indices j. If they are
all nonnegative, the current basic feasible solution is optimal and the algorithm
terminates. Otherwise choose some j for which cj < 0. Let u = −dB = B−1Aj,
where Aj is the column that enters the basis .

3. If no component of u is positive, we have t∗ = ∞, the optimal cost is −∞ and
the algorithm terminates.

4. If some component of u is positive, let

t∗ = min
i=1,...,m:

ui>0

xji

ui

.

5. Let ℓ be such that t∗ = xjℓ/uℓ. Form a new basis by replacing Ajℓ with Aj.
The new basic feasible solution y has components yj = t∗ and yji = xji − t∗ui

for i ̸= ℓ.

Theorem 3.3: Assume that the feasible set is nonempty and that every basic feasi-
ble solution is nondegenerate. Then the simplex method terminates after a finite
number of iterations. At termination there are two possibilities:

1. We have an optimal basis B and an associated optimal basic feasible solution.

2. We have found a vector d satisfying Ad = 0,d ≥ 0, and c⊺d < 0; proceeding
indefinitely in this direction leads to the optimal cost −∞.
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Problem 3.3: Let x be a nondegenerate basic feasible solution of a linear program-
ming problem Π written in standard form. If x is an optimal solution to Π for
which the reduced cost cj of some nonbasic variable xj is zero, prove that Π does
not have a unique optimal solution.

3.C The simplex method for degenerate problems

In a degenerate linear programming problem, the following possibilities may be en-
countered:

(a) If the current basic feasible solution x is degenerate, t∗ can be zero, so that the
new basic feasible solution y is the same as x. This happens when xjℓ = 0
and djℓ < 0. Nevertheless, we can still define the new basis B by replacing Ajℓ

with Aj, and Theorem 3.2 still holds.

(b) Even if t∗ is positive, it may happen that more than one of the original basic
variables becomes zero at the new point x + t∗d. Since only one of them exits
the basis, the other zero values remain in the basis, so that the new basic feasible
solution y is degenerate.

• In Figure 3.1 we visualize a feasible set in standard form, with n − m = 2, by
standing on the two-dimensional plane defined by Ax = b.

Q. What kind of point is x?

Degenerate basic feasible solution.

Q. Assume that x4 and x5 are the nonbasic variables. What are the corresponding
simplex directions?

g and f .

Q. What are the corresponding values of t∗?

0 and 0.

Q. If we perform a change of basis, with x4 entering and x6 exiting, what are the
new nonbasic variables?

x6 and x5.

Q. What are their corresponding simplex directions?

−g and h.
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x 1
=
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Figure 3.1:

Q. If we follow the direction h, can we reach a new basic feasible solution at a lower
cost?

Yes, we will arrive at the new basic solution y, which has a lower cost than x.

A sequence of basis changes may lead back to the initial basis, in which case the
algorithm may loop indefinitely. This undesirable phenomenon is called cycling .

3.D Implementation of the simplex method

A number of implementations of the simplex method are available. Which implemen-
tation is most efficient for a given problem depends very much on the structure of the
matrix A, as well as the cost vector c.

3.D.1 Naive implementation

If we carry no auxiliary information from one iteration to another, then there are
three major computations to be handled at each iteration (a linear solve, up to n−m



3.D. IMPLEMENTATION OF THE SIMPLEX METHOD 49

dot products, followed by another linear solve):

p⊺ = c⊺BB
−1 ⇒ B⊺p = cB,

cj = cj − p⊺Aj for j ∈ N,

Bu = Aj,

where N is the set of nonbasic indices. However, depending on the implementation,
one may not need to calculate cj for every j ∈ N . If one wants to always follow
the direction with the most negative rate of cost change, one must compute the
reduced costs for every nonbasic variable. The same situation holds if one wants to
follow the direction which leads to the greatest cost reduction −t∗cj. However, if
one simply chooses the first variable encountered with a negative reduced cost, one
need not compute the reduced costs for the remaining nonbasic variables. Because
of this savings, one typically finds in practice that the latter choice is most efficient,
even though one it doesn’t necessarily follow the path of steepest descent . These
implementation-dependent choices as to which variables enter and (at degenerate
vertices) exit are known as pivot rules .

Once the entering variable xj is known, we need to compute the displacement
vector u = B−1Aj that determines the direction of motion d and limiting parame-
ter t∗. The computational cost of the two linear solves is O(m3). If we assume that
n ≫ m, the computational cost of computing all nonbasic reduced costs is O(nm).
The overall computational cost of a naive implementation is thus O(m3 + nm).

3.D.2 Revised simplex method

Typically, the expensive steps of the naive implementation are the two linear solves.
Since the matrix B appears in both linear systems, it may seem reasonable to first
compute B−1 and then perform the two matrix–vector multiplies c⊺BB

−1 and B−1Aj.
However, this alternative still requires O(m3+nm) operations for an entire iteration.
Fortunately, there is a more efficient method for updating the matrix B−1 each time
that we effect a change of basis, based on the previously calculated inverse. Recall
that

B = [Aj1 , . . . ,Ajm ]

and
B = [Aj1 , . . . ,Ajℓ−1,Aj,Ajℓ+1, . . . ,Ajm ].

Note that
B−1B = [ e1, . . . , eℓ−1,u, eℓ+1, . . . , em ],

since u = B−1Aj.

Definition: The operation of adding a constant multiple of one row of a matrix to
another row (or even the same row) is called an elementary row operation.
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Remark: An elementary row operation on an m × n matrix A is equivalent to
multiplication on the left by an m×m matrix Q.

• Let

Q =

 1 2 0
0 1 0
0 0 1

, A =

 1 2
3 4
5 6


The matrix QA is the result of adding twice the second row of A to the first:

A =

 7 10
3 4
5 6

.
Let us now apply the following sequence of elementary row operations to B−1B:

1. Recalling that uℓ > 0, add row ℓ times −ui/uℓ to each row i ̸= ℓ, thereby
reducing ui to 0.

2. Divide row ℓ by uℓ. This sets uℓ to 1. Note that this is equivalent to adding
1/uℓ − 1 times row ℓ to itself.

The above operations are equivalent to multiplication on the left by a matrix Q. We
have chosen this sequence specifically to reduceB−1B to them×m identity matrix 1.
That is,

QB−1B = 1.

Since
QB−1 = B−1,

we now see that to compute B−1, we only need to apply the above sequence of
elementary row operations to B−1! This requires only O(m) arithmetic computations
and leads to the following implementation, known as the revised simplex method :

1. In a typical iteration, we start with a basis consisting of the basic columns
Aj1 , . . . ,Ajm , an associated basic feasible solution x, and the inverse B−1 of
the basis matrix.

2. Compute the row vector p⊺ = c⊺BB
−1 and the reduced costs cj = cj − p⊺Aj. If

they are all nonnegative, the current basic feasible solution is optimal, and the
algorithm terminates; otherwise, choose some j for which cj < 0.

3. Compute u = B−1Aj. If no component of u is positive, the optimal cost is
−∞, and the algorithm terminates.

4. If some component of u is positive, let

t∗ = min
i=1,...,m:

ui>0

xji

ui

.
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5. Let ℓ be such that t∗ = xjℓ/uℓ. Form a new basis by replacing Ajℓ with Aj.
If y is the new basic feasible solution, the values of the new basic variables are
yj = t∗ and yji = xji − t∗ui for i ̸= ℓ.

6. Form the m × (m + 1) matrix [B−1|u] . Add to each of its rows a multiple of
row ℓ to make the last column equal to the unit vector eℓ . The first m columns
of the result is the matrix B−1.

3.D.3 Full tableau implementation

Instead of maintaining and updating the matrix B−1, let us maintain and update
the m × (n + 1) matrix B−1[b|A] with columns B−1b,B−1A1, . . . ,B

−1An. One
advantage of doing this is that one does not need to need to allocate a separate
column for the vector u = B−1Aj, corresponding to the variable entering the basis.
This special column is called the pivot column. If the ℓth basic variable exits the
basis, the ℓth row is called the pivot row . The element corresponding to both pivot
row and column is the pivot element . Note that the pivot element uℓ remains positive
until the algorithm terminates.

We refer to the initial column B−1b, which contains the components of the basic
variable xB, as the zeroth column. One way to remember the form of this augmented
matrix is to multiply the standard-form constraint b = Ax by B−1 on each side:

B−1b = B−1Ax;

the rows of the augmented matrix tabulate the coefficients of this equality constraint.
It is also convenient to add a zeroth row to represent the negative cost −c⊺BxB

in the zeroth column, followed by the reduced costs cj of each of the n variables in
subsequent columns, to obtain the tableau

−c⊺BxB c1 . . . cn

B−1b B−1A1 . . . B−1An

Remark: As we now show, the reason for the minus sign in the expression −c⊺BxB

entered in the zeroth column and zeroth row is for consistency with the reduced
costs cj = cj − c⊺BB

−1Aj. That is, the same update rule can then be used for all
rows: a multiple of the pivot row is added to the zeroth row to set the reduced cost
of the entering variable xj to zero, as must be the case for a basic variable. At the
beginning of the iteration, the zeroth row is of the form

[0|c⊺]− p⊺[b|A],
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where p⊺ = c⊺BB
−1. The term p⊺[b|A] is a linear combination of the rows of [b|A].

Since each row of [B−1b|B−1A] is also a linear combination of the rows of [b|A],
adding a multiple of the pivot row to the zeroth row yields [0|c⊺] minus some linear
combination p⊺ of the rows of [b|A]:

[0|c⊺]− p⊺[b|A].

Our update rule is specifically chosen to annihilate the jth entry in the resulting
zeroth row:

cj − p⊺Aj = 0.

Since B−1Aji = ei, adding a multiple of the pivot row to the zeroth row will not
change the reduced costs of the other basic variables xji (i ̸= ℓ) from their previous
zero values. The reduced cost of each of the new basic variables is therefore zero:

c⊺B − p⊺B = 0,

recalling that B = [Aj1 , . . . ,Ajℓ−1,Aj,Ajℓ+1, . . . ,Ajm ]. We thus conclude that
p⊺ = c⊺BB

−1; this implies that the updated zeroth row equals

[0|c⊺]− c⊺BB
−1[b|A],

as desired.

The full simplex tableau algorithm can now be summarized. Given a basis ma-
trix B, one initializes the full tableau with the basic components of the solution
xB = B−1b and the matrix product B−1A. The negative cost −c⊺BxB and reduced
cost vector c⊺ = c⊺ − c⊺BB

−1A are entered in the zeroth row of the tableau. A single
iteration of the full simplex tableau involves these four steps:

1. If the reduced costs are all nonnegative, the current basic feasible solution is
optimal, and the algorithm terminates.

2. Otherwise, choose some j for which cj < 0. Denote column j (the pivot column)
of the tableau by u. If no component of u is positive, the optimal cost is −∞,
and the algorithm terminates.

3. For each i for which ui is positive, compute the ratio xji/ui. Let ℓ be the index
of a row that corresponds to the smallest ratio. The column Ajℓ exits the basis
and the column Aj enters the basis.

4. Add a constant multiple of row ℓ (the pivot row) so that uℓ (the pivot element)
becomes 1 and all other entries of the pivot column become 0.
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Problem 3.4: Use the simplex method to solve the linear programming problem

minimize −10x1 − 12x2 − 12x3

subject to x1 + 2x2 + 2x3 ≤ 20,
2x1 + x2 + 2x3 ≤ 20,
2x1 + 2x2 + x3 ≤ 20,

x1, x2, x3 ≥ 0.

First, we introduce slack variables x4, x5, x6 to form the standard-form problem

minimize −10x1 − 12x2 − 12x3
subject to x1 + 2x2 + 2x3 + x4 = 20,

2x1 + x2 + 2x3 + x5 = 20,
2x1 + 2x2 + x3 + x6 = 20,

x1, x2, x3, x4, x5, x6 ≥ 0.

We need a basic feasible solution to initialize the simplex method. An obvious basic
solution is (0, 0, 0, 20, 20, 20), with j1 = 4, j2 = 5, j3 = 6, and the identity basis matrix.
This corresponds to the vertex A = (0, 0, 0) of the original problem depicted in Figure 3.2.
Since cB = 0, the zeroth row of the initial tableau contains the negative cost −c⊺BxB = 0
followed by the elements of the reduced costs c = c:

x∗1 x2 x3 x4 x5 x6
0 −10 −12 −12 0 0 0

x4 = 20 1 2 2 1 0 0

x†5 = 20 2 1 2 0 1 0
x6 = 20 2 2 1 0 0 1

The decision variables corresponding to each column are tabulated above the zeroth row.
The basic variables are listed next to each of their values in the zeroth column. We are now
ready to begin the first simplex iteration.

Let us use the first column with a negative reduced cost, x1 as our entering variable. We
highlight the corresponding pivot column with an asterisk and let u = (1, 2, 2). We then
compute the ratios xji/ui for each i such that ui > 0. These ratios are 20/1 = 20, 20/2 = 10,
20/2 = 10, respectively. For the exit variable, we choose the first variable, x5, that achieves
the minimum ratio (10), highlighting the pivot row with a dagger. We then apply elementary
operations to the matrix to reduce the pivot column to (0, 0, 1, 0):

x1 x∗2 x3 x4 x5 x6
100 0 −7 −2 0 5 0

x4 = 10 0 3/2 1 1 −1/2 0
x1 = 10 1 1/2 1 0 1/2 0

x†6 = 0 0 1 −1 0 −1 1

This corresponds to the degenerate vertex D = (10, 0, 0) of the original problem depicted
in Figure 3.2. The basic variables are now x4, x1, and x6. In the tableau, the degeneracy
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is apparent from the value x6 = 0. We now repeat the iteration, choosing x2 as our
entering variable and letting u = (3/2, 1/2, 1). We compute x4/u1 = 10/(3/2) = 20/3,
x1/u2 = 10/(1/2) = 20, x6/u3 = 0/1 = 0. We therefore choose x6 as our exiting variable
and row reduce to obtain (0, 0, 0, 1) in the pivot column. This row reduction accomplishes
a change of basis but leaves us still at the point D = (10, 0, 0):

x1 x2 x∗3 x4 x5 x6
100 0 0 −9 0 −2 7

x†4 = 10 0 0 5/2 1 1 −3/2
x1 = 10 1 0 3/2 0 1 −1/2
x2 = 0 0 1 −1 0 −1 1

Our basic variables are now x4, x1, and x2. Next, we choose x3 as our entering variable and
let u = (5/2, 3/2,−1). We compute x4/u1 = 10/(5/2) = 4 and x1/u2 = 10/(3/2) = 20/3.
The exiting variable is thus x4. Upon row reducing, we obtain a zeroth row containing no
negative reduced costs:

x1 x2 x3 x4 x5 x6
136 0 0 0 18/5 8/5 8/5

x3 = 4 0 0 1 2/5 2/5 −3/5
x1 = 4 1 0 0 −3/5 2/5 2/5
x2 = 4 0 1 0 2/5 −3/5 2/5

We have thus reached the optimal solution E = (4, 4, 4), for which the optimal cost is −136.

Problem 3.5: Use the simplex method to solve the standard-form linear program-
ming problem

minimize x1 + 3x2 + 2x3

subject to 2x1 − x2 + x3 = 6,
x1 − x2 − x4 = 2,
x1, x2, x3, x4 ≥ 0.

We need a basic feasible solution to initialize the tableau. The choice j1 = 1 and j2 = 2
corresponds to

B =

[
2 −1
1 −1

]
, xB =

1

−1

[
−1 1
−1 2

][
6
2

]
=

[
4
2

]
,

and

B−1A =
1

−1

[
−1 1
−1 2

][
2 −1 1 0
1 −1 0 −1

]
=

[
1 0 1 1
0 1 1 2

]
.

Let c = (1, 3, 2, 0), so that cB = (1, 3). We can use the last two columns of the above
result to easily calculate the reduced costs of the nonbasic variables:

c3 = c3 − c⊺BB
−1A3 = 2− [ 1 3 ]

[
1
1

]
= −2,
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Figure 3.2: Simplex iterations.

c4 = c4 − c⊺BB
−1A4 = 0− [ 1 3 ]

[
1
2

]
= −7.

We enter these results, along with the negative cost at the initial basic feasible solution,
−c⊺BxB = −10, in the tableau:

x1 x2 x∗3 x4
−10 0 0 −2 −7

x1 = 4 1 0 1 1

x†2 = 2 0 1 1 2

Two iterations of the simplex method then bring us to the optimal solution (3, 0, 0, 1)
with optimal cost 3:

x1 x2 x3 x∗4
−6 0 2 0 −3

x1 = 2 1 −1 0 −1

x†3 = 2 0 1 1 2

x1 x2 x3 x4
−3 0 7/2 3/2 0

x1 = 3 1 −1/2 1/2 0
x4 = 1 0 1/2 1/2 1

https://www.math.ualberta.ca/~bowman/m373/fig/phase2example.html
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Remark: The entering decision variable always has a negative reduced cost. Often
there is more than one choice for this entering variable. In the previous examples
of the full simplex tableau, we always chose the entering variable to be the one
with the lowest subscript. This is particularly advantageous in implementations
of the revised simplex method, where the reduced costs are computed separately
from the tableau. If one computes the reduced costs sequentially, starting with the
lowest subscript, one can stop computing reduced costs as soon as the first negative
value is encountered. Although the full simplex tableau is perhaps more elegant, in
that the reduced cost computation is incorporated directly into the row operations,
calculating the reduced costs in this iterative manner has the disadvantage that all
reduced costs must be calculated (no matter what pivot rule is used), so that the
reduced costs of the other variables are available for future iterations.

Remark: For both the revised and full tableau simplex methods, there is nevertheless
an important advantage in always choosing the entering variable with the lowest
subscript that has a negative reduced cost. If we also choose the exiting variable
to be the variable with the lowest subscript ji that achieves the minimum ratio
xji/ui, the simplex method never cycles and will always terminate after a finite
number of iterations. This widely used pivot rule is known as Bland’s rule.

Problem 3.6: Consider the linear programming problem

minimize −3x1 + 80x2 − 14x3 + 24x4 − 12x7

subject to
1

4
x1 − 8x2 − x3 + 9x4 + x5 = 0,

1

2
x1 − 12x2 − 1

2
x3 + 3x4 + x6 = 0,

x3 + x7 = 4,

x1, x2, x3, x4, x5, x6, x7 ≥ 0.

An obvious basic solution is (0, 0, 0, 0, 0, 0, 4), with j1 = 5, j2 = 6, j3 = 7, and the
identity basis matrix. Since cB = (0, 0,−12), the zeroth row of the initial tableau con-
tains the negative cost −c⊺BxB = 48 followed by the elements of the reduced cost vector
[−3, 80,−14, 24, 0, 0,−12]− [0, 0,−12]A:

x∗1 x2 x3 x4 x5 x6 x7
48 −3 80 −2 24 0 0 0

x†5 = 0 1/4 −8 −1 9 1 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0
x7 = 4 0 0 1 0 0 0 1
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If we pivot according to Bland’s rule, the simplex method reaches an optimal solution in
six iterations:

x1 x∗2 x3 x4 x5 x6 x7
48 0 −16 −14 132 12 0 0

x1 = 0 1 −32 −4 36 4 0 0

x†6 = 0 0 4 3/2 −15 −2 1 0
x7 = 4 0 0 1 0 0 0 1

x1 x2 x∗3 x4 x5 x6 x7
48 0 0 −8 72 4 4 0

x†1 = 0 1 0 8 −84 −12 8 0
x2 = 0 0 1 3/8 −15/4 −1/2 1/4 0
x7 = 4 0 0 1 0 0 0 1

x1 x2 x3 x∗4 x5 x6 x7
48 1 0 0 −12 −8 12 0

x3 = 0 1/8 0 1 −21/2 −3/2 1 0

x†2 = 0 −3/64 1 0 3/16 1/16 −1/8 0
x7 = 4 −1/8 0 0 21/2 3/2 −1 1

x∗1 x2 x3 x4 x5 x6 x7
48 −2 64 0 0 −4 4 0

x3 = 0 −5/2 56 1 0 2 −6 0
x4 = 0 −1/4 16/3 0 1 1/3 −2/3 0

x†7 = 4 5/2 −56 0 0 −2 6 1

x1 x2 x3 x4 x∗5 x6 x7
256/5 0 96/5 0 0 −28/5 44/5 4/5

x3 = 4 0 0 1 0 0 0 1

x†4 = 2/5 0 −4/15 0 1 2/15 −1/15 1/10
x1 = 8/5 1 −112/5 0 0 −4/5 12/5 2/5

x1 x2 x3 x4 x5 x6 x7
68 0 8 0 42 0 6 5

x3 = 4 0 0 1 0 0 0 1
x5 = 3 0 −2 0 15/2 1 −1/2 3/4
x1 = 4 1 −24 0 6 0 2 1

However, suppose we always select the entering variable with the most negative reduced
cost. The first four iterations will be exactly as above, until we arrive at

x1 x2 x3 x4 x∗5 x6 x7
48 −2 64 0 0 −4 4 0

x†3 = 0 −5/2 56 1 0 2 −6 0
x4 = 0 −1/4 16/3 0 1 1/3 −2/3 0
x7 = 4 5/2 −56 0 0 −2 6 1
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After two further iterations using the most-negative reduced cost, we arrive back at the
initial tableau!

x1 x2 x3 x4 x5 x∗6 x7
48 −7 176 2 0 0 −8 0

x5 = 0 −5/4 28 1/2 0 1 −3 0

x†4 = 0 1/6 −4 −1/6 1 0 1/3 0
x7 = 4 0 0 1 0 0 0 1

x∗1 x2 x3 x4 x5 x6 x7
48 −3 80 −2 24 0 0 0

x†5 = 0 1/4 −8 −1 9 1 0 0
x6 = 0 1/2 −12 −1/2 3 0 1 0
x7 = 4 0 0 1 0 0 0 1

Notice that at each iteration, we always remain at the degenerate vertex (0, 0, 0, 0, 0, 0, 4),

with nonoptimal cost −48. Although a change of basis is performed at each iteration,

eventually we return to the initial basis. With this pivot rule, the simplex method cycles

forever, never terminating. This example of cycling emphasizes the importance of adopting

Bland’s rule in practical implementations of the simplex method.

3.E Finding an initial basic feasible solution

We now describe an efficient procedure for finding a basic feasible solution and asso-
ciated basis matrix to initialize the simplex tableau.

First, multiply by −1 any equality constraints that have a negative right-hand
side, to ensure that the standard-form problem

minimize c⊺x

subject to Ax = b,

x ≥ 0

satisfies b ≥ 0.
Next, introduce a vector y ∈ Rm of artificial variables and consider the auxiliary

problem

minimize
m∑
i=1

yi

subject to Ax+ y = b,

x,y ≥ 0.

Remark: If x∗ is a feasible solution to the given problem, (x,y) = (x∗,0) yields an
optimal zero-cost solution to the auxiliary problem. Hence, if the optimal cost of
the auxiliary problem is positive, the given problem is infeasible.
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Remark: On the other hand, a zero-cost basic feasible solution (x,y) to the auxiliary
problem satisfies y = 0, so that x is then a feasible solution to the given problem.
If the associated basis matrix B contains only columns of A, the columns in the
tableau corresponding to the artificial variables y can simply be dropped.

Remark: A basic feasible solution to the auxiliary problem is given by (x,y) = (0, b),
with an identity basis matrix. Since all elements of cB are one, the reduced cost of
a nonbasic variable xj, which doesn’t contribute to the auxiliary cost, is just the
negative of the column sum of Aj: −

∑m
i=1Ai,j.

Remark: In Prob. 3.5, we solved the linear programming problem

minimize x1 + x2 + x3

subject to 2x1 − x2 + x3 = 6,
x1 − x2 − x4 = 2,
x1, x2, x3, x4 ≥ 0

starting from a given basis matrix and corresponding basic feasible solution. Note
that the right-hand side vector b = (6, 2) is already nonnegative. A systematic way
to find an initial basis matrix and tableau is to introduce artificial variables y1 and y2
and consider the auxiliary problem

minimize y1 + y2
subject to 2x1 − x2 + x3 + y1 = 6,

x1 − x2 − x4 + y2 = 2,
x1, x2, x3, x4, y1, y2 ≥ 0.

We start iterating from the initial solution (0, 0, 0, 0, 6, 2) and identity basis matrix:

x∗
1 x2 x3 x4 y1 y2

−8 −3 2 −1 1 0 0
y1= 6 2 −1 1 0 1 0

y†2= 2 1 −1 0 −1 0 1

Two iterations of the simplex method then lead to an optimal zero-cost solution
of the auxiliary problem:

x1 x∗
2 x3 x4 y1 y2

−2 0 −1 −1 −2 0 3

y†1= 2 0 1 1 2 1 −2
x1= 2 1 −1 0 −1 0 1

x1 x2 x3 x4

0 0 0 0 0
x2=2 0 1 1 2
x1=4 1 0 1 1
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In the final tableau, since none of the final basic variables are artificial variables,
we have dropped their associated columns. Except for the zeroth row and the order
of the basic variables (the order of the rows in the tableau is irrelevant), the resulting
truncated tableau is identical to the initial tableau in Prob. 3.5. The tabulated
columns of B−1A can then be used to calculate the reduced costs in the zeroth row
of the initial tableau of the given problem.

Remark: One can sometimes reduce the number of artificial columns by exploiting
the structure of A: if a column Aj is a positive multiple of a unit vector ek, one
can omit the column associated with the artificial variable yk.

Remark: In a standard-form problem withm slack (not surplus) variables and b ≥ 0,
the artificial columns can thus be eliminated completely, leaving one with an obvi-
ous basic feasible solution, as we saw in Prob. 3.4.

Problem 3.7: Let us optimize our search for an initial basic feasible solution for
Prob. 3.5 by exploiting the fact that A3 = e1; this allows us to drop the column
associated with y1:

minimize y1 + y2
subject to 2x1 − x2 + x3 + y1 = 6,

x1 − x2 − x4 + y2 = 2,
x1, x2, x3, x4, y1, y2 ≥ 0.

x∗
1 x2 x3 x4 y2

−8 −3 2 −1 1 0
y1= 6 2 −1 1 0 0

y†2= 2 1 −1 0 −1 1

x1 x∗
2 x3 x4 y2

−2 0 −1 −1 −2 3

y†1= 2 0 1 1 2 −2
x1= 2 1 −1 0 −1 1

x1 x2 x3 x4

0 0 0 0 0
x2=2 0 1 1 2
x1=4 1 0 1 1

Since the remaining artificial variable y2 does not appear in the basis, we have
dropped it from this zero-cost solution to the auxilliary problem.
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Remark: The situation is more complicated if some of the artificial variables y are in
the final basis B. In this case, we must drive the artificial variables out of the basis.
Let I = {i : xji is a basic variable} denote the set of row indices in the zero-cost
tableau that correspond to nonartificial basic variables. Suppose that the basic
variable in the ℓth row of the tableau is an artificial variable, where ℓ /∈ I. If the
ℓth row of B−1A contains only zeroes, then the matrix A has linearly dependent
rows; we can therefore remove that row and continue. Otherwise, for some j the
ℓth entry of B−1Aj is nonzero. Since B−1Aji = ei for i ∈ I, and ℓ /∈ I, we know
that the ℓth entry of these vectors is zero. This means that B−1Aj is not a linear
combination of these vectors, so that Aj is linearly independent of {Aji : i ∈ I}.
We can therefore allow xj to enter the basis, with the artificial variable exiting. We
can accomplish this by our usual row reduction. Although the pivot element (the
ℓth entry of the jth column) could be negative, this doesn’t affect the mechanics
of the row operations; it is only important that the pivot element be nonzero.

Remark: Once we have arrived at a zero-cost optimal solution, we drive each artificial
variable out of the basis, in the order they appear in the tableau (top to bottom),
by iterating on the first nonzero pivot element of the corresponding row of B−1A.
If there is no nonzero pivot element (do not consider artificial columns), we delete
that entire row from the tableau.

Problem 3.8: Find a basic feasible solution for the linear programming problem

minimize −5x1 − x2 + 12x3 + x4

subject to 3x1 + 2x2 + 2x3 = 10,
5x1 + 3x2 + x3 + x4 = 16,
x1 + x2 + x3 − 2x5 = 5,
x1, x2, x3, x4, x5 ≥ 0.

Step 1. Multiply every constraint with a negative right-hand side by −1, so that b ≥ 0.
In this case, the constraints are already in this form.

Step 2. In order to find a basic feasible solution, the artificial variables y1, y2, and y3
are introduced:

minimize y1 + y2 + y3
subject to 3x1 + 2x2 + 2x3 + y1 = 10,

5x1 + 3x2 + x3 + x4 + y2 = 16,
x1 + x2 + x3 − 2x5 + y3 = 5,
x1, x2, x3, x4, x5, y1, y2, y3 ≥ 0.

Since the columns in A corresponding to x4 and y2 are identical, we can omit the column
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associated with the artificial variable y2:

x∗1 x2 x3 x4 x5 y1 y3
−31 −9 −6 −4 −1 2 0 0

y1= 10 3 2 2 0 0 1 0

y†2= 16 5 3 1 1 0 0 0
y3= 5 1 1 1 0 −2 0 1

x1 x∗2 x3 x4 x5 y1 y3
−11/5 0 −3/5−11/5 4/5 2 0 0

y†1= 2/5 0 1/5 7/5 −3/5 0 1 0
x1= 16/5 1 3/5 1/5 1/5 0 0 0
y3= 9/5 0 2/5 4/5 −1/5 −2 0 1

x1 x2 x3 x∗4 x5 y1 y3
−1 0 0 2 −1 2 3 0

x2= 2 0 1 7 −3 0 5 0

x†1= 2 1 0 −4 2 0 −3 0
y3= 1 0 0 −2 1 −2 −2 1

x∗1 x2 x3 x4 x5
0 1/2 0 0 0 2

x2=5 3/2 1 1 0 0
x4=1 1/2 0 −2 1 0

y†3=0 −1/2 0 0 0 −2

After 3 iterations, we found an optimal (zero-cost) solution of the auxiliary problem, so
we dropped the columns associated with the artificial variables. However, we still need to
drive the variable y3 out of the final basis, with x1 entering:

x1 x2 x3 x4 x5
0 0 0 0 0 0

x2=5 0 1 1 0 −6
x4=1 0 0 −2 1 −2
x1=0 1 0 0 0 4

We have thus obtained a basic feasible solution (0, 5, 0, 1, 0) and corresponding values

of B−1A.

Problem 3.9: Find a basic feasible solution for the linear programming problem

minimize 2x1 + 6x2 + x3 + x4

subject to x1 + 2x2 + x4 = 6,
x1 + 2x2 + x3 + x4 = 7,
x1 + 3x2 − x3 + 2x4 = 7,
x1 + x2 + x3 = 5,
x1, x2, x3, x4 ≥ 0.
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Step 1. Multiply every constraint with a negative right-hand side by −1, so that b ≥ 0.
In this case, there is no need to change the constraints.

Step 2. In order to find a basic feasible solution, the artificial variables y1, y2, y3, and
y4 are introduced to form the auxiliary problem

minimize y1 + y2 + y3 + y4
subject to x1 + 2x2 + x4 + y1 = 6,

x1 + 2x2 + x3 + x4 + y2 = 7,
x1 + 3x2 − x3 + 2x4 + y3 = 7,
x1 + x2 + x3 + y4 = 5,
x1, x2, x3, x4, y1, y2, y3, y4 ≥ 0.

x∗1 x2 x3 x4 y1 y2 y3 y4
−25 −4 −8 −1 −4 0 0 0 0

y1= 6 1 2 0 1 1 0 0 0
y2= 7 1 2 1 1 0 1 0 0
y3= 7 1 3 −1 2 0 0 1 0

y†4= 5 1 1 1 0 0 0 0 1

x1 x∗2 x3 x4 y1 y2 y3 y4
−5 0 −4 3 −4 0 0 0 4

y†1= 1 0 1 −1 1 1 0 0 −1
y2= 2 0 1 0 1 0 1 0 −1
y3= 2 0 2 −2 2 0 0 1 −1
x1= 5 1 1 1 0 0 0 0 1

x1 x2 x∗3 x4 y1 y2 y3 y4
−1 0 0 −1 0 4 0 0 0

x2= 1 0 1 −1 1 1 0 0 −1

y†2= 1 0 0 1 0 −1 1 0 0
y3= 0 0 0 0 0 −2 0 1 1
x1= 4 1 0 2 −1 −1 0 0 2

x1 x2 x3 x4
0 0 0 0 0

x2=2 0 1 0 1
x3=1 0 0 1 0
y3=0 0 0 0 0
x1=2 1 0 0 −1

We have arrived at an optimal solution of the auxiliary problem. However, we need
to drive out the third variable in the basis, y3, since it is an artificial variable. Since the
third elements of B−1A1,. . .B

−1A4 are all zero, a basic feasible solution (2, 2, 1, 0) to the
original problem is obtained by simply dropping the third row:
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x1 x2 x3 x4
0 0 0 0 0

x2=2 0 1 0 1
x3=1 0 0 1 0
x1=2 1 0 0 −1

3.F The two-phase simplex method

The above considerations lead us to the so-called two-phase simplex method . In the
first phase, the auxiliary problem is solved to find an initial tableau for the second
phase. The second phase is the application of the simplex method on the given prob-
lem, starting from the basic feasible solution found in the first phase.

Phase I:

1. Multiply the constraints as needed by −1 so that b ≥ 0.

2. If a basic feasible solution is not known, introduce nonnegative artificial vari-
ables y1, . . . , ym and apply the simplex method to the auxiliary problem with
cost

∑m
i=1 yi.

3. If the optimal cost in the auxiliary problem is positive, the given problem is
infeasible and the algorithm terminates.

4. If the optimal cost in the auxiliary problem is zero, a feasible solution to the
given problem has been found. If no artificial variable is in the final basis, the
artificial variables and the corresponding columns are eliminated, and a feasible
basis for the given problem is available.

5. If the ℓth basic variable is an artificial one, examine the ℓth entry of the columns
B−1Aj, j = 1, . . . , n. If all of these entries are zero, remove the ℓth row, as it
represents a redundant constraint. Otherwise, if the ℓth entry of the jth column
is nonzero, apply a change of basis (with this entry serving as the pivot element):
the ℓth basic variable exits and xj enters the basis. Repeat this procedure until
all artificial variables are driven out of the basis.

Phase II:

1. Let the final basis and tableau obtained from Phase I be the initial basis and
tableau for Phase II.

2. Compute the reduced costs of all variables for this initial basis, using the cost
coefficients of the given problem and the tabulated values of B−1A.
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3. Apply the simplex method to the given problem.

Problem 3.10: Use the two-phase simplex method to determine the initial tableau
for the linear programming problem

minimize x1 − x3

subject to x1 + x2 = 4,
−x2 + x3 = −1,

x1, x2, x3 ≥ 0.

Phase I:
Step 1. Multiply every constraint with a negative right-hand side by −1, so that b ≥ 0:

minimize x1 − x3
subject to x1 + x2 = 4,

x2 − x3 = 1,
x1, x2, x3 ≥ 0.

Step 2. In order to find a basic feasible solution, the artificial variables y1 and y2 are
introduced. Since A1 = e1, we can drop the column associated with y1:

minimize y1 + y2
subject to x1 + x2 + y1 = 4,

x2 − x3 + y2 = 1,
x1, x2, x3, y1, y2 ≥ 0.

x∗1 x2 x3 y2
−5 −1 −2 1 0

y†1= 4 1 1 0 0
y2= 1 0 1 −1 1

Two simplex iterations then lead us to a basic feasible solution of the given problem:

x1 x∗2 x3 y2
−1 0 −1 1 0

x1= 4 1 1 0 0

y†2= 1 0 1 −1 1

x1 x2 x3
0 0 0 0

x1=3 1 0 1
x2=1 0 1 −1

Phase II:
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In the solution to the auxiliary problem, we may simply drop the artificial variable y2
since it is not in the basis. The reduced costs of the basic variables x1 and x2 are zero. The
reduced cost of the nonbasic variable x3 is c3 − c⊺BB

−1A3 = −1− (1, 0)·(1,−1) = −2:

x1 x2 x∗3
−3 0 0 −2

x†1= 3 1 0 1
x2= 1 0 1 −1

A single simplex iteration leads to an optimal solution (0, 4, 3), with optimal cost −3:

x1 x2 x3
3 2 0 0

x3=3 1 0 1
x2=4 1 1 0

3.G Application to transportation problems

Consider the following transportation problem. We want to ship identical items
from M warehouses to N stores. Warehouse i has ai units available and store j
requires bj units. If the total supply

∑M
i=1 ai equals the total demand

∑N
j=1 bj, and

the cost to ship an item from warehouse i to store j is cij, how many items xij should
we ship from warehouse i to store j in order to minimize the overall transportation
cost?

Problem 3.11: GivenM = 3 warehouses and N = 2 stores, it is convenient to relabel
(x11, x12, x21, x22, x31, x32) as (x1, x2, x3, x4, x5, x6). Suppose the corresponding cost
vector (c1, c2, c3, c4, c5, c6) is (1, 5, 1, 3, 1, 4) (in dollars), with a1 = 20, a2 = 3,
a3 = 12, b1 = 15, b2 = 20. How many units should each warehouse ship to each
store to minimize the total transportation cost?

Since demand equals supply, each warehouse must ship all available units. The total
outflow from warehouse i is

∑2
j=1 xij = ai and the total inflow into store j is

∑3
i=1 xij = bj .

This leads to the linear programming problem

minimize x1 + 5x2 + x3 + 3x4 + x5 + 4x6
subject to x1 + x2 = 20,

x3 + x4 = 3,
x5 + x6 = 12,

x1 + x3 + x5 = 15,
x2 + x4 + x6 = 20,

x1, x2, x3, x4, x5, x6 ≥ 0.

Using the two-phase simplex method, the problem can be solved as follows.
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Phase I:
Step 1. Multiply every constraint with a negative right-hand side by −1, so that b ≥ 0.
In this case, the constraints are already in this form.

Step 2. In order to find a basic feasible solution, the artificial variables y1, y2, y3, y4,
and y5 are introduced to form the auxiliary problem

minimize y1 + y2 + y3 + y4 + y5
subject to x1 + x2 + y1 = 20,

x3 + x4 + y2 = 3,
x5 + x6 + y3 = 12,

x1 + x3 + x5 + y4 = 15,
x2 + x4 + x6 + y5 = 20,

x1, x2, x3, x4, x5, x6, y1, y2, y3, y4, y5 ≥ 0.

x∗1 x2 x3 x4 x5 x6 y1 y2 y3 y4 y5
−70 −2 −2 −2 −2 −2 −2 0 0 0 0 0

y1= 20 1 1 0 0 0 0 1 0 0 0 0
y2= 3 0 0 1 1 0 0 0 1 0 0 0
y3= 12 0 0 0 0 1 1 0 0 1 0 0

y†4= 15 1 0 1 0 1 0 0 0 0 1 0
y5= 20 0 1 0 1 0 1 0 0 0 0 1

x1 x∗2 x3 x4 x5 x6 y1 y2 y3 y4 y5
−40 0 −2 0 −2 0 −2 0 0 0 2 0

y†1= 5 0 1 −1 0 −1 0 1 0 0 −1 0
y2= 3 0 0 1 1 0 0 0 1 0 0 0
y3= 12 0 0 0 0 1 1 0 0 1 0 0
x1= 15 1 0 1 0 1 0 0 0 0 1 0
y5= 20 0 1 0 1 0 1 0 0 0 0 1

x1 x2 x∗3 x4 x5 x6 y1 y2 y3 y4 y5
−30 0 0 −2 −2 −2 −2 2 0 0 0 0

x2= 5 0 1 −1 0 −1 0 1 0 0 −1 0

y†2= 3 0 0 1 1 0 0 0 1 0 0 0
y3= 12 0 0 0 0 1 1 0 0 1 0 0
x1= 15 1 0 1 0 1 0 0 0 0 1 0
y5= 15 0 0 1 1 1 1 −1 0 0 1 1

x1 x2 x3 x4 x∗5 x6 y1 y2 y3 y4 y5
−24 0 0 0 0 −2 −2 2 2 0 0 0

x2= 8 0 1 0 1 −1 0 1 1 0 −1 0
x3= 3 0 0 1 1 0 0 0 1 0 0 0
y3= 12 0 0 0 0 1 1 0 0 1 0 0

x†1= 12 1 0 0 −1 1 0 0 −1 0 1 0
y5= 12 0 0 0 0 1 1 −1 −1 0 1 1
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x∗1 x2 x3 x4 x5 x6
0 2 0 0 −2 0 −2

x2=20 1 1 0 0 0 0
x3= 3 0 0 1 1 0 0

y†3= 0 −1 0 0 1 0 1
x5=12 1 0 0 −1 1 0
y5= 0 −1 0 0 1 0 1

x1 x2 x3 x4 x5 x6
0 0 0 0 0 0 0

x2=20 0 1 0 1 0 1
x3= 3 0 0 1 1 0 0
x1= 0 1 0 0 −1 0 −1
x5=12 0 0 0 0 1 1
y5= 0 0 0 0 0 0 0

Phase II:
x1 x2 x3 x∗4 x5 x6

−115 0 0 0 −2 0 −1
x2= 20 0 1 0 1 0 1

x†3= 3 0 0 1 1 0 0
x1= 0 1 0 0 −1 0 −1
x5= 12 0 0 0 0 1 1

x1 x2 x3 x4 x5 x∗6
−109 0 0 2 0 0 −1

x2= 17 0 1 −1 0 0 1
x4= 3 0 0 1 1 0 0
x1= 3 1 0 1 0 0 −1

x†5= 12 0 0 0 0 1 1

x1 x2 x3 x4 x5 x6
−97 0 0 2 0 1 0

x2= 5 0 1 −1 0 −1 0
x4= 3 0 0 1 1 0 0
x1= 15 1 0 1 0 1 0
x6= 12 0 0 0 0 1 1

The minimal transportation cost of $97 is realized by the optimal solution (15, 5, 0, 3, 0, 12),

where Warehouse 1 ships 15 units to Store 1 and 5 units to Store 2 and Warehouse 2 and 3

ship 3 and 12 units to Store 2, respectively.



Chapter 4

Duality

4.A Introduction

Suppose that (x1, x2, x3) is a feasible solution to the linear programming problem

minimize 4x1 + 2x2 + x3

subject to x1 − x2 ≥ 3,

2x1 + x2 + x3 ≥ 4,

x1, x2, x3 ≥ 0.

If the problem has an optimal cost, we can find a lower bound for the optimal cost
with the following procedure. Let y1 and y2 be nonnegative numbers. On summing
the first constraint multiplied by y1 with the second constraint multiplied by y2, we
obtain

y1(x1 − x2) + y2(2x1 + x2 + x3) ≥ 3y1 + 4y2.

On rearranging this result, we find

x1(y1 + 2y2) + x2(−y1 + y2) + x3y2 ≥ 3y1 + 4y2.

If we enforce the constraints y1 + 2y2 ≤ 4, −y1 + y2 ≤ 2, and y2 ≤ 1, we obtain a
lower bound to the optimal cost:

4x1 + 2x2 + x3 ≥ x1(y1 + 2y2) + x2(−y1 + y2) + x3y2 ≥ 3y1 + 4y2.

The linear programming problem

maximize 3y1 + 4y2

subject to y1 + 2y2 ≤ 4,

−y1 + y2 ≤ 2,

y2 ≤ 1,

y1, y2 ≥ 0

that determines the largest possible value for our lower bound to the optimal cost
is known as the dual problem to the original linear programming problem.

69
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Remark: Duality theory can be also motivated as an outgrowth of the Lagrange
multiplier method.

• Consider the optimization problem

minimize x2 + y2

subject to x + y = 1.

Instead of enforcing the constraint x+y = 1, we allow it to be violated and associate
a constant Lagrange multiplier, or price, p with the amount 1 − x − y by which
the constraint is violated. Instead of minimizing the cost subject to the constraint
x+ y = 1, we minimize the Lagrangian

L(x, y, p) = x2 + y2 + p(1− x− y)

over all x and y, without further constraints:

0 =
∂L

∂x
= 2x− p,

0 =
∂L

∂y
= 2y − p.

The Lagrangian takes on its minimum value at the critical point (x, y) = (p/2, p/2),
which depends on p. If we now enforce the constraint x+ y = 1, we see that p = 1
and x = y = 1/2. At this value of p, the presence or absence of the constraint
does not affect L: an optimal solution of the unconstrained problem is thus also an
optimal solution of the original constrained problem.

In a similar manner, we can associate a price variable with each constraint of
a linear programming problem and search for prices under which the presence or
absence of the constraints does not affect the optimal cost. The right prices can be
found by solving a new linear programming problem that is the dual of the original
problem.

Consider the standard-form problem

minimize c⊺x

subject to Ax = b,

x ≥ 0,

which we will call the primal problem, and assume that an optimal solution x∗ exists.
Let us introduce a relaxed problem in which the constraint Ax = b is replaced by a
penalty p⊺(b−Ax), where p is a price vector with the same length as b. This results
in the following problem

minimize c⊺x+ p⊺(b−Ax)

subject to x ≥ 0.
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Let g(p) be the optimal cost for the relaxed problem. We expect g(p) to be no larger
than the optimal primal cost c⊺x∗:

g(p) = min
x≥0

[c⊺x+ p⊺(b−Ax)] ≤ c⊺x∗ + p⊺(b−Ax∗) = c⊺x∗,

noting that Ax∗ = b. Thus, for every price vector p, the value of g(p) provides a
lower bound to the optimal cost c⊺x∗. The tightest possible such lower bound can be
found by solving the problem

maximize g(p)

subject to no constraints,

which is known as the dual problem. One might expect that the tightest lower bound
will match the optimal value of the primal problem. Indeed, an important result of
duality theory asserts that the optimal value g(p) of the dual problem equals the
optimal value c⊺x∗ of the primal problem. In other words, when the price vector p is
chosen to optimize the dual problem, the option of violating the constraints Ax = b
is of no value. Note that

g(p) = min
x≥0

[c⊺x+ p⊺(b−Ax)] = p⊺b+min
x≥0

(c⊺ − p⊺A)x,

where

min
x≥0

(c⊺ − p⊺A)x =

{
0 if c⊺ − p⊺A ≥ 0⊺,

−∞ otherwise.

In maximizing g(p), we only need to consider those values of p for which g(p) is not
−∞. Hence, the dual problem is equivalent to the LPP

maximize p⊺b

subject to p⊺A ≤ c⊺.

Remark: If instead of the equality constraint Ax = b, the primal problem had
inequality constraints of the form Ax ≥ b, they could be replaced by Ax− s = b
and s ≥ 0, with cost function c⊺x+ 0⊺s:

[A|−1]

[
x
s

]
= b,

leading to the dual constraints

p⊺[A|−1] ≤ [c⊺|0⊺];

that is,
p⊺A ≤ c⊺, p ≥ 0.
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Remark: Alternatively, if x were a free variable, we would use the fact that

min
x

(c⊺ − p⊺A)x =

{
0 if c⊺ − p⊺A = 0⊺,

−∞ otherwise,

leading to the constraint p⊺A = c⊺ in the dual problem.

4.B The dual problem

Let A be a matrix with rows a⊺
i and columns Aj. The objective function p⊺b in the

dual problem can be equivalently written as b⊺p. Moreover, by taking a transpose,
dual row constraints like p⊺A = c⊺ (and inequality versions thereof) can be rewritten
as column constraints like A⊺p = c. One then notices that the transformation be-
tween the primal and the dual problems can be accomplished by swapping x and p,
swapping b and c, and taking the transpose of A. For a primal minimization problem
with the structure shown on the left, the corresponding dual maximization problem
is listed on the right:

minimize c⊺x

subject to a⊺
ix ≤ bi, i ∈ M1,

a⊺
ix ≥ bi, i ∈ M2,

a⊺
ix = bi, i ∈ M3,

xj ≤ 0, j ∈ N1,

xj ≥ 0, j ∈ N2,

xj free, j ∈ N3,

maximize b⊺p

subject to pi ≤ 0, i ∈ M1,

pi ≥ 0, i ∈ M2,

pi free, i ∈ M3,

A⊺
jp ≥ cj, j ∈ N1,

A⊺
jp ≤ cj, j ∈ N2,

A⊺
jp = cj, j ∈ N3.

(4.1)

Remark: Each (inequality or equality) constraint in the primal problem is associated
with a (sign-constrained or free) variable in the dual problem, and vice-versa:

minimize maximize
≤ bi ≤ 0

constraints ≥ bi ≥ 0 variables
= bi free
≤ 0 ≥ cj

variables ≥ 0 ≤ cj constraints
free = cj
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• For example, the dual to the linear programming problem

minimize x1 + 2x2 + 3x3

subject to −x1 + 3x2 = 5,
2x1 − x2 + 3x3 ≥ 6,

x3 ≤ 4,
x1 ≥ 0,
x2 ≤ 0.

is
maximize 5p1 + 6p2 + 4p3
subject to −p1 + 2p2 ≤ 1,

3p1 − p2 ≥ 2,
3p2 + p3 = 3,

p2 ≥ 0,
p3 ≤ 0.

• If we rename each pi in the dual problem of the previous example to xi, we obtain
a linear programming problem equivalent to this minimization problem:

minimize −5x1 − 6x2 − 4x3

subject to x1 − 2x2 ≥ −1,
−3x1 + x2 ≤ −2,

−3x2 − x3 = −3,
x2 ≥ 0,
x3 ≤ 0.

We can then formulate the dual to the above minimization problem:

maximize −p1 − 2p2 − 3p3
subject to p1 − 3p2 = −5,

−2p1 + p2 − 3p3 ≤ −6,
−p3 ≥ −4,

p1 ≥ 0,
p2 ≤ 0.

Notice that we have arrived back at the equivalent maximization version of the primal
problem!

Remark: The following theorem expresses the general behaviour we observed in the
previous example: the dual to the dual is equivalent to the primal problem.

Theorem 4.1: If we transform the dual into an equivalent minimization problem and
then form its dual, we obtain a problem equivalent to the original problem.
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Remark: The following result is also straightforward to show.

Theorem 4.2: Suppose that a linear programming problem P is transformed to an-
other linear programming problem P ′ by a sequence of transformations of the fol-
lowing types:

1. Replace each free variable with the difference of two nonnegative variables.

2. Replace each inequality constraint by an equality constraint involving a nonneg-
ative slack variable.

3. If some row of the resulting standard-form matrix A is a linear combination of
the other rows, eliminate the corresponding equality constraint.

Then the duals of P and P ′ are equivalent in the sense that they are either both
infeasible or have the same optimal cost.

4.C The duality theorem

Remark: Notice from (4.1) that if x and p are feasible solutions to the primal
and dual problems, respectively, ui = pi(a

⊺
ix − bi) ≥ 0 for i = 1, . . . ,m and

vj = (cj −A⊺
jp)xj ≥ 0 for j = 1, . . . , n. Furthermore,

0 ≤
m∑
i=1

ui+
n∑

j=1

vj = p⊺(Ax−b)+(c−A⊺p)⊺x = p⊺(Ax−b)+(c⊺−p⊺A)x = −p⊺b+c⊺x.

This inequality is expressed in the following theorem.

Theorem 4.3 (Weak duality): If x is a feasible solution to the primal problem and p
is a feasible solution to the dual problem, then

p⊺b ≤ c⊺x.

Corollary 4.3.1:

(i) If the optimal cost in the primal problem is −∞, the dual problem is infeasible.

(ii) If the optimal cost in the dual problem is ∞, the primal problem is infeasible.

Proof:
(i) Suppose that the optimal cost in the primal problem is −∞; this means that there
are feasible solutions x for which the cost can be made as small as desired. If the
dual problem had a feasible solution p, then by Theorem 4.3 we would know that
p⊺b ≤ c⊺x for every feasible solution x of the primal problem. The existence of such a
lower bound on the optimal cost of the primal problem would contradict the premise
that its optimal cost is −∞. Thus, the dual problem must in fact be infeasible.

(ii) Exercise.



4.C. THE DUALITY THEOREM 75

Corollary 4.3.2: Let x and p be feasible solutions to the primal and dual problems,
respectively, and suppose that p⊺b = c⊺x. Then x and p are optimal solutions.

Proof: For every feasible primal solution y and feasible dual solution q, Theo-
rem 4.3 guarantees that q⊺b ≤ c⊺x = p⊺b ≤ c⊺y, from which we see that x and p
are optimal.

Theorem 4.4 (Strong duality): If a linear programming problem has an optimal
solution, so does its dual, and the respective optimal costs are equal.

Proof: Given a linear programming problem Π′ with an optimal solution, trans-
form the linear programming into an equivalent standard-form problem Π with the
same optimal cost, such that the equality constraint matrix A has linearly indepen-
dent rows. Suppose that Π has the form

minimize c⊺x

subject to Ax = b,

x ≥ 0.

Using Bland’s rule, the simplex method terminates with an optimal solution x, opti-
mal basis B, and reduced cost vector

c⊺ = c⊺ − p⊺A ≥ 0,

where p⊺ = c⊺BB
−1 is defined in terms of the basic cost vector cB. Then p⊺A ≤ c⊺,

so that p is a feasible solution to the dual problem

maximize p⊺b

subject to ATp ≤ c.

Furthermore
p⊺b = c⊺BB

−1b = c⊺BxB = c⊺x,

where xB = B−1b is the vector of basic variables. Corollary 4.3.2 then tells us that p
is an optimal solution to the dual problem, with optimal cost p⊺b equal to the optimal
primal cost c⊺x. That is, the dual of Π has the same optimal cost as Π. Theorem 4.2
guarantees that the duals of Π and Π′ have identical optimal costs, both equal to
the optimal primal cost of Π, which has the same optimal cost as the original linear
programming problem Π′.

Remark: It is possible for both the primal and dual problems to be infeasible. The
infeasible primal problem

minimize x1 + 2x2

subject to x1 + x2 = 1,

2x1 + 2x2 = 3
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has dual
maximize p1 + 3p2

subject to p1 + 2p2 = 1

p1 + 2p2 = 2,

which is also infeasible.

Remark: Recall that there are three possible outcomes when solving a linear pro-
gramming problem:

1. There exists an optimal solution;

2. The problem is unbounded : the optimal cost is −∞ (∞) for minimization (max-
imation) problems;

3. The problem is infeasible.

This leads to nine combinations of outcomes for the primal and dual problems. The-
orem 4.4 guarantees that if one problem has an optimal solution, so does the other.
Moreover, Corollary 4.3.1 establishes that if one problem is unbounded, the other
problem is infeasible. This allows us to complete the following table describing the
various possible outcomes for a primal problem and its dual. We observe that of
the nine outcomes, only four are possible.

Primal \ Dual Finite optimum Unbounded Infeasible

Finite optimum Possible Impossible Impossible
Unbounded Impossible Impossible Possible
Infeasible Impossible Possible Possible

4.D Complementary slackness

An important relationship between the primal and dual optimal solutions is provided
by the complementary slackness conditions:

Theorem 4.5 (Complementary slackness): Let x and p be feasible solutions to the
primal and dual problems, respectively. Then x and p are optimal solutions if and
only if

pi(a
⊺
ix− bi) = 0, for all i = 1, . . . ,m

and
(cj −A⊺

jp)xj = 0, for all j = 1, . . . , n.
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Proof: We previously noted for feasible solutions x and p that ui = pi(a
⊺
ix−bi) ≥

0 for each i = 1, . . . ,m and vj = (cj − A⊺
jp)xj ≥ 0 for j = 1, . . . n. Moreover, we

found

0 ≤
m∑
i=1

ui +
n∑

j=1

vj = −p⊺b+ c⊺x.

If x and p are optimal then Theorem 4.4 implies that the right-hand side is zero,
from which the desired conditions immediately follow. The converse result follows on
applying Corollary 4.3.2.

Remark: Complementary slackness means that x and p are optimal iff for each i
either a⊺

ix = bi or pi = 0 and for each j either A⊺
jp = cj or xj = 0. That is, in

each case there must be an active constraint in one of the two domains.

Problem 4.1: Determine if x = (2/5, 1/5, 0) is an optimal solution to the problem

minimize − 3x1 − 6x2 − 2x3

subject to − 3x1 − 4x2 − x3 ≥ − 2,

− x1 − 3x2 − 2x3 ≥ − 1,

x1, x2, x3 ≥ 0.

The dual problem is

maximize − 2p1 − p2

subject to − 3p1 − p2 ≤ − 3,

− 4p1 − 3p2 ≤ − 6,

− p1 − 2p2 ≤ − 2,

p1, p2 ≥ 0.

For the solution x = (2/5, 1/5, 0), since

−3x1 − 4x2 − x3 = −2,

−x1 − 3x2 − 2x3 = −1,

we see that x is a feasible solution, but because these two constraints are active, we obtain
no information on p1 and p2. Since x1 > 0 and x2 > 0 but x3 = 0, optimality also requires

−3p1 − p2 = −3,

−4p1 − 3p2 = −6,

which has the unique solution p1 = 3/5, p2 = 6/5. Since −p1 − 2p2 = −3 ≤ −2, we see

that this represents a feasible solution to the dual problem. Since both x and p are feasible

solutions that satisfy all of the complementary slackness conditions, we conclude that these

are optimal solutions. Note that the optimal cost for both problems is −12/5.



78 CHAPTER 4. DUALITY

Problem 4.2: Determine if x = (0, 2) is an optimal solution to the problem

minimize 3x1 + x2

subject to 2x1 + x2 ≥ 2,
3x1 + 5x2 ≥ 10,
x1, x2 ≥ 0.

Consider the dual to the given problem:

maximize 2p1 + 10p2
subject to 2p1 + 3p2 ≤ 3,

p1 + 5p2 ≤ 1,
p1, p2 ≥ 0.

At the given x, we see that the first two primal constraints are active. Since x2 ̸= 0,

complementary slackness requires that p1 + 5p2 = 1, which means that p1 = 1 − 5p2. For

p2 ≥ 0, the first constraint is automatically satisfied: 2(1 − 5p2) + 3p2 = 2 − 7p2 ≤ 2 < 3.

Furthermore, p1 ≥ 0 requires that p2 ≤ 1/5. Any solution of the form (1 − 5p2, p2) where

p2 ∈ [0, 1/5] is a feasible solution of the dual problem that satisfies the complementary

slackness conditions and is thus an optimal solution, with optimal cost 2. Likewise, x =

(0, 2) is an optimal solution to the primal problem, also with optimal cost 2.
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4.E Farkas’ lemma and linear inequalities

Consider the set of standard-form constraints Ax = b,x ≥ 0. If there exists some p
such that p⊺A ≥ 0⊺ and p⊺b < 0, then x ≥ 0 ⇒ p⊺Ax ≥ 0, from which we see that
Ax ̸= b. We have thus found a certificate of infeasibility for this linear programming
problem. This is expressed in the following theorem.

Theorem 4.6 (Farkas’ lemma): Let A be an m× n matrix and let b ∈ Rm. Exactly
one of the following alternatives holds:

(i) Ax = b has a solution x ≥ 0;

(ii) A⊺p ≥ 0 has a solution p with p⊺b < 0.

Proof. One direction is easy. If there exists some x ≥ 0 satisfying Ax = b and if
A⊺p ≥ 0, then p⊺b = p⊺Ax = x⊺A⊺p ≥ 0, so the second alternative cannot hold.

Let us now assume that there exists no vector x ≥ 0 satisfying Ax = b. Consider
the pair of problems

maximize 0⊺x

subject to Ax = b,

x ≥ 0,

minimize p⊺b

subject to A⊺p ≥ 0

and note that the first is the dual of the second. We are given that the maximiza-
tion problem is infeasible, which implies that the minimization problem is either
unbounded (the optimal cost is −∞) or infeasible. Since p = 0 is a feasible solution
to the minimization problem, it follows that the minimization problem is unbounded.
In particular, there exists some feasible p for which A⊺p ≥ 0 and the cost is negative:
p⊺b < 0.

Problem 4.3: Use Farka’s lemma to show that the following system of inequalities
is inconsistent.

x1 + x2 + x3 = 1,
x1 − x2 + 2x3 = −2,
x1, x2, x3 ≥ 0.

Since p1 = p2 = 1 satisfies the dual constraints

p1 + p2 ≥ 0,
p1 − p2 ≥ 0,
p1 + 2p2 ≥ 0,

but p1− 2p2 = −1 < 0, we see by Farkas’ lemma that the given equations are inconsistent.
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Problem 4.4: Use a generalization of Farkas’ lemma to determine whether the fol-
lowing set of inequalities is consistent.

x1 ≤ 2,
x2 ≤ −3,

−x1 − 2x2 ≤ 5,

Consider the dual problems

maximize 0⊺x
subject to x1 ≤ 2,

x2 ≤ −3,
−x1 − 2x2 ≤ 5,

minimize 2p1 − 3p2 + 5p3
subject to p1 − p3 = 0,

p2 − 2p3 = 0,
p1, p2, p3 ≥ 0.

A feasible solution of the minimization problem requires p1 = p3 and p2 = 2p3, so that

the cost p⊺b reduces to 2p3 − 3(2p3) + 5p3 = p3 ≥ 0. Thus the minimization problem

is not unbounded. The solution p1 = p2 = p3 = 0 achieves this minimal cost of zero,

so the minimization problem is not infeasible (in fact, it has an optimal solution). The

maximization problem is therefore feasible; that is, the original inequalities are consistent.



Chapter 5

Sensitivity Analysis

In this chapter, we consider the standard-form problem

minimize c⊺x

subject to Ax = b,

x ≥ 0.

We assume that we already have an optimal basis B and the associated optimal
solution x∗. We want to see what happens when some entry of A, b, or c is changed.
We first examine under what conditions B remains optimal, while maintaining the
following properties:

• feasibility: xB = B−1b ≥ 0;

• optimality: c⊺ = c⊺ − c⊺BB
−1A ≥ 0⊺.

5.A A new non-negative variable is added

minimize c⊺x+ cn+1xn+1

subject to Ax+An+1xn+1 = b,

x ≥ 0,

xn+1 ≥ 0.

Then [
x

xn+1

]
=

[
x
0

]
is a basic feasible solution with the same basis matrix B. This will be an optimal
solution if and only if the additional optimality condition

cn+1 = cn+1 − c⊺BB
−1An+1 ≥ 0

holds. If not, we add this variable and its reduced cost to the final simplex tableau
for the original problem and continue simplex iterations from there.

81
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Problem 5.1: Use the simplex method to solve the linear programming problem

minimize −5x1 − x2 + 12x3

subject to 3x1 + 2x2 + x3 = 10,
5x1 + 3x2 + x4 = 16,
x1, x2, x3, x4 ≥ 0.

Two iterations of the simplex method (Phase II) lead us to the optimal solution (2, 2, 0, 0),
with optimal cost −12:

x∗1 x2 x3 x4
−120 −41 −25 0 0

x3 = 10 3 2 1 0

x†4 = 16 5 3 0 1

x1 x∗2 x3 x4
56/5 0 −2/5 0 41/5

x†3 = 2/5 0 1/5 1 −3/5
x1 = 16/5 1 3/5 0 1/5

x1 x2 x3 x4
12 0 0 2 7

x2 = 2 0 1 5 −3
x1 = 2 1 0 −3 2

Problem 5.2: Use an optimal solution of Problem 5.1 to construct an initial simplex
tableau for the extended problem

minimize −5x1 − x2 + 12x3 − x5

subject to 3x1 + 2x2 + x3 + x5 = 10,
5x1 + 3x2 + x4 + x5 = 16,
x1, x2, x3, x4, x5 ≥ 0,

in which a new variable x5 has been added.

Recalling that the simplex tableau records B−1A at each iteration, and noting the final
two columns of A form the identity matrix, we can simply read off

B−1 =

[
5 −3
−3 2

]
from the final two columns of our tableau. Let us now introduce the extra variable x5 into
our tableau, entering

B−1A5 =

[
5 −3
−3 2

][
1
1

]
=

[
2
−1

]
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in the final column. We also need the reduced cost

c5 = c5 − c⊺BB
−1A5 = −1− [−1 −5 ]

[
2
−1

]
= −4.

Since c5 is negative, we see that (2, 2, 0, 0, 0) is not an optimal solution to the extended
problem. We therefore perform an additional simplex iteration:

x1 x2 x3 x4 x∗5
12 0 0 2 7 −4

x†2 = 2 0 1 5 −3 2
x1 = 2 1 0 −3 2 −1

x1 x2 x3 x4 x5
16 0 2 12 1 0

x5 = 1 0 1/2 5/2 −3/2 1
x1 = 3 1 1/2 −1/2 1/2 0

to obtain the optimal solution (3, 0, 0, 0, 1) with optimal cost −16.

5.B A new inequality constraint is added

minimize c⊺x

subject to Ax = b,

a⊺
m+1x ≥ bm+1,

x ≥ 0.

If an optimal solution x∗ to the original problem satisfies the inequality constraint,
it is also an optimal solution to the new problem.

Otherwise, given an optimal basic feasible solution x∗ to the original problem, we
have a⊺

m+1x
∗ < bm+1. We need to analyze the new problem by introducing a surplus

variable xn+1:
minimize c⊺x

subject to Ax = b,

a⊺
m+1x− xn+1 = bm+1,

x ≥ 0,

xn+1 ≥ 0.

Let x = (x, xn+1) and b = (b, bm+1). Then Ax = b, where

A =

[
A 0

a⊺
m+1 −1

]
.

Let B be a basis matrix associated with x∗, with basic components x∗
B = B−1b.

Consider the basis matrix

B =

[
B 0
a⊺
B −1

]
,
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where aB contains those elements of am+1 associated with the original basic columns.
It is straightforward to verify that the basic components of a basic solution to the
new problem are given by [

x∗
B

a⊺
m+1x

∗ − bm+1

]
.

This solution is infeasible since a⊺
m+1x

∗ < bm+1. However, since

B−1 =

[
B−1 0

a⊺
BB

−1 −1,

]
we can precompute

B−1A =

[
B−1 0

a⊺
BB

−1 −1

][
A 0

a⊺
m+1 −1

]
=

[
B−1A 0

a⊺
BB

−1A− a⊺
m+1 1

]
to find the new reduced cost vector

[ c⊺ 0 ]− [ c⊺B 0 ]B−1A = [ c⊺ − c⊺BB
−1A 0 ] ≥ 0⊺.

As we saw in the proof of Theorem 4.4, the condition c ≥ 0 for optimality of the
primal solution is equivalent to the condition A⊺p ≤ c for feasibility of the dual
problem. This means that B is a feasible basis for the dual problem. We can apply
the so-called dual simplex method , described below, using the above values of the
reduced costs and B−1A to construct the initial simplex tableau.

5.C The dual simplex method

The dual simplex method can be used when one is given an initial tableau that has an
infeasible basic solution, with basis matrix B, but all reduced costs are nonnegative.
Here is a single iteration of the dual simplex algorithm:

1. Examine the components of the vectorB−1b in the zeroth column of the tableau.
If they are all nonnegative, we have an optimal basic feasible solution and
the algorithm terminates; otherwise, choose the lowest subscript jℓ such that
xjℓ < 0.

2. The ℓth row of the tableau is the pivot row, with elements xjℓ , v1 . . . , vn. If
vj ≥ 0 for all j, the optimal cost of the dual problem is ∞ (so that the primal
problem is infeasible) and the algorithm terminates.

3. Let j be the lowest subscript that minimizes {cj/−vj : vj < 0}. Column Aj

will enter the basis, replacing column Ajℓ .

4. Add to each row of the tableau a multiple of the ℓth row (the pivot row) so
that vj (the pivot element) becomes 1 and all other entries of the pivot column
become 0.
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For example, the basic solution (0, 0, 0, 2,−1) given by the following tableau is
infeasible:

x1 x∗
2 x3 x4 x5

0 2 6 10 0 0
x4 = 2 −2 4 1 1 0

x†
5 = −1 4 −2 −3 0 1

However, since the reduced costs in the zeroth row are all nonnegative, we can apply
the dual simplex method to obtain a basic feasible solution of the primal problem.
After one iteration, we obtain the optimal solution (0, 1/2, 0, 0, 0), with optimal cost 3:

x1 x2 x3 x4 x5

−3 14 0 1 0 3
x4 = 0 6 0 −5 1 2
x2 = 1/2 −2 1 3/2 0 −1/2

Problem 5.3: Solve Prob. 5.1 with the added constraint x1 + x2 ≥ 5.

With the added constraint, the linear programming problem can be written in standard
form as

minimize −5x1 − x2 + 12x3
subject to 3x1 + 2x2 + x3 = 10,

5x1 + 3x2 + x4 = 16,
x1 + x2 − x5 = 5,

x1, x2, x3, x4, x5 ≥ 0.

Let am+1 = (1, 1, 0, 0) and bm+1 = 5. In the final tableau of the original problem, x2 and x1
are the basic variables, so B = {A2 A1}. Thus aB = (1, 1). We first compute

a⊺
BB

−1A− a⊺
m+1 = [ 1 1 ]

[
0 1 5 −3
1 0 −3 2

]
− [ 1 1 0 0 ] = [ 0 0 2 −1 ].

For the given basic solution (2, 2, 0, 0) of the original problem, we see that the new slack
variable x5 must be −1 in order to satisfy the added constraint. Since x5 < 0, the basic
solution to the extended problem is infeasible. We then need to apply the dual simplex
method to the tableau

x1 x2 x3 x∗4 x5
12 0 0 2 7 0

x2 = 2 0 1 5 −3 0
x1 = 2 1 0 −3 2 0

x†5 = −1 0 0 2 −1 1

Since v4 is the only negative value in the row for x5, the corresponding variable x4 enters
and x5 exits. One iteration of the dual simplex method then brings us to the optimal
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solution (0, 5, 0, 1, 0) with optimal cost −5:

x1 x2 x3 x4 x5
5 0 0 16 0 7

x2 = 5 0 1 −1 0 −3
x1 = 0 1 0 1 0 2
x4 = 1 0 0 −2 1 −1

5.D Changes in the target vector b

Assume that b is changed to b + δek for some k ∈ {1, . . . ,m}. We want to deter-
mine the range of values of δ under which the current basis remains optimal. Since
the optimality condition c ≥ 0 is unchanged, we only need to check the feasibility
condition

xB = B−1(b+ δek) = xB + δB−1ek ≥ 0.

Let g = B−1ek = (β1, . . . , βm) be the kth column of B−1. Feasibility will be main-
tained if

xB + δg ≥ 0,

that is, if

max
i:βi>0

(
−xji

βi

)
≤ δ ≤ min

i:βi<0

(
−xji

βi

)
.

The optimal cost is then given by

c⊺BxB = c⊺BB
−1(b+ δek) = p⊺b+ δpk,

where p⊺ = c⊺BB
−1 is an optimal solution of the dual problem. If δ is outside the above

range, the current solution satisfies the optimality (or dual feasibility) conditions but
is prime infeasible. Then one can apply the dual simplex algorithm, starting with the
current basis.

Problem 5.4: Consider the optimal tableau in Problem 5.1. If we add δ to b1, for
which range of δ does the solution remain optimal? Within this range, what is the
rate of change of the optimal cost per unit δ?

We only need check that our basic solution remains feasible:

xB = B−1(b+ δe1) =

[
5 −3
−3 2

][
10 + δ
16

]
=

[
2 + 5δ
2− 3δ

]
.

For both components of xB to remain nonnegative, we require δ ∈ [−2/5, 2/3]. The rate of
change of the optimal cost per unit δ is

c⊺BB
−1e1 = [−1 −5 ]

[
5
−3

]
= 10.

For example, if we choose δ = −2/5, our total cost would change by −2/5 × 10 = −4 (a

cost reduction of 4).
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5.E Changes in the cost vector c

Assume that cj changes to cj + δ for some index j. Prime feasibility is not affected.
We therefore focus on the optimality condition c⊺ − c⊺BB

−1A ≥ 0⊺.

Case 1: If xj is a nonbasic variable, cB does not change. The only inequality that is
affected is the one for the reduced cost of moving in the jth simplex direction:

cj + δ − c⊺BB
−1Aj ≥ 0.

Thus, if δ ≥ c⊺BB
−1Aj − cj = −cj, the current basis remains optimal; oth-

erwise, we can apply the primal simplex method starting from the current
basic feasible solution.

Case 2: If xj is the ℓth basic variable, i.e. j = jℓ, then cB becomes cB + δeℓ. The
optimality conditions for the new problem are then

0 ≤ ci − (cB + δeℓ)
⊺B−1Ai = ci − δqi for all i ̸= j,

where q is the ℓth row of B−1A from the simplex tableau. Since B−1B = 1,
the tableau entry qi corresponding to a basic variable xi is δij. When i = j,
the optimality condition automatically holds: 0 ≤ (cj+δ)−δqj = 0+δ−δδjj =
δ−δ = 0. Optimality also holds when xi is some other basic variable (i ̸= j):
0 ≤ ci − δqi = 0 − δδij = 0. That is, the reduced cost of the basic variables
remains zero. Preserving optimality therefore only requires that

qiδ ≤ ci for all nonbasic indices i.
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Problem 5.5: For j = 1, . . . 4, determine the range of change δj of cj under which
the final basis in Problem 5.1 remains optimal.

We note that c = (0, 0, 2, 7), with the nonbasic variables being x3 and x4. So we require

δ3 ≥ −2;

δ4 ≥ −7.

For the basic variable x1, we see that q = (1, 0,−3, 2). We require that qiδ1 ≤ ci for the
nonbasic indices i = 3 and i = 4:

−3δ1 ≤ 2;

2δ1 ≤ 7.

The solution will thus remain optimal as long as δ1 ∈ [−2/3, 7/2].
For the basic variable x2, we see that q = (0, 1, 5,−3). We require that qiδ2 ≤ ci for the

nonbasic indices i = 3 and i = 4:
5δ2 ≤ 2;

−3δ2 ≤ 7.

The solution will thus remain optimal as long as δ2 ∈ [−7/3, 2/5].
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Parametric Programming

Sometimes a linear programming problem contains unknown parameters. The sim-
plex method can nevertheless still be used, if algebraic (symbolic) computations are
substituted for numerical calculations. Various cases corresponding to different pa-
rameter regimes may arise. For example, consider the linear programming problem

minimize (−3 + 2t)x1 + (3− t)x2 + x3

subject to x1 + 2x2 − 3x3 ≤ 5,
2x1 + x2 − 4x3 ≤ 7,

x1, x2, x3 ≥ 0.

We introduce slack variables x4 and x5 to put the problem into standard form:

minimize (−3 + 2t)x1 + (3− t)x2 + x3

subject to x1 + 2x2 − 3x3 + x4 = 5,
2x1 + x2 − 4x3 + x5 = 7,

x1, x2, x3, x4, x5 ≥ 0.

An initial simplex tableau is then

x1 x2 x3 x4 x5

0 −3 + 2t 3− t 1 0 0
x4 = 5 1 2 −3 1 0
x5 = 7 2 1 −4 0 1

Our analysis then bifurcates into various cases.

Case 1: t ∈ [3/2, 3]: Since −3 + 2t ≥ 0 and 3 − t ≥ 0, the simplex method terminates
with the optimal solution x∗ = (0, 0, 0, 5, 7) and optimal cost 0.

Case 2: t > 3. We see that x2 enters and x4 exits, yielding

x1 x2 x3 x4 x5

(5t− 15)/2 (5t− 9)/2 0 (11− 3t)/2 (t− 3)/2 0
x2 = 5/2 1/2 1 −3/2 1/2 0
x5 = 9/2 3/2 0 −5/2 −1/2 1
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Case 2.1: t ∈ (3, 11/3]: The simplex method terminates with the optimal solution
x∗ = (0, 5/2, 0, 0, 9/2) and optimal cost (15− 5t)/2.

Case 2.2: t > 11/3: The problem is unbounded, with optimal cost −∞.

Case 3: t < 3/2. Then x1 enters and x5 exits, yielding

x1 x2 x3 x4 x5

21/2− 7t 0 9/2− 2t −5 + 4t 0 3/2− t
x4 = 3/2 0 3/2 −1 1 −1/2
x1 = 7/2 1 1/2 −2 0 1/2

Case 3.1: t ∈ [5/4, 3/2]: The simplex method terminates with the optimal solution
x∗ = (7/2, 0, 0, 3/2, 0) and optimal cost is 7t− 21/2.

Case 3.2: t < 5/4: The problem is unbounded, with optimal cost −∞.
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