Math 373: Mathematical Programming and Optimization I

Fall, 2023 Assignment 4

November 30, due December 8

1. Consider a two-player game G with the following payoff matrix pair

$$
\boldsymbol{A}=\left(\begin{array}{ll}
3 & 0 \tag{1}\\
2 & 2
\end{array}\right), \quad \boldsymbol{B}=\left(\begin{array}{ll}
3 & 0 \\
5 & 5
\end{array}\right) .
$$

Denote the strategy of the first player by \boldsymbol{y} and of the second player by \boldsymbol{z}.
A Nash equilibrium $(\boldsymbol{y}, \boldsymbol{z})$ must satisfy

$$
\begin{align*}
& \boldsymbol{y}^{\top} \boldsymbol{A} \boldsymbol{z} \geq \boldsymbol{x}^{\top} \boldsymbol{A} \boldsymbol{z} \tag{2a}\\
& \boldsymbol{y}^{\top} \boldsymbol{B} \boldsymbol{z} \geq \boldsymbol{y}^{\top} \boldsymbol{B} \boldsymbol{x} \tag{2b}
\end{align*}
$$

for every $\boldsymbol{x} \in \Delta_{1} \doteq\left\{\left(x_{1}, x_{2}\right): x_{1} \geq 0, x_{2} \geq 0, x_{1}+x_{2}=1\right\}$.
Analytically determine the set of Nash equilibria of the game. Write down the corresponding linear programming problems.
We have

$$
y=\left[\begin{array}{c}
y_{1} \\
1-y_{1}
\end{array}\right], \quad y_{1} \geq 0, \quad z=\left[\begin{array}{c}
z_{1} \\
1-z_{1}
\end{array}\right], \quad z_{1} \geq 0 .
$$

Condition (2a) implies that y must maximize $x^{\top} A z$ over $x \in \Delta_{1}$:

$$
y=\arg \max _{x \in \Delta_{1}} x^{\top} A z
$$

We note that \boldsymbol{y} is fully determined by

$$
\begin{aligned}
y_{1} & =\arg \max _{x_{1}}\left[\begin{array}{ll}
x_{1} & 1-x_{1}
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
2 & 2
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
1-z_{1}
\end{array}\right] \\
& =\arg \max _{x_{1}}\left[\begin{array}{ll}
x_{1} & 1-x_{1}
\end{array}\right]\left[\begin{array}{c}
3 z_{1} \\
2
\end{array}\right] \\
& =\arg \max _{x_{1}}\left(3 z_{1}-2\right) x_{1}+2 .
\end{aligned}
$$

So based on the sign of $3 z_{1}-2, y_{1}$ is given by

$$
\begin{cases}y_{1}=1 & z_{1}>\frac{2}{3} \tag{3}\\ y_{1} \in[0,1] & z_{1}=\frac{2}{3} \\ y_{1}=0 & z_{1}<\frac{2}{3}\end{cases}
$$

Condition (2b) implies that z must maximize $y^{T} B x$ over $x \in \Delta_{1}$:

$$
z=\arg \max _{x \in \Delta_{1}} y^{\top} B x
$$

We note that \boldsymbol{z} is fully determined by

$$
\begin{aligned}
z_{1} & =\arg \max _{x_{1}}\left[\begin{array}{ll}
y_{1} & 1-y_{1}
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
5 & 5
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
1-x_{1}
\end{array}\right] \\
& =\arg \max _{x_{1}}\left[\begin{array}{ll}
5-2 y_{1} & 5-5 y_{1}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
1-x_{1}
\end{array}\right] \\
& =\arg \max _{x_{1}} 3 y_{1} x_{1}+\left(5-5 y_{1}\right) .
\end{aligned}
$$

So z_{1} is given by

$$
\begin{cases}z_{1}=1 & y_{1}>0 \tag{4}\\ z_{1} \in[0,1] & y_{1}=0\end{cases}
$$

Now (3) and (4) result in the following possibilities:

$$
\left\{\begin{array} { l }
{ y _ { 1 } = 1 , z _ { 1 } = 1 } \\
{ y _ { 1 } = 0 , z _ { 1 } \leq \frac { 2 } { 3 } }
\end{array} \Rightarrow \left\{\begin{array}{l}
y=\left[\begin{array}{l}
1 \\
0
\end{array}\right], z=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
y=\left[\begin{array}{l}
0 \\
1
\end{array}\right], z=\left[\begin{array}{c}
z_{1} \\
1-z_{1}
\end{array}\right], 0 \leq z_{1} \leq \frac{2}{3}
\end{array}\right.\right.
$$

The corresponding linear programming problems are, given $\left(z_{1}, z_{2}\right)$:

$$
\begin{array}{lr}
\operatorname{maximize} & 3 z_{1} x_{1}+2 x_{2} \\
\text { subject to } & x_{1}+x_{2}=1, \\
& x_{1}, x_{2} \geq 0,
\end{array}
$$

and, given $\left(y_{1}, y_{2}\right)$:

$$
\begin{array}{lrr}
\operatorname{maximize} & \left(5-2 y_{1}\right) x_{1} & +5\left(1-y_{1}\right) x_{2} \\
\text { subject to } & x_{1} & + \\
& x_{1}, x_{2} \geq 0 . & x_{2}=1, \\
&
\end{array}
$$

2. Consider a two-player game G^{\prime} with payoff matrices

$$
\boldsymbol{A}^{\prime}=\left(\begin{array}{cc}
0 & -1 \tag{5}\\
-1 & 1
\end{array}\right), \quad \boldsymbol{B}^{\prime}=\left(\begin{array}{cc}
6 & 0 \\
10 & 10
\end{array}\right)
$$

Referring to Question 1, is it possible to make a statement about the set of Nash equilibria of G^{\prime} by just comparing the payoff matrices in Eqs. (1) and (5)? Explain.
Hint: Do the Nash equilibria change if you add a constant to all entries of a column of \boldsymbol{A} ? Justify your answer.

Adding constants c_{j} to the j th column of A does not change the set of Nash equilibria:

$$
\begin{aligned}
\arg \max _{x \in \Delta_{1}}\left(\sum_{i, j} x_{i}\left(A_{i j}+c_{j}\right) z_{j}\right) & =\arg \max _{x \in \Delta_{1}}\left(\sum_{i, j} x_{i} A_{i j} z_{j}+\sum_{i} x_{i} \sum_{j} c_{j} z_{j}\right) \\
& =\arg \max _{x \in \Delta_{1}}\left(\sum_{i, j} x_{i} A_{i j} z_{j}+\sum_{j} c_{j} z_{j}\right) \\
& =\arg \max _{x \in \Delta_{1}} \sum_{i, j} x_{i} A_{i j} z_{j} .
\end{aligned}
$$

The same holds true when adding a constant to all entries of any row of B or when a payoff matrix is multiplied by a positive constant.

Now if we add -3 to the first column of A and -1 to the second column of A, we get A^{\prime}. Moreover, if we multiply B by 2 , we get B^{\prime}. Hence, G and G^{\prime} have the same Nash equilibria.

