Math 373: Mathematical Programming and Optimization I Fall, 2023 Assignment 3 November 8, due November 25

1. Let $P = \{ \boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{x} \ge b_i, i = 1, \dots, m \}$ be a convex polyhedron.

Suppose that \boldsymbol{u} and \boldsymbol{v} are distinct basic feasible solutions that satisfy $\boldsymbol{a}_i^{\mathsf{T}}\boldsymbol{u} = \boldsymbol{a}_i^{\mathsf{T}}\boldsymbol{v} = b_i$ for $i = 1, \ldots, n-1$, so that \boldsymbol{u} and \boldsymbol{v} are adjacent, where $\boldsymbol{a}_1, \ldots, \boldsymbol{a}_{n-1}$ are linearly independent.

Let $L_1 = \{t\boldsymbol{u} + (1-t)\boldsymbol{v} : 0 \leq t \leq 1\}$ be the segment that joins \boldsymbol{u} and \boldsymbol{v} and $L_2 = \{\boldsymbol{w} \in P : \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{w} = b_i, i = 1, \dots, n-1\}$. Prove that $L_1 = L_2$.

We first show that $L_1 \subset L_2$. For any vector $t\boldsymbol{u} + (1-t)\boldsymbol{v} \in L_1$, we have

$$a_i^{\mathsf{T}}\Big(t\boldsymbol{u}+(1-t)\boldsymbol{v}\Big)=ta_i^{\mathsf{T}}\boldsymbol{u}+(1-t)a_i^{\mathsf{T}}\boldsymbol{v}=tb_i+(1-t)b_i=b_i.$$

Hence $t\boldsymbol{u} + (1-t)\boldsymbol{v} \in L_2$. That is, $L_1 \subset L_2$.

Next, we show $L_2 \subset L_1$. The vectors $\boldsymbol{w} \in L_2$ satisfy a system of linear equations $\boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{w} = b_i$ for $i = 1, \ldots, n-1$. Since the constraint vectors \boldsymbol{a}_i are linearly independent, they span a space of dimension n-1; the rank-nullity theorem then implies that L_2 is a subset of the one-dimensional space $\{\boldsymbol{w} \in \mathbb{R}^n : \boldsymbol{a}_i^{\mathsf{T}} \boldsymbol{w} = b_i, i = 1, \ldots, n-1\}$, which is a line. Since $\boldsymbol{u}, \boldsymbol{v} \in L_2$, we know that this is the line through \boldsymbol{u} and \boldsymbol{v} . Let $\boldsymbol{w} \in L_2 \subset P$. Then $\boldsymbol{w} = t\boldsymbol{u} + (1-t)\boldsymbol{v}$, for some $t \in \mathbb{R}$. If t > 1, then \boldsymbol{u} lies between $\boldsymbol{w} \in P$ and $\boldsymbol{v} \in P$ and would therefore not be an extreme point (basic feasible solution) of P. If t < 0, then \boldsymbol{v} would lie between $\boldsymbol{u} \in P$ and $\boldsymbol{w} \in P$, and would not be an extreme point of P. These contradictions establish that $t \in [0, 1]$, so that $L_2 \subset L_1$. It follows that $L_1 = L_2$.

5

4

2. If a linear programming problem in standard form has a non-degenerate basic feasible solution that is optimal, prove that the dual problem has a unique optimal solution. Hint: consider complementary slackness.

Let \boldsymbol{x}^* be a non-degenerate basic optimal solution to the primal problem. Since the primal problem has an optimal solution, the dual has an optimal solution \boldsymbol{p} . Let j_1, \ldots, j_m be a set of basic indices corresponding to \boldsymbol{x}^* and consider the complementary slackness condition

$$(c_j - \boldsymbol{p}^{\mathsf{T}} \boldsymbol{A}_j) x_j^* = 0, \qquad j = j_1, \dots, j_m.$$

Since x^* is nondegenerate, we know that each basic variable x_i^* is positive, so

$$c_j = \boldsymbol{p}^{\mathsf{T}} \boldsymbol{A}_j, \qquad j = j_1, \dots, j_m.$$

This is just the system of equations

$$\boldsymbol{c}_B^{\mathsf{T}} = \boldsymbol{p}^{\mathsf{T}} \boldsymbol{B},$$

which has a unique solution $p^{\mathsf{T}} = c_B^{\mathsf{T}} B^{-1}$ since the basis $B = \{A_j : j = j_1, \ldots, j_m\}$ is invertible.