Math 373: Mathematical Programming and Optimization I

$$
\text { Fall, } 2023 \text { Assignment } 3
$$

November 8, due November 25

1. Let $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{a}_{i}^{\top} \boldsymbol{x} \geq b_{i}, i=1, \ldots, m\right\}$ be a convex polyhedron.

Suppose that \boldsymbol{u} and \boldsymbol{v} are distinct basic feasible solutions that satisfy $\boldsymbol{a}_{i}^{\top} \boldsymbol{u}=$ $\boldsymbol{a}_{i}^{\top} \boldsymbol{v}=b_{i}$ for $i=1, \ldots, n-1$, so that \boldsymbol{u} and \boldsymbol{v} are adjacent, where $\boldsymbol{a}_{1}, \ldots, \boldsymbol{a}_{n-1}$ are linearly independent.
Let $L_{1}=\{t \boldsymbol{u}+(1-t) \boldsymbol{v}: 0 \leq t \leq 1\}$ be the segment that joins \boldsymbol{u} and \boldsymbol{v} and $L_{2}=\left\{\boldsymbol{w} \in P: \boldsymbol{a}_{i}^{\top} \boldsymbol{w}=b_{i}, i=1, \ldots, n-1\right\}$. Prove that $L_{1}=L_{2}$.
We first show that $L_{1} \subset L_{2}$. For any vector $t \boldsymbol{u}+(1-t) \boldsymbol{v} \in L_{1}$, we have

$$
a_{i}^{\top}(t \boldsymbol{u}+(1-t) \boldsymbol{v})=t a_{i}^{\top} \boldsymbol{u}+(1-t) a_{i}^{\top} \boldsymbol{v}=t b_{i}+(1-t) b_{i}=b_{i} .
$$

Hence $t \boldsymbol{u}+(1-t) \boldsymbol{v} \in L_{2}$. That is, $L_{1} \subset L_{2}$.
Next, we show $L_{2} \subset L_{1}$. The vectors $\boldsymbol{w} \in L_{2}$ satisfy a system of linear equations $\boldsymbol{a}_{i}^{\top} \boldsymbol{w}=b_{i}$ for $i=1, \ldots, n-1$. Since the constraint vectors \boldsymbol{a}_{i} are linearly independent, they span a space of dimension $n-1$; the rank-nullity theorem then implies that L_{2} is a subset of the one-dimensional space $\left\{\boldsymbol{w} \in \mathbb{R}^{n}: \boldsymbol{a}_{i}^{\top} \boldsymbol{w}=b_{i}, i=1, \ldots, n-1\right\}$, which is a line. Since $\boldsymbol{u}, \boldsymbol{v} \in L_{2}$, we know that this is the line through \boldsymbol{u} and \boldsymbol{v}. Let $\boldsymbol{w} \in L_{2} \subset P$. Then $\boldsymbol{w}=t \boldsymbol{u}+(1-t) \boldsymbol{v}$, for some $t \in \mathbb{R}$. If $t>1$, then \boldsymbol{u} lies between $\boldsymbol{w} \in P$ and $\boldsymbol{v} \in P$ and would therefore not be an extreme point (basic feasible solution) of P. If $t<0$, then \boldsymbol{v} would lie between $\boldsymbol{u} \in P$ and $\boldsymbol{w} \in P$, and would not be an extreme point of P. These contradictions establish that $t \in[0,1]$, so that $L_{2} \subset L_{1}$. It follows that $L_{1}=L_{2}$.
2. If a linear programming problem in standard form has a non-degenerate basic feasible solution that is optimal, prove that the dual problem has a unique optimal solution. Hint: consider complementary slackness.
Let \boldsymbol{x}^{*} be a non-degenerate basic optimal solution to the primal problem. Since the primal problem has an optimal solution, the dual has an optimal solution \boldsymbol{p}. Let j_{1}, \ldots, j_{m} be a set of basic indices corresponding to \boldsymbol{x}^{*} and consider the complementary slackness condition

$$
\left(c_{j}-\boldsymbol{p}^{\top} \boldsymbol{A}_{j}\right) x_{j}^{*}=0, \quad j=j_{1}, \ldots, j_{m}
$$

Since \boldsymbol{x}^{*} is nondegenerate, we know that each basic variable x_{j}^{*} is positive, so

$$
c_{j}=\boldsymbol{p}^{\top} \boldsymbol{A}_{j}, \quad j=j_{1}, \ldots, j_{m}
$$

This is just the system of equations

$$
\boldsymbol{c}_{B}^{\top}=\boldsymbol{p}^{\top} \boldsymbol{B}
$$

which has a unique solution $\boldsymbol{p}^{\top}=\boldsymbol{c}_{B}^{\top} \boldsymbol{B}^{-1}$ since the basis $\boldsymbol{B}=\left\{\boldsymbol{A}_{j}: j=j_{1}, \ldots, j_{m}\right\}$ is invertible.

