Math 373: Mathematical Programming and Optimization I

Fall, 2023 Assignment 2
October 6, due October 26

1. Let P be a convex polyhedron. Complete the proof of the following theorem.

Theorem 1: A point $\boldsymbol{x} \in P$ is an extreme point of P if and only if the set $P \backslash\{\boldsymbol{x}\}$ (the set obtained by removing \boldsymbol{x} from P) is convex.

Proof: Let $\boldsymbol{x} \in P$. Suppose $P \backslash\{\boldsymbol{x}\}$ is convex. Then it contains every convex combination of points $\boldsymbol{y}, \boldsymbol{z} \in P \backslash\{\boldsymbol{x}\}$. Since \boldsymbol{x} does not belong to $P \backslash\{\boldsymbol{x}\}$ it cannot be expressed as a convex combination of points \boldsymbol{y} and \boldsymbol{z} in $P \backslash\{\boldsymbol{x}\}$. That is, \boldsymbol{x} is an extreme point of P.

Suppose $\boldsymbol{x} \in P$ is an extreme point of P. If $P \backslash\{\boldsymbol{x}\}$ were not convex, there would exist points $\boldsymbol{y}, \boldsymbol{z} \in P \backslash\{\boldsymbol{x}\} \subset P$ and $t \in(0,1)$ such that $t \boldsymbol{y}+(1-t) \boldsymbol{z} \notin P \backslash\{\boldsymbol{x}\}$. But since P is convex, we know that $t \boldsymbol{y}+(1-t) \boldsymbol{z} \in P$. Thus $t \boldsymbol{y}+(1-t) \boldsymbol{z}=\boldsymbol{x}$, contradicting the definition of an extreme point. Thus $P \backslash\{\boldsymbol{x}\}$ must be convex.
2. Let \boldsymbol{x} be an element of the polyhedron $P=\left\{\boldsymbol{x} \in \mathbb{R}^{n}: \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}, \boldsymbol{x} \geq \mathbf{0}\right\}$. Prove that a vector $\boldsymbol{d} \in \mathbb{R}^{n}$ is a feasible direction at \boldsymbol{x} if and only if $\boldsymbol{A} \boldsymbol{d}=\mathbf{0}$ and $d_{i} \geq 0$ for every i such that $x_{i}=0$.
If \boldsymbol{x} is a feasible direction, then $\boldsymbol{x}+t \boldsymbol{d} \in P$ for some positive scalar t. That is, $\boldsymbol{A}(\boldsymbol{x}+t \boldsymbol{d})=\boldsymbol{b}$ and $\boldsymbol{x}+t \boldsymbol{d} \geq \mathbf{0}$. Then $t \boldsymbol{A} \boldsymbol{d}=\boldsymbol{A}(\boldsymbol{x}+t \boldsymbol{d})-\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}-\boldsymbol{b}=\mathbf{0}$, so that $\boldsymbol{A d}=\mathbf{0}$. Moreover, for each zero component x_{i}, the condition $x_{i}+t d_{i} \geq 0$ reduces to $d_{i} \geq 0$.
Conversely, if there exists a direction such that $\boldsymbol{A d}=\mathbf{0}$ and $d_{i} \geq 0$ for every i such that $x_{i}=0$, then $\boldsymbol{A}(\boldsymbol{x}+t \boldsymbol{d})=\boldsymbol{A} \boldsymbol{x}+t \boldsymbol{A d}=\boldsymbol{b}+\mathbf{0}=\boldsymbol{b}$ for every real t. We are also given that $x_{i}+t d_{i}=t d_{i} \geq 0$ for every component i such that $x_{i}=0$. For those i for which $x_{i}>0$, then unless $d_{i}=0$ (in which case $x_{i}+t d_{i}>0$ for every t) let us enforce $t \leq x_{i} /\left|d_{i}\right|>0$, so that $x_{i}+t d_{i} \geq\left|t d_{i}\right|+t d_{i} \geq 0$. On choosing $t^{*}=\min _{\substack{i \\ x_{i}>0, d_{i} \neq 0}} x_{i} /\left|d_{i}\right|>0$, we thus see that $\boldsymbol{x}+t^{*} \boldsymbol{d} \geq \mathbf{0}$. Hence \boldsymbol{d} is a feasible direction at \boldsymbol{x}.
3. Let \boldsymbol{x} be a basic feasible solution of a linear programming problem Π written in standard form, with associated basis matrix \boldsymbol{B} and set of nonbasic indices N. Let \boldsymbol{y} be any feasible solution to Π and consider the difference vector $\boldsymbol{d}=\boldsymbol{y}-\boldsymbol{x}$.
(a) Prove that $d_{j} \geq 0$ for every $j \in N$.

For any feasible solution \boldsymbol{y} we have $\boldsymbol{y} \geq \mathbf{0}$. Since \boldsymbol{x} is a basic feasible solution, we know for each $j \in N$ that $x_{j}=0$ and hence $d_{j}=y_{j}-x_{j} \geq 0$.
(b) If $d_{j}=0$ for every $j \in N$, prove that $\boldsymbol{y}=\boldsymbol{x}$.

This would imply that

$$
\mathbf{0}=\boldsymbol{A} \boldsymbol{y}-\boldsymbol{A} \boldsymbol{x}=\boldsymbol{A} \boldsymbol{d}=\boldsymbol{B} \boldsymbol{d}_{B}+\sum_{j \in N} \boldsymbol{A}_{j} d_{j}=\boldsymbol{B} \boldsymbol{d}_{B}
$$

The linear independence of the columns of \boldsymbol{B} then implies that $\boldsymbol{d}_{B}=\mathbf{0}$ and hence $\boldsymbol{d}=\mathbf{0}$, so that $\boldsymbol{y}=\boldsymbol{x}$.
(c) If the reduced cost \bar{c}_{j} of every nonbasic variable x_{j} is positive, use parts (a) and (b) to prove that \boldsymbol{x} is the unique optimal solution to Π.
Recall that \bar{c}_{j} is the rate of change along the j th simplex direction. That is, the change in cost on moving from \boldsymbol{x} to \boldsymbol{y} is

$$
\boldsymbol{c}^{\top} \boldsymbol{y}-\boldsymbol{c}^{\top} \boldsymbol{x}=\boldsymbol{c}^{\top} \boldsymbol{d}=\boldsymbol{c}_{B}^{\top} \boldsymbol{d}_{B}+\sum_{j \in N} c_{j} d_{j}=\sum_{j \in N}\left(c_{j}-c_{B}^{\top} \boldsymbol{B}^{-1} \boldsymbol{A}_{j}\right) d_{j}=\sum_{j \in N} \bar{c}_{j} d_{j} .
$$

We know from part (a) that $d_{j} \geq 0$. Moreover, if $\boldsymbol{y} \neq \boldsymbol{x}$, we know from part (b) that $d_{j}>0$ for some $j \in N$. Given $\bar{c}_{j}>0$ for each $j \in N$, we see that

$$
\boldsymbol{c}^{\top} \boldsymbol{y}-\boldsymbol{c}^{\top} \boldsymbol{x}=\sum_{j \in N} \bar{c}_{j} d_{j}>0
$$

Since this holds for every feasible vector $\boldsymbol{y} \neq \boldsymbol{x}$, we see that \boldsymbol{x} is the unique optimal solution.
(d) Suppose that \boldsymbol{x} is a nondegenerate optimal solution to Π. If the reduced cost \bar{c}_{j} of some nonbasic variable x_{j} is zero at \boldsymbol{x}, prove that Π does not have a unique optimal solution.
Let \boldsymbol{d}^{\prime} be the j th simplex direction. Since \boldsymbol{x} is nondegenerate, we know that the solution $\boldsymbol{y}=\boldsymbol{x}+\boldsymbol{t \boldsymbol { d } ^ { \prime }}$ is feasible for some $t>0$. From the definition of the j th simplex direction, we see that

$$
\boldsymbol{c}^{\top} \boldsymbol{y}-\boldsymbol{c}^{\top} \boldsymbol{x}=t \bar{c}_{j} d_{j}^{\prime}=0
$$

That is, \boldsymbol{y} is a distinct feasible solution with the same optimal cost as \boldsymbol{x}.

