
Math 373: Mathematical Programming and Optimization I
Fall, 2023 Assignment 2

October 6, due October 26

1. Let P be a convex polyhedron. Complete the proof of the following theorem.

Theorem 1: A point x ∈ P is an extreme point of P if and only if the set
P \ {x} (the set obtained by removing x from P ) is convex.

Proof: Let x ∈ P . Suppose P \ {x} is convex. Then it contains every convex 4
combination of points y, z ∈ P \ {x}. Since x does not belong to P \ {x} it cannot

be expressed as a convex combination of points y and z in P \ {x}. That is, x is an

extreme point of P .

Suppose x ∈ P is an extreme point of P . If P \ {x} were not convex, there would

exist points y, z ∈ P \ {x} ⊂ P and t ∈ (0, 1) such that ty + (1 − t)z /∈ P \ {x}.
But since P is convex, we know that ty + (1 − t)z ∈ P . Thus ty + (1 − t)z = x,

contradicting the definition of an extreme point. Thus P \ {x} must be convex. 5

2. Let x be an element of the polyhedron P = {x ∈ Rn : Ax = b,x ≥ 0}. Prove
that a vector d ∈ Rn is a feasible direction at x if and only if Ad = 0 and
di ≥ 0 for every i such that xi = 0. 5
If x is a feasible direction, then x + td ∈ P for some positive scalar t. That is,
A(x + td) = b and x + td ≥ 0. Then tAd = A(x + td) −Ax = b − b = 0, so that
Ad = 0. Moreover, for each zero component xi, the condition xi + tdi ≥ 0 reduces
to di ≥ 0.

Conversely, if there exists a direction such that Ad = 0 and di ≥ 0 for every i such

that xi = 0, then A(x + td) = Ax + tAd = b + 0 = b for every real t. We are also

given that xi + tdi = tdi ≥ 0 for every component i such that xi = 0. For those i for

which xi > 0, then unless di = 0 (in which case xi+ tdi > 0 for every t) let us enforce

t ≤ xi/|di|> 0, so that xi + tdi ≥ |tdi|+tdi ≥ 0. On choosing t∗ = min
i

xi>0,di ̸=0

xi/|di|> 0,

we thus see that x+ t∗d ≥ 0. Hence d is a feasible direction at x.

3. Let x be a basic feasible solution of a linear programming problem Π written in
standard form, with associated basis matrix B and set of nonbasic indices N .
Let y be any feasible solution to Π and consider the difference vector d = y−x.

(a) Prove that dj ≥ 0 for every j ∈ N . 1
For any feasible solution y we have y ≥ 0. Since x is a basic feasible solution, we

know for each j ∈ N that xj = 0 and hence dj = yj − xj ≥ 0.
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(b) If dj = 0 for every j ∈ N , prove that y = x. 1
This would imply that

0 = Ay −Ax = Ad = BdB +
∑
j∈N

Ajdj = BdB.

The linear independence of the columns of B then implies that dB = 0 and hence

d = 0, so that y = x.

(c) If the reduced cost cj of every nonbasic variable xj is positive, use parts (a)
and (b) to prove that x is the unique optimal solution to Π. 2
Recall that cj is the rate of change along the jth simplex direction. That is, the
change in cost on moving from x to y is

c⊺y − c⊺x = c⊺d = c⊺BdB +
∑
j∈N

cjdj =
∑
j∈N

(cj − c⊺BB
−1Aj)dj =

∑
j∈N

cjdj .

We know from part (a) that dj ≥ 0. Moreover, if y ̸= x, we know from part (b) that
dj > 0 for some j ∈ N . Given cj > 0 for each j ∈ N , we see that

c⊺y − c⊺x =
∑
j∈N

cjdj > 0.

Since this holds for every feasible vector y ̸= x, we see that x is the unique optimal

solution.

(d) Suppose that x is a nondegenerate optimal solution to Π. If the reduced
cost cj of some nonbasic variable xj is zero at x, prove that Π does not have a
unique optimal solution. 1
Let d′ be the jth simplex direction. Since x is nondegenerate, we know that the
solution y = x+ td′ is feasible for some t > 0. From the definition of the jth simplex
direction, we see that

c⊺y − c⊺x = tcjd
′
j = 0.

That is, y is a distinct feasible solution with the same optimal cost as x.
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