Math 373: Mathematical Programming and Optimization I Fall, 2023 Assignment 2 October 6, due October 26

1. Let P be a convex polyhedron. Complete the proof of the following theorem.

Theorem 1: A point $\mathbf{x} \in P$ is an extreme point of P if and only if the set $P \setminus \{\mathbf{x}\}$ (the set obtained by removing \mathbf{x} from P) is convex.

Proof: Let $x \in P$. Suppose $P \setminus \{x\}$ is convex. Then it contains every convex combination of points $y, z \in P \setminus \{x\}$. Since x does not belong to $P \setminus \{x\}$ it cannot be expressed as a convex combination of points y and z in $P \setminus \{x\}$. That is, x is an extreme point of P.

Suppose $\boldsymbol{x} \in P$ is an extreme point of P. If $P \setminus \{\boldsymbol{x}\}$ were not convex, there would exist points $\boldsymbol{y}, \boldsymbol{z} \in P \setminus \{\boldsymbol{x}\} \subset P$ and $t \in (0, 1)$ such that $t\boldsymbol{y} + (1 - t)\boldsymbol{z} \notin P \setminus \{\boldsymbol{x}\}$. But since P is convex, we know that $t\boldsymbol{y} + (1 - t)\boldsymbol{z} \in P$. Thus $t\boldsymbol{y} + (1 - t)\boldsymbol{z} = \boldsymbol{x}$, contradicting the definition of an extreme point. Thus $P \setminus \{\boldsymbol{x}\}$ must be convex.

2. Let \boldsymbol{x} be an element of the polyhedron $P = \{\boldsymbol{x} \in \mathbb{R}^n : \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b}, \boldsymbol{x} \ge \boldsymbol{0}\}$. Prove that a vector $\boldsymbol{d} \in \mathbb{R}^n$ is a feasible direction at \boldsymbol{x} if and only if $\boldsymbol{A}\boldsymbol{d} = \boldsymbol{0}$ and $d_i \ge 0$ for every i such that $x_i = 0$.

If \boldsymbol{x} is a feasible direction, then $\boldsymbol{x} + t\boldsymbol{d} \in P$ for some positive scalar t. That is, $\boldsymbol{A}(\boldsymbol{x} + t\boldsymbol{d}) = \boldsymbol{b}$ and $\boldsymbol{x} + t\boldsymbol{d} \geq \boldsymbol{0}$. Then $t\boldsymbol{A}\boldsymbol{d} = \boldsymbol{A}(\boldsymbol{x} + t\boldsymbol{d}) - \boldsymbol{A}\boldsymbol{x} = \boldsymbol{b} - \boldsymbol{b} = \boldsymbol{0}$, so that $\boldsymbol{A}\boldsymbol{d} = \boldsymbol{0}$. Moreover, for each zero component x_i , the condition $x_i + td_i \geq 0$ reduces to $d_i \geq 0$.

Conversely, if there exists a direction such that Ad = 0 and $d_i \ge 0$ for every i such that $x_i = 0$, then A(x + td) = Ax + tAd = b + 0 = b for every real t. We are also given that $x_i + td_i = td_i \ge 0$ for every component i such that $x_i = 0$. For those i for which $x_i > 0$, then unless $d_i = 0$ (in which case $x_i + td_i > 0$ for every t) let us enforce $t \le x_i/|d_i| > 0$, so that $x_i + td_i \ge |td_i| + td_i \ge 0$. On choosing $t^* = \min_{\substack{i \\ x_i > 0, d_i \ne 0}} x_i/|d_i| > 0$,

we thus see that $x + t^* d \ge 0$. Hence d is a feasible direction at x.

3. Let \boldsymbol{x} be a basic feasible solution of a linear programming problem Π written in standard form, with associated basis matrix \boldsymbol{B} and set of nonbasic indices N. Let \boldsymbol{y} be any feasible solution to Π and consider the difference vector $\boldsymbol{d} = \boldsymbol{y} - \boldsymbol{x}$.

(a) Prove that $d_j \ge 0$ for every $j \in N$.

For any feasible solution \boldsymbol{y} we have $\boldsymbol{y} \geq \boldsymbol{0}$. Since \boldsymbol{x} is a basic feasible solution, we know for each $j \in N$ that $x_j = 0$ and hence $d_j = y_j - x_j \geq 0$.

5

4

1

(b) If $d_j = 0$ for every $j \in N$, prove that $\boldsymbol{y} = \boldsymbol{x}$.

This would imply that

$$oldsymbol{0} = oldsymbol{A}oldsymbol{y} - oldsymbol{A}oldsymbol{x} = oldsymbol{A}oldsymbol{d}_B + \sum_{j\in N}oldsymbol{A}_j d_j = oldsymbol{B}oldsymbol{d}_B.$$

The linear independence of the columns of B then implies that $d_B = 0$ and hence d = 0, so that y = x.

(c) If the reduced cost \bar{c}_j of every nonbasic variable x_j is positive, use parts (a) and (b) to prove that \boldsymbol{x} is the unique optimal solution to Π .

2

1

1

Recall that \bar{c}_j is the rate of change along the *j*th simplex direction. That is, the change in cost on moving from \boldsymbol{x} to \boldsymbol{y} is

$$\boldsymbol{c}^{\mathsf{T}}\boldsymbol{y} - \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} = \boldsymbol{c}^{\mathsf{T}}\boldsymbol{d} = \boldsymbol{c}_{B}^{\mathsf{T}}\boldsymbol{d}_{B} + \sum_{j\in N}c_{j}d_{j} = \sum_{j\in N}(c_{j} - c_{B}^{\mathsf{T}}\boldsymbol{B}^{-1}\boldsymbol{A}_{j})d_{j} = \sum_{j\in N}c_{j}d_{j}.$$

We know from part (a) that $d_j \ge 0$. Moreover, if $\boldsymbol{y} \neq \boldsymbol{x}$, we know from part (b) that $d_j > 0$ for some $j \in N$. Given $\bar{c}_j > 0$ for each $j \in N$, we see that

$$oldsymbol{c}^{\intercal}oldsymbol{y} - oldsymbol{c}^{\intercal}oldsymbol{x} = \sum_{j\in N} ar{c}_j d_j > 0.$$

Since this holds for every feasible vector $\boldsymbol{y} \neq \boldsymbol{x}$, we see that \boldsymbol{x} is the unique optimal solution.

(d) Suppose that \boldsymbol{x} is a nondegenerate optimal solution to Π . If the reduced cost \bar{c}_j of some nonbasic variable x_j is zero at \boldsymbol{x} , prove that Π does not have a unique optimal solution.

Let d' be the *j*th simplex direction. Since x is nondegenerate, we know that the solution y = x + td' is feasible for some t > 0. From the definition of the *j*th simplex direction, we see that

$$\boldsymbol{c}^{\mathsf{T}}\boldsymbol{y} - \boldsymbol{c}^{\mathsf{T}}\boldsymbol{x} = t\bar{c}_j d'_j = 0.$$

That is, y is a distinct feasible solution with the same optimal cost as x.