Math 225 (Q1) Homework Assignment 9.

1. Let $\mathcal{E}=\left\{\underline{e_{1}}, \underline{e_{2}}, \underline{e_{3}}\right\}$ be the standard basis for \mathbf{R}^{3} and let $\mathcal{B}=\left\{\underline{b_{1}}, \underline{b_{2}}, \underline{b_{3}}\right\}$ be a basis for a vector space V. Suppose $T: \mathbf{R}^{3} \rightarrow V$ is a linear transformation with the property that

$$
T\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(x_{3}-x_{2}\right) \underline{b_{1}}-\left(x_{1}+x_{3}\right) \underline{b_{2}}+\left(x_{1}-x_{2}\right) \underline{b_{3}} .
$$

(a) Compute $T\left(\underline{e_{1}}\right), T\left(\underline{e_{2}}\right)$ and $T\left(\underline{e_{3}}\right)$.
(b) Compute the coordinate vectors (relative to $\mathcal{B})\left[T\left(\underline{e_{1}}\right)\right]_{\mathcal{B}},\left[T\left(\underline{e_{2}}\right)\right]_{\mathcal{B}}$ and $\left[T\left(\underline{e_{3}}\right)\right]_{\mathcal{B}}$.
(c) Find the matrix for T relative to the bases \mathcal{E} and \mathcal{B}.
2. Find the change-of-coordinates matrix, $P_{\mathcal{E} \leftarrow \mathcal{B}}$, from $\mathcal{B}=\left\{\binom{2}{-9},\binom{1}{8}\right\}$ to the standard basis $\mathcal{E}=\left\{\binom{1}{0},\binom{0}{1}\right\}$ in \mathbf{R}^{2}. Also find $P_{\mathcal{B} \leftarrow \mathcal{E}}$.
3. Let $T: V \rightarrow W$ be a linear transformation, with $\operatorname{dim}(V)=n$ and $\operatorname{dim}(W)=m$.
(a) If T is one-one (injective), what is $\operatorname{dim}(\operatorname{Ran}(T))$? Explain. Hint: Let $\left\{\underline{b_{1}}, \cdots, \underline{b_{n}}\right\}$ be a basis of V. If T is one-one, then $\left\{T\left(\underline{b_{1}}\right), \cdots, T\left(\underline{b_{n}}\right)\right\}$ is a basis of $\operatorname{Ran}(T)$.
(b) If T is onto (surjective), what is $\operatorname{dim}(\operatorname{Ker}(T))$? Explain. Hint: Let $\left\{\underline{b_{1}}, \cdots, \underline{b_{k}}\right\}$ be a basis of $\operatorname{Ker}(T)$. Extend it to a basis $\left\{\underline{b_{1}}, \cdots, \underline{b_{k}}, \underline{b_{k+1}}, \cdots, \underline{b_{n}}\right\}$ of V. If T is onto, then $\left\{T\left(b_{k+1}\right), \cdots, T\left(b_{n}\right)\right\}$ is a basis of W.
4. Let $C[-1,1]$ denote the vector space of all continuous functions defined on the closed interval [-1.1] with the inner product $<f, g>=\int_{-1}^{1} f(x) g(x) d x$. Let $f(x)=x^{2}-x$ and $g(x)=x-1$.
(a) Compute $<f, g>,\|f\|$ and $\|g\|$.
(b) Compute the cosine of the angle between f and g.
(c) Compute the distance between f and g.
(d) Perform the Gram-Schmidt process to f and g to obtain \hat{f} and \hat{g} such that $\operatorname{Span}\{f, g\}=\operatorname{Span}\{\hat{f}, \hat{g}\}$ and $<\hat{f}, \hat{g}>=0$.
(e) Find the best mean square approximation of the function $h(x)=x^{2}$ by the functions in $W=\operatorname{Span}\{f, g\}$.
5. Let $\mathcal{M}_{2,2}$ denote the vector space of 2×2 matrices. Define the mapping $T: \mathcal{M}_{2,2} \rightarrow$ $\mathcal{M}_{2,2}$ by $T\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)=\left(\begin{array}{cc}0 & -b \\ c & a\end{array}\right)$.
(a) Show that T is a linear operator.
(b) Find a basis for $\operatorname{Ker}(T)$.
(c) Find a basis for $\operatorname{Ran}(T)$.

