Math 225 (Q1) Homework Assignment 9.

1. Let $\mathcal{E} = \{\underline{e_1}, \underline{e_2}, \underline{e_3}\}$ be the standard basis for \mathbf{R}^3 and let $\mathcal{B} = \{\underline{b_1}, \underline{b_2}, \underline{b_3}\}$ be a basis for a vector space V. Suppose $T : \mathbf{R}^3 \to V$ is a linear transformation with the property that

$$T\begin{pmatrix} x_1\\ x_2\\ x_3 \end{pmatrix} = (x_3 - x_2)\underline{b_1} - (x_1 + x_3)\underline{b_2} + (x_1 - x_2)\underline{b_3}.$$

- (a) Compute $T(\underline{e_1}), T(\underline{e_2})$ and $T(\underline{e_3})$.
- (b) Compute the coordinate vectors (relative to \mathcal{B}) $[T(e_1)]_{\mathcal{B}}$, $[T(e_2)]_{\mathcal{B}}$ and $[T(e_3)]_{\mathcal{B}}$.
- (c) Find the matrix for T relative to the bases \mathcal{E} and \mathcal{B} .
- 2. Find the change-of-coordinates matrix, $P_{\mathcal{E}\leftarrow\mathcal{B}}$, from $\mathcal{B} = \left\{ \begin{pmatrix} 2\\-9 \end{pmatrix}, \begin{pmatrix} 1\\8 \end{pmatrix} \right\}$ to the standard basis $\mathcal{E} = \left\{ \begin{pmatrix} 1\\0 \end{pmatrix}, \begin{pmatrix} 0\\1 \end{pmatrix} \right\}$ in \mathbb{R}^2 . Also find $P_{\mathcal{B}\leftarrow\mathcal{E}}$.
- 3. Let $T: V \to W$ be a linear transformation, with $\dim(V) = n$ and $\dim(W) = m$.
 - (a) If T is one-one (injective), what is dim(Ran(T))? Explain. Hint: Let $\{\underline{b_1}, \dots, \underline{b_n}\}$ be a basis of V. If T is one-one, then $\{T(\underline{b_1}), \dots, T(\underline{b_n})\}$ is a basis of Ran(T).
 - (b) If T is onto (surjective), what is dim(Ker(T))? Explain. Hint: Let $\{\underline{b_1}, \dots, \underline{b_k}\}$ be a basis of Ker(T). Extend it to a basis $\{\underline{b_1}, \dots, \underline{b_k}, \underline{b_{k+1}}, \dots, \underline{b_n}\}$ of V. If T is onto, then $\{T(b_{k+1}), \dots, T(b_n)\}$ is a basis of W.
- 4. Let C[-1, 1] denote the vector space of all continuous functions defined on the closed interval [-1.1] with the inner product $\langle f, g \rangle = \int_{-1}^{1} f(x)g(x) dx$. Let $f(x) = x^2 x$ and g(x) = x 1.
 - (a) Compute $\langle f, g \rangle$, ||f|| and ||g||.
 - (b) Compute the cosine of the angle between f and g.
 - (c) Compute the distance between f and g.
 - (d) Perform the Gram-Schmidt process to f and g to obtain \hat{f} and \hat{g} such that $\operatorname{Span}\{f,g\} = \operatorname{Span}\{\hat{f},\hat{g}\}$ and $\langle \hat{f},\hat{g} \rangle = 0$.
 - (e) Find the best mean square approximation of the function $h(x) = x^2$ by the functions in $W = \text{Span}\{f, g\}$.

- Let $\mathcal{M}_{2,2}$ denote the vector space of 2×2 matrices. Define the mapping $T : \mathcal{M}_{2,2} \to \mathcal{M}_{2,2}$ by $T\begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} 0 & -b \\ c & a \end{pmatrix}$. (a) Show that T is a linear operator. 5.

 - (b) Find a basis for Ker(T).
 - (c) Find a basis for $\operatorname{Ran}(T)$.