1. Using distributive law (A7), we have

$$
(1+1)(\underline{u}+\underline{v})=1(\underline{u}+\underline{v})+1(\underline{u}+\underline{v})=\underline{u}+\underline{v}+\underline{u}+\underline{v} .
$$

On the other hand, using distributive law (A8), we have

$$
(1+1)(\underline{u}+\underline{v})=(1+1) \underline{u}+(1+1) \underline{v}=\underline{u}+\underline{u}+\underline{v}+\underline{v} .
$$

Thus, $\underline{u}+\underline{v}+\underline{u}+\underline{v}=\underline{u}+\underline{u}+\underline{v}+\underline{v}$. Next, we add $(-\underline{u})$ on the left and add $(-\underline{v})$ on the right to both sides, we get

$$
(-\underline{u})+\underline{u}+\underline{v}+\underline{u}+\underline{v}+(-\underline{v})=(-\underline{u})+\underline{u}+\underline{u}+\underline{v}+\underline{v}+(-\underline{v})
$$

which simplifies to $\underline{v}+\underline{u}=\underline{u}+\underline{v}$.
2. Let $[\underline{x}]_{\mathcal{B}}=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)=\underline{c}$. Then $\underline{x}=c_{1} \underline{b_{1}}+c_{2} \underline{b_{2}}+c_{3} \underline{b_{3}}=\left[\underline{b_{1}} \underline{b_{2}} \underline{b_{3}} \underline{c} \underline{c}\right.$. That is, $\left(\begin{array}{c}8 \\ -9 \\ 6\end{array}\right)=\left(\begin{array}{ccc}1 & -3 & 2 \\ -1 & 4 & -2 \\ -3 & 9 & 4\end{array}\right)\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right)$. Solving for \underline{c} we get $\underline{c}=\left(\begin{array}{c}-1 \\ -1 \\ 3\end{array}\right)$.
3. Clearly S spans V since every vector in V is a linear combination of vectors in S. To show that $S=\left\{\underline{v_{1}}, \cdots, \underline{v_{n}}\right\}$ is a basis of V, it remains to show that S is linearly independent. Let $\alpha_{1}, \cdots, \alpha_{n} \in \mathbf{R}$ be such that $\alpha_{1} \underline{v_{1}}+\cdots+\alpha_{n} \underline{v_{n}}=\underline{0}$. We want to show that the only way this can happen is when $\alpha_{1}=\cdots=\alpha_{n}=0$. Now, since $\underline{0}=0 \cdot \underline{v_{1}}+\cdots+0 \cdot \underline{v_{n}}$ and $\underline{0}=\alpha_{1} \cdot \underline{v_{1}}+\cdots+\alpha_{n} \cdot \underline{v_{n}}$ are two ways to represent the zero vector $\underline{0}$ as a linear combination of vectors in S, therefore, by uniqueness, we must have $0=\alpha_{1}, 0=\alpha_{2}$, etc.
4. Let $p_{1}(t)=1, p_{2}(t)=2 t, p_{3}(t)=-2+4 t^{2}, p_{4}(t)=-12 t+8 t^{3}$. We need to show $\mathcal{B}=\left\{p_{1}(t), p_{2}(t), p_{3}(t), p_{4}(t)\right\}$ is a basis of the the vector space of all polynomials in t of degree less than or equal to 3 .

First we will show that the vectors in \mathcal{B} are linearly independent. Suppose there exist $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbf{R}$ such that $c_{1} p_{1}(t)+c_{2} p_{2}(t)+c_{3} p_{3}(t)+c_{4} p_{4}(t)$ is the zero polynomial. This means that $c_{1}(1)+c_{2}(2 t)+c_{3}\left(-2+4 t^{2}\right)+c_{4}\left(-12 t+8 t^{3}\right)=0$ for all t. We want to show that $c_{i}=0$ for all $1 \leq i \leq 4$. Now, collecting terms in ascending powers of t, we have, $\left(c_{1}-2 c_{3}\right)+\left(2 c_{2}-12 c_{4}\right) t+\left(4 c_{3}\right) t^{2}+\left(8 c_{4}\right) t^{3}=0$. This shows that $c_{1}-2 c_{3}=0,2 c_{2}-12 c_{4}=0,4 c_{3}=0$ and $8 c_{4}=0$. Solving for $c_{1}, c_{2}, c_{3}, c_{4}$, we get, $c_{1}=c_{2}=c_{3}=c_{4}=0$, as desired.

Next, we will show that the vectors in \mathcal{B} span \mathbf{P}^{3}. For that, we can either recall that $\operatorname{dim}\left(\mathbf{P}^{3}\right)=4$ and use Basis Theorem or we can proceed directly. Let $q(t) \in \mathbf{P}^{3}$. Then $q(t)=q_{0}+q_{1} t+q_{2} t^{2}+q_{3} t^{3}$ for some $q_{0}, q_{1}, q_{2}, q_{3} \in \mathbf{R}$. We want to show that $q(t)$ is a linear combination of vectors in \mathcal{B}. That is, there exist $c_{1}, c_{2}, c_{3}, c_{4} \in \mathbf{R}$ such that $c_{1} p_{1}(t)+c_{2} p_{2}(t)+c_{3} p_{3}(t)+c_{4} p_{4}(t)=q(t)$ for all t. Expanding it out and collecting like powers of t, we have, $\left(c_{1}-2 c_{3}\right)+\left(2 c_{2}-12 c_{4}\right) t+\left(4 c_{3}\right) t^{2}+\left(8 c_{4}\right) t^{3}=q_{0}+q_{1} t+q_{2} t^{2}+q_{3} t^{3}$. This means that $c_{1}-2 c_{3}=q_{0}, 2 c_{2}-12 c_{4}=q_{1}, 4 c_{3}=q_{2}$ and $8 c_{4}=q_{3}$. Write it as a matrix equation $A \underline{\boldsymbol{c}}=\underline{q}$, where $A=\left(\begin{array}{cccc}1 & 0 & -2 & 0 \\ 0 & 2 & 0 & -12 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 8\end{array}\right), \underline{c}=\left(\begin{array}{l}c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right)$ and $\underline{q}=\left(\begin{array}{l}q_{0} \\ q_{1} \\ q_{2} \\ q_{3}\end{array}\right)$. Since $\operatorname{det}(A)=(1)(2)(4)(8)=64$ is non-zero, A is invertible. Thus, $\underline{c}=A^{-1} \underline{q}$ and $q(t)$ is a linear combination of $p_{1}(t), p_{2}(t), p_{3}(t)$ and $p_{4}(t)$.

Since the basis \mathcal{B} of \mathbf{P}^{3} has 4 elements, $\operatorname{dim}\left(\mathbf{P}^{3}\right)=4$.
5. We know that $\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A), \operatorname{rank}(A B) \leq \operatorname{rank}(A)$ and $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$.
(a) Clearly, $\operatorname{rank}(P A) \leq \operatorname{rank}(A)$. On the other hand,

$$
\operatorname{rank}(A)=\operatorname{rank}(I A)=\operatorname{rank}\left(\left(P^{-1} P\right) A\right)=\operatorname{rank}\left(P^{-1}(P A)\right) \leq \operatorname{rank}(P A)
$$

(b) $\operatorname{rank}(A Q)=\operatorname{rank}\left((A Q)^{T}\right)=\operatorname{rank}\left(Q^{T} A^{T}\right)=\operatorname{rank}\left(A^{T}\right)=\operatorname{rank}(A)$. Note that, we used part (a) and the fact that $P=Q^{T}$ is invertible, provided Q is invertible (in fact, $\left.P^{-1}=\left(Q^{T}\right)^{-1}=\left(Q^{-1}\right)^{T}\right)$.

