Math 225 (Q1) Homework Assignment 8.

1. Show that the second axiom in the definition of a vector space V (that is, the commutative law) follows from the other 7 axioms. Hint: Consider $(1+1)(\underline{u}+\underline{v})$. Recall: The 8 vector space axioms are: for all $\underline{u}, \underline{v}, \underline{w}$ in V and for all $c, d \in \mathbf{R}$, we have
(A3) there exists $\underline{0} \in V$, independent of \underline{u}, such that $\underline{u}+\underline{0}=\underline{0}+\underline{u}=\underline{u}$
(A4) \quad there exists $(-\underline{u}) \in V$ such that $\underline{u}+(-\underline{u})=(-\underline{u})+\underline{u}=\underline{0}$
(A5) $1 \underline{u}=\underline{u}$
(A6) $\quad c(d \underline{u})=(c d) \underline{u}$
(A7) $\quad(c+d) \underline{u}=(c \underline{u})+(d \underline{u})$
(A8) $\quad c(\underline{u}+\underline{v})=(c \underline{u})+(c \underline{v})$
2. Let $\underline{b_{1}}=\left(\begin{array}{c}1 \\ -1 \\ -3\end{array}\right), \underline{b_{2}}=\left(\begin{array}{c}-3 \\ 4 \\ 9\end{array}\right), \underline{b_{3}}=\left(\begin{array}{c}2 \\ -2 \\ 4\end{array}\right)$, and $\underline{x}=\left(\begin{array}{c}8 \\ -9 \\ 6\end{array}\right)$. Find the coordinate vector $[\underline{x}]_{\mathcal{B}}$ of \underline{x} relative to the basis $\mathcal{B}=\left\{\underline{b_{1}}, \underline{b_{2}}, \underline{b_{3}}\right\}$.
3. Let S be a finite set of vectors in a vector space V with the property that every $\underline{x} \in V$ has a unique representation as a linear combination of elements of S. Show that S is a basis of V.
4. Let \mathbf{P}^{3} denote the vector space of polynomials in t of degree less than or equal to 3. Show that $\left\{1,2 t,-2+4 t^{2},-12 t+8 t^{3}\right\}$ is a basis of \mathbf{P}^{3}. What is the dimension of \mathbf{P}^{3} ?
5. Let A be a $m \times n$ matrix. Show that
(a) If P is a $m \times m$ invertible matrix, then $\operatorname{rank}(P A)=\operatorname{rank}(A)$. Hint: Recall Question 5 in Assignment 7.
(b) If Q is a $n \times n$ invertible matrix, then $\operatorname{rank}(A Q)=\operatorname{rank}(A)$.
