Math 225 (Q1) Homework Assignment 8.

- 1. Show that the second axiom in the definition of a vector space V (that is, the commutative law) follows from the other 7 axioms. Hint: Consider $(1 + 1)(\underline{u} + \underline{v})$. Recall: The 8 vector space axioms are: for all \underline{u} , \underline{v} , \underline{w} in V and for all $c, d \in \mathbf{R}$, we have
 - (A1) $(\underline{u} + \underline{v}) + \underline{w} = \underline{u} + (\underline{v} + \underline{w})$

$$(A2) \quad \underline{u} + \underline{v} = \underline{v} + \underline{u}$$

- (A3) there exists $\underline{0} \in V$, independent of \underline{u} , such that $\underline{u} + \underline{0} = \underline{0} + \underline{u} = \underline{u}$
- (A4) there exists $(-\underline{u}) \in V$ such that $\underline{u} + (-\underline{u}) = (-\underline{u}) + \underline{u} = \underline{0}$
- $(A5) \qquad 1\underline{u} = \underline{u}$
- (A6) $c(d\underline{u}) = (cd)\underline{u}$
- (A7) $(c+d)\underline{u} = (c\underline{u}) + (d\underline{u})$

(A8)
$$c(\underline{u} + \underline{v}) = (c\underline{u}) + (c\underline{v})$$

2. Let
$$\underline{b_1} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$$
, $\underline{b_2} = \begin{pmatrix} -3 \\ 4 \\ 9 \end{pmatrix}$, $\underline{b_3} = \begin{pmatrix} 2 \\ -2 \\ 4 \end{pmatrix}$, and $\underline{x} = \begin{pmatrix} 8 \\ -9 \\ 6 \end{pmatrix}$. Find the coordinate vector $[\underline{x}]_{\mathcal{B}}$ of \underline{x} relative to the basis $\mathcal{B} = \{\underline{b_1}, \underline{b_2}, \underline{b_3}\}$.

- 3. Let S be a finite set of vectors in a vector space V with the property that every $\underline{x} \in V$ has a unique representation as a linear combination of elements of S. Show that S is a basis of V.
- 4. Let P³ denote the vector space of polynomials in t of degree less than or equal to
 3. Show that {1, 2t, -2 + 4t², -12t + 8t³} is a basis of P³. What is the dimension of P³?
- 5. Let A be a $m \times n$ matrix. Show that
 - (a) If P is a $m \times m$ invertible matrix, then rank(PA) = rank(A). Hint: Recall Question 5 in Assignment 7.
 - (b) If Q is a $n \times n$ invertible matrix, then rank(AQ) = rank(A).