Math 225 (Q1) Solution to Homework Assignment 7
1.
(a) $A=\left(\begin{array}{cc}1 & -3 \\ -3 & 9\end{array}\right)$
(b) Eigenvalues of A are: $\lambda_{1}=0, \lambda_{2}=10 . \underline{v_{1}}=\binom{\frac{3}{\sqrt{10}}}{\frac{1}{\sqrt{10}}}$ is a unit eigenvector corresponding to $\lambda_{1}=0$ and $\underline{v_{2}}=\binom{\frac{1}{\sqrt{10}}}{-\frac{3}{\sqrt{10}}}$ is a unit eigenvector corresponding to $\lambda_{2}=10$. Therefore, $D=\left(\begin{array}{cc}0 & 0 \\ 0 & 10\end{array}\right)$ and $P=\left(\begin{array}{cc}\frac{3}{\sqrt{10}} & \frac{1}{\sqrt{10}} \\ \frac{1}{\sqrt{10}} & -\frac{3}{\sqrt{10}}\end{array}\right)$. Furthermore, $Q=\underline{y}^{T} D \underline{y}=10 y_{2}^{2}$
(c) Q is positively semidefinite because all eigenvalues of A are non-negative.
2. Since A is positive definite, A is symmetric. Let $A=P D P^{T}$ be an orthogonal diagonalization of A, where $P^{-1}=P^{T}$ and D is a diagonal matrix. The diagonal entries of D are the eigenvalues of A and so they are positive. Let C be a diagonal matrix whose diagonal entries are the square roots of the corresponding diagonal entries of D. Then $C^{2}=D$ and $C^{T}=C$. Finally, Define $B=P C P^{T}$. Then $B^{T}=\left(P C P^{T}\right)^{T}=\left(P^{T}\right)^{T} C^{T} P^{T}=P C P^{T}=B$, so that B is a symmetric matrrix. Furthermore, since $B=P C P^{-1}, B$ is similar to C and so the eigenvalues of B are the diagonal entries of C which are positive. Thus, B is positive definite. Finally, $B^{T} B=\left(P C P^{T}\right)^{T}\left(P C P^{T}\right)=P C P^{T} P C P^{T}=P C C P^{T}=P D P^{T}=A$, as desired.
3.
(a) Let $A=\left(\begin{array}{lll}3 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 2\end{array}\right)$. Then $Q\left(x_{1}, x_{2}, x_{n}\right)=\underline{x}^{T} A \underline{x}$.
(b) The eigenvalues of A are: 5, 2, 0, with corresponding unit eigenvectors: $\left(\begin{array}{c}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right)$,

$$
\left(\begin{array}{c}
-\frac{2}{\sqrt{6}} \\
\frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{6}}
\end{array}\right),\left(\begin{array}{c}
0 \\
-\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}}
\end{array}\right) \text {, resp. Let } D=\left(\begin{array}{ccc}
5 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 0
\end{array}\right) \text { and } P=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right) .
$$

Then $Q(x)=\underline{y}^{T} D \underline{y}=5 y_{1}^{2}+2 y_{2}^{2}$.
(c) The maximum value of $Q(x)$ is 5 .
(d) The maximum of $Q(x)$ is attained at $x=\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.
4. The reduced row echelon form is A is $R=\left(\begin{array}{cccc}\boxed{1} & 0 & 6 & 5 \\ 0 & \boxed{1} & 5 / 2 & 3 / 2 \\ 0 & 0 & 0 & 0\end{array}\right)$
(a) $\quad x_{3}$ and x_{4} are free variables. The equations are: $x_{1}+6 x_{3}+5 x_{4}=0$ and $x_{2}+(5 / 2) x_{3}+(3 / 2) x_{4}=0$ so that

$$
\underline{x}=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right)=\left(\begin{array}{c}
-6 x_{3}-5 x_{4} \\
-(5 / 2) x_{3}-(3 / 2) x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-6 \\
-5 / 2 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
-5 \\
-3 / 2 \\
0 \\
1
\end{array}\right) .
$$

Thus, $\left\{\left(\begin{array}{c}-6 \\ -5 / 2 \\ 1 \\ 0\end{array}\right),\left(\begin{array}{c}-5 \\ -3 / 2 \\ 0 \\ 1\end{array}\right)\right\}$ is a basis for $\operatorname{Nul}(A)$.
(b) Using the reduced row echelon form of A, we see that columns 1 and 2 are the pivot columns. Therefore, $\left\{\left(\begin{array}{c}-2 \\ 2 \\ -3\end{array}\right),\left(\begin{array}{c}4 \\ -6 \\ 8\end{array}\right)\right\}$ is a basis of $\operatorname{Col}(A)$.
(c) $\quad \operatorname{Since} \operatorname{Row}(A)=\operatorname{Row}(R),\{(1,0,6,5),(0,1,5 / 2,3 / 2)\}$ is a basis of $\operatorname{Row}(A)$.
(d) $\operatorname{rank}(A)=2$.
(e) $\operatorname{nullity}(A)=2$.
5.
(a) If we can show that $\operatorname{Col}(A B)$ is a subspace of $\operatorname{Col}(A)$, then

$$
\operatorname{rank}(A B)=\operatorname{dim}(\operatorname{Col}(A B)) \leq \operatorname{dim}(\operatorname{Col}(A))=\operatorname{rank}(A)
$$

Denote the columns of A by $\underline{a_{1}}, \cdots \underline{a_{n}}$. Then a linear combination $x_{1} \underline{a_{1}}+\cdots x_{n} \underline{a_{n}}$ is really $A \underline{x}$, where $\underline{x}=\left(x_{1}, \cdots, x_{n}\right)^{T}$. Thus $\operatorname{Col}(A)$, which is the set of all linear combinations of $\underline{a_{1}}, \cdots, \underline{a_{n}}$, is the same as the set $\left\{A \underline{x}: \underline{x} \in \mathbf{R}^{n}\right\}$. To show $\operatorname{Col}(A B) \subset \operatorname{Col}(A)$, let $\underline{y} \in \operatorname{Col}(A B)$. By the above, there exists $\underline{z} \in \mathbf{R}^{p}$ such that $\underline{y}=(A B) \underline{z}=A(B \underline{z})=A \underline{x}$, where $\underline{x}=B \underline{z} \in \mathbf{R}^{n}$. Thus $\underline{y} \in \operatorname{Col}(A)$.
(b) By part (a),

$$
\operatorname{rank}(A B)=\operatorname{rank}\left((A B)^{T}\right)=\operatorname{rank}\left(B^{T} A^{T}\right) \leq \operatorname{rank}\left(B^{T}\right)=\operatorname{rank}(B)
$$

since $\operatorname{rank}\left(C^{T}\right)=\operatorname{rank}(C)$ for any matrix C (Note. Row rank is the same as column rank).

