Math 225 (Q1) Homework Assignment 7.

1. Let $Q(x)=x_{1}^{2}-6 x_{1} x_{2}+9 x_{2}^{2}$, where $x=\left(x_{1}, x_{2},\right)$.
(a) Find a 2×2 real, symmetric matrix A such that $Q(x)=\underline{x}^{T} A \underline{x}$, where $\underline{x}=$ $\binom{x_{1}}{x_{2}}$.
(b) Make a change of variable $\underline{x}=P \underline{y}$, where $\underline{y}=\binom{y_{1}}{y_{2}}$, such that $Q(x)=\underline{y}^{T} D \underline{y}$ has no cross terms in terms of y_{1}, y_{2}.
(c) Classify the quadratic form Q.
2. Show that if A is a $n \times n$ positive definite matrix, then there exists a positive definite matrix B such that $A=B^{T} B$. Hint: Write A as $P D P^{T}$, with $P^{T}=P^{-1}$, that is, P is an orthogonal matrix. Let C be a diagonal matrix such that $C^{T} C=C^{2}=D$. Define $B=P C P^{T}$.
3. Let $Q(x)=3 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}+4 x_{2} x_{3}$, where $x=\left(x_{1}, x_{2}, x_{3}\right)$.
(a) Let $\underline{x}=\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)$. Find a 3×3 real, symmetric matrix A such that $Q\left(x_{1}, x_{2}, x_{3}\right)=$ $\underline{x}^{T} A \underline{x}$.
(b) Find a change of variable $\underline{x}=P \underline{y}$, where $\underline{y}=\left(\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right)$, such that $\underline{x}^{T} A \underline{x}=\underline{y}^{T} D \underline{y}$. D is a diagonal matrix. Thus, in terms of y_{1}, y_{2}, y_{3}, Q has no cross product terms.
(c) Find the maximum value of $Q(x)$ subject to the constraint $\underline{x}^{T} \underline{x}=1$.
(d) Find a unit vector $\underline{u} \in \mathbf{R}^{3}$ where this maximum is attained.
4. Let $A=\left(\begin{array}{cccc}-2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3\end{array}\right)$. Find
(a) a basis for $\operatorname{Nul}(A)$,
(b) a basis for $\operatorname{Col}(A)$,
(c) a basis for $\operatorname{Row}(A)$.
(d) $\operatorname{rank}(A)$, the rank of A, and
(e) nullity (A), the nullity of A.
5. Let A be a $m \times n$ matrix and B be a $n \times p$ matrix.
(a) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(A)$. (Hint. Show that $\operatorname{Col}(A B) \subset \operatorname{Col}(A))$.
(b) Show that $\operatorname{rank}(A B) \leq \operatorname{rank}(B)$. (Hint. Use part (a) to study $\operatorname{rank}\left((A B)^{T}\right)$.
