Math 225 (Q1) Homework Assignment 7.

- 1. Let $Q(x) = x_1^2 6x_1x_2 + 9x_2^2$, where $x = (x_1, x_2,)$.
 - (a) Find a 2 × 2 real, symmetric matrix A such that $Q(x) = \underline{x}^T A \underline{x}$, where $\underline{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.
 - (b) Make a change of variable $\underline{x} = P\underline{y}$, where $\underline{y} = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix}$, such that $Q(x) = \underline{y}^T D\underline{y}$ has no cross terms in terms of y_1, y_2 .
 - (c) Classify the quadratic form Q.
- 2. Show that if A is a $n \times n$ positive definite matrix, then there exists a positive definite matrix B such that $A = B^T B$. Hint: Write A as PDP^T , with $P^T = P^{-1}$, that is, P is an orthogonal matrix. Let C be a diagonal matrix such that $C^T C = C^2 = D$. Define $B = PCP^T$.

3. Let
$$Q(x) = 3x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_2 + 2x_1x_3 + 4x_2x_3$$
, where $x = (x_1, x_2, x_3)$.
(a) Let $\underline{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}$. Find a 3×3 real, symmetric matrix A such that $Q(x_1, x_2, x_3) = \frac{\underline{x}^T A \underline{x}}{2}$.

(b) Find a change of variable $\underline{x} = P\underline{y}$, where $\underline{y} = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \end{pmatrix}$, such that $\underline{x}^T A \underline{x} = \underline{y}^T D \underline{y}$. D is a diagonal matrix. Thus, in terms of y_1, y_2, y_3, Q has no cross product terms.

- (c) Find the maximum value of Q(x) subject to the constraint $\underline{x}^T \underline{x} = 1$.
- (d) Find a unit vector $\underline{u} \in \mathbf{R}^3$ where this maximum is attained.

4. Let
$$A = \begin{pmatrix} -2 & 4 & -2 & -4 \\ 2 & -6 & -3 & 1 \\ -3 & 8 & 2 & -3 \end{pmatrix}$$
. Find
(a) a basis for Nul(A),

- (b) a basis for $\operatorname{Col}(A)$,
- (c) a basis for Row(A).
- (d) rank(A), the rank of A, and
- (e) nullity(A), the nullity of A.
- 5. Let A be a $m \times n$ matrix and B be a $n \times p$ matrix.

- (a) Show that $\operatorname{rank}(AB) \leq \operatorname{rank}(A)$. (Hint. Show that $\operatorname{Col}(AB) \subset \operatorname{Col}(A)$).
- (b) Show that $\operatorname{rank}(AB) \leq \operatorname{rank}(B)$. (Hint. Use part (a) to study $\operatorname{rank}((AB)^T)$.