1. Using the eigenvalues and their corresponding eigenvectors of A, the matrix A can be diagonlized as follows: $P^{-1} A P=D$, where $D=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$ and $P=\left(\begin{array}{cc}-1 & -3 \\ 1 & 1\end{array}\right)$. Using the change of variables $\underline{x}=P \underline{y}$, the differential equation $\underline{x}^{\prime}=A \underline{x}$ becomes $\underline{y}^{\prime}=D \underline{y}$. This system is

$$
\begin{aligned}
& y_{1}^{\prime}=-y_{1} \\
& y_{2}^{\prime}=y_{2}
\end{aligned}
$$

which is decoupled. Solving each equation independently, we get $y_{1}=c_{1} e^{-t}$ and $y_{2}=c_{2} e^{t}$, where c_{1}, c_{2} are arbitrary constants. Thus, $\underline{y}=\binom{c_{1} e^{-t}}{c_{2} e^{t}}$. Finally,
$\underline{x}=P \underline{y}=\left(\begin{array}{cc}-1 & -3 \\ 1 & 1\end{array}\right)\binom{c_{1} e^{-t}}{c_{2} e^{t}}=\binom{-c_{1} e^{-t}-3 c_{2} e^{t}}{c_{1} e^{-t}+c_{2} e^{t}}=c_{1} e^{-t}\binom{-1}{1}+c_{2} e^{t}\binom{-3}{1}$.
2. Let $A=\left(\begin{array}{ccc}4 & 0 & 1 \\ -2 & 1 & 0 \\ -2 & 0 & 1\end{array}\right)$. Using eigenvalues and their corresponding eigenvectors, we see that A can be diagonalized as follows: $P^{-1} A P=D$, where $D=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ and $P=\left(\begin{array}{ccc}0 & 1 & -1 \\ 1 & -2 & 1 \\ 0 & -2 & 1\end{array}\right)$. Make the change of variable $\underline{x}=P \underline{y}$, we see that $\underline{y}^{\prime}=D \underline{y}$ which can be solved as: $y_{1}=c_{1} e^{t}, y_{2}=c_{2} e^{2 t}$ and $y_{3}=c_{3} e^{3 t}$. Thus,

$$
\underline{x}=c_{1} e^{t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2} e^{2 t}\left(\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right)+c_{3} e^{3 t}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right) .
$$

Using the initial conditions, we see that

$$
\left(\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right)=\underline{x}(0)=c_{1}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+c_{2}\left(\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right)+c_{3}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
c_{2}-c_{3} \\
c_{1}-2 c_{2}+c 3 \\
-2 c_{2}+c_{3}
\end{array}\right) .
$$

Solving for c_{1}, c_{2}, c_{3}, we get $c_{1}=1, c_{2}=1$ and $c_{3}=2$. Thus,

$$
\underline{x}=e^{t}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)+e^{2 t}\left(\begin{array}{c}
1 \\
-2 \\
-2
\end{array}\right)+2 e^{3 t}\left(\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right)=\left(\begin{array}{c}
e^{2 t}-2 e^{3 t} \\
e^{t}-2 e^{2 t}+2 e^{3 t} \\
-2 e^{2 t}+2 e^{3 t}
\end{array}\right)
$$

3. Since $A^{T}=A$ (the transpose of A is A), therefore A is symmetric and A can be orthogonally diagonalized. The eigenvalues of A are: $\lambda_{1}=5, \lambda_{2}=2$ and $\lambda_{3}=-2$ and their corresponding eigenvectors are: $\underline{u_{1}}=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), \underline{u_{2}}=\left(\begin{array}{c}1 \\ -2 \\ 1\end{array}\right)$ and $\underline{u_{3}}=\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$.
Let $D=\left(\begin{array}{ccc}5 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -2\end{array}\right)$. Normalize $\underline{u_{1}}, \underline{u_{2}}, \underline{u_{3}}$ to get the unit eigenvectors:

$$
\underline{v_{1}}=\frac{1}{\left\|\underline{u_{1}}\right\|} \underline{u_{1}}=\frac{1}{\sqrt{3}} \underline{u_{1}}=\left(\begin{array}{c}
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{3}}
\end{array}\right)
$$

Similarly, $\underline{v_{2}}=\frac{1}{\left\|\underline{u_{2}}\right\|} \frac{u_{2}}{=}=\left(\begin{array}{c}\frac{1}{\sqrt{6}} \\ -\frac{2}{\sqrt{6}} \\ \frac{1}{\sqrt{6}}\end{array}\right)$ and $\underline{v_{3}}=\frac{1}{\left\|\underline{v_{3}}\right\|} \underline{v_{3}}=\left(\begin{array}{c}-\frac{1}{\sqrt{2}} \\ 0 \\ \frac{1}{\sqrt{2}}\end{array}\right)$. Thus,

$$
P=\left(\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & -\frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right)
$$

4.

(a) First of all, the matrix A is symmetric (that is, $A^{T}=A$) so that A is orthogonally diagonalizable. We find that the eigenvalues of A are: $\lambda_{1}=2$ and $\lambda_{2}=4$ and their corresponding eigenvectors are: $\underline{u_{1}}=\binom{-1}{1}$ and $\underline{u_{2}}=\binom{1}{1}$. Since $\underline{u_{1}} \cdot \underline{u_{2}}=0$, the vectors $\underline{u_{1}}$ and $\underline{u_{2}}$ are orthogonal. (We don't really need to check that since $\underline{u_{1}}$ and $\underline{u_{2}}$ are eigenvectors corresponding to distinct eigenvalues). Now, we normalize and get $\underline{v_{1}}=\frac{1}{\left\|\underline{u_{1}}\right\|} \frac{u_{1}}{}=\binom{-\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$ and $\underline{v_{2}}=\frac{1}{\left\|\underline{u_{2}}\right\|} \underline{u_{2}}=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}$. Thus, $P=\left(\begin{array}{cc}-\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}\end{array}\right)$.
(b) $\quad D=\left(\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right)$.
(c) The spectral decomposition of A is:

$$
A=\lambda_{1} \underline{v_{1}}{\underline{v_{1}}}^{T}+\lambda_{2} \underline{v_{2}}{\underline{v_{2}}}^{T}=2 \underline{v_{1}}{\underline{v_{1}}}^{T}+4 \underline{v_{2}}{\underline{v_{2}}}^{T} .
$$

5.

(a) The characteristic equation is: $\operatorname{det}(A-\lambda I)=0$ which can be simplified as: $\lambda^{3}-6 \lambda^{2}+12 \lambda-8=0$. Using the fact, $I=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right), A=\left(\begin{array}{lll}3 & -2 & 1 \\ 2 & -2 & 2 \\ 3 & -6 & 5\end{array}\right)$,
$A^{2}=\left(\begin{array}{ccc}8 & -8 & 4 \\ 8 & -12 & 8 \\ 12 & -24 & 16\end{array}\right)$ and $A^{3}=\left(\begin{array}{lll}20 & -24 & 12 \\ 24 & -40 & 24 \\ 36 & -72 & 44\end{array}\right)$, we can check that $A^{3}-$ $6 A^{2}+12 A-8 I=0$, the zero matrix.
(b) Multiplying $A^{3}-6 A^{2}+12 A-8 I=0$ by A, we get $A^{4}-6 A^{3}+12 A^{2}-8 A=0$ so that

$$
\begin{aligned}
A^{4} & =6 A^{3}-12 A^{2}+8 A=6\left(6 A^{2}-12 A+8 I\right)-12 A^{2}+8 A=24 A^{2}-64 A+48 I \\
& =\left(\begin{array}{ccc}
48 & -64 & 32 \\
64 & -112 & 64 \\
96 & -192 & 112
\end{array}\right) .
\end{aligned}
$$

(c) Multiplying $A^{3}-6 A^{2}+12 A-8 I=0$ by A^{-1}, we get $A^{2}-6 A+12 I-8 A^{-1}=0$. Thus, $A^{-1}=\frac{1}{8} A^{2}-\frac{3}{4} A+\frac{3}{2} I$.

