Math 225 (Q1) Homework Assignment 6.

1. Let $A=\left(\begin{array}{cc}2 & 3 \\ -1 & -2\end{array}\right)$. Solve the differential equation $\underline{x}^{\prime}=A \underline{x}$, that is,

$$
\begin{aligned}
& x_{1}^{\prime}=2 x_{1}+3 x_{2} \\
& x_{2}^{\prime}=-x_{1}-2 x_{2},
\end{aligned}
$$

where $x_{1}=x_{1}(t)$ and $x_{2}=x_{2}(t)$ are functions of t and $x_{1}^{\prime}=\frac{d x_{1}}{d t}, x_{2}^{\prime}=\frac{d x_{2}}{d t}$ are the derivative of $x_{1}(t)$ and $x_{2}(t)$ with respect to time t.
2. Solve the initial value problem

$$
\left\{\begin{array}{l}
x_{1}^{\prime}=4 x_{1}+x_{3} \\
x_{2}^{\prime}=-2 x_{1}+x_{2} \\
x_{3}^{\prime}=-2 x_{1}+x_{3}
\end{array}\right.
$$

where $x_{1}(0)=-1, x_{2}(0)=1$ and $x_{3}(0)=0$.
3. Orthogonally diagonalize the matrix $A=\left(\begin{array}{lll}1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1\end{array}\right)$, that is, show that A is symmetric and find an orthogonal matrix P and a diagonal matrix D such that $P^{-1} A P=D$.
4. Let $A=\left(\begin{array}{ll}3 & 1 \\ 1 & 3\end{array}\right)$.
(a) Find a matrix P that orthogonally diagonally diagonalizes A.
(b) Determine the diagonal matrix $D=P^{T} A P$.
(c) Find the spectral decomposition of A.
5. Consider the matrix $A=\left(\begin{array}{ccc}3 & -2 & 1 \\ 2 & -2 & 2 \\ 3 & -6 & 5\end{array}\right)$
(a) Verify that A satisfies its characteristic equation, as guaranteed by the CaleyHamilton theorem.
(b) Find an expression for A^{4} in terms of A^{2}, A and I and use that expression to evaluate A^{4}.
(c) Find an expression for A^{-1} in terms of A^{2}, A and I.

