Math 225 (Q1) Homework Assignment 6.

1. Let
$$A = \begin{pmatrix} 2 & 3 \\ -1 & -2 \end{pmatrix}$$
. Solve the differential equation $\underline{x}' = A\underline{x}$, that is,
 $x'_1 = 2x_1 + 3x_2$
 $x'_2 = -x_1 - 2x_2$,

where $x_1 = x_1(t)$ and $x_2 = x_2(t)$ are functions of t and $x'_1 = \frac{dx_1}{dt}$, $x'_2 = \frac{dx_2}{dt}$ are the derivative of $x_1(t)$ and $x_2(t)$ with respect to time t.

2. Solve the initial value problem

$$\begin{cases} x_1' = 4x_1 + x_3 \\ x_2' = -2x_1 + x_2 \\ x_3' = -2x_1 + x_3 \end{cases}$$

where $x_1(0) = -1$, $x_2(0) = 1$ and $x_3(0) = 0$.

- 3. Orthogonally diagonalize the matrix $A = \begin{pmatrix} 1 & 1 & 3 \\ 1 & 3 & 1 \\ 3 & 1 & 1 \end{pmatrix}$, that is, show that A is symmetric and find an orthogonal matrix P and a diagonal matrix D such that $P^{-1}AP = D$.
- 4. Let $A = \begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$. (a) Find a matrix P that orthogonally diagonalizes A.
 - (b) Determine the diagonal matrix $D = P^T A P$.
 - (c) Find the spectral decomposition of A.
- 5. Consider the matrix $A = \begin{pmatrix} 3 & -2 & 1 \\ 2 & -2 & 2 \\ 3 & -6 & 5 \end{pmatrix}$
 - (a) Verify that A satisfies its characteristic equation, as guaranteed by the Caley-Hamilton theorem.
 - (b) Find an expression for A^4 in terms of A^2 , A and I and use that expression to evaluate A^4 .
 - (c) Find an expression for A^{-1} in terms of A^2 , A and I.