Math 225 (Q1) Homework Assignment 5.

1. Let
$$\underline{y} = \begin{pmatrix} 5\\ -9\\ 5 \end{pmatrix}$$
, $\underline{u_1} = \begin{pmatrix} 2/3\\ 1/3\\ 2/3 \end{pmatrix}$, $\underline{u_2} = \begin{pmatrix} -2/3\\ 2/3\\ 1/3 \end{pmatrix} \in \mathbf{R}^3$.
(a) Show that $\{u_1, u_2\}$ is an orthonormal set of vectors.

- (b) Let $W = \text{Span}\{\underline{u_1}, \underline{u_2}\}$ be the plane (two dimensional subspace) spanned by the vectors $\underline{u_1}$ and $\underline{u_2}$. Find $\text{proj}_W(\underline{y})$, the projection of the vector \underline{y} onto the subspace
 - W.
- (c) Find the distance from \underline{y} to W, that is, find $||\underline{y} \operatorname{proj}_W(\underline{y})||$.

2. Let
$$A = \begin{pmatrix} 1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1 \end{pmatrix}$$
.

- (a) Find an orthogonal basis for the column space of A.
- (b) Find a QR factorization of A, where Q has orthonormal columns and R is upper triangular matrix with positive diagonal entries.
- 3. Let $A = \begin{pmatrix} 1 & 5 \\ 3 & 1 \\ -2 & 4 \end{pmatrix}$ and $\underline{b} = \begin{pmatrix} 4 \\ -2 \\ -3 \end{pmatrix}$.
 - (a) Find the orthogonal projection of \underline{b} onto $\operatorname{Col}(A)$.
 - (b) Find a least square solution of $A\underline{x} = \underline{b}$ using part (a).
 - (c) Construct the normal equation for $A\underline{x} = \underline{b}$.
 - (d) Solve the normal equation in (c) to get a least square solution of $A\underline{x} = \underline{b}$.
- 4. Find the equation $y = \beta_0 + \beta_1 x$ of the least-squares line that best fit the data points (-1, 0), (0, 1), (1, 2), and (2, 4).
- 5. A healthy child's systolic blood pressure p (in millimeters of mercury) and weight w (in pounds) are approximately related by the equation $p = \beta_0 + \beta_1 \ln w$, where $\ln w$ is the natural logorithm of w.
 - (a) Use the experimental data

$$(w, p) = (44, 91), (61, 98), (81, 103), (113, 110), (131, 112)$$

to find the least–squares fit curve.

(b) Use part (a) to estimate the systolic pressure of a healthy child weighing 100 pounds.