1. Let $\underline{y}=\left(\begin{array}{c}5 \\ -9 \\ 5\end{array}\right), \underline{u_{1}}=\left(\begin{array}{c}2 / 3 \\ 1 / 3 \\ 2 / 3\end{array}\right), \underline{u_{2}}=\left(\begin{array}{c}-2 / 3 \\ 2 / 3 \\ 1 / 3\end{array}\right) \in \mathbf{R}^{3}$.
(a) Show that $\left\{\underline{u_{1}}, \underline{u_{2}}\right\}$ is an orthonormal set of vectors.
(b) Let $W=\operatorname{Span}\left\{\underline{u_{1}}, \underline{u_{2}}\right\}$ be the plane (two dimensional subspace) spanned by the vectors $\underline{u_{1}}$ and $\underline{u_{2}}$. Find $\operatorname{proj}_{W}(\underline{y})$, the projection of the vector \underline{y} onto the subspace W.
(c) Find the distance from \underline{y} to W, that is, find $\left\|\underline{y}-\operatorname{proj}_{W}(\underline{y})\right\|$.
2. Let $A=\left(\begin{array}{ccc}1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1\end{array}\right)$.
(a) Find an orthogonal basis for the column space of A.
(b) Find a $Q R$ factorization of A, where Q has orthonormal columns and R is upper triangular matrix with positive diagonal entries.
3. Let $A=\left(\begin{array}{cc}1 & 5 \\ 3 & 1 \\ -2 & 4\end{array}\right)$ and $\underline{b}=\left(\begin{array}{c}4 \\ -2 \\ -3\end{array}\right)$.
(a) Find the orthogonal projection of \underline{b} onto $\operatorname{Col}(A)$.
(b) Find a least square solution of $A \underline{x}=\underline{b}$ using part (a).
(c) Construct the normal equation for $A \underline{x}=\underline{b}$.
(d) Solve the normal equation in (c) to get a least square solution of $A \underline{x}=\underline{b}$.
4. Find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fit the data points $(-1,0),(0,1),(1,2)$, and $(2,4)$.
5. A healthy child's systolic blood pressure p (in millimeters of mercury) and weight w (in pounds) are approximately related by the equation $p=\beta_{0}+\beta_{1} \ln w$, where $\ln w$ is the natural logorithm of w.
(a) Use the experimental data

$$
(w, p)=(44,91),(61,98),(81,103),(113,110),(131,112)
$$

to find the least-squares fit curve.
(b) Use part (a) to estimate the systolic pressure of a healthy child weighing 100 pounds.

