1.

(a) Since

$$
\begin{aligned}
& \underline{u_{1}} \cdot \underline{u_{2}}=\left(\begin{array}{l}
1 \\
0 \\
1
\end{array}\right) \cdot\left(\begin{array}{c}
-1 \\
4 \\
1
\end{array}\right)=(1)(-1)+(0)(40+(1)(1)=-1+1=0 \\
& \underline{u_{1}} \cdot \underline{u_{3}}=(1)(2)+(0)(1)+(1)(-2)=2-2=0 \\
& \underline{u_{2}} \cdot \underline{u_{3}}=(-1)(2)+(4)(1)+(1)(-2)=-2+4-2=0,
\end{aligned}
$$

therefore $\underline{u_{1}}, \underline{u_{2}}$ and $\underline{u_{3}}$ are pairwise orthogonal and so $\left\{\underline{u_{1}}, \underline{u_{2}}, \underline{u_{3}}\right\}$ is an orthogonal set.
(b)

$$
\underline{x}=\frac{\underline{x} \cdot \underline{u_{1}}}{\underline{u_{1}} \cdot \underline{u_{1}}} \underline{u_{1}}+\frac{\underline{x} \cdot \underline{u_{2}}}{\underline{u_{2}} \cdot \underline{u_{2}} \underline{u_{2}}}+\frac{\underline{x} \cdot \underline{u_{3}}}{\underline{u_{3}} \cdot \underline{u_{3}}} \underline{u_{3}}=\frac{11}{2} \underline{u_{1}}-\frac{13}{18} \underline{u_{2}}+\frac{8}{9} \underline{u_{3}} .
$$

2. Since $\underline{0} \cdot \underline{y}=0$ for all $\underline{y} \in S$, therefore $\underline{0} \in S^{\perp}$. Thus, S^{\perp} is non-empty. Next, let $\underline{u}, \underline{v} \in S^{\perp}$. Then $\underline{u} \cdot \underline{y}=0$ and $\underline{v} \cdot \underline{y}=0$, for all $\underline{y} \in S$. For any scalars a and b and for any vector $\underline{y} \in S$, we have,

$$
(a \underline{u}+b \underline{v}) \cdot \underline{y}=a(\underline{u} \cdot \underline{y})+b(\underline{v} \cdot \underline{y})=a(0)+b(0)=0 .
$$

Thus, $a \underline{u}+b \underline{v} \in S^{\perp}$. Hence, S^{\perp} is a subspace of \mathbf{R}^{n}.
3. Let $\underline{a_{1}}=\left(\begin{array}{c}1 \\ -1 \\ -1 \\ 1 \\ 1\end{array}\right), \underline{a_{2}}=\left(\begin{array}{c}2 \\ 1 \\ 4 \\ -4 \\ 2\end{array}\right)$ and $\underline{a_{3}}=\left(\begin{array}{c}5 \\ -4 \\ -3 \\ 7 \\ 1\end{array}\right)$ be the column vectors of the matrix A. Let $W=\operatorname{Span}\left\{\underline{a_{1}}, \underline{a_{2}}, \underline{a_{3}}\right\}=\operatorname{Col}(A)$. According to the Gram-Schmidt process, define

$$
\begin{aligned}
& \underline{u_{1}}=\underline{a_{1}} \\
& \underline{u_{2}}=\underline{a_{2}}-\frac{a_{2} \cdot \underline{u_{1}}}{\underline{\left\|\underline{u_{1}}\right\|^{2}} \underline{u_{1}}=\underline{a_{2}}+\underline{u_{1}}=\left(\begin{array}{c}
3 \\
0 \\
3 \\
-3 \\
3
\end{array}\right)} \\
& \underline{u_{3}}=\underline{a_{3}}-\left[\underline{\underline{a_{3}} \cdot \underline{u_{1}}}\left\|\underline{u_{1} \|^{2}} \underline{u_{1}}+\underline{a_{3}} \cdot \underline{u_{2}}\right\| \underline{u_{2}} \|^{2} \underline{u_{2}}\right]=\underline{a_{3}}-\left[4 \underline{u_{1}}-\frac{1}{3} \underline{u_{2}}\right]=\left(\begin{array}{c}
2 \\
0 \\
2 \\
2 \\
-2
\end{array}\right) .
\end{aligned}
$$

Then $\left\{\underline{u_{1}}, \underline{u_{2}}, \underline{u_{3}}\right\}$ is an orthogonal basis of $\operatorname{Col}(A)$. Next, we normalize and let

$$
\underline{v_{1}}=\frac{1}{\left\|\underline{u_{1}}\right\|} \underline{u_{1}}=\left(\begin{array}{c}
\frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} \\
-\frac{1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}} \\
\frac{1}{\sqrt{5}}
\end{array}\right), \quad \underline{v_{2}}=\frac{1}{\left\|\underline{u_{2}}\right\|} \underline{u_{2}}=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
-\frac{1}{2} \\
\frac{1}{2}
\end{array}\right), \quad \underline{v_{3}}=\frac{1}{\left\|\underline{u_{3}}\right\|} \underline{u_{3}}=\left(\begin{array}{c}
\frac{1}{2} \\
0 \\
\frac{1}{2} \\
\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right) .
$$

Then $\left\{\underline{v_{1}}, \underline{v_{2}}, \underline{v_{3}}\right\}$ is an orthonormal basis of $\operatorname{Col}(A)$.
4.
(a) Let $\underline{a_{1}}, \cdots, \underline{a_{n}}$ be the column vectors of A. Since these vectors are linearly dependent, there exist scalars x_{1}, \cdots, x_{n} (not all of them are zero) such that $x_{1} \underline{a_{1}}+\cdots+x_{n} \underline{a_{n}}=\underline{0}$. Since the left hand side is $\boldsymbol{A} \underline{x}$, where $\underline{x}=\left(x_{1}, \cdots, x_{n}\right)^{T}$, therefore we have $A \underline{x}=\underline{0}$, where $\underline{x} \neq \underline{0}$. Note that, this also implies $\operatorname{Nul}(A) \neq\{\underline{0}\}$.
(b) Suppose $\underline{a_{1}}, \cdots, \underline{a_{n}}$ are not linearly independent. Then by part (a), there exists $\underline{x} \in \mathbf{R}^{n}$ such that $\underline{x} \neq \underline{0}$ and $A \underline{x}=\underline{0}$. Thus, $A^{T} A \underline{x}=A^{T} \underline{0}=\underline{0}$. It follows that $\underline{x}=\left(A^{T} A\right)^{-1} \underline{0}=\underline{0}$ which is a contradiction. Hence the columns of A are linearly independent. Alternately, we can argue as follows. Since $A^{T} A$ is invertible, therefore $\operatorname{Nul}\left(A^{T} A\right)=\{\underline{0}\}$. Since $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$, therefore $\operatorname{Nul}(A)=\{\underline{0}\}$. Using part (a), we see that the columns of A cannot be linearly dependent and hence they are linearly independent.
5.
(a) Since $(U V)^{-1}=V^{-1} U^{-1}=V^{T} U^{T}=(U V)^{T}$, therefore $U V$ is an orthogonal matrix.
(b) $\quad A=P R P^{-1}$ implies $P^{-1} A P=P^{-1} P R P^{-1} P=R$ so that $R=P^{T} A P$, since $P^{-1}=P^{T}$. Now, $R^{T}=\left(P^{T} A P\right)^{T}=P^{T} A^{T}\left(P^{T}\right)^{T}=P^{T} A P=R$, since $A^{T}=A$. Thus, R is a symmetric matrix. Finally since R is an upper triangular matrix, therefore R^{T} is a lower triangular matrix. Hence $R=R^{T}$ is both upper and lower triangular and consequently it must be a diagonal matrix.

