Math 225 (Q1) Homework Assignment 4.

1. Let $\underline{u_{1}}=\left(\begin{array}{l}1 \\ 0 \\ 1\end{array}\right), \underline{u_{2}}=\left(\begin{array}{c}-1 \\ 4 \\ 1\end{array}\right)$ and $\underline{u_{3}}=\left(\begin{array}{c}2 \\ 1 \\ -2\end{array}\right)$.
(a) Show that $\left\{\underline{u_{1}}, \underline{u_{2}}, \underline{u_{3}}\right\}$ is an orthogonal set.
(b) Using part (a), express $\underline{x}=\left(\begin{array}{c}8 \\ -2 \\ 3\end{array}\right)$ as a linear combination of $\underline{u_{1}}, \underline{u_{2}}$ and $\underline{u_{3}}$.
2. Let $S \subset \mathbf{R}^{\mathbf{n}}$ be a non-empty subset of $\mathbf{R}^{\mathbf{n}}$. Define

$$
S^{\perp}=\left\{\underline{x} \in \mathbf{R}^{\mathbf{n}}: \underline{x} \cdot \underline{y}=0, \quad \text { for all } \underline{y} \in S\right\}
$$

Show that S^{\perp} is a subspace of $\mathbf{R}^{\mathbf{n}}$, that is, S^{\perp} is non-empty and for all vectors $\underline{u}, \underline{v} \in S^{\perp}$ and for all scalars $\alpha, \beta \in \mathbf{R}$, we have $\alpha \underline{u}+\beta \underline{v} \in S^{\perp} . S^{\perp}$ is called the "orthogonal complement" of S.
3. Let $A=\left(\begin{array}{ccc}1 & 2 & 5 \\ -1 & 1 & -4 \\ -1 & 4 & -3 \\ 1 & -4 & 7 \\ 1 & 2 & 1\end{array}\right)$. Using the Gram-Schmidt process, find an orthonormal basis for the column space of A. (Recall that the column space space of $A, \operatorname{Col}(A)$, is the span of the column vectors of A).
4. Let A be a $m \times n$ matrix, where m and n may not be the same,
(a) Show that if the columns of A are linearly dependent, then there exists a non-zero vector $\underline{x} \in \mathbf{R}^{n}$ such that $A \underline{x}=\underline{0}$.
(b) Show that if $A^{T} A$ is invertible, then the columns of A are linearly independent. Hint: Use Question 4 in Assignment 1.
5.
(a) A square matrix U is said to be an "orthogonal" matrix if U is invertible and $U^{-1}=U^{T}$. Let U, V be two $n \times n$ orthogonal matrices. Show that $U V$ is also an orthogonal matrix.
(b) Suppose $A=P R P^{-1}$, where A, P, R are $n \times n$ matrices, P is an orthogonal matrix and R is an upper triangular matrix. This is called a "Schur" factorization/decomposition of A. (Note that this says in particular that the matrix A is
similar to the matrix R). Show that if A is symmetric, then R is also symmetric and hence R is a diagonal matrix.

