1.

(a) Since $A \underline{v_{1}}=\left(\begin{array}{cc}0.6 & 0.3 \\ 0.4 & 0.7\end{array}\right)\binom{3 / 7}{4 / 7}=\binom{3 / 7}{4 / 7}=(1) \underline{v_{1}}$, therefore $\underline{v_{1}}$ is an eigenvector of A corresponding to the eigenvalue 1 . The characteristic equation of A is

$$
\begin{aligned}
0 & =\operatorname{det}(A-\lambda I)=\left(\begin{array}{cc}
0.6-\lambda & 0.3 \\
0.4 & 0.7-\lambda
\end{array}\right)=(0.6-\lambda)(0.7-\lambda)-(0.3)(0.4) \\
& =\lambda^{2}-1.3 \lambda+0.3=(\lambda-1)(\lambda-0.3)
\end{aligned}
$$

so that the eigenvalues of A are: $\lambda=1,0.3$. To find an eigenvector of A corresponding to the eigenvalue 0.3 , we solve the equation: $(A-0.3 I) \underline{x}=\underline{0}$. Since $A-0.3 I=\left(\begin{array}{ll}0.3 & 0.3 \\ 0.4 & 0.4\end{array}\right)$ which can be row reduced to $\left(\begin{array}{rr}1 & 1 \\ 0 & 0\end{array}\right), x_{2}$ is a free variable and $x_{1}+x_{2}=0$. Thus, $\underline{x}=\binom{x_{1}}{x_{2}}=\binom{-x_{2}}{x_{2}}=x_{2}\binom{-1}{1}$ and $\underline{v_{2}}=\binom{-1}{1}$ is an eigenvector of A corresponding to the eigenvalue 0.3 .
(b) We write

$$
\binom{1 / 2}{1 / 2}=x_{0}=\underline{v_{1}}+c \underline{v_{2}}=\binom{3 / 7}{4 / 7}+c\binom{-1}{1} .
$$

Clearly, $c=3 / 7-1 / 2=-1 / 14$.
(c)

$$
\begin{gathered}
\underline{x_{1}}=A \underline{x_{0}}=A\left(\underline{v_{1}}+c \underline{v_{2}}\right)=A \underline{v_{1}}+c A \underline{v_{2}}=\underline{v_{1}}+c(0.3) \underline{v_{2}} . \\
\left.\underline{x_{2}}=A \underline{x_{1}}=A \underline{\left(v_{1}\right.}+c(0.3) \underline{v_{2}}\right)=A \underline{v_{1}}+c(0.3) A \underline{v_{2}}=\underline{v_{1}}+c(0.3)^{2} \underline{v_{2}} .
\end{gathered}
$$

In general, $\underline{x_{k}}=\underline{v_{1}}+c(0.3)^{k} \underline{v_{2}}$. As k gets larger and larger, $(0.3)^{k}$ becomes very small. Thus, $\underline{x_{k}}$ tends to $\underline{v_{1}}$ as k tends to infinity.
2.
(a) $z \bar{z}=|z|^{2}=2^{2}+(-3)^{2}=4+9=13$.
(b) $|z|=\sqrt{2^{2}+(-3)^{2}}=\sqrt{13}$.
(c) $z w=(2-3 i)(3+4 i)=6+8 i-9 i-12 i^{2}=(6+12)+(8-9) i=18-i$.
(d) $\frac{z}{w}=\frac{2-3 i}{3+4 i}=\frac{2-3 i}{3+4 i} \frac{3-4 i}{3-4 i}=\frac{(2-3 i)(3-4 i)}{(3+4 i)(3-4 i)}=\frac{6-8 i-9 i+12 i^{2}}{3^{2}+4^{2}}=\frac{-6-17 i}{25}=-\frac{6}{25}-\frac{17}{25} i$.
3.
(a) The characteristic equation for A is

$$
0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}
0-\lambda & 1 \\
-8 & 4-\lambda
\end{array}\right|=-\lambda(4-\lambda)-(1)(-8)=\lambda^{2}-4 \lambda+8
$$

Using quadratic formula to solve this quadratic equation, we get

$$
\lambda=\frac{1}{2}\left[4 \pm \sqrt{(-4)^{2}-4(1)(8)}\right]=\frac{1}{2}[4 \pm \sqrt{-16}]=\frac{1}{2}[4 \pm \sqrt{16} \sqrt{-1}]=2 \pm 2 i .
$$

Thus, the eigenvalues of A are: $\lambda_{1}=2+2 i$ and $\lambda_{2}=2-2 i=\overline{\lambda_{1}}$. The eigenspace of A corresponding to the eigenvalue λ_{1} is the solution space of the system of equations $\left(A-\lambda_{1} I\right) \underline{z}=\underline{0}$, which is

$$
\begin{aligned}
& \quad\left(\begin{array}{cc}
0-(2+2 i) & 1 \\
-8 & 4-(2+2 i)
\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{0}{0}, \\
& \text { or, } \quad\left(\begin{array}{cc}
-2-2 i & 1 \\
-8 & 2-2 i
\end{array}\right)\binom{z_{1}}{z_{2}}=\binom{0}{0} .
\end{aligned}
$$

The augmented coefficient matrix $\left(\begin{array}{cc|c}-2-2 i & 1 & 0 \\ -8 & 2-2 i & 0\end{array}\right)$ has the reduced row echelon form $\left(\begin{array}{cc|c}1 & -1 / 4+(1 / 4) i & 0 \\ 0 & 0 & 0\end{array}\right)$. Thus, $z_{1}+\left(-\frac{1}{4}+\frac{1}{4} i\right) z_{2}=0$ so that $z_{1}=\left(\frac{1}{4}-\frac{1}{4} i\right) z_{2}$ and solution vector looks like $\underline{z}=\binom{z_{1}}{z_{2}}=z_{2}\binom{\frac{1}{4}-\frac{1}{4} i}{1}$. Thus, $\left\{\left(\frac{1}{4}-\frac{1}{4} i\right)\right\}$ is a basis of the eigenspace of A corresponding to the eigenvalue λ_{1}. By taking complex conjugate, $\left\{\binom{\frac{1}{4}+\frac{1}{4} i}{1}\right\}$ is a basis of the eigenspace of A corresponding to the eigenvalue $\lambda_{2}=\overline{\lambda_{1}}$.
(b) \quad Let $D=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)=\left(\begin{array}{cc}2+2 i & 0 \\ 0 & 2-2 i\end{array}\right)$ and $P=\left(\begin{array}{cc}\frac{1}{4}-\frac{1}{4} i & \frac{1}{4}+\frac{1}{4} i \\ 1 & 1\end{array}\right)$. Then $P^{-1} A P=D$.
(c) By (b), corresponding to the eigenvalue $a-b i=2-2 i$, the eigenvector is $\underline{v}=$ $\binom{\frac{1}{4}+\frac{1}{4} i}{1}$. Let $C=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)=\left(\begin{array}{cc}2 & -2 \\ 2 & 2\end{array}\right)$ and $Q=\left(\begin{array}{ll}\operatorname{Re}(\underline{v}) & \operatorname{Im}(\underline{v}))=\end{array}\right.$ $\left(\begin{array}{cc}\frac{1}{4} & \frac{1}{4} \\ 1 & 0\end{array}\right)$. Then $Q^{-1} A Q=C$.
4. $\bar{q}=\underline{\bar{x}}^{T} A \underline{x}$ follows from taking complex conjugate on both sides of $q=\underline{\bar{x}}^{T} A \underline{x}$. $\overline{\underline{\bar{x}}^{T} A \underline{x}}=\underline{x}^{T} \overline{A \underline{x}}$ comes from the facts: $\overline{B C}=\bar{B} \bar{C}, \overline{B^{T}}=\bar{B}^{T}$ and $\overline{\bar{B}}=B \cdot \underline{x}^{T} \overline{A \underline{x}}=$
$\underline{x}^{T} A \underline{\bar{x}}$ is due to $\overline{B C}=\bar{B} \bar{C}$ and that $\bar{A}=A$, since A is a real matrix. $\underline{x}^{T} A \underline{\bar{x}}=\left(\underline{x}^{T} A \underline{\bar{x}}\right)^{T}$ follows from the fact that $\underline{x}^{T} A \underline{\bar{x}}$ is a number (that is, 1×1 matrix) and for a 1×1 matrix $B, B^{T}=B .\left(\underline{x}^{T} A \underline{\bar{x}}\right)^{T}=\underline{\bar{x}}^{T} A^{T} \underline{x}$ follows from $(B C D)^{T}=D^{T} C^{T} B^{T}$ and $\left(B^{T}\right)^{T}=B . \underline{\bar{x}}^{T} A^{T} \underline{x}=\underline{\bar{x}}^{T} A \underline{x}=q$ follows from $A^{T}=A$, since A is a symmetric matrix. Once we have shown that $\bar{q}=q$, the complex number q must in fact be real, since only a real number can be the same as its complex conjugate.
5.

$$
\begin{aligned}
& \|\underline{u}+\underline{v}\|^{2}+\|\underline{u}-\underline{v}\|^{2}=(\underline{u}+\underline{v}) \cdot(\underline{u}+\underline{v})+(\underline{u}-\underline{v}) \cdot(\underline{u}-\underline{v}) \\
= & {[\underline{u} \cdot \underline{u}+\underline{u} \cdot \underline{v}+\underline{v} \cdot \underline{u}+\underline{v} \cdot \underline{v}]+[\underline{u} \cdot \underline{u}-\underline{u} \cdot \underline{v}-\underline{v} \cdot \underline{u}+\underline{v} \cdot \underline{v}]=2 \underline{u} \cdot \underline{u}+2 \underline{v} \cdot \underline{v} } \\
= & 2\|\underline{u}\|^{2}+2\|\underline{v}\|^{2} .
\end{aligned}
$$

