Math 225 (Q2) Homework Assignment 3.

1. Let $A=\left(\begin{array}{cc}0.6 & 0.3 \\ 0.4 & 0.7\end{array}\right) . A$ is called a "stochastic matrix", meaning that, the entries of A are non-negative and sum of the entries in each column of A is 1 . Let $\underline{v_{1}}=\binom{\frac{3}{7}}{\frac{4}{7}}$ and $\underline{x_{0}}=\binom{\frac{1}{2}}{\frac{1}{2}}$.
(a) Find a "basis" for \mathbf{R}^{2} consisting of $\underline{v_{1}}$ and another eigenvector $\underline{v_{2}}$ of A.
(b) Verify that $\underline{x_{0}}$ can be written in the form $\underline{x_{0}}=\underline{v_{1}}+c \underline{v_{2}}$. Find c
(c) For $k=1,2, \cdots$, define $\underline{x_{k}}=A \underline{x_{k-1}}$, that is, $\underline{x_{k}}=A^{k} \underline{x_{0}}$. Compute $\underline{x_{1}}$ and $\underline{x_{2}}$. Write down a formula for $\underline{x_{k}}$, in terms of $k, \underline{v_{1}}, \underline{v_{2}}$ and the eigenvalues oi A. Show that $\underline{x_{k}}$ tends to $\underline{v_{1}}$ as k gets larger and larger, that is, $\lim _{k \rightarrow \infty} \underline{x_{k}}=\underline{v_{1}}$. (This is called the "power method" for finding eigenvectors numerically).
2. Consider the complex numbers $z=2-3 i$ and $w=3+4 i$. Express the following in the form of $a+b i$, where a, b are real numbers.
(a) $z \bar{z}$,
(b) $|z|$,
(c) $z w$,
(d) $\frac{z}{w}$,
where \bar{z} is the complex conjugate of z and $|z|$ is the modulus of z.
3. Let $A=\left(\begin{array}{cc}0 & 1 \\ -8 & 4\end{array}\right)$. We think of A as a complex matrix.
(a) Find the (complex) eigenvalues of A. Also find a basis for each eigenspace of A in \mathbf{C}^{2}.
(b) Diagonalize A. That is, find a (complex) diagonal matrix D and a (complex) invertible matrix P such that $P^{-1} A P=D$.
(c) Find a real matrix C of the form $C=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$ and a real invertible matrix Q such that that $Q^{-1} A Q=C$.
4. Let A be a $n \times n$ real, symmetric matrix, that is, $A^{T}=A$. Let $\underline{x} \in \mathbf{C}^{\mathbf{n}}$ be a complex vector and let $q=\underline{\bar{x}}^{T} A \underline{x}$. Show that q is a real number. Hint: Justify the following chain of equalities

$$
\bar{q}=\overline{\bar{x}^{T} A \underline{x}}=\underline{x}^{T} \overline{A \underline{x}}=\underline{x}^{T} A \underline{\bar{x}}=\left(\underline{x}^{T} A \underline{\bar{x}}\right)^{T}=\underline{\bar{x}}^{T} A^{T} \underline{x}=q .
$$

5. Prove the parallelogram law: Let $\underline{u}, \underline{v} \in \mathbf{R}^{n}$. Then

$$
\|\underline{u}+\underline{v}\|^{2}+\|\underline{u}-\underline{v}\|^{2}=2\|\underline{u}\|^{2}+2\|\underline{v}\|^{2} .
$$

