Math 225 (Q1) Solution to Homework Assignment 2.
1.
(a) The characteristic equation of A is $0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{cc}a-\lambda & b \\ c & d-\lambda\end{array}\right|=$ $(a-\lambda)(d-\lambda)-b c=\lambda^{2}-(a+d) \lambda+(a d-b c)$. By quadratic formula, the roots are: $\lambda_{ \pm}=\frac{1}{2}\left[(a+d) \pm \sqrt{(a+d)^{2}-4(a d-b c)}\right]=\frac{1}{2}[a+d \pm \sqrt{D}]$.
(b) For $D>0, \lambda_{+}>\lambda_{-}$and A has two distinct eigenvalues.
(c) For $D=0, \lambda_{+}=\lambda_{-}$and A has an eigenvalue with algebraic multiplicity 2 .
(d) For $D<0, \sqrt{D}$ is not a real number and so A has no real eigenvalues.
2.
(a) The characteristic equation is $0=\operatorname{det}(A-\lambda I)=\left|\begin{array}{ccc}3-\lambda & 4 & -1 \\ -1 & -2-\lambda & 1 \\ 3 & 9 & -\lambda\end{array}\right|=$ $(3-\lambda)\left|\begin{array}{cc}-2-\lambda & 1 \\ 9 & -\lambda\end{array}\right|-4\left|\begin{array}{cc}-1 & 1 \\ 3 & -\lambda\end{array}\right|+(-1)\left|\begin{array}{cc}-1 & -2-\lambda \\ 3 & 9\end{array}\right|=-\lambda^{3}+\lambda^{2}+8 \lambda-12$.
(b) Since $-\lambda^{3}+\lambda^{2}+8 \lambda-12$ can be factorized as $-(\lambda+3)(\lambda-2)^{2}$, therefore the eigenvalues are: $\lambda_{1}=-3$ (algebraic multiplicity 1) and $\lambda_{2}=2$ (algebraic multiplicity 2).
(c) Consider the eigenvalue $\lambda=2$, its eigenspace is the solution space of the equation $(A-2 I) \underline{x}=\underline{0}$, which is just $\operatorname{Nul}(A-2 I)$. Now $A-2 I=\left(\begin{array}{ccc}1 & 4 & -1 \\ -1 & -4 & 1 \\ 3 & 9 & -2\end{array}\right)$ has reduced row echelon $\left(\begin{array}{ccc}1 & 0 & 1 / 3 \\ 0 & 1 & -1 / 3 \\ 0 & 0 & 0\end{array}\right)$. The equations are: $x_{1}+\frac{1}{3} x_{3}=0$ and $x_{2}-\frac{1}{3} x_{3}=0$ so that $\underline{x}=x_{3}\left(\begin{array}{c}-1 / 3 \\ 1 / 3 \\ 1\end{array}\right)$ Thus, $\left\{\left(\begin{array}{c}-1 / 3 \\ 1 / 3 \\ 1\end{array}\right)\right\}$ is a basis of the eigenspace of A corresponing to the eigenvalue λ and $\lambda=2$ has geometric multiplicity 1. Similarly, we find that the eigenvalue $\lambda=-3$ has geometric multiplicity 1 and $\left\{\left(\begin{array}{c}1 / 2 \\ -1 / 2 \\ 1\end{array}\right)\right\}$ is a basis of the corresponding eigenspace.
(d) Since the geometric multiplicity of the eigenvalue 2 is not equal to its algebraic multiplicity, A is not diagonalizable.
3.
(a) When we expand the determinant for the characteristic polynomial $p_{A}(\lambda)=$ $\operatorname{det}(A-\lambda I)$, we will get a term $\left(a_{11}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)$. Thus the highest order term in $p_{A}(\lambda)$ is $(-\lambda) \cdots(-\lambda)=(-1)^{n} \lambda^{n}$. On the other hand, since $\lambda_{1}, \cdots, \lambda_{n}$ are roots of $p_{A}(\lambda)$, the linear terms $\lambda-\lambda_{1}, \cdots, \lambda-\lambda_{n}$ are factors of $p_{A}(\lambda)$. Since the highest order term of $\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)$ is $\lambda^{n}, p_{A}(\lambda)=c\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)$, where c is a constant. By comparing the highest order term on both sides, we see that $c=(-1)^{n}$. Thus, $p_{A}(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$.
(b) Let $\lambda=0$ in the identity $\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)$, we get $\operatorname{det}(A)=$ $\lambda_{1} \cdots \lambda_{n}$.
(b) By part (a)

$$
\operatorname{det}(A-\lambda I)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right)
$$

holds for all λ. If we let $\lambda=0$ in this, we get,

$$
\operatorname{det}(A)=\operatorname{det}(A-0 I)=\left(\lambda_{1}-0\right) \cdots\left(\lambda_{n}-0\right)=\lambda_{1} \cdots \lambda_{n}
$$

4.

(a) $\quad p_{A}(\lambda)=\left|\begin{array}{cc}7-\lambda & 4 \\ -3 & -1-\lambda\end{array}\right|=(7-\lambda)(-1-\lambda)-(4)(-3)=\lambda^{2}-6 \lambda+5$.
(b) Since $p_{A}(\lambda)=(\lambda-1)(\lambda-5), \lambda=1,5$ are the eigenvalues of A. To find the eigenvector(s) corresponding to the eigenvalue $\lambda=1$, we solve $(A-(1) I) \underline{x}=$ $\underline{0}$, which is, $\left(\begin{array}{cc}6 & 4 \\ -3 & -2\end{array}\right)\binom{x_{1}}{x_{2}}=\binom{0}{0}$. The augmented coefficient matrix is $\left(\begin{array}{cc|c}6 & 4 & 0 \\ -3 & -2 & 0\end{array}\right)$ and its reduced row echelon form is $\left(\begin{array}{cc|c}1 & 2 / 3 & 0 \\ 0 & 0 & 0\end{array}\right)$ Thus, $\underline{x}=\binom{-\frac{2}{3} x_{2}}{x_{2}}=x_{2}\binom{-\frac{2}{3}}{1}$ and $\binom{-\frac{2}{3}}{1}$ is an eigenvector corresponding to the eigenvalue $\lambda=1$. Similarly, we find the $\binom{-2}{1}$ is an eigenvector corresponding to the eigenvalue $\lambda=5$.
(c) Let $D=\left(\begin{array}{ll}1 & 0 \\ 0 & 5\end{array}\right)$ (a diagonal matrix) and $P=\left(\begin{array}{cc}-\frac{2}{3} & -2 \\ 1 & 1\end{array}\right)$ (an invertible matrix). Then $P^{-1} A P=D$.
(d) $\quad A=P D P^{-1}$ and

$$
A^{10}=P D^{10} P^{-1}=\left(\begin{array}{cc}
-\frac{2}{3} & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1^{10} & 0 \\
0 & 5^{10}
\end{array}\right)\left(\begin{array}{cc}
3 / 4 & 3 / 2 \\
-3 / 4 & -1 / 2
\end{array}\right)=\left(\begin{array}{cc}
14648437 & 9765624 \\
-7324218 & -4882811
\end{array}\right)
$$

(e) Let $C=\left(\begin{array}{cc}1 & 0 \\ 0 & \sqrt{5}\end{array}\right)$. Then $C^{2}=D$. Now define $B=P C P^{-1}$. Then $B^{2}=\left(P C P^{-1}\right)\left(P C P^{-1}\right)=P C P^{-1} P C P^{-1}=P C C P^{-1}=P C^{2} P^{-1}=P D P^{-1}=A$. Finally,

$$
B=\left(\begin{array}{cc}
-\frac{2}{3} & -2 \\
1 & 1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & \sqrt{5}
\end{array}\right)\left(\begin{array}{cc}
3 / 4 & 3 / 2 \\
-3 / 4 & -1 / 2
\end{array}\right)=\left(\begin{array}{cc}
-\frac{1}{2}+\frac{3 \sqrt{5}}{2} & -1+\sqrt{5} \\
-\frac{3}{4}-\frac{3 \sqrt{5}}{4} & \frac{3}{2}-\frac{\sqrt{5}}{2}
\end{array}\right) .
$$

5.

(a) \quad Since $p_{A^{T}}(\lambda)=\operatorname{det}\left(A^{T}-\lambda I\right)=\operatorname{det}\left(A^{T}-(\lambda I)^{T}\right)=\operatorname{det}\left((A-\lambda I)^{T}\right)=\operatorname{det}(A-$ $\lambda I)=p_{A}(\lambda)$, the matrices A^{T} and A have the same characteristic polynomial. Since the eigenvalues are the roots of the characteristic polynomial, A^{T} and A have the same eigenvalues.
(b) Recall that μ is an eigenvalue if and only if $\lambda=\mu$ satisfies the characteristic equation $\operatorname{det}(A-\lambda I)=0$. Now let $\mu=0$ and we see that 0 is an eigenvalue if and only if (in short, iff) $\operatorname{det}(A)=\operatorname{det}(A-0 I)=0$.

