1. Let $A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$.
(a) Use quadratic formula and show that the eigenvalues of A are:

$$
\lambda=\frac{1}{2}\left[(a+d) \pm \sqrt{(a-d)^{2}+4 b c}\right] .
$$

(b) Let $D=(a-d)^{2}+4 b c$. D is called the discriminant. Show that A has two distinct real eigenvalues if $D>0$.
(c) Show that A has one repeated real eigenvalue if $D=0$.
(d) Show that A has no real eigenvalue if $D<0$.
2. Let $A=\left(\begin{array}{ccc}3 & 4 & -1 \\ -1 & -2 & 1 \\ 3 & 9 & 0\end{array}\right)$.
(a) Find the characteristic equation, $\operatorname{det}(A-\lambda I)=0$, of A.
(b) Find the eigenvalues of A. For each eigenvalue of A, state its algebraic multiplicity.
(c) For each eigenvalue of A, state its geometric multiplicity and find a basis for the corresponding eigenspace.
(d) Show that A is not diagonliazable.
3. Let A be a $n \times n$ matrix and suppose A has n real eigenvalues: $\lambda_{1}, \cdots, \lambda_{n}$ (the $\lambda_{i}^{\prime} s$ may not be all distinct).
(a) Show that the characteristic polynomial, $p_{A}(\lambda):=\operatorname{det}(A-\lambda I)$, of A can be expressed as

$$
p_{A}(\lambda)=\left(\lambda_{1}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) .
$$

(b) Using part (a), show that $\operatorname{det}(A)=\lambda_{1} \cdots \lambda_{n}$, that is, $\operatorname{det}(A)$ is the product of the eigenvalues of A.
4. Let $A=\left(\begin{array}{cc}7 & 4 \\ -3 & -1\end{array}\right)$
(a) Find the characteristic polynomial, $p_{A}(\lambda):=\operatorname{det}(A-\lambda I)$, of A.
(b) Find the eigenvalues and eigenvectors of A.
(c) Diagonalize A.
(d) Find A^{10} using part (c).
(e) Using part (c), find a matrix B such that $B^{2}=A$ (B is called a "square root" of $A)$.
5. Let A be a square matrix.
(a) Show that A and A^{T} have the same eigenvalues.
(b) Show that 0 is an eigenvalue of A if and only if A is not invertible (also called "singular", that is $\operatorname{det} A=0$).

