Math 225 (Q1) Solution to Homework Assignment 1.

1. (a)

$$
\begin{gathered}
\text { LHS }=\underline{u} \cdot \underline{v}=u_{1} v_{1}+\cdots+u_{n} v_{n} . \\
\text { RHS }=\underline{u}^{T} \underline{v}=\left(u_{1}, \cdots, u_{n}\right)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)=u_{1} v_{1}+\cdots+u_{n} v_{n} .
\end{gathered}
$$

Since LHS (left hand side) and RHS (right hand side) are the same, the proof is complete.
(b) Note that $\|\underline{u}\|=\sqrt{\underline{u} \cdot \underline{u}}=\sqrt{u_{1}^{2}+\cdots+u_{n}^{2}}$. Thus,

$$
\begin{aligned}
& \|\underline{u}\|=0 \Longleftrightarrow\|\underline{u}\|^{2}=0 \Longleftrightarrow u_{1}^{2}+\cdots+u_{n}^{2}=0 \\
& \Longleftrightarrow u_{1}^{2}=\cdots=u_{n}^{2}=0, \quad \text { since } u_{1}^{2} \geq 0, u_{2}^{2} \geq 0, \text { etc. } \\
& \Longleftrightarrow u_{1}=\cdots=u_{n}=0 \Longleftrightarrow \underline{u}=\underline{0} .
\end{aligned}
$$

2. The (i, j)-th entry of the matrix on the LHS can be expressed as

$$
\left[(A B)^{T}\right]_{i . j}=[A B]_{j, i}=\sum_{k} A_{j, k} B_{k, i}=\sum_{k} B_{k, i} A_{j, k}=\sum_{k}\left[B^{T}\right]_{i, k}\left[A^{T}\right]_{k, j}=\left[B^{T} A^{T}\right]_{i, j}
$$

which is the (i, j)-th entry of the matrix on the RHS.
3. (a) To show that $\operatorname{Ker}(T)$ is a subspace of the domain \mathbf{R}^{n}, we need to establish the following three claims.
Claim 1: $\underline{0} \in \operatorname{Ker}(T)$.
Proof. $T(\underline{0})=T(0 \underline{0})=0 T(\underline{0})=\underline{0}$.
Claim 2: $\underline{u}, \underline{v} \in \operatorname{Ker}(T)$ implies $\underline{u}+\underline{v} \in \operatorname{Ker}(T)$.
Proof. Let $\underline{u}, \underline{v} \in \operatorname{Ker}(T)$. Then $T(\underline{u})=\underline{0}$ and $T(\underline{v})=\underline{0}$. Now,

$$
T(\underline{u}+\underline{v})=T(\underline{u})+T(\underline{v})=\underline{0}+\underline{0}=\underline{0}
$$

so that $\underline{u}+\underline{v} \in \operatorname{Ker}(T)$.
Claim 3: $c \in \mathbf{R}$ and $\underline{u} \in \operatorname{Ker}(T)$ imply $c \underline{u} \in \operatorname{Ker}(T)$.
Proof. Let $\underline{u} \in \operatorname{Ker}(T)$. Then $T(\underline{u}=\underline{0}$. Now,

$$
T(c \underline{u})=c \underset{1}{c} \underline{u})=c \underline{0}=\underline{0}
$$

so that $c \underline{u} \in \operatorname{Ker}(T)$, as desired.
(b) To show that $\operatorname{Ran}(T)$ is a subspace of the codomain \mathbf{R}^{m}, we need to establish the following two claims.

Claim 1: $\underline{0} \in \operatorname{Ran}(T)$.
Proof. We proved $T(\underline{0})=\underline{0}$ in part (a). Thus, $\underline{0} \in \operatorname{Ran}(T)$.
Claim 2: $c, d \in \mathbf{R}$ and $\underline{u}, \underline{v} \in \operatorname{Ran}(T)$ imply $c \underline{u}+d \underline{v} \in \operatorname{Ran}(T)$.
Proof. Let $\underline{u}, \underline{v} \in \operatorname{Ran}(T)$. Then there exist $\underline{x}, \underline{y} \in \mathbf{R}^{n}$ such that $T(\underline{x})=\underline{u}$ and $T(\underline{y})=\underline{v}$. Now $c \underline{x}+d \underline{y} \in \mathbf{R}^{n}$ and

$$
T(c \underline{x}+d \underline{y})=c T(\underline{x})+d T(\underline{y})=c \underline{u}+d \underline{v}
$$

so that $c \underline{u}+d \underline{v} \in \operatorname{Ran}(T)$, as desired.
4. \quad Claim 1: If $\underline{x} \in \operatorname{Nul}(A)$, then $\underline{x} \in \operatorname{Nul}\left(A^{T} A\right)$.

Proof. Let $\underline{x} \in \operatorname{Nul}(A)$. Then $A \underline{x}=\underline{0}$. Multiply by A^{T} on the left, we get,

$$
\left(A^{T} A\right) \underline{x}=A^{T}(A \underline{x})=A^{T} \underline{0}=\underline{0} .
$$

Thus, $\underline{x} \in \operatorname{Nul}\left(A^{T} A\right)$.
Claim 2: If $\underline{x} \in \operatorname{Nul}\left(A^{T} A\right)$, then $\underline{x} \in \operatorname{Nul}(A)$.
Proof. Let $\underline{x} \in \operatorname{Nul}\left(A^{T} A\right)$. Then $A^{T} A \underline{x}=\left(A^{T} A\right) \underline{x}=\underline{0}$. Now

$$
\|A \underline{x}\|^{2}=(A \underline{x}) \cdot(A \underline{x})=(A \underline{x})^{T}(A \underline{x})=\underline{x}^{T} A^{T} A \underline{x}=\underline{x}^{T} \underline{0}=0
$$

so that $\|A \underline{x}\|=0$. Thus, $A \underline{x}=\underline{0}$ and hence $\underline{x} \in \operatorname{Nul}(A)$.
5.

$$
\begin{aligned}
\underline{p} & =\underline{u}-\underline{v}=(\underline{u}-\underline{w})+(\underline{w}-\underline{v})=-(\underline{w}-\underline{u})-(\underline{v}-\underline{w}) \\
& =-\underline{r}-\underline{q}=(-1) \underline{q}+(-1) \underline{r}
\end{aligned}
$$

so that \underline{p} is a linear combination of \underline{q} and \underline{r}. Thus, $\underline{p}, \underline{q}, \underline{r}$ are linear dependent.

