Math 225 (Q1) Homework Assignment 1.

1. Let $\underline{u}=\left(\begin{array}{c}u_{1} \\ \vdots \\ u_{n}\end{array}\right), \underline{v}=\left(\begin{array}{c}v_{1} \\ \vdots \\ v_{n}\end{array}\right)$ be two vectors in \mathbf{R}^{n}. Recall, the dot product of \underline{u} and \underline{v} is defined as

$$
\underline{u} \cdot \underline{v}=u_{1} v_{1}+\cdots+u_{n} v_{n} .
$$

and the length (also called magnitude or norm) of \underline{u} is defined as

$$
\|\underline{u}\|=\sqrt{\underline{u} \cdot \underline{u}} .
$$

(a) Show that

$$
\underline{u} \cdot \underline{v}=\underline{u}^{T} \underline{v}
$$

where $\underline{u}^{T}=\left(u_{1}, \cdots, u_{n}\right)$ is the transpose of \underline{u}.
(b) Show that $\|\underline{u}\|=0$ if and only if $\underline{u}=\underline{0}$, that is, the vector \underline{u} has zero length if and only if \underline{u} is the zero vector.
2. Let $A=\left(a_{i j}\right)_{1 \leq i \leq m, 1 \leq j \leq n}$ be a $m \times n$ matrix and let $B=\left(b_{j k}\right)_{1 \leq j \leq n, 1 \leq k \leq p}$ be a $n \times p$ matrix. Recall that the product C of the matrices A and B is a $m \times p$ matrix, $C=\left(c_{i k}\right)_{1 \leq i \leq m, 1 \leq k \leq p}$, where the (i, k)-th entry of C is given by

$$
c_{i k}=a_{i 1} b_{1 k}+a_{i 2} b_{2 k}+\cdots+a_{i n} b_{n k}
$$

Note that $c_{i k}$ is the "dot product" of the i-th row of A with the k-th column of B. Also recall that the transpose of A is the matrix A^{T} which is a $n \times m$ matrix whose i-th row is the i-th column of A. That is, if $D=A^{T}$ and $D=\left(d_{r s}\right)_{1 \leq r \leq n, 1 \leq s \leq m}$, then

$$
d_{r s}=a_{s r}, \quad \text { for all } \quad 1 \leq r \leq n, 1 \leq s \leq m
$$

Show that $(A B)^{T}=B^{T} A^{T}$.
3. Let $T: \mathbf{R}^{n} \rightarrow \mathbf{R}^{m}$ be a linear transformation, that is, T is a mapping taking vectors in \mathbf{R}^{n} to vectors in \mathbf{R}^{m} and T satisfies the properties

$$
\begin{gathered}
T(\underline{u}+\underline{v})=T(\underline{u})+T(\underline{v}) \\
T(\underline{c})=c T(\underline{u}) \\
1
\end{gathered}
$$

for all $\underline{u}, \underline{v} \in \mathbf{R}^{n}$ and $c \in \mathbf{R}$. Recall, the kernel of T is the subset of \mathbf{R}^{n} defined by

$$
\operatorname{Ker}(T)=\left\{\underline{u} \in \mathbf{R}^{n}: T(\underline{u})=\underline{0}\right\} .
$$

and the range of T is the subset of \mathbf{R}^{m} defined by

$$
\operatorname{Ran}(T)=\left\{\underline{v} \in \mathbf{R}^{m}: \underline{v}=T(\underline{u}) \quad \text { for some } \quad \underline{u} \in \mathbf{R}^{n}\right\} .
$$

(a) Show that $\operatorname{Ker}(T)$ is a subspace of \mathbf{R}^{n}.
(b) Show that $\operatorname{Ran}(T)$ is a subspace of \mathbf{R}^{m}.
4. Let A be a $m \times n$ matrix. Recall that the null space of A is the set

$$
\operatorname{Nul}(A)=\left\{\underline{x} \in \mathbf{R}^{n}: A \underline{x}=\underline{0}\right\} .
$$

Show that $\operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul}(A)$.
5. Let $\underline{u}, \underline{v}$ and \underline{w} be any three vectors in \mathbf{R}^{n}. Define the vectors $\underline{p}=\underline{u}-\underline{v}, \underline{q}=\underline{v}-\underline{w}$ and $\underline{r}=\underline{w}-\underline{u}$. Show that $\underline{p}, \underline{q}$ and \underline{r} are linearly dependent by expressing one of the vectors as a linear combination of the other two vectors.

