Math 225 (Q1) Homework Assignment 1.

1. Let $\underline{u} = \begin{pmatrix} u_1 \\ \vdots \\ u_n \end{pmatrix}$, $\underline{v} = \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$ be two vectors in \mathbf{R}^n . Recall, the dot product of \underline{u} and \underline{v} is defined as

$$\underline{u} \cdot \underline{v} = u_1 v_1 + \dots + u_n v_n.$$

and the length (also called magnitude or norm) of \underline{u} is defined as

$$||\underline{u}|| = \sqrt{\underline{u} \cdot \underline{u}}.$$

(a) Show that

$$\underline{u} \cdot \underline{v} = \underline{u}^T \underline{v}$$

where $\underline{u}^T = (u_1, \cdots, u_n)$ is the transpose of \underline{u} .

- (b) Show that $||\underline{u}|| = 0$ if and only if $\underline{u} = \underline{0}$, that is, the vector \underline{u} has zero length if and only if \underline{u} is the zero vector.
- 2. Let $A = (a_{ij})_{1 \le i \le m, 1 \le j \le n}$ be a $m \times n$ matrix and let $B = (b_{jk})_{1 \le j \le n, 1 \le k \le p}$ be a $n \times p$ matrix. Recall that the product C of the matrices A and B is a $m \times p$ matrix, $C = (c_{ik})_{1 \le i \le m, 1 \le k \le p}$, where the (i, k)-th entry of C is given by

$$c_{ik} = a_{i1}b_{1k} + a_{i2}b_{2k} + \dots + a_{in}b_{nk}.$$

Note that c_{ik} is the "dot product" of the *i*-th row of A with the *k*-th column of B. Also recall that the transpose of A is the matrix A^T which is a $n \times m$ matrix whose *i*-th row is the *i*-th column of A. That is, if $D = A^T$ and $D = (d_{rs})_{1 \le r \le n, 1 \le s \le m}$, then

$$d_{rs} = a_{sr},$$
 for all $1 \le r \le n, \ 1 \le s \le m.$

Show that $(AB)^T = B^T A^T$.

3. Let $T : \mathbf{R}^n \to \mathbf{R}^m$ be a linear transformation, that is, T is a mapping taking vectors in \mathbf{R}^n to vectors in \mathbf{R}^m and T satisfies the properties

$$T(\underline{u} + \underline{v}) = T(\underline{u}) + T(\underline{v})$$
$$T(c\underline{u}) = cT(\underline{u})$$
$$1$$

for all $\underline{u}, \underline{v} \in \mathbf{R}^n$ and $c \in \mathbf{R}$. Recall, the kernel of T is the subset of \mathbf{R}^n defined by

$$\operatorname{Ker}(T) = \{ \underline{u} \in \mathbf{R}^n : T(\underline{u}) = \underline{0} \}.$$

and the range of T is the subset of \mathbf{R}^m defined by

$$\operatorname{Ran}(T) = \{ \underline{v} \in \mathbf{R}^m : \underline{v} = T(\underline{u}) \text{ for some } \underline{u} \in \mathbf{R}^n \}$$

- (a) Show that $\operatorname{Ker}(T)$ is a subspace of \mathbb{R}^n .
- (b) Show that $\operatorname{Ran}(T)$ is a subspace of \mathbf{R}^m .
- 4. Let A be a $m \times n$ matrix. Recall that the null space of A is the set

$$\operatorname{Nul}(A) = \{ \underline{x} \in \mathbf{R}^n : A \underline{x} = \underline{0} \}.$$

Show that $\operatorname{Nul}(A^T A) = \operatorname{Nul}(A)$.

5. Let $\underline{u}, \underline{v}$ and \underline{w} be any three vectors in \mathbf{R}^n . Define the vectors $\underline{p} = \underline{u} - \underline{v}, \underline{q} = \underline{v} - \underline{w}$ and $\underline{r} = \underline{w} - \underline{u}$. Show that $\underline{p}, \underline{q}$ and \underline{r} are linearly dependent by expressing one of the vectors as a linear combination of the other two vectors.