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Introduction

The present notes are based on the courses Math 217 and 317 as I taught them in the

academic year 2004/2005.

These notes are not intended to replace any of the many textbooks on the subject, but

rather to supplement them by relieving the students from the necessity of taking notes

and thus allowing them to devote their full attention to the lecture.

It should be clear that these notes may only be used for educational, non-profit pur-

poses.

Volker Runde, Edmonton October 4, 2017
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Chapter 1

The real number system and

finite-dimensional Euclidean space

1.1 The real line

What is R?

Intuitively, one can think of R as of a line stretching from −∞ to ∞. Intuitition,

however, can be deceptive in mathematics. In order to lay solid foundations for calculus,

we introduce R from an entirely formalistic point of view: we demand from a certain set

that it satisfies the properties that we intuitively expect R to have, and then just define R

to be this set!

What are the properties of R that we need to do mathematics? First of all, we should

be able to do arithmetic.

Definition 1.1.1. A field is a set F together with two binary operations + and · that
satisfy the following properties:

(F1) For all x, y ∈ F, we have x+ y ∈ F and x · y ∈ F as well.

(F2) For all x, y ∈ F, we have x+ y = y + x and x · y = y · x (commutativity).

(F3) For all x, y, z ∈ F, we have x + (y + z) = (x + y) + z and x · (y · z) = (x · y) · z
(associativity).

(F4) For all x, y, z ∈ F, we have x · (y + z) = x · y + x · z (distributivity).

(F5) There exist 0, 1 ∈ F with 0 6= 1 such that for all x ∈ F, we have x + 0 = x and

x · 1 = x (existence of identity (neutral) elements).

(F6) For each x ∈ F, there exists −x ∈ F such that x+(−x) = 0, and for each x ∈ F\{0},
there is x−1 ∈ F such that x · x−1 = 1 (existence of inverse elements).
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Items (F1) to (F6) in Definition 1.1.1 are called the field axioms.

For the sake of simplicity, we use the following shorthand notation:

xy := x · y;
x+ y + z := x+ (y + z);

xyz := x(yz);

x− y := x+ (−y);
x

y
:= xy−1 (where y 6= 0);

xn := x · · · x
︸ ︷︷ ︸

n times

(where n ∈ N);

x0 := 1.

Examples. 1. Q, R, and C are fields.

2. Let F be any field then

F(X) :=

{
p

q
: p and q are polynomials in X with coeffients in F and q 6= 0

}

is a field.

3. Define + and · on {A,B} through the following tables:

+ A B

A A B

B B A

and

· A B

A A A

B A B

This turns {A,B} into a field.

4. Define + and · on {©,♣,♥}:

+ © ♣ ♥
© © ♣ ♥
♣ ♣ ♥ ©
♥ ♥ © ♣

and

· © ♣ ♥
© © © ©
♣ © ♣ ♥
♥ © ♥ ♣

This turns {©,♣,♥} into a field.

5. Let

F[X] := {p : p is a polynomial in X with coefficients in F}.

Then F[X] is not a field.
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6. Both Z and N are not fields.

There are several properties of a field that are not part of the field axioms, but which,

nevertheless, can easily be deduced from them:

1. The identity elements 0 and 1 are unique: suppose that both 01 and 02 are identity

elements for +. Then we have

01 = 01 + 02, by (F5),

= 02 + 01, by (F2),

= 02, again by (F5).

A similar argument works for 1.

2. The inverses −x and x−1 are uniquely determined by x: let x 6= 0, and let y, z ∈ F

be such that xy = xz = 1. Then we have:

y = y(xz), by (F5) and (F6),

= (yx)z, by (F3),

= (xy)z, by (F2),

= z(xy), again by (F2),

= z, again by (F5) and (F6).

A similar argument works for −x.

3. x · 0 = 0 for all x ∈ F.

Proof. We have

x+ x · 0 = 1 · x+ x · 0, by (F5),

= x · (1 + 0), by (F4)

= x · 1, by (F5)

= x, by (F5).

From the uniqueness of the additive inverse, we then see that x · 0 = 0.

4. (−x)y = −(xy) holds for all x, y ∈ R.

Proof. We have

xy + (−x)y = (x− x)y = 0.

The uniqueness of −xy then yields that (−x)y = −xy.
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5. For any x, y ∈ F, the identity

(−x)(−y) = −(x(−y)) = −(−xy) = xy

holds.

6. If xy = 0, then x = 0 or y = 0.

Proof. Suppose that x 6= 0, so that x−1 exists. Then we have

y = y(xx−1) = (yx)x−1 = 0,

which proves the claim.

Of course, Definition 1.1.1 is not enough to fully describe R. Hence, we need to take

properties of R into account that are not merely arithmetic anymore.

Definition 1.1.2. An ordered field is a field O together with a subset P with the following

properties:

(O1) For x, y ∈ P , we have x+ y ∈ P as well.

(O2) For x, y ∈ P , we have xy ∈ P , as well.

(O3) For each x ∈ O, exactly one of the following holds:

(i) x ∈ P ;

(ii) x = 0;

(iii) −x ∈ P .

Again, we introduce shorthand notation:

x < y :⇐⇒ y − x ∈ P ;

x > y :⇐⇒ y < x;

x ≤ y :⇐⇒ x < y or x = y;

x ≥ y :⇐⇒ x > y or x = y.

As for the field axioms, there are several properties of ordered fields that are not part

of the order axioms (Definition 1.1.2 (O1) to (O3)), but follow from them without too

much trouble:

1. x < y and y < z implies x < z.

Proof. If y−x ∈ P and z−y ∈ P , then (O1), implies that z−x = (z−y)+(y−x) ∈ P

as well.
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2. If x < y, then x+ z < y + z for any z ∈ O.

Proof. This holds because (y + z)− (x+ z) = y − x ∈ P .

3. x < y and z < u implies that x+ z < y + u.

4. x < y and t > 0 implies tx < ty.

Proof. We have ty − tx = t(y − x) ∈ P by (O2).

5. 0 ≤ x < y and 0 ≤ t < s implies tx < sy.

6. x < y and t < 0 implies tx > ty.

Proof. We have

tx− ty = t(x− y) = −t(y − x) ∈ P

because −t ∈ P by (O3).

7. x2 > 0 holds for any x 6= 0.

Proof. If x > 0, then x2 > 0 by (O2). Otherwise, −x > 0 must hold by (O3), so

that x2 = (−x)2 > 0 as well.

In particular 1 = 12 > 0.

8. x−1 > 0 for each x > 0.

Proof. This is true because

x−1 = x−1x−1x = (x−1)2x > 0.

holds.

9. 0 < x < y implies y−1 < x−1.

Proof. The fact that xy > 0 implies that x−1y−1 = (xy)−1 > 0. It follows that

y−1 = x(x−1y−1) < y(x−1y−1) = x−1

holds as claimed.

Examples. 1. Q and R are ordered.

2. C cannot be ordered.
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Proof. Assume that P ⊂ C as in Definition 1.1.2 does exist. We know that 1 ∈ P .

On the other hand, we have −1 = i2 ∈ P , which contradicts (O3).

3. {0, 1} cannot be ordered.

Proof. Assume that there is a set P as required by Definition 1.1.2. Since 1 ∈ P

and 0 /∈ P , it follows that P = {1}. But this implies 0 = 1 + 1 ∈ P contradicting

(O1).

Similarly, it can be shown that {0, 1, 2} cannot be ordered.

The last two of these examples are just instances of a more general phenomenon:

Proposition 1.1.3. Let O be an ordered field. Then we can identify the subset {1, 1 +

1, 1 + 1 + 1, . . .} of O with N.

Proof. Let n,m ∈ N be such that

1 + · · ·+ 1
︸ ︷︷ ︸

n times

= 1 + · · ·+ 1
︸ ︷︷ ︸

m times

.

Without loss of generality, let n ≥ m. Assume that n > m. Then

0 = 1 + · · ·+ 1
︸ ︷︷ ︸

n times

− 1 + · · ·+ 1
︸ ︷︷ ︸

m times

= 1 + · · · + 1
︸ ︷︷ ︸

n−m times

> 0

must hold, which is impossible. Hence, we have n = m.

Hence, if O is an ordered field, it contains a copy of the infinite set N and thus has to

be infinite itself. This means that no finite field can be ordered.

Both R and Q satisfy (O1), (O2), and (O3). Hence, (F1) to (F6) combined with (O1),

(O2), and (O3) still do not fully characterize R.

Definition 1.1.4. Let O be an ordered field, and let S ⊂ O. Then C ∈ O is called

(a) an upper bound for S if x ≤ C for all x ∈ S (in this case S is called bounded above);

(b) a lower bound for S if x ≥ C for all x ∈ S (in this case S is called bounded below).

If S is both bounded above and below, we call it simply bounded .

Example. The set

{q ∈ Q : q ≥ 0 and q2 ≤ 2}

is bounded below (by 0) and above (say) by 2015.

Definition 1.1.5. Let O be an ordered field, and let ∅ 6= S ⊂ O.
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(a) An upper bound for S is called the supremum of S (in short: supS) if supS ≤ C for

every upper bound C for S.

(b) A lower bound for S is called the infimum of S (in short: inf S) if inf S ≥ C for every

lower bound C for S.

Example. The set

S := {q ∈ Q : −2 ≤ q < 3}

is bounded such that inf S = −2 and supS = 3. Clearly, −2 is a lower bound for S and

since −2 ∈ S, it must be inf S. Cleary, 3 is an upper bound for S; if r ∈ Q were an upper

bound of S with r < 3, then

1

2
(r + 3) >

1

2
(r + r) = r

can not be in S anymore whereas

1

2
(r + 3) <

1

2
(3 + 3) = 3

implies the opposite. Hence, 3 is the supremum of S.

Do infima and suprema always exist in ordered fields? We shall soon see that this is

not the case in Q.

Definition 1.1.6. An ordered field O is called complete if supS exists for every ∅ 6= S ⊂
O which is bounded above.

We shall use completeness to define R:

Definition 1.1.7. R is a complete ordered field.

It can be shown that R is the only complete ordered field even though this is of little

relevance for us: the only properties of R we are interested in are those of a complete

ordered field. From now on, we shall therefore rely on Definition 1.1.7 alone when dealing

with R.

Here are a few consequences of completeness:

Definition 1.1.8. An ordered field is Archimedean if for every element a of the field there

exists a natural number n with n > a. That is, N is not bounded above by the field.

Theorem 1.1.9. R is Archimedean, i.e. N is not bounded above by R.

Proof. Assume otherwise. Then C := supN exists. Since C − 1 < C, it is impossible that

C − 1 is an upper bound for N. Hence, there is n ∈ N such that C − 1 < n. This, in turn,

implies that C < n+ 1, which is impossible.
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Corollary 1.1.10. Let ǫ > 0. Then there is n ∈ N such that 0 < 1
n
< ǫ.

Proof. By Theorem 1.1.9, there is n ∈ N such that n > ǫ−1. This yields 1
n
< ǫ.

Example. Let

S :=

{

1− 1

n
: n ∈ N

}

⊂ R

Then S is bounded below by 0 and above by 1. Since 0 ∈ S, we have inf S = 0.

Assume that supS < 1. Let ǫ := 1 − supS. By Corollary 1.1.10, there is n ∈ N with

0 < 1
n
< ǫ. But this, in turn, implies that

1− 1

n
> 1− ǫ = supS,

which is a contradiction. Hence, supS = 1 holds.

Corollary 1.1.11. Let x, y ∈ R be such that x < y. Then there is q ∈ Q such that

x < q < y.

Proof. By Corollary 1.1.10, there is n ∈ N such that 1
n
< y−x. Let m ∈ Z be the smallest

integer such that m > nx, so that m− 1 ≤ nx. This implies

nx < m ≤ nx+ 1 < nx+ n(y − x) = ny.

Division by n yields x < m
n
< y.

Theorem 1.1.12. There is a unique x ∈ R \Q with x ≥ 0 such that x2 = 2.

Proof. Let

S := {y ∈ R : y ≥ 0 and y2 ≤ 2}.

Then S is non-empty and bounded above, so that x := supS exists. Clearly, x ≥ 0 holds.

We first show that x2 = 2.

Assume that x2 < 2. Choose n ∈ N such that 1
n
< 1

5(2 − x2). Since x is certainly less

than 2, we know that 2x+ 1 < 5. Then

(

x+
1

n

)2

= x2 +
2x

n
+

1

n2

≤ x2 +
1

n
(2x+ 1)

≤ x2 +
5

n
< x2 + 2− x2

< 2

holds, so that x cannot be an upper bound for S. Hence, we have a contradiction, so that

x2 ≥ 2 must hold.
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Assume now that x2 > 2. Choose n ∈ N such that 1
n
< 1

2x(x
2 − 2), and note that

(

x− 1

n

)2

= x2 − 2x

n
+

1

n2

≥ x2 − 2x

n
≥ x2 − (x2 − 2)

= 2

≥ y2

for all y ∈ S. This, in turn, implies that x− 1
n
≥ y for all y ∈ S. Hence, x− 1

n
< x is an

upper bound for S, which contradicts the definition of x = supS.

Hence, x2 = 2 must hold.

To prove the uniqueness of x, let z ≥ 0 be such that z2 = 2. It follows that

0 = 2− 2 = x2 − z2 = (x− z)(x+ z),

so that x + z = 0 or x − z = 0. Since x, z ≥ 0, x + z = 0 would imply that x = z = 0,

which is impossible. Hence, x− z = 0 must hold, i.e. x = z.

We finally prove that x /∈ Q.

Assume that x = m
n

with n,m ∈ N. Without loss of generality, suppose that m and n

have no common divisor except 1. We clearly have 2n2 = m2, so that m2 must be even.

Therefore, m is even, i.e. there is p ∈ N such that m = 2p. Thus, we obtain 2n2 = 4p2

and consequently n2 = 2p2. Hence, n2 is even and so is n. But if m and n are both even,

they have the divisor 2 in common. This is a contradiction.

The proof of this theorem shows that Q is not complete: if the set

{q ∈ Q : q ≥ 0 and q2 ≤ 2}

had a supremum in Q, this this supremum would be a rational number x ≥ 0 with x2 = 0.

But the theorem asserts that no such rational number can exist.

For a, b ∈ R with a < b, we introduce the following notation:

[a, b] := {x ∈ R : a ≤ x ≤ b} (closed interval);

(a, b) := {x ∈ R : a < x < b} (open interval);

(a, b] := {x ∈ R : a < x ≤ b};
[a, b) := {x ∈ R : a ≤ x < b}.

Theorem 1.1.13 (nested interval property). Let I1, I2, I3, . . . be a nested sequence of

closed intervalls, i.e. In = [an, bn] such that In+1 ⊂ In for all n ∈ N. Then
⋂∞
n=1 In 6= ∅.
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Proof. For all n ∈ N, we have

a1 ≤ · · · ≤ an ≤ an+1 ≤ · · · < · · · ≤ bn+1 ≤ bn ≤ · · · ≤ b1.

Hence, each bm is an upper bound of {an : n ∈ N} for every m ∈ N. Let x := sup{an :

n ∈ N}. Hence, an ≤ x ≤ bm holds for all n ∈ N, i.e. x ∈ In for all n ∈ N and thus

x ∈ ⋂∞
n=1 In.

n n+1a n+1b b n b 1a 1 a

Figure 1.1: Nested interval property

The theorem becomes false if we no longer require the intervals to be closed:

Example. For n ∈ N, let In :=
(
0, 1

n

]
, so that In+1 ⊂ In. Assume that there is ǫ ∈ ⋂∞

n=1 In,

so that ǫ > 0. By Corollary 1.1.10, there is n ∈ N with 0 < 1
n
< ǫ, so that ǫ /∈ In. This is

a contradiction.

Definition 1.1.14. For x ∈ R, let

|x| :=
{

x, if x ≥ 0,

−x, if x ≤ 0.

Proposition 1.1.15. Let x, y ∈ R, and let t ≥ 0. Then the following hold:

(i) |x| = 0 ⇐⇒ x = 0;

(ii) | − x| = |x|;

(iii) |xy| = |x||y|;

(iv) |x| ≤ t ⇐⇒ −t ≤ x ≤ t;

(v) |x+ y| ≤ |x|+ |y| ( triangle inequality);

(vi) ||x| − |y|| ≤ |x− y|.

Proof. (i), (ii), and (iii) are routinely checked.

(iv): Suppose that |x| ≤ t. If x ≥ 0, we have −t ≤ x = |x| ≤ t; for x ≤ 0, we have

−x ≥ 0 and thus −t ≤ −x ≤ t. This implies −t ≤ x ≤ t. Hence, −t ≤ x ≤ t holds for any

x with |x| ≤ t.

Conversely, suppose that −t ≤ x ≤ t. For x ≥ 0, this means x = |x| ≤ t. For x ≤ 0,

the inequality −t ≤ x implies that |x| = −x ≤ t.
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(v): By (iv), we have

−|x| ≤ x ≤ |x| and − |y| ≤ y ≤ |y|.

Adding these two inequalities yields

−(|x|+ |y|) ≤ x+ y ≤ |x|+ |y|.

Again by (iv), we obtain |x+ y| ≤ |x|+ |y| as claimed.

(vi): By (v), we have

|x| = |x− y + y| ≤ |x− y|+ |y|

and hence

|x| − |y| ≤ |x− y|.

Exchanging the rôles of x and y yields

−(|x| − |y|) = |y| − |x| ≤ |y − x| = |x− y|,

so that

||x| − |y|| ≤ |x− y|

holds by (iv).

1.2 Functions

In this section, we give a somewhat formal introduction to functions and introduce the

notions of injectivity, surjectivity, and bijectivity. We use bijective maps to define what

it means for two (possibly infinite) sets to be “of the same size” and show that N and Q

have “the same size” whereas R is “larger” than Q.

Definition 1.2.1. Let A and B be non-empty sets. A subset f of A × B is called a

function or map if for each x ∈ A, there is a unique y ∈ B such that (x, y) ∈ f .

For a function f ⊂ A×B, we write f : A→ B and

y = f(x) :⇐⇒ (x, y) ∈ f.

We then often write

f : A→ B, x 7→ f(x).

The set A is called the domain of f , and B is called its target .
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Definition 1.2.2. Let A and B be non-empty sets, let f : A→ B be a function, and let

X ⊂ A and Y ⊂ B. Then

f(X) := {f(x) : x ∈ X} ⊂ B

is the image of X (under f), and

f−1(Y ) := {x ∈ A : f(x) ∈ Y } ⊂ A

is the inverse image of Y (under f).

Example. Consider sin : R → R, i.e. {(x, sin(x)) : x ∈ R} ⊂ R× R. Then we have:

sin(R) = [−1, 1];

sin([0, π]) = [0, 1];

sin−1({0}) = {nπ : n ∈ Z};
sin−1({x ∈ R : x ≥ 7}) = ∅.

Definition 1.2.3. Let A and B be non-empty sets, and let f : A → B be a function.

Then f is called

(a) injective (one-to-one) if f(x1) 6= f(x2) whenever x1 6= x2 for x1, x2 ∈ A,

(b) surjective (onto) if f(A) = B, and

(c) bijective (one-to-one and onto) if it is both injective and surjective.

Examples. 1. The function

f1 : R → R, x 7→ x2

is neither injective nor surjective, whereas

f2 : [0,∞)
︸ ︷︷ ︸

:={x∈R:x≥0}

→ R, x 7→ x2

is injective, but not surjective, and

f3 : [0,∞) → [0,∞), x 7→ x2

is bijective.

2. The function

sin: [0, 2π] → [−1, 1], x 7→ sin(x)

is surjective, but not injective.
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For finite sets, it is obvious what it means for two sets to have the same size or for

one of them to be smaller or larger than the other one. For infinite sets, matters are more

complicated:

Example. Let N0 := N ∪ {0}. Then N is a proper subset of N0, so that N should be

“smaller” than N0. On the other hand,

N0 → N, n 7→ n+ 1

is bijective, i.e. there is a one-to-one correspondence between the elements of N0 and N.

Hence, N0 and N should “have the same size”.

We use the second idea from the previous example to define what it means for two

sets to have “the same size”:

Definition 1.2.4. Two sets A and B are said to have the same cardinality (in symbols:

|A| = |B|) if there is a bijective map f : A→ B.

Examples. 1. If A and B are finite, then |A| = |B| holds if and ony if A and B have

the same number of elements.

2. By the previous example, we have |N| = |N0|—even though N is a proper subset of

N0.

3. The function

f : N → Z, n 7→ (−1)n
⌊n

2

⌋

is bijective, so that we can enumerate Z as {0, 1,−1, 2,−2, . . .}. As a consequence,

|N| = |Z| holds even though N ( Z.

4. Let a1, a2, a3, . . . be an enumeration of Z. We can then write Q as a rectangular

scheme that allows us to enumerate Q, so that |Q| = |N|.
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1 a 2 a 3 a 4

a 1

2

a 2

2

a 3

2

a 2

3

a 5

a 4

2

a 3

3

a 2

4

a 1

5

a 1

3

a 1

4

2

a 5

3

a 4

3

a 5

4

a 3

4

a 4

4

a 5

5

a 2

5

a 3

5

a 4

5

a 5

a

Figure 1.2: Enumeration of Q

5. Let a < b. The function

f : [a, b] → [0, 1], x 7→ x− a

b− a

is bijective, so that |[a, b]| = |[0, 1]|.

Definition 1.2.5. A set A is called countable if it is finite or if |A| = |N|.

A set A is countable, if and only if we can enumerate it, i.e. A = {a1, a2, a3, . . .}.
As we have already seen, the sets N, N0, Z, and Q are all countable. But not all sets

are:

Theorem 1.2.6. The sets [0, 1] and R are not countable.

Proof. We only consider [0, 1] (this is enough because it is easy to see that a an infinite

subsets of a countable set must again be countable).

Each x ∈ [0, 1] has a decimal expansion

x = 0.ǫ1ǫ2ǫ3 · · · (1.1)
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with ǫ1, ǫ2, ǫ3, . . . ∈ {0, 1, 2, . . . , 9}.
Assume that there is an enumeration [0, 1] = {a1, a2, a3, . . .}. Define x ∈ [0, 1] using

(1.1) by letting, for n ∈ N,

ǫn :=

{

6, if the n-th digit of an is 7,

7, if the n-th digit of an is not 7

Let n ∈ N be such that x = an.

Case 1: The n-th digit of an is 7. Then the n-th digit of x is 6, so that an 6= x.

Case 2: The n-th digit of an is not 7. Then the n-th digit of x is 7, so that an 6= x,

too.

Hence, x /∈ {a1, a2, a3, . . .}, which contradicts [0, 1] = {a1, a2, a3, . . .}.

The argument used in the proof of Theorem 1.2.6 is called Cantor’s diagonal argu-

ment .

1.3 The Euclidean space RN

Recall that, for any sets S1, . . . , SN , their (N -fold) Cartesian product is defined as

S1 × · · · × SN := {(s1, . . . , sN ) : sj ∈ Sj for j = 1, . . . , N}.

The N -dimensional Euclidean space is defined as

RN := R× · · · × R
︸ ︷︷ ︸

N times

= {(x1, . . . , xN ) : x1, . . . , xN ∈ R}.

An element x := (x1, . . . , xN ) ∈ RN is called a point or vector in RN ; the real numbers

x1, . . . , xN ∈ R are the coordinates of x. The vector 0 := (0, . . . , 0) is the origin or zero

vector of RN . (For N = 2 and N = 3, the space RN can be identified with the plane and

three-dimensional space of geometric intuition.)

We can add vectors in RN and multiply them with real numbers: For two vectors

x = (x1, . . . , xN ), y := (y1, . . . , yN ) ∈ RN and a scalar λ ∈ R define:

x+ y := (x1 + y1, . . . , xN + yN ) (addition);

λx := (λx1, . . . , λxN ) (scalar multiplication).
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The following rules for addition and scalar multiplication in RN are easily verified:

x+ y = y + x;

(x+ y) + z = x+ (y + z);

0 + x = x;

x+ (−1)x = 0;

1x = x;

0x = 0;

λ(µx) = (λµ)x;

λ(x+ y) = λx+ λy;

(λ+ µ)x = λx+ µx.

This means that RN is a vector space.

Definition 1.3.1. The inner product on RN is defined by

x · y :=
N∑

j=1

xjyy (x = (x1, . . . , xN ), y := (y1, . . . , yN ) ∈ RN ).

Proposition 1.3.2. The following hold for all x, y, z ∈ RN and λ ∈ R:

(i) x · x ≥ 0;

(ii) x · x = 0 ⇐⇒ x = 0;

(iii) x · y = y · x;

(iv) x · (y + z) = x · y + x · z;

(v) (λx) · y = λ(x · y) = x · λy.

Definition 1.3.3. The (Euclidean) norm on RN is defined by

||x|| :=
√
x · x =

√
√
√
√

N∑

j=1

x2j (x = (x1, . . . , xN )).

For N = 2, 3, the norm ||x|| of a vector x ∈ RN can be interpreted as its length. The

Euclidean norm on RN thus extends the notion of length in 2- and 3-dimensional space,

respectively, to arbitrary dimensions.

Lemma 1.3.4 (Geometric and Arithmetic Mean). For x, y ≥ 0, the inequality

√
xy ≤ 1

2
(x+ y)

holds with equality if and only if x = y.
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Proof. We have

x2 − 2xy + y2 = (x− y)2 ≥ 0 (1.2)

with equality if and only if x = y. This yields

xy ≤ xy +
1

4
(x2 − 2xy + y2) (1.3)

= xy +
1

4
x2 − 1

2
xy +

1

4
y2

=
1

4
x2 +

1

2
xy +

1

4
y2

=
1

4
(x2 + 2xy + y2)

=
1

4
(x+ y)2.

Taking roots yields the desired inequality. It is clear that we have equality if and only if

the second summand in (1.3) vanishes; by (1.2) this is possible only if x = y.

Theorem 1.3.5 (Cauchy–Schwarz inequality). We have

|x · y| ≤
N∑

j=1

|xjyj| ≤ ||x||||y|| (x = (x1, . . . , xN ), y := (y1, . . . , yN ) ∈ RN ).

Proof. The first inequality is clear due to the triangle inequality in R.

If ||x|| = 0, then x1 = · · · = xN = 0, so that
∑N

j=1 |xjyj| = 0; a similar argument

applies if ||y|| = 0. We may therefore suppose that ||x||||y|| 6= 0. We then obtain:

N∑

j=1

|xj ||yj|
||x||||y|| =

N∑

j=1

√
(
xj
||x||

)2( yj
||y||

)2

≤
N∑

j=1

1

2

[(
xj
||x||

)2

+

(
yj
||y||

)2
]

, by Lemma 1.3.4,

=
1

2




1

||x||2
N∑

j=1

x2j +
1

||y||2
N∑

j=1

y2j





=
1

2

[ ||x||2
||x||2 +

||y||2
||y||2

]

= 1.

Multiplication by ||x||||y|| yields the claim.

Proposition 1.3.6 (properties of || · ||). For x, y ∈ RN and λ ∈ R, we have:

(i) ||x|| ≥ 0;

(ii) ||x|| = 0 ⇐⇒ x = 0;
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(iii) ||λx|| = |λ|||x||;

(iv) ||x+ y|| ≤ ||x||+ ||y|| ( triangle inequality);

(v) |||x|| − ||y||| ≤ ||x− y||.

Proof. (i), (ii), and (iii) are easily verified.

For (iv), note that

||x+ y||2 = (x+ y) · (x+ y)

= x · y + x · y + y · x+ y · y
= ||x||2 + 2x · y + ||y||2

≤ ||x||2 + 2||x||||y|| + ||y||2, by Theorem 1.3.5,

= (||x|| + ||y||)2.

Taking roots yields the claim.

For (v), note that — by (iv) with x and y replaced by x− y and y —

||x|| = ||(x− y) + y|| ≤ ||x− y||+ ||y||,

so that

||x|| − ||y|| ≤ ||x− y||.

Interchanging x and y yields

||y|| − ||x|| ≤ ||y − x|| = ||x− y||,

so that

−||x− y|| ≤ ||x|| − ||y|| ≤ ||x− y||.

This proves (v).

We now use the norm on RN to define two important types of subsets of RN :

Definition 1.3.7. Let x0 ∈ RN and let r > 0.

(a) The open ball in RN centered at x0 with radius r is the set

Br(x0) := {x ∈ RN : ||x− x0|| < r}.

(b) The closed ball in RN centered at x0 with radius r is the set

Br(x0) := {x ∈ RN : ||x− x0|| ≤ r}.
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For N = 1, Br(x0) and Br[x0] are nothing but open and closed intervals, respectively,

namely

Br(x0) = (x0 − r, x0 + r) and Br[x0] = [x0 − r, x0 + r].

Moreover, if a < b, then

(a, b) = (x0 − r, x0 + r) and [a, b] = [x0 − r, x0 + r]

holds, with x0 :=
1
2(a+ b) and r := 1

2 (b− a).

For N = 1, Br(x0) and Br[x0] are just disks with center x0 and radius r, where the

circle is not included in the case of Br(x0), but is included for Br[x0].

Finally, if N = 3, then Br(x0) and Br[x0] are balls in the sense of geometric intuation.

In the open case, the surface of the ball is not included, but it is included in the closed

ball.

Definition 1.3.8. A set C ⊂ RN is called convex if tx+(1− t)y ∈ C for all x, y ∈ C and

t ∈ [0, 1].

In plain language, a set is convex if, for any two points x and y in the C, the whole

line segment joining x and y is also in C.

x

y

Figure 1.3: A convex subset of R2
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x

y

Figure 1.4: Not a convex subset of R2

Proposition 1.3.9. Let x0 ∈ RN . Then Br(x0) and Br[x0] are convex.

Proof. We only prove the claim for Br(x0) in detail.

Let x, y ∈ Br(x0) and t ∈ [0, 1]. Then we have

||tx+ (1− t)y − x0|| = ||t(x− x0) + (1− t)(y − x0)||
≤ t||x− x0||+ (1− t)||y − x0||
< tr + (1− t)r (1.4)

= r,

so that tx+ (1− t)y ∈ Br(x0).

The claim for Br[x0] is proved similarly, but with ≤ instead of < in (1.4).

Let I1, . . . , IN ⊂ R be closed intervals, i.e. Ij = [aj , bj ] where aj < bj for j = 1, . . . , N .
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Then I := I1 × · · · × IN is called a closed interval in RN . We have

I = {(x1, . . . , xN ) ∈ RN : aj ≤ xj ≤ bj for j = 1, . . . , N}.

For N = 2, a closed interval in RN , i.e. in the plane, is just a rectangle.

Theorem 1.3.10 (nested interval property in RN ). Let I1, I2, I3, . . . be a decreasing se-

quence of closed intervals in RN . Then
⋂∞
n=1 In 6= ∅ holds.

Proof. Each interval In is of the form

In = In,1 × · · · × In,N

with closed intervals In,1, . . . , In,N in R. For each j = 1, . . . , N , we have

I1,j ⊃ I2,j ⊃ I3,j ⊃ · · · ,

i.e. the sequence I1,j, I2,j , I3,j , . . . is a decreasing sequence of closed intervals in R. By

Theorem 1.1.13, this means that
⋂∞
n=1 In,j 6= ∅, i.e. there is xj ∈ In,j for all n ∈ N. Let

x := (x1, . . . , xN ). Then x ∈ In,1 × · · · × In,N holds for all n ∈ N, which means that

x ∈ ⋂∞
n=1 In.

1.4 Topology

The word topology derives from the Greek and literally means “study of places”. In

mathematics, topology is the discipline that provides the conceptual framework for the

study of continuous functions:

Definition 1.4.1. Let x0 ∈ RN . A set U ⊂ RN is called a neighborhood of x0 if there is

ǫ > 0 such that Bǫ(x0) ⊂ U .
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U

0

x 0Bε ( )

x 0
~

x

Figure 1.5: A neighborhood of x0, but not of x̃0

Examples. 1. If x0 ∈ RN is arbitrary, and r > 0, then both Br(x0) and Br[x0] are

neighborhoods of x0.

2. The interval [a, b] is not a neighborhood of a: To see this assume that is is a

neighborhood of a. Then there is ǫ > 0 such that

Bǫ(a) = (a− ǫ, a+ ǫ) ⊂ [a, b],

which would mean that a− ǫ ≥ a. This is a contradiction.

Similarly, [a, b] is not a neighborhood of b, [a, b) is not a neighborhood of a, and

(a, b] is not a neigborhood of b.

Definition 1.4.2. A set U ⊂ RN is open if it is a neighborhood of each of its points.

Examples. 1. ∅ and RN are open.

2. Let x0 ∈ RN , and let r > 0. We claim that Br(x0) is open. Let x ∈ Br(x0). Choose

ǫ ≤ r − ||x− x0||, and let y ∈ Bǫ(x). It follows that

||y − x0|| ≤ ||y − x||
︸ ︷︷ ︸

<ǫ

+||x− x0||

< r − ||x− x0||+ ||x− x0||
= r;
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hence, Bǫ(x) ⊂ Br(x0) holds.

ε

0

x 0||x − ||
Bε (x )

x 0Br ( )

x

r

x

Figure 1.6: Open balls are open

In particular, (a, b) is open for all a, b ∈ R such that a < b. On the other hand,

[a, b], (a, b], and [a, b) are not open.

3. The set

S := {(x, y, z) ∈ R3 : y2 + z2 = 1, x > 0}

is not open.

Proof. Clearly, x0 := (1, 0, 1) ∈ S. Assume that there is ǫ > 0 such that Bǫ(x0) ⊂ S.

It follows that
(

1, 0, 1 +
ǫ

2

)

∈ Bǫ(x0) ⊂ S.

On the other hand, however, we have

(

1 +
ǫ

2

)2
> 1,
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so that
(
1, 0, 1 + ǫ

2

)
cannot belong to S.

To determine whether or not a given set is open is often difficult if one has nothing

more but the definition at one’s disposal. The following two hereditary properties are

often useful:

Proposition 1.4.3. (i) If U, V ⊂ RN are open, then U ∩ V is open.

(ii) Let I be any index set, and let {Ui : i ∈ I} be a collection of open sets. Then
⋃

i∈I Ui
is open.

Proof. (i): Let x0 ∈ U ∩ V . Since U is open, there is ǫ1 > 0 such that Bǫ1(x0) ⊂ U , and

since V is open, there is ǫ2 > 0 such that Bǫ2(x0) ⊂ V . Let ǫ := min{ǫ1, ǫ2}. Then

Bǫ(x0) ⊂ Bǫ1(x0) ∩Bǫ2(x0) ⊂ U ∩ V

holds, so that U ∩ V is open.

(ii): Let x0 ∈ U :=
⋃

i∈I Ui. Then there is i0 ∈ I such that x ∈ Ui0 . Since Ui0 is open,

there is ǫ > 0 such that Bǫ(x0) ⊂ Ui0 ⊂ U . Hence, U is open.

Example. The subset
⋃∞
n=1Bn

2
((n, 0)) of R2 is open because it is the union of a sequence

of open sets.

Definition 1.4.4. A set F ⊂ RN is called closed if

F c := RN \ F := {x ∈ RN : x /∈ F}

is open.

Examples. 1. ∅ and RN are closed.

2. Let x0 ∈ RN , and let r > 0. We claim that Br[x0] is closed. To see this, let

x ∈ Br[x0]
c, i.e. ||x − x0|| > r. Choose ǫ ≤ ||x − x0|| − r, and let y ∈ Bǫ(x). Then

we have

||y − x0|| ≥ |||y − x|| − ||x− x0|||
≥ ||x− x0|| − ||y − x||
> ||x− x0|| − ||x− x0||+ r

= r,

so that Bǫ(x) ⊂ Br[x0]
c. It follows that Br[x0]

c is open, i.e. Br[x0] is closed.
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Figure 1.7: Closed balls are closed

In particular, [a, b] is closed for all a, b ∈ R with a < b.

3. For a, b ∈ R with a < b, the interval (a, b] is not open because (b − ǫ, b+ ǫ) 6⊂ (a, b]

for all ǫ > 0. But (a, b] is not open either because (a− ǫ, a+ ǫ) 6⊂ R \ (a, b].

Proposition 1.4.5. (i) If F,G ⊂ RN are closed, then F ∪G is closed.

(ii) Let I be any index set, and let {Fi : i ∈ I} be a collection of closed sets. Then
⋂

i∈I Fi
is closed.

Proof. (i): Since F c and Gc are open, so is F c ∩ Gc = (F ∪ G)c by Proposition 1.4.3(i).

Hence, F ∪G is closed.

(ii): Since F ci is open for each i ∈ I, Proposition 1.4.3(ii) hields the openness of

⋃

i∈I
F ci =

(
⋂

i∈I
Fi

)c

,

which, in turn, means that
⋂

i∈I Fi is closed.
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Example. Let x ∈ RN . Since {x} =
⋂

r>0Br[x], it follows that {x} is closed. Consequently,
if x1, . . . , xn ∈ RN , then

{x1, . . . , xn} = {x1} ∪ · · · ∪ {xN}

is closed.

Arbitrary unions of closed sets are, in general, not closed again.

Definition 1.4.6. A point x ∈ RN is called a cluster point of S ⊂ RN if each neighborhood

of x contains a point y ∈ S \ {x}.

Example. Let

S :=

{
1

n
: n ∈ N

}

.

Then 0 is a cluster point of S. Let x ∈ R be any cluster point of S, and assume that

x 6= 0. If x ∈ S, it is of the form x = 1
n

for some n ∈ N. Let ǫ := 1
n
− 1

n+1 , so that

Bǫ(x) ∩ S = {x}. Hence, x cannot be a cluster point. If x /∈ S, choose n0 ∈ N such that
1
n0
< |x|

2 . This implies that 1
n
< |x|

2 for all n ≥ n0. Let

ǫ := min

{ |x|
2
, |1− x|, . . . ,

∣
∣
∣
∣

1

n0 − 1
− x

∣
∣
∣
∣

}

> 0.

It follows that

1,
1

2
, . . . ,

1

n0 − 1
/∈ Bǫ(x)

(because
∣
∣x− 1

k

∣
∣ ≥ ǫ for k = 1, . . . , n0 − 1. For n ≥ n0, we have

∣
∣ 1
n
− x
∣
∣ ≥ |x|

2 ≥ ǫ. All in

all, we have 1
n
/∈ Bǫ(x) for all n ∈ N. Hence, 0 is the only accumulation point of S.

Definition 1.4.7. A set S ⊂ RN is bounded if S ⊂ Br[0] for some r > 0.

Theorem 1.4.8 (Bolzano–Weierstraß). Every bounded, infinite subset S ⊂ RN has a

cluster point.

Proof. Let r > 0 such that S ⊂ Br[0]. It follows that

S ⊂ [−r, r]× · · · × [−r, r]
︸ ︷︷ ︸

N times

=: I1.

We can find 2N closed intervals I
(1)
1 , . . . , I

(2N )
1 such that I1 =

⋃2N

j=1 I
(j)
1 , where

I
(j)
1 = I

(j)
1,1 × · · · × I

(j)
1,N

for j = 1, . . . , 2N such that each interval I
(j)
1,k has length r.

Since S is infinite, there must be j0 ∈ {1, . . . , 2N} such that S ∩ I(j0)1 is infinite. Let

I2 := I
(j0)
1 .

Inductively, we obtain a decreasing sequence I1, I2, I3, . . . of closed intervals with the

following properites:
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(a) S ∩ In is infinite for all n ∈ N;

(b) for In = In,1 × · · · In,N and

ℓ(In) = max{length of In,j : j = 1, . . . , N},

we have

ℓ(In+1) =
1

2
ℓ(In) =

1

4
ℓ(In−1) = · · · = 1

2n
ℓ(I1) =

r

2n−1
.

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

−

r−

I1
(1)

I1

I1
(3)

I1
(4)

I1
(2)

I2=

I2
(1)

I2
(2)

I2
(3)

I2
(4)

r

rr
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Figure 1.8: Proof of the Bolzano–Weierstraß theorem

From Theorem 1.3.10, we know that there is x ∈ ⋂∞
n=1 In.

We claim that x is a cluster point of S.

Let ǫ > 0. For y ∈ In note that

max{|xj − yj| : j = 1, . . . , N} ≤ ℓ(In) =
r

2n−2
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and thus

||x− y|| =





N∑

j=1

|xj − yj|2




1
2

≤
√
N max{|xj − yj| : j = 1, . . . , N}

=

√
N r

2n−2
.

Choose n ∈ N so large that
√
N r

2n−2 < ǫ. It follows that In ⊂ Bǫ(x). Since S ∩ In is infinite,

Bǫ(x) ∩ S must be infinite as well; in particular, Bǫ(x) contains at least one point from

S \ {x}.

Theorem 1.4.9. A set F ⊂ RN is closed if and only if it contains all of its cluster points.

Proof. Suppose that F is closed. Let x ∈ RN be a cluster point of F and assume that

x /∈ F . Since F c is open, it is a neighborhood of x. But F c ∩ F = ∅ holds by definition.

Suppose conversely that F contains its cluster points, and let x ∈ RN \ F . Then x is

not a cluster point of F . Hence, there is ǫ > 0 such that Bǫ(x) ∩ F ⊂ {x}. Since x /∈ F ,

this means in fact that Bǫ(x) ∩ F = ∅, i.e. Bǫ(x) ⊂ F c.

For our next definition, we first give an example as motivation:

Example. Let x0 ∈ RN and let r > 0. Then

Sr[x0] := {x ∈ RN : ||x− x0|| = r}

is the the sphere centered at x0 with radius r. We can think of Sr[x0] as the “surface” of

Br[x0].

Suppose that x ∈ Sr[x0], and let ǫ > 0. We claim that both Bǫ(x) ∩ Br[x0] and

Bǫ(x)∩Br[x0]c are not empty. For Bǫ(x)∩Br[x0], this is trivial because Sr[x0] ⊂ Br[x0],

so that x ∈ Bǫ(x) ∩ Br[x0]. Assume that Bǫ(x) ∩ Br[x0]c = ∅, i.e. Bǫ(x) ⊂ Br[x0]. Let

t > 1, and set yt := t(x− x0) + x0. Note that

||yt − x|| = ||t(x− x0) + x0 − x|| = ||(t− 1)(x− x0)|| < (t− 1)r.

Choose t < 1 + ǫ
r
, then yt ∈ Bǫ(x). On the other hand, we have

||yt − x0|| = t||x− x0|| > r,

so that yt /∈ Br[x0]. Hence, Bǫ(x) ∩Br[x0]c 6= ∅ is empty.

Define the boundary of Br[x0] as

∂Br[x0] := {x ∈ RN : Bǫ(x) ∩Br[x0] and Bǫ(x) ∩Br[x0]c are not empty for each ǫ > 0}.
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By what we have just seen, Sr[x0] ⊂ ∂Br[x0] holds. Conversely, suppose that x /∈ Sr[x0].

Then there are two possibilities, namely x ∈ Br(x0) or x ∈ Br[x0]
c. In the first case, we

find ǫ > 0 such that Bǫ(x) ⊂ Br(x0), so that Bǫ(x) ∩ Br[x0]
c = ∅, and in the second

case, we obtain ǫ > 0 with Bǫ(x) ⊂ Br[x0]
c, so that Bǫ(x) ∩ Br[x0] = ∅. It follows that

x /∈ ∂Br[x0].

All in all, ∂Br[x0] is Sr[x0].

This example motivates the following definition:

Definition 1.4.10. Let S ⊂ RN . A point x ∈ RN is called a boundary point of S if

Bǫ(x) ∩ S 6= ∅ and Bǫ(x) ∩ Sc 6= ∅ for each ǫ > 0. We let

∂S := {x ∈ RN : x is a boundary point of S}

denote the boundary of S.

Examples. 1. Let x0 ∈ RN , and let r > 0. As for Br[x0], one sees that ∂Br(x0) =

Sr[x0].

2. Let x ∈ R, and let ǫ > 0. Then the interval (x− ǫ, x+ ǫ) contains both rational and

irrational numbers. Hence, x is a boundary point of Q. Since x was arbitrary, we

conclude that ∂Q = R.

Proposition 1.4.11. Let S ⊂ RN be any set. Then the following are true:

(i) ∂S = ∂(Sc);

(ii) ∂S ∩ S = ∅ if and only if S is open;

(iii) ∂S ⊂ S if and only if S is closed.

Proof. (i): Since Scc = S, this is immediate from the definition.

(ii): Let S be open, and let x ∈ S. Then there is ǫ > 0 such that Bǫ(x) ⊂ S, i.e.

Bǫ(x) ∩ Sc = ∅. Hence, x is not a boundary point.

Conversely, suppose that ∂S ∩ S = ∅, and let x ∈ S. Since Br(x) ∩ S 6= ∅ for each

r > 0 (it contains x), and since x is not a boundary point, there must be ǫ > 0 such that

Bǫ(x) ∩ Sc = ∅, i.e. Bǫ(x) ⊂ S.

(iii): Let S be closed. Then Sc is open, and by (iii), ∂Sc ∩Sc = ∅, i.e. ∂Sc ⊂ S. With

(ii), we conclude that ∂S ⊂ S.

Suppose that ∂S ⊂ S, i.e. ∂S ∩ Sc = ∅. With (ii) and (iii), this implies that Sc is

open. Hence, S is closed.

Definition 1.4.12. Let S ⊂ RN . Then S, the closure of S, is defined as

S := S ∪ {x ∈ RN : x is a cluster point of S}.
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Theorem 1.4.13. Let S ⊂ RN be any set. Then:

(i) S is closed;

(ii) S is the intersection of all closed sets containing S;

(iii) S = S ∪ ∂S.

Proof. (i): Let x ∈ RN \ S. Then, in particular, x is not a cluster point of S. Hence,

there is ǫ > 0 such that Bǫ(x) ∩ S ⊂ {x}; since x /∈ S, we then have automatically that

Bǫ(x) ∩ S = ∅. Since Bǫ(x) is a neighborhood of each of its points, it follows that no

point of Bǫ(x) can be a cluster point of S. Hence, Bǫ(x) lies in the complement of S.

Consequently, S is closed.

(ii): Let F ⊂ RN be closed with S ⊂ F . Clearly, each cluster point of S is a cluster

point of F , so that

S ⊂ F ∪ {x ∈ RN : x is a cluster point of F} = F.

This proves that S is contained in every closed set containing S. Since S itself is closed,

it equals the intersection of all closed set scontaining S.

(iii): By definition, every point in ∂S not belonging to S must be a cluster point of

S, so that S ∪ ∂S ⊂ S. Conversely, let x ∈ S and suppose that x /∈ S, i.e. x ∈ Sc. Then,

for each ǫ > 0, we trivially have Bǫ(x) ∩ Sc 6= ∅, and since x must be a cluster point, we

have Bǫ(x) ∩ S 6= ∅ as well. Hence, x must be a boundary point of S.

Examples. 1. For x0 ∈ R and r > 0, we have

Br(x0) = Br(x0) ∪ ∂Br(x0) = Br(x0) ∪ Sr[x0] = Br[x0].

2. Since ∂Q = R, we also have Q = R.

Definition 1.4.14. A point x ∈ S ⊂ RN is called an interior point of S if there is ǫ > 0

such that Bǫ(x) ⊂ S. We let

int S := {x ∈ S : x is an interior point of S}

denote the interior of S.

Theorem 1.4.15. Let S ⊂ RN be any set. Then:

(i) int S is open and equals the union of all open subsets of S;

(ii) int S = S \ ∂S.
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Proof. For each x ∈ int S, there is ǫx > 0 such that Bǫx(x) ⊂ S, so that

int S ⊂
⋃

x∈int S
Bǫx(x). (1.5)

Let y ∈ RN be such that there is x ∈ int S such that y ∈ Bǫx(x). Since Bǫx(x) is open,

there is δy > 0 such that

Bδy ⊂ Bǫx(x) ⊂ S.

It follows that y ∈ int S, so that the inclusion (1.5) is, in fact, an equality. Since the right

hand side of (1.5) is open, this proves the first part of (i).

Let U ⊂ S be open, and let x ∈ U . Then there is ǫ > 0 such that Bǫ(x) ⊂ U ⊂ S, so

that x ∈ int S. Hence, U ⊂ int S holds.

For (ii), let x ∈ int S. Then there is ǫ > 0 such that Bǫ(x) ⊂ S and thusBǫ(x)∩Sc = ∅.

It follos that x ∈ S \∂S. Conversely, let x ∈ S such that x /∈ ∂S. Then there is ǫ > 0 such

that Bǫ(x) ∩ S = ∅ or Bǫ(x) ∩ Sc = ∅. Since x ∈ Bǫ(x) ∩ S, the first situation cannot

occur, so that Bǫ(x) ∩ Sc = ∅, i.e. Bǫ(x) ⊂ S. It follows that x is an interior point of

S.

Example. Let x0 ∈ RN , and let r > 0. Then

int Br[x0] = Br[x0] \ Sr[x0] = Br(x0)

holds.

Definition 1.4.16. An open cover of S ⊂ RN is a family {Ui : i ∈ I} of open sets in RN

such that S ⊂ ⋃i∈I Ui.

Example. The family {Br(0) : r > 0} is an open cover for RN .

Definition 1.4.17. A set K ⊂ RN is called compact if every open cover {Ui : i ∈ I} of

K has a finite subcover, i.e. there are i1, . . . , in ∈ I such that

K ⊂ Ui1 ∪ · · · ∪ Uin .

Examples. 1. Every finite set is compact.

Proof. Let S = {x1, . . . , xn} ⊂ RN , and let {Ui : i ∈ I} be an open cover for S,

i.e. x1, . . . , xn ∈ ⋃i∈I Ui. For j = 1, . . . , n, there is thus ij ∈ I such that xj ∈ Uij .

Hence, we have

S ⊂ Ui1 ∪ · · · ∪ Uin .

Hence, {Ui1 , · · · , Uin} is a finite subcover of {Ui : i ∈ I}.

2. The open unit interval (0, 1) is not compact.
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Proof. For n ∈ N, let Un :=
(
1
n
, 1
)
. Then {Un : n ∈ N} is an open cover for (0, 1).

Assume that (0, 1) is compact. Then there are n1, . . . , nk ∈ N such that

(0, 1) = Un1 ∪ · · · ∪ Unk
.

Without loss of generality, let n1 < · · · < nk, so that

(0, 1) = Un1 ∪ · · · ∪ Unk
= Unk

=

(
1

nk
, 1

)

,

which is nonsense.

3. Every compact set K ⊂ RN is bounded.

Proof. Clearly, {Br(0) : r > 0} is an open cover for K. Since K is compact, there

are 0 < r1 < · · · < rn such that

K ⊂ Br1(0) ∪ · · · ∪Brn(0) = Brn(0),

which is possible only if K is bounded.

Lemma 1.4.18. Every compact set K ⊂ RN is closed.

Proof. Let x ∈ Kc. For n ∈ N, let Un := B 1
n
[x]c, so that

K ⊂ RN \ {x} ⊂
∞⋃

n=1

Un.

Since K is compact, there are n1 < · · · < nk in N such that

K ⊂ Un1 ∪ · · · ∪ Unk
= Unk

.

It follows that

B 1
nk

(x) ⊂ B 1
nk

[x] = U cnk
⊂ Kc.

Hence, Kc is a neighborhood of x.

Lemma 1.4.19. Let K ⊂ RN be compact, and let F ⊂ K be closed. Then F is compact.

Proof. Let {Ui : i ∈ I} be an open cover for F . Then {Ui : i ∈ I} ∪ {RN \ F} is an open

cover for K. Compactness of K yields i1, . . . , in ∈ I such that

K ⊂ Ui1 ∪ · · · ∪ Uin ∪RN \ F.

Since F ∩ (RN \ F ) = ∅, it follows that

F ⊂ Ui1 ∪ · · · ∪ Uin .

Since {Ui : i ∈ I} is an arbitrary open cover for F , this entails the compactness of F .

35



Theorem 1.4.20 (Heine–Borel). The following are equivalent for K ⊂ RN :

(i) K is compact.

(ii) K is closed and bounded.

Proof. (i) =⇒ (ii) is clear (no unbounded set is compact, as seen in the examples, and

every compact set is closed by Lemma 1.4.18).

(ii) =⇒ (i): By Lemma 1.4.19, we may suppose that K is a closed interval I1 in RN .

Let {Ui : i ∈ I} be an open cover for I1, and suppose that it does not have a finite

subcover.

As in the proof of the Bolzano–Weierstraß theorem, we may find closed intervals

I
(1)
1 , . . . , I

(2N )
1 with ℓ

(

I
(j)
1

)

= 1
2ℓ(I1) for j = 1, . . . , 2N such that I1 =

⋃2N

j=1 I
(j)
1 . Since

{Ui : i ∈ I} has no finite subcover for I1, there is j0 ∈ {1, . . . , 2N} such that {Ui : i ∈ I}
has no finite subcover for I

(j0)
1 . Let I2 := I

(j0)
1 .

Inductively, we thus obtain closed intervals I1 ⊃ I2 ⊃ I3 ⊃ · · · such that:

(a) ℓ(In+1) =
1
2ℓ(In) = · · · = 1

2n ℓ(I1) for all n ∈ N;

(b) {Ui : i ∈ I} does not have a finite subcover for In for each n ∈ N.

Let x ∈ ⋂∞
n=1 In, and let i0 ∈ I be such taht x ∈ Ui0 . Since Ui0 is open, there is ǫ > 0

such that Bǫ(x) ⊂ Ui0 . Let y ∈ In. It follows that

||y − x|| ≤
√
N max

j=1,...,N
|yj − xj | ≤

√
N

2n−1
ℓ(I1).

Choose n ∈ N so large that
√
N

2n−1 ℓ(I1) < ǫ. It follows that

In ⊂ Bǫ(x) ⊂ Ui0 ,

so that {Ui : i ∈ I} has a finite subcover for In.

Definition 1.4.21. A disconnection for S ⊂ RN is a pair {U, V } of open sets such that:

(a) U ∩ S 6= ∅ 6= V ∩ S;

(b) (U ∩ S) ∩ (V ∩ S) = ∅;

(c) (U ∩ S) ∪ (V ∩ S) = S.

If a disconnection for S exists, S is called disconnected ; otherwise, we say that S is

connected .
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Note that we do not require that U ∩ V = ∅.
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Figure 1.9: A set with disconnection

Examples. 1. Z is disconnected: Choose

U :=

(

−∞,
1

2

)

and V :=

(
1

2
,∞
)

;

the {U, V } is a disconnection for Z.

2. Q is disconnected: A disconnection {U, V } is given by

U := (−∞,
√
2) and V := (

√
2,∞).

3. The closed unit interval [0, 1] is connected.

Proof. We assume that there is a disconnection {U, V } for [0, 1]; without loss of

generality, suppose that 0 ∈ U . Since U is open, there is ǫ0 > 0, which we can

suppose without loss of generality to be from (0, 1), such that (−ǫ0, ǫ0) ⊂ U and

thus [0, ǫ0) ⊂ U ∩S. Let t0 := sup{ǫ > 0 : [0, ǫ) ∈ U ∩ [0, 1]}, so that 0 < ǫ0 ≤ t0 ≤ 1.

Assume that t0 ∈ U . Since U is open, there is δ > 0 such that (t0 − δ, t0 + δ) ⊂ U .

Since t0 − δ < t0, there is ǫ > t0 − δ such that [0, ǫ) with [0, ǫ) ⊂ U , so that

[0, t0 + δ) ∩ [0, 1] ⊂ U ∩ [0, 1].
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If t0 < 1, we can choose δ > 0 so small that t0+ δ < 1, so that [0, t0+ δ) ⊂ U ∩ [0, 1],

which contradicts the definition of t0. If t0 = 1, this means that U ∩ [0, 1] = [0, 1],

which is also impossible because it would imply that V ∩ [0, 1] = ∅. We conclude

that t0 /∈ U .

It follows that t0 ∈ V . Since V is open, there is θ > 0 such that (t0 − θ, t0+ θ) ⊂ V .

Since t0 − θ < t0, there is ǫ > t0 − θ such that [0, ǫ) ⊂ U ∩ [0, 1]. Pick t ∈ (t0 − θ, ǫ).

It follows taht t ∈ (U ∩ [0, 1]) ∩ (V ∩ [0, 1]), which is a contradiction.

All in all, there is no disconnection for [0, 1], and [0, 1] is connected.

Theorem 1.4.22. Let C ⊂ RN be convex. Then C is connected.

Proof. Assume that there is a disconnection {U, V } for C. Let x ∈ U∩C and let y ∈ V ∩C.

Let

Ũ := {t ∈ R : tx+ (1− t)y ∈ U}

and

Ṽ := {t ∈ R : tx+ (1− t)y ∈ V }.

We claim that Ũ is open. To see this, let t0 ∈ Ũ . It follows that x0 := t0x+(1− t0)y ∈ U .

Since U is open, there is ǫ > 0 such that Bǫ(x0) ⊂ U . For t ∈ R with |t− t0| < ǫ
||x||+||y||,

we thus have that

||(tx+ (1− t)y)− x0|| = ||(tx+ (1− t)y)− (t0x+ (1− t0)y)||
≤ |t− t0|(||x|| + ||y||)
< ǫ

and therefore tx+ (1− t)y ∈ Bǫ(x0) ⊂ U . It follows that t ∈ Ũ .

Analoguously, one sees that Ṽ is open.

The following hold for {Ũ , Ṽ }:

(a) Ũ ∩ [0, 1] 6= ∅ 6= Ṽ ∩ [0, 1]: Since x = 1 ·x+(1−1) ·y ∈ U and y = 0 ·x+(1−0) ·y ∈ V ,

we have 1 ∈ U and 0 ∈ V .

(b) (Ũ ∩ [0, 1])∩ (Ṽ ∩ [0, 1]) = ∅: If t ∈ (Ũ ∩ [0, 1]) ∩ (Ṽ ∩ [0, 1]), then tx+ (1− t)yin(U ∩
C) ∩ (V ∩ C), which is impossible.

(c) (Ũ ∩ [0, 1]) ∪ (Ṽ ∩ [0, 1]) = [0, 1]: For t ∈ [0, 1], we have tx+ (1− t)y ∈ C = (U ∩C)∪
(V ∪C) — due to the convexity of C —, so that t ∈ (Ũ ∩ [0, 1]) ∪ (Ṽ ∩ [0, 1]).

Hence, {Ũ , Ṽ ) is a disconnection for [0, 1], which is impossible.

Example. ∅, RN , and all closed and open balls and intervals in RN are connected.
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Corollary 1.4.23. The only subsets of RN which are both open and closed are ∅ and

RN .

Proof. Let U ⊂ RN be both open and closed, and assume that ∅ 6= U 6= RN . Then

{U,U c} would be a disconnection for RN .
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Chapter 2

Limits and continuity

2.1 Limits of sequences

Definition 2.1.1. A sequence in a set S is a function s : N → S.

When dealing with a sequence s : N → S, we prefer to write sn instead of s(n) and

denote the whole sequence s by (sn)
∞
n=1.

Definition 2.1.2. A sequence (xn)
∞
n=1 in RN converges or is convergent to x ∈ RN if, for

each neighborhood U of x, there is nU ∈ N such that xn ∈ U for all n ≥ nU . The vector

x is called the limit of (xn)
∞
n=1. A sequence that does not converge is said to diverge or

to be divergent .

Equivalently, the sequence (xn)
∞
n=1 converges to x ∈ RN if, for each ǫ > 0, there is

nǫ ∈ N such that ||xn − x|| < ǫ for all n ≥ nǫ.

If a sequence (xn)
∞
n=1 in RN converges to x ∈ RN , we write x = limn→∞ xn or xn

n→∞→ x

or simply xn → x.

Proposition 2.1.3. Every sequence in RN has at most one limit.

Proof. Let (xn)
N
n=1 be a sequence in RN with limits x, y ∈ RN . Assume that x 6= y, and

set ǫ : ||x−y||
2 .

Since x = limn→∞ xn, there is nx ∈ N such that ||xn−x|| < ǫ for n ≥ nx, and since also

y = limn→∞ xn, there is ny ∈ N such that ||xn− y|| < ǫ for n ≥ ny. For n ≥ max{nx, ny},
we then have

||x− y|| ≤ ||x− xn||+ ||xn − y|| < 2ǫ = ||x− y||,

which is impossible.
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Figure 2.1: Uniqueness of the limit

Proposition 2.1.4. Every convergent sequence in RN is bounded.

We omit the proof which is almost verbatim like in the one-dimensional case.

Theorem 2.1.5. Let (xn)
∞
n=1 =

((

x
(1)
n , . . . , x

(N)
n

))∞

n=1
be a sequence in RN . Then the

following are equivalent for x =
(
x(1), . . . , x(N)

)
:

(i) limn→∞ xn = x.

(ii) limn→∞ x
(j)
n = x(j) for j = 1, . . . , N .

Proof. (i) =⇒ (ii): Let ǫ > 0. Then there is nǫ ∈ N such that ||xn−x|| < ǫ for all n ≥ nǫ,

so that
∣
∣
∣x(j)n − x(j)

∣
∣
∣ ≤ ||xn − x|| < ǫ

holds for all n ≥ nǫ and for all j = 1, . . . , N . This proves (ii).

(ii) =⇒ (i): Let ǫ > 0. For each j = 1, . . . , N , there is n
(j)
ǫ ∈ N such that

∣
∣
∣x(j)n − x(j)

∣
∣
∣ <

ǫ√
N
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holds for all j = 1, . . . , N and for all n ≥ n
(j)
ǫ . Let nǫ := max

{

n
(1)
ǫ , . . . , n

(N)
ǫ

}

. It follows

that

max
j=1,...,N

∣
∣
∣x(j)n − x(j)

∣
∣
∣ <

ǫ√
N

and thus

||xn − x|| ≤
√
N max

j=1,...,N

∣
∣
∣x(j)n − x(j)

∣
∣
∣ < ǫ

for all n ≥ nǫ.

Examples. 1. The sequence
(
1

n
, 3,

3n2 − 4

n2 + 2n

)∞

n=1

converges to (0, 3, 3), because 1
n
→ 0, 3 → 3 and 3n2−4

n2+2n
→ 3 in R.

2. The sequence
(

1

n3 + 3n
, (−1)n

)∞

n=1

diverges because ((−1)n)∞n=1 does not converge in R.

Since convergence in RN is nothing but coordinatewise convergence, the following is a

straightforward consequence of the limit rules in R:

Proposition 2.1.6 (limit rules). Let (xn)
∞
n=1, (yn)

∞
n=1 be convergent sequences in RN ,

and let (λn)
∞
n=1 be a sequence in R. Then the sequences (xn + yn)

∞
n=1, (λnxn)

∞
n=1, and

(xn · yn)∞n=1 are also convergent such that

lim
n→∞

(xn + yn) = lim
n→∞

xn + lim
n→∞

yn,

lim
n→∞

λnxn = ( lim
n→∞

λn)( lim
n→∞

xn)

and

lim
n→∞

(xn · yn) = ( lim
n→∞

xn) · ( lim
n→∞

yn).

Definition 2.1.7. Let (sn)
∞
n=1 be a sequence in a set S, and let n1 < n2 < · · · . Then

(snk
)∞k=1 is called a subsequence of (xn)

∞
n=1.

As in R, we have:

Theorem 2.1.8. Every bounded sequence in RN has a convergent subsequence.

Proof. Let (xn)
∞
n=1 be a bounded sequence in RN , and let S := {xn : n ∈ N}.

If S is finite, (xn)
∞
n=1 obviously has a constant and thus convergent subsequence.

Suppose therefore that S is infinite. By the Bolzano–Weierstraß theorem, it therefore

has a cluster point x. Choose n1 ∈ N such that xn1 ∈ B1(x) \ {x}. Suppose now that

n1 < n2 < · · · < nk have already been constructed such that

xnj
∈ B 1

j
(x) \ {x}
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for j = 1, . . . , k. Let

ǫ := min

{
1

k + 1
, ||xl − x|| : l = 1, . . . , nk and xl 6= x

}

.

Then there is nk+1 ∈ N such that xnk+1
∈ Bǫ(x) \ {x}. By the choice of ǫ, it is clear that

xnk+1
6= xl for l = 1, . . . , nk, so that that nk+1 > nk.

The subsequence (xnk
)∞k=1 obtained in this fashion satisfies

||xnk
− x|| < 1

k

for all k ∈ N, so that x = limk→∞ xnk
.

Definition 2.1.9. A sequence (xn)
∞
n=1 in R is called decreasing if x1 ≥ x2 ≥ x3 ≥ · · · and

increasing if x1 ≤ x2 ≤ x3 ≤ · · · . It is called monotone if it is increasing or decreasing.

Theorem 2.1.10. A monotone sequence converges if and only if it is bounded.

Proof. Let (xn)
∞
n=1 be a bounded, monotone sequence. Without loss of generality, suppose

that (xn)
∞
n=1 is increasing. By Theorem 2.1.8, (xn)

∞
n=1 has a subsequence (xnk

)∞k=1 which

converges. Let x := limk→∞ xnk
. We will show that actually x = limn→∞ xn.

Let ǫ > 0. Then there is kǫ ∈ N such that

x− xnk
= |xnk

− x| < ǫ,

i.e.

x− ǫ < xnk
< x+ ǫ

for all k ≥ kǫ. Let nǫ := nkǫ, and let n ≥ nǫ. Pick m ∈ N be such that nm ≥ n, and note

that xnǫ ≤ xn ≤ xnm, so that

x− ǫ ≤ xnǫ ≤ xn ≤ xnm < x+ ǫ,

i.e.

|x− xn| < ǫ.

This means that indeed x = limn→∞ xn.

Example. Let θ ∈ (0, 1), so that

0 < θn+1 = θ θn < θn ≤ 1

for all n ∈ N. Hence, the sequence (θn)∞n=1 is bounded and decreasing and thus convergent.

Since

lim
n→∞

θn = lim
n→∞

θn+1 = θ lim
n→∞

θn,

it follows that limn→∞ θn = 0.
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Theorem 2.1.11. The following are equivalent for a set F ⊂ RN :

(i) F is closed.

(ii) For each sequence (xn)
∞
n=1 in F with limit x ∈ RN , we already have x ∈ F .

Proof. (i) =⇒ (i): Let (xn)
∞
n=1 be a convergent sequence in F with limit x ∈ RN . Assume

that x /∈ F , i.e. x ∈ F c. Since F c is open, there is ǫ > 0 such that Bǫ(x) ⊂ F c. Since

x = limn→∞ xn, there is nǫ ∈ N such that ||xn − x|| < ǫ for all n ≥ nǫ. But this, in turn,

means that xn ∈ Bǫ(x) ⊂ F c for n ≥ nǫ, which is absurd.

(ii) =⇒ (i): Assume that F is not closed, i.e. F c is not open. Hence, there is x ∈ F c

such that Bǫ(x) ∩ F 6= ∅ for all ǫ > 0. In particular, there is, for each n ∈ N, an element

xn ∈ F with ||xn − x|| < 1
n
. It follows that x = limn→∞ xn even though (xn)

∞
n=1 lies in F

whereas x /∈ F .

Example. The set

F = {(x1, . . . , xN ) ∈ RN : x1 − x2 − · · · − xN ∈ [0, 1]}

is closed. To see this, let (xn)
∞
n=1 be a sequence in F which converges to some x ∈ RN .

We have

xn,1 − xn,2 − · · · − xn,N ∈ [0, 1]

for n ∈ N. Since [0, 1] is closed this means that

x1 − x2 − · · · − xN = lim
n→∞

(xn,1 − xn,2 − · · · − xn,N ) ∈ [0, 1],

so that x ∈ F .

Theorem 2.1.12. The following are equivalent for a set K ⊂ RN :

(i) K is compact.

(ii) Every sequence in K has a subsequence that converges to a point in K.

Proof. (i) =⇒ (ii): Let (xn)
∞
n=1 be a sequence in K, which is then necessarily bounded.

Hence, it has a convergent subsequence with limit, say x ∈ RN . Since K is also closed, it

follows from Theorem 2.1.11 that x ∈ K.

(ii) =⇒ (i): Assume that K is not compact. By the Heine–Borel theorem, this leaves

two cases:

Case 1: K is not bounded. In this case, there is, for each n ∈ N, and element xn ∈ K
with ||xn|| ≥ n. Hence, every subsequence of (xn)

∞
n=1 is unbounded and thus diverges.

Case 2: K is not closed. By Theorem 2.1.11, there is a sequence (xn)
∞
n=1 in K that

converges to a point x ∈ Kc. Since every subsequence of (xn)
∞
n=1 converges to x as well,

this violates (ii).
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Corollary 2.1.13. Let ∅ 6= F ⊂ RN be closed, and let ∅ 6= K ⊂ RN be compact such

that

inf{||x− y|| : x ∈ K, y ∈ F} = 0.

Then F and K have non-empty intersection.

This is wrong if K is only required to be closed, but not necessarily compact:

x

y

Figure 2.2: Two closed sets in R2 with distance zero, but empty intersection

Proof. For each n ∈ N, choose xn ∈ K and y − n ∈ F such that ||xn − yn|| < 1
n
.

By Theorem 2.1.12, (xn)
∞
n=1 has a subsequence (xnk

)∞k=1 converging to x ∈ K. Since

limn→∞(xn − yn) = 0, it follows that

x = lim
k→∞

xnk
= lim

k→∞
((xnk

− ynk
) + ynk

) = lim
k→∞

ynk

and thus, from Theorem 2.1.11, x ∈ F as well.

Definition 2.1.14. A sequence (xn)
∞
n=1 in RN is called a Cauchy sequence if, for each

ǫ > 0, there is nǫ ∈ N such that ||xn − xm|| < ǫ for n,m ≥ nǫ.

Theorem 2.1.15. A sequence in RN is a Cauchy sequence if and only if it converges.

Proof. Let (xn)
∞
n=1 be a sequence in RN with limit x ∈ RN . Let ǫ > 0. Then there is

nǫ ∈ N such that ||xn − x|| < ǫ
2 for all n ≥ nǫ. It follows that

||xn − xm|| ≤ ||xn − x||+ ||x− xm|| <
ǫ

2
+
ǫ

2
= ǫ

for n,m ≥ nǫ. Hence, (xn)
∞
n=1 is a Cauchy sequence.

Conversely, suppose that (xn)
∞
n=1 is a Cauchy sequence. Then there is n1 ∈ N such

that ||xn − xm|| < 1 for all n,m ≥ n1. For n ≥ n1, this means in particular that

||xn|| ≤ ||xn − xn1 ||+ ||xn1 || < 1 + ||xn1 ||.
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Let

C := max{||x1||, . . . , ||xn1−1||, 1 + ||xn1 ||}.

Then it is immediate that ||xn|| ≤ C for all n ∈ N. Hence, (xn)
∞
n=1 is bounded and thus

has a convergent subsequence, say (xnk
)∞k=1. Let x := limk→∞ xnk

, and let ǫ > 0. Let

n0 ∈ N be such that ||xn−xm|| < ǫ
2 for n ≥ n0, and let kǫ ∈ N be such that ||xnk

−x|| < ǫ
2

for k ≥ kǫ. Let nǫ := nmax{kǫ,n0}. Then it follows that

||xn − x|| ≤ ||xn − xnǫ ||
︸ ︷︷ ︸

< ǫ
2

+ ||xnǫ − x||
︸ ︷︷ ︸

< ǫ
2

< ǫ

for n ≥ nǫ.

Example. For n ∈ N, let

sn :=
n∑

k=1

1

k
.

It follows that

|s2n − sn| =
2n∑

k=n+1

1

k
≥

2n∑

k=n+1

1

2n
=

1

2
,

so that (sn)
∞
n=1 cannot be a Cauchy sequence and thus has to diverge. Since (sn)

∞
n=1 is

increasing, this does in fact mean that it must be unbounded.

2.2 Limits of functions

We define the limit of a function (at a point) through limits of sequences:

Definition 2.2.1. Let ∅ 6= D ⊂ RN , let f : D → RM be a function, and let x0 ∈ D.

Then L ∈ RM is called the limit of f for x → x0 (in symbols: L = limx→x0 f(x)) if

limn→∞ f(xn) = L for each sequence (xn)
∞
n=1 in D with limn→∞ xn = x0.

It is important that x0 ∈ D: otherwise there are not sequences in D converging to x0.

For example, limx→−1
√
x is simply meaningless.

Examples. 1. Let D = [0,∞), and let f(x) =
√
x. Let (xn)

∞
n=1 be a sequence in D

with limn→∞ xn = x0. For n ∈ N, we have

|√xn −
√
x0|2 ≤ |√xn −

√
x0|(

√
xn +

√
x0) = |xn − x0|.

Let ǫ > 0, and choose nǫ ∈ N such that |xn − x0| < ǫ2 for n ≥ nǫ. It follows that

|√xn −
√
x0| < ǫ

for n ≥ nǫ. Since ǫ > 0 was arbitrary, limn→∞
√
xn =

√
x0 holds. Hence, we have

limx→x0

√
x =

√
x0.
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2. LetD = (0,∞), and let f(x) = 1
x
. Let (xn)

∞
n=1 be a sequence inD with limn→∞ xn =

0. Let R > 0. Then there is n0 ∈ N such that xn0 <
1
R

and thus f(xn0) =
1
xn0

> R.

Hence, the sequence (f(xn))
∞
n=1 is unbounded and thus divergent. Consequently,

limx→0 f(x) does not exist.

3. Let

f : R2 \ {(0, 0)} → R, (x, y) 7→ xy

x2 + y2
.

Let xn =
(
1
n
, 1
n

)
, so that limn→∞ xn = 0. Then

f(xn) = f

(
1

n
,
1

n

)

=
1
n2

1
n2 + 1

n2

=
1

2

holds for all n ∈ N.

On the other hand, let x̃n =
(
1
n
, 1
n2

)
, so that

f(x̃n) = f

(
1

n
,
1

n2

)

=
1
n3

1
n2 + 1

n4

=
1

n3
n4

n2 + 1
=

n4

n5 + n3
=

1
n

1 + 1
n2

→ 0.

Consequently, lim(x,y)→(0,0) f(x, y) does not exist.

As in one variable, the limit of a function at a point can be described in alternative

ways:

Theorem 2.2.2. Let ∅ 6= D ⊂ RN , let f : D → RM , and let x0 ∈ D. Then the following

are equivalent for L ∈ RM :

(i) limx→x0 f(x) = L.

(ii) For each ǫ > 0, there is δ > 0 such that ||f(x) − L|| < ǫ for each x ∈ D with

||x− x0|| < δ.

(iii) For each neighborhood U of L, there is a neighborhood V of x0 such that f−1(U) =

V ∩D.

Proof. (i) =⇒ (ii): Assume that (i) holds, but that (ii) is false. Then there is ǫ0 > 0

sucht that, for each δ > 0, there is xδ ∈ D with ||xδ − x0|| < δ, but ||f(xδ)− L|| ≥ ǫ0. In

particular, for each n ∈ N, there is xn ∈ D with ||xn − x0|| < 1
n
, but ||f(xn)−L|| ≥ ǫ0. It

follows that limn→∞ xn = x0 whereas f(xn) 6→ L. This contradicts (i).

(ii) =⇒ (iii): Let U be a neighborhood of L. Choose ǫ > 0 such that Bǫ(L) ⊂ U , and

choose δ > 0 as in (ii). It follows that

D ∩Bδ(x0) ⊂ f−1(Bǫ(L)) ⊂ f−1(U).

Let V := Bδ(x0) ∪ f−1(U).
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(iii) =⇒ (i): Let (xn)
∞
n=1 be a sequence in D with limn→∞ xn = x0. Let U be a

neighborhood of L. By (iii), there is a neighborhood V of x0 such that f−1(U) = V ∩D.

Since x0 = limn→∞ xn, there is nV ∈ N such that xn ∈ V for all n ≥ nV . Conse-

quently, f(xn) ∈ U for all n ≥ nV . Since U is an arbitrary neighborhood of L, we have

limn→∞ f(xn) = L. Since (xn)
∞
n=1 is an arbitrary sequence in D converging to x0, (i)

follows.

Definition 2.2.3. Let ∅ 6= D ⊂ RN , let f : D → RM , and let x0 ∈ D. Then f is

continuous at x0 if limx→x0 f(x) = f(x0).

Applying Theorem 2.2.2 with L = f(x0) yields:

Theorem 2.2.4. Let ∅ 6= D ⊂ RN , let f : D → RM , and let x0 ∈ D. Then the following

are equivalent for L ∈ RM :

(i) f is continuous at x0.

(ii) For each ǫ > 0, there is δ > 0 such that ||f(x) − f(x0)|| < ǫ for each x ∈ D with

||x− x0|| < δ.

(iii) For each neighborhood U of f(x0), there is a neighborhood V of x0 such that

f−1(U) = V ∩D.

Continuity in several variables has hereditary properties similar to those in the one

variable situation:

Proposition 2.2.5. Let ∅ 6= D ⊂ RN , and let f, g : D → RM and φ : D → R be

continuous at x0 ∈ D. Then the functions

f + g : D → RM , x 7→ f(x) + g(x),

φf : D → RM , x 7→ φ(x)f(x),

and

f · g : D → RM , x 7→ f(x) · g(x)

are continuous at x0.

Proposition 2.2.6. Let ∅ 6= D1 ⊂ RN , ∅ 6= D2 ⊂ RM , let f : D2 → RK and g : D1 →
RM be such that g(D1) ⊂ D2, and let x0 ∈ D1 be such that g is continuous at x0 and that

f is continuous at g(x0). Then

f ◦ g : D1 → RK , x 7→ f(g(x))

is continuous at x0.
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Proof. Let (xn)
∞
n=1 be a sequence in D such that xn → x0. Since g is continuous at

x0, we have g(xn) → g(x0), and since f is continuous at g(x0), this ultimately yields

f(g(xn)) → f(g(x0)).

Proposition 2.2.7. Let ∅ 6= D ⊂ RN . Then f = (f1, . . . , fM ) : D → RM is continuous

at x0 if and only if fj : D → R is continuous at x0 for j = 1, . . . ,M .

Examples. 1. The function

f : R2 → R3, (x, y) 7→
(

sin

(
xy2

x2 + y4 + π

)

, e
y17

sin(log(π+cos(x)2)) , 2004

)

is continuous at every point of R2.

2. Let

f : R → R2, x 7→
{

(x, 1), x ≤ 0,

(x,−1), x > 0,

so that

f1 : R → R, x 7→ x

and

f2 : R → R, x 7→
{

1, x ≤ 0,

−1, x > 0.

It follows that f1 is continuous at every point of R, where is f2 is continuous only

at x0 6= 0. It follows that f is continuous at every point x0 6= 0, but discontinuous

at x0 = 0.

2.3 Global properties of continuous functions

So far, we have discussed continuity only in local terms, i.e. at a point. In this section,

we shall consider continuity globally:

Definition 2.3.1. Let ∅ 6= D ⊂ RN . A function f : D → RM is continuous if it is

continuous at each point x0 ∈ D.

Theorem 2.3.2. Let ∅ 6= D ⊂ RN . Then the following are equivalent for f : D → RM :

(i) f is continuous.

(ii) For each open U ⊂ RM , there is an open set V ⊂ RN such that f−1(U) = V ∩D.

Proof. (i) =⇒ (ii): Let U ⊂ RM be open, and let x ∈ D such that f(x) ∈ U , i.e.

x ∈ f−1(U). Since U is open, there is ǫx > 0 such that Bǫx(f(x)) ⊂ U . Since f is
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continuous at x, there is δx > 0 such that ||f(y) − f(x)|| < ǫx for all y ∈ D with

||y − x|| < δx, i.e.

Bδx(x) ∩D ⊂ f−1(Bǫx(f(x))) ⊂ f−1(U).

Letting V :=
⋃

x∈f−1(U)Bδx(x), we obtain an open set such that

f−1(U) ⊂ V ∩D ⊂ f−1(U).

(ii) =⇒ (i): Let x0 ∈ D, and choose ǫ > 0. Then there is an open subset V of RN such

that V ∩D = f−1(Bǫ(f(x0))). In particular, x0 ∈ V . Choose δ > 0 such that Bδ(x0) ⊂ V .

It follows that ||f(x)−f(x0)|| < ǫ for all x ∈ D with ||x−x0|| < δ. Hence, f is continuous

at x0.

Corollary 2.3.3. Let ∅ 6= D ⊂ RN . Then the following are equivalent for f : D → RM :

(i) f is continuous.

(ii) For each closed F ⊂ RM , there is a closed set G ⊂ RN such that f−1(F ) = G ∩D.

Proof. (i) =⇒ (ii): Let F ⊂ RM be closed. By Theorem 2.3.2, there is an open set V ⊂ RN

such that

V ∩D = f−1(F c) = f−1(F )c.

Let G := V c.

(ii) =⇒ (i): Let U ⊂ RM be open. By (ii), there is a closed set G ⊂ RN with

G ∩D = f−1(U c) = f−1(U)c.

Letting V := Gc, we obtain an open set with V ∩D = f−1(U). By Theorem 2.3.2, this

implies the continuity of f .

Example. The set

F = {(x, y, z, u) ∈ R4 : ex+y sin(zu2) ∈ [0, 2] and x− y2 + z3 − u4 ∈ [−π, 2002]}

is closed. This can be seen as follows: The function

f : R4 → R2, (x, y, z, u) 7→ (ex+y sin(zu2), x− y2 + z3 − u4)

is continuous, [0, 2] × [−π, 2002] is closed, and F = f−1([0, 2] × [−π, 2002]).

Theorem 2.3.4. Let ∅ 6= K ⊂ RN be compact, and let f : K → RM be continuous. Then

f(K) is compact.
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Proof. Let {Ui : i ∈ I} be an open cover for f(K). By Theorem 2.3.2, there is, for each

i ∈ I and open subset Vi of R
N such that Vi ∩K = f−1(Ui). Then {Vi : i ∈ I} is an open

cover for K. Since K is compact, there exists i1, . . . , in ∈ I such that

K ⊂ Vi1 ∪ · · · ∪ Vin .

Let x ∈ K. Then there is j ∈ {1, . . . , n} such that x ∈ Vij and thus f(x) ∈ Uij . It follows

that

f(K) ⊂ Ui1 ∪ · · · ∪ Uin ,

so that f(K) is compact.

Corollary 2.3.5. Let ∅ 6= K ⊂ RN be compact, and let f : K → RM be continuous.

Then f(K) is bounded.

Corollary 2.3.6. Let ∅ 6= K ⊂ RN be compact, and let f : K → R be continuous. Then

there exists xmax, xmin ∈ K such that

f(xmax) = sup{f(x) : x ∈ K} and f(xmin) = inf{f(x) : x ∈ K}.

Proof. Since K is compact, it is bounded and closed. Let (yn)
∞
n=1 be a sequence in f(K)

such that yn → y0 := sup{f(x) : x ∈ K}. Since f(K) is closed and y0 is a cluster point of

f(K), there exists xmax ∈ K such that f(xmax) = y0.

The two previous corollaries generalize two well known results on continuous functions

on closed, bounded intervals of R. They show that the crucial property of an interval, say

[a, b] that makes these results work in one variable is precisely compactness.

The intermediate value theorem does not extend to continuous functions on arbitrary

compact sets, as can be seen by very easy examples. The crucial property of [a, b] that

makes this particular theorem work is not compactness, but connectedness.

Theorem 2.3.7. Let ∅ 6= D ⊂ RN be connected, and let f : D → RM be continuous.

Then f(D) is connected.

Proof. Assume that there is a disconnection {U, V } for f(D). Since f is continuous, there

are open sets Ũ , Ṽ ⊂ RN open such that

Ũ ∩D = f−1(U) and Ṽ ∩D = f−1(V ).

But then {Ũ , Ṽ } is a disconnection for D, which is impossible.

This theorem can be used, for example, to show that certain sets are connected:
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Example. The unit circle in the plane

S1 := {(x, y) ∈ R2 : ||(x, y)|| = 1}

is connected because R is connected,

f : R → R2, t 7→ (cos t, sin t),

and S1 = f(R). Inductively, one can then go on and show that SN−1 is connected for all

N ≥ 2.

Corollary 2.3.8 (Intermediate Value Theorem). Let ∅ 6= D ⊂ RN be connected, let

f : D → R be continuous, and let x1, x2 ∈ D be such that f(x1) < f(x2). Then, for each

y ∈ (f(x1), f(x2)), there exists xy ∈ D with f(xy) = y.

Proof. Assume that there is y0 ∈ (f(x1), f(x2)) with y0 /∈ f(D). Then {U, V } with

U := {y ∈ R : y < y0} and V := {y ∈ R : y > y0}

is a disconnection for f(D), which contradicts Theorem 2.3.7.

Examples. 1. Let p be a polynomial of odd degree with leading coefficient one, so that

lim
x→∞

p(x) = ∞ and lim
x→−∞

p(x) = −∞.

Hence, there are x1, x2 ∈ R such that p(x1) < 0 < p(x2). By the intermediate value

theorem, there is x ∈ R with p(x) = 0.

2. Let

D := {(x, y, z) ∈ R3 : ||(x, y, z)|| ≤ π},

so that D is connected. Let

f : D → R, (x, y, z) 7→ xy + z

cos(xyz)2 + 1
.

Then

f(0, 0, 0) = 0 and f(1, 0, 1) =
1

1 + 1
=

1

2
.

Hence, there is (x0, y0, z0) ∈ D such that f(x0, y0, z0) =
1
π
.

2.4 Uniform continuity

We conclude the chapter on continuity, with a property related to, but stronger than

continuity:
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Definition 2.4.1. Let ∅ 6= D ⊂ RN . Then f : D → RM is called uniformly continuous

if, for each ǫ > 0, there is δ > 0 such that ||f(x1) − f(x2)|| < ǫ for all x1, x2 ∈ D with

||x1 − x2|| < δ.

The difference between uniform continuity and continuity at every point is that the

δ > 0 in the definition of uniform continuity depends only on ǫ > 0, but not on a particular

point of the domain.

Examples. 1. All constant functions are uniformly continuous.

2. The function

f : [0, 1] → R2, x 7→ x2

is uniformly continuous. To see this, let ǫ > 0, and observe that

|x21 − x22| = |x1 + x2|(x1 + x2) ≤ 2|x1 − x2|

for all x1, x2 ∈ [0, 1]. Choose δ := ǫ
2 .

3. The function

f : (0, 1] → R, x 7→ 1

x

is continuous, but not uniformly continuous. For each n ∈ N, we have

∣
∣
∣
∣
f

(
1

n

)

− f

(
1

n+ 1

)∣
∣
∣
∣
= |n− (n+ 1)| = 1.

Therefore, there is no δ > 0 such that
∣
∣
∣f
(
1
n

)
− f

(
1

n+1

)∣
∣
∣ < 1

2 whenever
∣
∣
∣
1
n
− 1

n+1

∣
∣
∣ <

δ.

4. The function

f : [0,∞) → R2, x 7→ x2

is continuous, but not uniformly continuous. Assume that there is δ > 0 such that

|f(x1) − f(x2)| < 1 for all x1, x2 ≥ 0 with |x1 − x2| < δ. Choose, x1 := 2
δ
and

x2 :=
2
δ
+ δ

2 . It follows that |x1 − x2| = δ
2 < δ. However, we have

|f(x1)− f(x2)| = |x1 + x2|(x1 + x2)

=
δ

2

(
2

δ
+

2

δ
+
δ

2

)

≥ δ

2

4

δ
= 2.

The following theorem is very valuable when it comes to determining that a given

function is uniformly continuos:
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Theorem 2.4.2. Let ∅ 6= K ⊂ RN be compact, and let f : K → RM be continuous. Then

f is uniformly continuous.

Proof. Assume that f is not uniformly continuous, i.e. there is ǫ0 > 0 such that, for all

δ > 0, there are xδ, yδ ∈ K with ||xδ−yδ|| < δ whereas ||f(xδ)−f(yδ)|| ≥ ǫ0. In particular,

there are, for each n ∈ N, elements xn, yn ∈ K such that

||xn − yn|| <
1

n
and ||f(xn)− f(yn)|| ≥ ǫ0.

Since K is compact, (xn)
∞
n=1 has a subsequence (xnk

)∞k=1 converging to some x ∈ K. Since

xnk
− ynk

→ 0, it follows that

x = lim
k→∞

xnk
= lim

k→∞
ynk

.

The continuity of f yields

f(x) = lim
k→∞

f(xnk
) = lim

k→∞
f(ynk

).

Hence, there are k1, k2 ∈ N such that

||f(x)− f(xnk
)|| < ǫ0

2
for k ≥ k1 and ||f(x)− f(ynk

)|| < ǫ0
2

for k ≥ k2.

For k ≥ max{k1, k2}, we thus have

||f(xnk
)− f(ynk

)|| ≤ ||f(xnk
)− f(x)||+ ||f(x)− f(ynk

)|| < ǫ0
2

+
ǫ0
2

= ǫ0,

which is a contradiction.
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Chapter 3

Differentiation in RN

3.1 Differentiation in one variable

In this section, we give a quick review of differentiation in one variable.

Definition 3.1.1. Let I ⊂ R be an interval, and let x0 ∈ I. Then f : I → R is said to be

differentiable at x0 if

lim
h→0
h6=0

f(x0 + h)− f(x0)

h

exists. This limit is denoted by f ′(x0) and called the first derivative of f at x0.

Intuitively, differentiability of f at x0 means that we can put a tangent line to the

curve given by f at (x0, f(x0)):

y

(x )

x 0x 1
x

f

Figure 3.1: Tangent lines to f(x) at x0 and x1
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Example. Let n ∈ N, and let

f : R → R, x 7→ xn.

Let h ∈ R \ {0}. By the binomial theorem, we have

(x+ h)n =

n∑

j=0

(
n

j

)

xjhn−j

and thus

(x+ h)n − xn =

n−1∑

j=0

(
n

j

)

xjhn−j .

Letting h→ 0, we obtain:

(x+ h)n − xn

h
=

n−1∑

j=0

(
n

j

)

xjhn−j−1

=
n−2∑

j=0

(
n

j

)

xjh

>0
︷ ︸︸ ︷

n− j − 1 + nxn−1

→ nxn−1.

Proposition 3.1.2. Let I ⊂ R be an interal, and let f : I → R be a differentiable at

x0 ∈ I. Then f is continuous at x0.

Proof. Let (xn)
∞
n=1 be a sequence in I such that xn → x0. Without loss of generality,

suppose that xn 6= x0 for all n ∈ N. It follows that

|f(xn)− f(x0)| = |xn − x|
︸ ︷︷ ︸

→0

∣
∣
∣
∣

f(xn)− f(x0)

xn − x0

∣
∣
∣
∣

︸ ︷︷ ︸

→|f ′(x0)|

→ 0.

Hence, f is continuous at x0.

We recall the differentiation rules without proof:

Proposition 3.1.3 (rules of differentiation). Let I ⊂ R be an interval, and let f, g : I → R

be differentiable at x0 ∈ I. Then f + g, fg, and — if g(x0) 6= 0 — are differentiable at x0

such that

(f + g)′(x0) = f ′(x0) + g′(x0),

(fg)′(x0) = f(x0)g
′(x0) + f ′(x0)g(x0),

and (
f

g

)′
(x0) =

f ′(x0)g(x0)− f(x0)g
′(x0)

g(x0)2
.

56



Proposition 3.1.4 (chain rule). Let I, J ⊂ R be intervals, let g : I → R and f : J → R

be functions such that g(I) ⊂ J , and suppose that g is differentiable at x0 ∈ I and that f

is differentiable at g(x0) ∈ J . Then f ◦ g : I → R is differentiable at x0 such that

(f ◦ g)′(x0) = f ′(g(x0))g
′(x0).

Definition 3.1.5. Let I ⊂ R be an interval. We call f : I → R differentiable if it is

differentiable at each point of I.

Example. Define

f : R → R, x 7→
{

x2 sin
(
1
x

)
, x 6= 0,

0, x = 0.

It is clear f is differentiable at all x 6= 0 with

f ′(x) = 2x sin

(
1

x

)

− x2
1

x2
cos

(
1

x

)

= 2x sin

(
1

x

)

− cos

(
1

x

)

.

Let h 6= 0. Then we have
∣
∣
∣
∣

f(0 + h)− f(0)

h

∣
∣
∣
∣
=

∣
∣
∣
∣

1

h
h2 sin

(
1

h

)∣
∣
∣
∣
=

∣
∣
∣
∣
h sin

(
1

h

)∣
∣
∣
∣
≤ |h| h→0→ 0,

so that f is also differentiable at x = 0 with f ′(0) = 0. Let xn := 1
2πn , so that xn → 0. It

follows that

f ′(xn) =
1

πn
sin(2πn)

︸ ︷︷ ︸

=0

− cos(2πn)
︸ ︷︷ ︸

=1

6→ f ′(0).

Hence, f ′ is not continuous at x = 0.

Definition 3.1.6. Let∅ 6= D ⊂ R, and let x0 be an interior point ofD. Then f : D → R is

said to have a local maximum [minimum] at x0 if there is ǫ > 0 such that (x0−ǫ, x0+ǫ) ⊂ D

and f(x) ≤ f(x0) [f(x) ≥ f(x0)] for all x ∈ (x0 − ǫ, x0 + ǫ). If f has a local maximum or

minimum at x0, we say that f has a local extremum at x0.

Theorem 3.1.7. Let ∅ 6= D ⊂ R, let f : D → R have a local extremum at x0 ∈ int D,

and suppose that f is differentiable at x0. Then f ′(x0) = 0 holds.

Proof. We only treat the case of a local maximum.

Let ǫ > 0 be as in Definition 3.1.6. For h ∈ (−ǫ, 0), we have x0 + h ∈ (x0 − ǫ, x0 + ǫ),

so that
≤0

︷ ︸︸ ︷

f(x0 + h)− f(x0)

h
︸︷︷︸

≤0

≥ 0.
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It follows that f ′(x0) ≥ 0. On the other hand, we have for h ∈ (0, ǫ) that

≤0
︷ ︸︸ ︷

f(x0 + h)− f(x0)

h
︸︷︷︸

≥0

≤ 0,

so that f ′(x0) ≤ 0.

Consequently, f ′(x0) = 0 holds.

Lemma 3.1.8 (Rolle’s theorem). Let a < b, and let f : [a, b] → R be continuous such that

f(a) = f(b) and such that f is differentiable on (a, b). Then there is ξ ∈ (a, b) such that

f ′(ξ) = 0.

Proof. The claim is clear if f is constant. Hence, we may suppose that f is not constant.

Since f is continuous, there is ξ1, ξ2 ∈ [a, b] such that

f(ξ1) = sup{f(x) : x ∈ [a, b]} and f(ξ2) = sup{f(x) : x ∈ [a, b]}.

Since f is not constant and since f(a) = f(b), it follows that f attains at least one local

extremum at some point ξ ∈ (a, b). By Theorem 3.1.7, this means f ′(ξ) = 0.

Theorem 3.1.9 (mean value theorem). Let a < b, and let f : [a, b] → R be continuous

and differentiable on (a, b). Then there is ξ ∈ (a, b) such that

f ′(ξ) =
f(b)− f(a)

b− a
.

58



y

(x )

a ξ b x

f

Figure 3.2: Mean value theorem

Proof. Define g : [a, b] → R by letting

g(x) := (f(x)− f(a))(b− a)− (f(b)− f(a))(x− a)

for x ∈ [a, b]. It follows that g(a) = g(b) = 0. By Rolle’s theorem, there is ξ ∈ (a, b) such

that

0 = g′(ξ) = f ′(ξ)(b− a)− (f(b)− f(a)),

which yields the claim.

Corollary 3.1.10. Let I ⊂ R be an interval, and let f : I → R be differentiable such that

f ′ ≡ 0. Then f is constant.

Proof. Assume that f is not constant. Then there are a, b ∈ I, a < b such that f(a) 6= f(b).

By the mean value theorem, there is ξ ∈ (a, b) such that

0 = f ′(ξ) =
f(b)− f(a)

b− a
6= 0,

which is a contradiction.

3.2 Partial derivatives

The notion of partial differentiability is the weakest of the several generalizations of dif-

ferentiablity to several variables:
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Definition 3.2.1. Let ∅ 6= D ⊂ RN , and let x0 ∈ int D. Then f : D → RM is called

partially differentiable at x0 if, for each j = 1, . . . , N , the limit

lim
h→0
h6=0

f(x0 + hej)− f(x0)

h

exists, where ej is the j-th canonical basis vector of RN .

We use the notations

∂f
∂xj

(x0)

Djf(x0)

fxj(x0)







:= lim
h→0
h6=0

f(x0 + hej)− f(x0)

h

for the (first) partial derivative of f at x0 with respect to xj.

To calculate ∂f
∂xj

(x0), fix x1, . . . , xj−1, xj+1, . . . , xN , i.e. treat them as constants, and

consider f as a function of xj.

Examples. 1. Let

f : R2 → R, (x, y) 7→ ex + x cos(xy).

Then we have

∂f

∂x
(x, y) = ex + cos(xy)− xy sin(xy) and

∂f

∂y
(x, y) = −x2 sin(xy).

2. Let

f : R3 → R, (x, y, z) 7→ exp(x sin(y)z2).

It follows that

∂f

∂x
(x, y, z) = sin(y)z2 exp(x sin(y)z2),

∂f

∂y
(x, y, z) = x cos(y)z2 exp(x sin(y)z2),

and
∂f

∂z
(x, y, z) = 2zx sin(y) exp(x sin(y)z2).

3. Let

f : R2 → R, (x, y) 7→
{

xy
x2+y2

, (x, y) 6= (0, 0),

0, (x, y) = (0, 0).

Since

f

(
1

n
,
1

n

)

=
1
n2

1
n2 + 1

n2

=
1

2
6→ 0,

the function f is not continuous at (0, 0). Clearly, f is partially differentiable at

each (x, y) 6= (0, 0) with

∂f

∂x
(x, y) =

y(x2 + y2)− 2x2y

(x2 + y2)2
.
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Moreover, we have
∂f

∂x
(0, 0) = lim

h→0
h6=0

f(h, 0) − f(0, 0)

h
= 0.

Hence, ∂f
∂x

exists everywhere.

The same is true for ∂f
∂y
.

Definition 3.2.2. Let ∅ 6= D ⊂ RN , let x0 ∈ int D, and let f : D → R be partially

differentiable at x0. Then the gradient (vector) of f at x0 is defined as

(grad f)(x0) := (∇f)(x0) :=
(
∂f

∂x1
(x0), . . . ,

∂f

∂xN
(x0)

)

.

Example. Let

f : RN → R, x 7→ ||x|| =
√

x21 + · · ·+ x2N ,

so that, for x 6= 0 and j = 1, . . . , N ,

∂f

∂xj
(x) =

2xj

2
√

x21 + · · ·+ x2N

=
xj
||x||

holds. Hence, we have (grad f)(x) = x
||x|| for x 6= 0.

Definition 3.2.3. Let ∅ 6= D ⊂ RN , and let x0 be an interior point ofD. Then f : D → R

is said to have a local maximum [minimum] at x0 if there is ǫ > 0 such that Bǫ(x0) ⊂ D

and f(x) ≤ f(x0) [f(x) ≥ f(x0)] for all x ∈ Bǫ(x0). If f has a local maximum or minimum

at x0, we say that f has a local extremum at x0.

Theorem 3.2.4. Let ∅ 6= D ⊂ RN , let x0 ∈ int D, and let f : D → R be partially

differentiable and have local extremum at x0. Then (grad f)(x0) = 0 holds.

Proof. Suppose without loss of generality that f has a local maximum at x0.

Fix j ∈ {1, . . . , N}. Let ǫ > 0 be as in Definition 3.2.3, and define

g : (−ǫ, ǫ) → R, t 7→ f(x0 + tej).

It follows that, for all t ∈ (−ǫ, ǫ), the inequality

g(t) = f(x0 + tej
︸ ︷︷ ︸

∈Bǫ(x0)

) ≤ f(x0) = g(0)

holds, i.e. g has a local maximum at 0. By Theorem 3.1.7, this means that

0 = g′(0) = lim
h→0
h6=0

g(h) − g(0)

h
= lim

h→0
h6=0

f(x0 + hej)− f(x0)

h
=

∂f

∂xj
(x0).

Since j ∈ {1, . . . , N} was arbitrary, this completes the proof.
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Let ∅ 6= U ⊂ RN be open, and let f : U → R be partially differentiable, and let

j ∈ {1, . . . , N} be such that ∂f
∂xj

: U → R is again partially differentiable. One can then

form the second partial derivatives

∂2f

∂xk∂xj
:=

∂

∂xk

(
∂

∂xk

)

for k = 1, . . . , N .

Example. Let U := {(x, y) ∈ R2 : x 6= 0}, and define

f : U → R, (x, y) 7→ exy

x
.

It follows that:

∂f

∂x
=

xyexy − exy

x2

=
xy − 1

x2
exy

=

(
y

x
− 1

x2

)

exy;

∂f

∂y
= exy.

For the second partial derivatives, this means:

∂2f

∂x2
=

(

− y

x2
+

2

x3

)

exy +

(
y

x
− 1

x2

)

yexy;

∂2f

∂y2
= xexy;

∂2f

∂x∂y
= yexy;

∂2f

∂y∂x
=

1

x
exy +

(
y

x
− 1

x2

)

xexy

=
1

x
exy +

(

y − 1

x

)

exy

= yexy.

This means, we have
∂2f

∂x∂y
=

∂2f

∂y∂x
.

Is this coincidence?

Theorem 3.2.5. Let ∅ 6= U ⊂ RN be open, and suppose that f : U → R is twice

continuously partially differentiable, i.e. all second partial derivatives of f exist and are

continuous on U . Then
∂2f

∂xj∂xk
(x) =

∂2f

∂xk∂xj
(x)

holds for all x ∈ U and for all j, k = 1, . . . , N .
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Proof. Without loss of generality, let N = 2 and x = 0.

Since U is open, there is ǫ > 0 such that (−ǫ, ǫ)2 ⊂ U . Fix y ∈ (−ǫ, ǫ), and define

Fy : (−ǫ, ǫ) → R, x 7→ f(x, y)− f(x, 0).

Then Fy is differentiable. By the mean value theorem, there is, for each x ∈ (−ǫ, ǫ), and
element ξ ∈ (−ǫ, ǫ) with |ξ| ≤ |x| such that

Fy(x)− Fy(0) = F ′
y(ξ)x =

(
∂f

∂x
(ξ, y)− ∂f

∂x
(ξ, 0)

)

x.

Applying the mean value theorem to the function

(−ǫ, ǫ) → R, y 7→ ∂f

∂x
(ξ, y),

we obtain η with |η| ≤ |y| such that

∂f

∂x
(ξ, y)− ∂f

∂x
(ξ, 0) =

∂2f

∂y∂x
(ξ, η)y.

Consequently,

f(x, y)− f(x, 0)− f(0, y) + f(0, 0) = Fy(x)− Fy(0) =
∂2f

∂y∂x
(ξ, η)xy

holds.

Now, fix x ∈ (−ǫ, ǫ), and define

F̃x : (−ǫ, ǫ) → R, y 7→ f(x, y)− f(0, y).

Proceeding as with Fy, we obtain ξ̃, η̃ with |ξ̃| ≤ |x| and |η̃| ≤ |y| such that

f(x, y)− f(0, y)− f(x, 0) + f(0, 0) =
∂2f

∂x∂y
(ξ̃, η̃)xy.

Therefore,
∂2f

∂y∂x
(ξ, η) =

∂2f

∂x∂y
(ξ̃, η̃)

holds whenever xy 6= 0. Let 0 6= x → 0 and 0 6= y → 0. It follows that ξ → 0, ξ̃ → 0,

η → 0, and η̃ → 0. Since ∂2f
∂y∂x

and ∂2f
∂x∂y

are continuous, this yields

∂2f

∂y∂x
(0, 0) =

∂2f

∂x∂y
(0, 0)

as claimed.
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The usefulness of Theorem 3.2.5 appears limited: in order to be able to interchange

the order of differentiation, we first need to know that the second oder partial derivatives

are continuous, i.e. we need to know the second oder partial derivatives before the theorem

can help us save any work computing them. For many functions, however, e.g. for

f : R3 → R, (x, y, z) 7→ arctan(x2 − y7)

exyz
,

it is immediate from the rules of differentiation that their higher order partial derivatives

are continuous again without explicitly computing them.

3.3 Vector fields

Suppose that there is a force field in some region of space. Mathematically, a force is a

vector in R3. Hence, one can mathematically describe a force filed a function v that that

assigns to each point x in a region, say D, of R3 a force v(x).

Slightly generalizing this, we thus define:

Definition 3.3.1. Let ∅ 6= D ⊂ RN . A vector field on D is a function v : D → RN .

Example. Let ∅ 6= U ⊂ RN be open, and let f : U → R be partially differentiable. Then

∇f is a vector field on U , a so-called gradient field .

Is every vector field a gradient field?

Definition 3.3.2. Let ∅ 6= U ⊂ R3 be open, and let v : U → R3 be partially differentiable.

Then the curl of v is defined as

curl v :=

(
∂v3
∂x2

− ∂v2
∂x3

,
∂v1
∂x3

− ∂v3
∂x1

,
∂v2
∂x1

− ∂v1
∂x2

)

.

Very loosely speaking, one can say that the curl of a vector field measures “the tendency

of the field to swirl around”.

Proposition 3.3.3. Let ∅ 6= U ⊂ R3 be open, and let f : U → R be twice continuously

differentiable. Then curl grad f = 0 holds.

Proof. We have, by Theorem 3.2.5, that

curl grad f =

(
∂

∂x2

∂f

∂x3
− ∂

∂x3

∂f

∂x2
,
∂

∂x3

∂f

∂x1
− ∂

∂x1

∂f

∂x3
,
∂

∂x1

∂f

∂x2
− ∂

∂x2

∂f

∂x1

)

= 0

holds.
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Definition 3.3.4. Let ∅ 6= U ⊂ RN be open, and let v : U → R be a partially differen-

tiable vector field. Then the divergence of v is defined as

div v :=
N∑

j=1

∂vj
∂xj

.

Examples. 1. Let ∅ 6= U ⊂ RN be open, and let v : U → RN and f : U → R be

partially differentiable. Since

∂

∂xj
(fvj) =

∂f

∂xj
vj + f

∂vj
∂xj

for j = 1, . . . , N , it follows that

div fv =

N∑

j=1

∂

∂xj
(fvj)

=
N∑

j=1

∂f

∂xj
vj + f

N∑

j=1

∂vj
∂xj

= ∇f · v + f div v.

2. Let

v : RN \ {0} → RN , x 7→ x

||x|| .

Then v = fu with

u(x) = x and f(x) =
1

||x|| =
1

√

x21 + · · · + x2N

for x ∈ RN \ {0}. It follows that
∂f

∂xj
(x) = −1

2

2xj
√

x21 + · · · + x2N

3 = − xj
||x||3

for j = 1, . . . , N and thus

∇f(x) = − x

||x||3 .

for x ∈ RN \ {0}. By the previous example, we thus have

(div v)(x) = (∇f)(x) · x+
1

||x|| (div u)(x)︸ ︷︷ ︸

=N

= − x · x
||x||3 +

N

||x||

=
N − 1

||x||

for x ∈ RN \ {0}.
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Definition 3.3.5. Let ∅ 6= U ⊂ RN be open, and let f : U → R be twice partially

differentiable. Then the Laplace operator ∆ of f is defined as

∆f =
N∑

j=1

∂2f

∂x2j
= div grad f.

Example. The Laplace operator occurs in several important partial differential equations:

• Let ∅ 6= U ⊂ RN be open. Then the functions f : U → R solving the potential

equation

∆f = 0

are called harmonic functions.

• Let ∅ 6= U ⊂ RN be open, and let I ⊂ R be an open interval. Then a function

f : U × I → R is said to solve the wave equation if

∆f − 1

c2
∂2f

∂t2
= 0

and the heat equation if

∆f − 1

c2
∂f

∂t
= 0,

where c > 0 is a constant.

3.4 Total differentiability

One of the drawbacks of partial differentiability is that partially differentiable functions

may well be discontinuous. We now introduce a stronger notion of differentiability in

several variables that — as will turn out — implies continuity:

Definition 3.4.1. Let ∅ 6= D ⊂ RN , and let x0 ∈ int D. Then f : D → RM is called

[totally ] differentiable at x0 if there is a linear map T : RN → RM such that

lim
h→0
h6=0

||f(x0 + h)− f(x0)− Th||
||h|| = 0. (3.1)

If N = 2 and M = 1, then the total differentiability of f at x0 can be interpreted

as follows: the function f : D → R models a two-dimensional surface, and if f is totally

differentiable at x0, we can put a tangent plane — describe by T — to that surface.

Theorem 3.4.2. Let ∅ 6= D ⊂ RN , let x0 ∈ int D, and let f : D → RM be differentiable

at x0. Then:

(i) f is continuous at x0.

66



(ii) f is partially differentiable at x0, and the linear map T in (3.1) is given by the matrix

Jf (x0) =







∂f1
∂x1

(x0), . . . , ∂f1
∂xN

(x0)
...

. . .
...

∂fM
∂x1

(x0), . . . , ∂fM
∂xN

(x0)






.

Proof. Since

lim
h→0
h6=0

||f(x0 + h)− f(x0)− Th||
||h|| = 0,

we have

lim
h→0
h6=0

||f(x0 + h)− f(x0)− Th|| = 0.

Since limh→0 Th = 0 holds, we have limh→0 ||f(x0 + h)− f(x0)|| = 0. This proves (i).

Let

A :=







a1,1, . . . , a1,N
...

. . .
...

aM,1, . . . , aM,N







be such that T = TA. Fix j ∈ {1, . . . , N}, and note that

0 = lim
h→0
h6=0

||f(x0 + hej)− f(x0)− Th||
||hej ||
︸ ︷︷ ︸

|h|

= lim
h→0
h6=0

∣
∣
∣
∣
|1
h
[f(x0 + hej)− f(x0)]− Tej

∣
∣
∣
∣
|.

From the definition of a partial derivative, we have

lim
h→0
h6=0

1

h
[f(x0 + hej)− f(x0)] =







∂f1
∂xj

(x0)
...

∂fM
∂xj

(x0)






,

whereas

Tej =







a1,j
...

aM,j






.

This proves (ii).

The linear map in (3.1) is called the differential of f at x0 and denoted by Df(x0).

The matrix Jf (x0) is called the Jacobian matrix of f at x0.

Examples. 1. Each linear map is totally differentiable.
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2. Let MN (R) be the N ×N matrices over R (note that MN (R) = RN
2
). Let

f :MN (R) →MN (R), X 7→ X2.

Fix X0 ∈MN (R), and let H ∈MN (R) \ {0}, so that

f(X0 +H) = X2
0 +X0H +HX0 +H2

and hence

f(X0 +H)− f(X0) = X0H +HX0 +H2.

Let

T :MN (R) →MN (R), X 7→ X0X +XX0.

It follows that, for H → 0,

||f(X0 −H)− f(X0)− T (X)||
||H|| =

||H2||
||H||

=

∣
∣
∣
∣
∣
| H
︸︷︷︸

→0

H

||H||
︸ ︷︷ ︸

bounded

∣
∣
∣
∣
∣
|

→ 0.

Hence, f is differentiable at X0 with Df(X0)X = X0X +XX0.

The last of these two examples shows that is is often convenient to deal with the

differential coordinate free, i.e. as a linear map, instead of with coordinates, i.e. as a

matrix.

The following theorem provides a very usueful sufficient condition for a function to be

totally differentiable.

Theorem 3.4.3. Let ∅ 6= U ⊂ RN be open, and let f : U → RM be partially differentiable

such that ∂f
∂x1

, . . . , ∂f
∂xN

are continuous at x0. Then f is totally differentiable at x0.

Proof. Without loss of generality, let M = 1, and let U = Bǫ(x0) for some ǫ > 0. Let

h = (h1, . . . , hN ) ∈ RN with 0 < ||h|| < ǫ. For k = 0, . . . , N , let

x(k) := x0 +

k∑

j=1

hjej .

It follwos that

• x(0) = x0,

• x(N) = x0 + h,
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• and x(k−1) and x(k) differ only in the k-th coordinate.

For each k = 1, . . . , N , let

gk : (−ǫ, ǫ) → R, t 7→ f(x(k−1) + tek);

it is clear that gk(0) = f(x(k−1)) and gk(hk) = f(x(k)). By the mean value theorem, there

is ξk with |ξk| ≤ |hk| such that

f(x(k))− f(x(k−1)) = gk(hk)− gk(0)

= g′k(ξk)hk

=
∂f

∂xk
(x(k−1) + ξkek)hk.

This, in turn, yields

f(x0 + h)− f(x0) =
N∑

j=1

(f(x(j))− f(x(j−1)))

=

N∑

j=1

∂f

∂xj
(x(j−1) + ξjej)hj .

It follows that

|f(x0 + h)− f(x0)−
∑N

j=1
∂f
∂xj

(x0)hj |
||h||

=
1

||h||

∣
∣
∣
∣
∣
∣

N∑

j=1

(
∂f

∂xj
(x(j−1) + ξjej)−

∂f

∂xj
(x0)

)

hj

∣
∣
∣
∣
∣
∣

=
1

||h||

∣
∣
∣
∣

(
∂f

∂x1
(x(0) + ξ1e1)−

∂f

∂x1
(x0), . . . ,

∂f

∂xN
(x(N−1) + ξNeN )−

∂f

∂xN
(x0)

)

· h
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣
|
(

∂f

∂x1
(x(0) + ξ1e1)−

∂f

∂x1
(x0)

︸ ︷︷ ︸

→0

, . . . ,
∂f

∂xN
(x(N−1) + ξNeN )−

∂f

∂xN
(x0)

︸ ︷︷ ︸

→0

)∣
∣
∣
∣
∣
|

→ 0,

as h→ 0.

Very often, we can spot immediately that a function is continuously partially differ-

entiable without explicitly computing the partial derivatives. We then know that the

function has to be totally differentiable (and, in particular, continuous).

Theorem 3.4.4 (chain rule). Let ∅ 6= U ⊂ RN and ∅ 6= V ⊂ RM be open, and let

g : U → RM and f : V → RK be functions with g(U) ⊂ V such that g is differentiable and
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x0 ∈ U and f is differentiable at g(x0) ∈ V . Then f ◦ g : U → RK is differentiable at x0

such that

D(f ◦ g)(x0) = Df(g(x0))Dg(x0)

and

Jf◦g(x0) = Jf (g(x0))Jg(x0).

Proof. Since g is differentiable at x0, there is θ > 0 such that

||g(x0 + h)− g(x0)−Dg(x0)h||
||h|| ≤ 1

for 0 < ||h|| < θ. Consequently, we have for all h ∈ RN with 0 < ||h|| < θ that

||g(x0 + h)− g(x0)|| ≤ ||g(x0 + h)− g(x0)−Dg(x0)h||+ ||Dg(x0)h||
≤ (1 + |||Dg(x0)|||

︸ ︷︷ ︸

=:C

)||h||.

Let ǫ > 0. Then there is δ ∈ (0, θ) such that

||f(g(x0) + h)− f(g(x0))−Df(g(x0))h|| <
ǫ

C
||h||

for ||h|| < Cδ. Choose ||h|| < δ, so that ||g(x0 + h)− g(x0)|| < Cδ. It follows that

||f(g(x0 + h))− f(g(x0))−Df(g(x0))[g(x0 + h)− g(x0)]|| <
ǫ

C
||g(x0 + h)− g(x0)||

≤ ǫ||h||.

It follows that

lim
h→0
h6=0

f(g(x0 + h))− f(g(x0))−Df(g(x0))[g(x0 + h)− g(x0)]

||h|| = 0.

Let h 6= 0, and note that

||f(g(x0 + h))− f(g(x0))−Df(g(x0))Dg(x0)h||
||h||

≤ f(g(x0 + h))− f(g(x0))−Df(g(x0))[g(x0 + h)− g(x0)]

||h|| (3.2)

+
||Df(g(x0))[g(x0 + h)− g(x0)]−Df(g(x0))Dg(x0)h||

||h|| (3.3)

As we have seen, the term in (3.2) tends to zero as h → 0. For the term in (3.3), note

that

||Df(g(x0))[g(x0 + h)− g(x0)]−Df(g(x0))Dg(x0)h||
||h||

≤ |||Df(g(x0))|||
||g(x0 + h)− g(x0)−Dg(x0)h||

||h||
︸ ︷︷ ︸

→0

→ 0
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as h→ 0. Hence,

lim
h→0
h6=0

||f(g(x0 + h)) − f(g(x0))−Df(g(x0))Dg(x0)h||
||h|| = 0

holds, which proves the claim.

Definition 3.4.5. Let ∅ 6= D ⊂ RN , let x0 ∈ int D, and let v ∈ RN be a unit vector ,

i.e. with ||v|| = 1. The directional derivative of f : D → RM at x0 in the direction of v is

defined as

lim
h→0
h6=0

f(x0 + hv)− f(x0)

h

and denoted by Dvf(x0).

Theorem 3.4.6. Let ∅ 6= D ⊂ RN , and let f : D → R be totally differentiable at

x0 ∈ int D. Then Dvf(x0) exists for each v ∈ RN with ||v|| = 1, and we have

Dvf(x0) = ∇f(x0) · v.

Proof. Define

g : R → RN , t 7→ x0 + tv.

Choose ǫ > 0 such small that g((−ǫ, ǫ)) ⊂ int D. Let h := f ◦ g. The chain rule yields

that h is differentiable at 0 with

h′(0) = Dh(0)

= Df(g(0))Dg(0)

=
N∑

j=1

∂f

∂xj
(g(0))

dgj
dt

(0)
︸ ︷︷ ︸

=vj

=

N∑

j=1

∂f

∂xj
(x0)vj

= ∇f(x0) · v.

Since

h′(0) = lim
h→0
h6=0

f(x0 + hv)− f(x0)

h
= Dvf(x0),

this proves the claim.

Theorem 3.4.6 allows for a geometric interpretation of the gradient: The gradient

points in the direction in which the slope of the tangent line to the graph of f is maximal.

Existence of directional derivatives is stronger than partial differentiability, but weaker

than total differentiability. We shall now see that — as for partial differentiability — the

existence of directional derivatives need not imply continuity:
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Example. Let

f : R2 → R, (x, y) 7→
{

xy2

x2+y4
, (x, y) 6= 0

0, otherwise.
.

Let v = (v1, v2) ∈ R2 such that ||v|| = 1, i.e. v21 + v22 = 1. For h 6= 0, we then have:

f(0 + hv) − f(0)

h
=

1

h

h3v1v
2
2

h2v21 + h4v42

=
v1v

2
2

v21 + h2v42
.

Hence, we obtain

Dvf(0) = lim
h→0

f(0 + hv) − f(0)

h
=

{

0, v1 = 0,
v22
v1
, otherwise.

In particular, Dvf(0) exists for each v ∈ R2 with ||v|| = 1. Nevertheless, f fails to be

continuous at 0 because

lim
n→∞

f

(
1

n2
,
1

n

)

= lim
n→∞

1
n4

1
n4 + 1

n4

=
1

2
6= 0 = f(0).

3.5 Taylor’s theorem

We begin witha review of Taylor’s theorem in one variable:

Theorem 3.5.1 (Taylor’s theorem in one variable). Let I ⊂ R be an interval, let n ∈ N0,

and let f : I → R be n+1 times differentiable. Then, for any x, x0 ∈ I, there is ξ between

x and x0 such that

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1.

Proof. Let x, x0 ∈ I such that x 6= x0. Choose y ∈ R such that

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +
y

(n+ 1)!
(x− x0)

n+1.

Define

F (t) := f(x)−
n∑

k=0

f (k)(t)

k!
(x− t)k − y

(n+ 1)!
(x− t)n+1,

so that F (x0) = F (x) = 0. By Rolle’s theorem, there is ξ strictly between x and x0 such

that F ′(ξ) = 0. Note that

F ′(t) = −f ′(t)−
n∑

k=1

(

f (k+1)(t)

k!
(x− t)k − f (k)(t)

(k − 1)!
(x− t)k−1

)

+
y

n!
(x− t)n

= −f
(n+1)(t)

n!
(x− t)n +

y

n!
(x− t)n,
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so that

0 = −f
(n+1)(ξ)

n!
(x− ξ)n +

y

n!
(x− ξ)n

and thus y = f (n+1)(ξ).

For n = 0, Taylor’s theorem is just the mean value theorem.

Taylor’s theorem can be used to derive the so-called second derivative test for local

extrema:

Corollary 3.5.2 (second derivative test). Let I ⊂ R be an open interval, let f : I → R

be twice continuously differentiable, and let x0 ∈ I such that f ′(x0) = 0 and f ′′(x0) < 0

[f ′′(x0) > 0]. Then f has a local maximum [minimum] at x0.

Proof. Since f ′′ is continuous, there is ǫ > 0 such that f ′′(x) < 0 for all x ∈ (x0−ǫ, x0+ǫ).
Fix x ∈ (x0 − ǫ, x0 + ǫ). By Taylor’s theorem, there is ξ between x and x0 such that

f(x) = f(x0) + f ′(x0)(x− x0)
︸ ︷︷ ︸

=0

+

<0
︷ ︸︸ ︷

f ′′(ξ)

≥0
︷ ︸︸ ︷

(x− x0)
2

2
︸ ︷︷ ︸

≤0

≤ f(x0),

which proves the claim.

This proof of the second derivative test has a slight drawback compared with the usual

one: we require f not only to be twice differentiable, but twice continuously differentiable.

It’s advantage is that it generalizes to the several variable situation.

To extend Taylor’s theorem to several variables, we introduce new notation.

A multiindex is an element α = (α1, . . . , αN ) ∈ NN0 . We define

|α| := α1 + · · · + αN and α! := α1! · · ·αN !.

If f is |α| times continuously partially differentiable, we let

Dαf :=
∂αf

∂xα
:=

∂|α|f
∂xα1

1 · · · ∂xαN

N

.

Finally, for x = (x1, . . . , xN ) ∈ RN , we let xα := (xα1
1 , . . . , xαN

N ).

We shall prove Taylor’s theorem in several variables through reduction to the one

variable situation:

Lemma 3.5.3. Let ∅ 6= U ⊂ RN be open, let f : U → R be n times continuously partially

differentiable, and let x ∈ U and ξ ∈ RN be such that {x+ tξ : t ∈ [0, 1]} ⊂ U . Then

g : [0, 1] → R, t 7→ f(x+ tξ)

is n times continuously differentiable such that

dng

dtn
(t) =

∑

|α|=n

n!

α!
Dαf(x+ tξ)ξα.
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Proof. We prove by induction on n that

dng

dtn
(t) =

N∑

j1,...,jn=1

Djn · · ·Dj1f(x+ tξ)ξj1 · · · ξjn .

For n = 0, this is trivially true.

For the induction step from n− 1 to n note that

dng

dtn
(t) =

d

dt





N∑

j1,...,jn−1=1

Djn−1 · · ·Dj1f(x+ tξ)ξj1 · · · ξjn−1





=

N∑

j=1

Dj





N∑

j1,...,jn−1=1

Djn−1 · · ·Dj1f(x+ tξ)ξj1 · · · ξjn−1



 ξj,

by the chain rule,

=
N∑

j1,...,jn=1

Djn · · ·Dj1f(x+ tξ)ξj1 · · · ξjn .

Since f is n times partially continuosly differentiable, we may change the order of differ-

entiations, and with a little combinatorics, we obtain

dng

dtn
(t) =

N∑

j1,...,jn=1

Djn · · ·Dj1f(x+ tξ)ξj1 · · · ξjn

=
∑

|α|=1

n!

α1! · · ·αN !
Dα1

1 · · ·DαN

N f(x+ tξ)ξα1
1 · · · ξαN

N

=
∑

|α|=n

n!

α!
Dαf(x+ tξ)ξα.

as claimed.

Theorem 3.5.4 (Taylor’s theorem). Let ∅ 6= U ⊂ RN be open, let f : U → R be

n + 1 times continuously partially differentiable, and let x ∈ U and ξ ∈ RN be such that

{x+ tξ : t ∈ [0, 1]} ⊂ U . Then there is θ ∈ [0, 1] such that

f(x+ ξ) =
∑

|α|≤n

1

α!

∂αf

∂xα
(x)ξα +

∑

|α|=n+1

1

α!

∂αf

∂xα
(x+ θξ)ξα. (3.4)

Proof. Define

g : [0, 1] → R, t 7→ f(x+ tξ).

By Taylor’s theorem in one variable, there is θ ∈ [0, 1] such that

g(1) =

n∑

k=0

g(k)(0)

k!
+
g(n+1)(θ)

(n+ 1)!
.
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By Lemma 3.5.3, we have for k = 0, . . . , n that

g(k)(0)

k!
=
∑

|α|=k

1

α!

∂αf

∂xα
(x)ξα

as well as
g(n+1)(θ)

(n+ 1)!
=

∑

|α|=n+1

1

α!

∂αf

∂xα
(x+ θξ)ξα.

Consequently, we obtain

f(x+ ξ) = g(1) =
∑

|α|≤n

1

α!

∂αf

∂xα
(x)ξα +

∑

|α|=n+1

1

α!

∂αf

∂xα
(x+ θξ)ξα.

as claimed.

We shall now examine the terms of (3.4) up to order two:

• Clearly,
∑

|α|=0

1

α!

∂αf

∂xα
(x)ξα = f(x)

holds.

• We have
∑

|α|=1

1

α!

∂αf

∂xα
(x)ξα =

N∑

j=1

∂f

∂xj
(x)ξj = (grad f)(x) · ξ.

• Finally, we obtain

∑

|α|=2

1

α!

∂αf

∂xα
(x)ξα =

N∑

j=1

1

2

∂2f

∂x2j
(x)ξ2j +

∑

j<k

∂2f

∂xj∂xk
(x)ξjξk

=
1

2

N∑

j=1

∂2f

∂x2j
(x)ξ2j +

1

2

∑

j 6=k

∂2f

∂xj∂xk
(x)ξjξk

=
1

2

N∑

j,k=1

∂2f

∂xj∂xk
(x)ξjξk

=
1

2















∂2f

∂x21
(x), . . . , ∂2f

∂xN∂x1
(x)

...
. . .

...
∂2f

∂x1∂xN
(x), . . . , ∂2f

∂x2N
(x)














ξ1
...

xN














·







ξ1
...

xN







=
1

2
(Hess f)(x)ξ · ξ,

where

(Hess f)(x) =








∂2f

∂x21
(x), . . . , ∂2f

∂xN∂x1
(x)

...
. . .

...
∂2f

∂x1∂xN
(x), . . . , ∂2f

∂x2N
(x)







.
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This yields the following, reformulation of Taylor’s theorem:

Corollary 3.5.5. Let ∅ 6= U ⊂ RN be open, let f : U → R be twice continuously partially

differentiable, and let x ∈ U and ξ ∈ RN be such that {x+ tξ : t ∈ [0, 1]} ⊂ U . Then there

is θ ∈ [0, 1] such that

f(x+ ξ) = f(x) + (grad f)(x) · ξ + 1

2
(Hess f)(x+ θξ)ξ · ξ

3.6 Classification of stationary points

In this section, we put Taylor’s theorem to work to determine the local extrema of a

function in several variables or rather, more generally, classify its so called stationary

points.

Definition 3.6.1. Let ∅ 6= U ⊂ RN be open, and let f : U → R be partially differentiable.

A point x0 ∈ U is called stationary for f if ∇f(x0) = 0.

As we have seen in Theorem 3.2.4, all points where f attains a local extremum are

stationary for f .

Definition 3.6.2. Let ∅ 6= U ⊂ RN be open, and let f : U → R be partially differentiable.

A stationary point x0 ∈ U where f does not attain a local extremum is called a saddle

(for f).

Lemma 3.6.3. Let ∅ 6= U ⊂ RN be open, let f : U → R be twice continuously partially

differentiable, and suppose that (Hess f)(x0) is positive definite with x0 ∈ U . There there

is ǫ > 0 such that Bǫ(x0) ⊂ U and such that (Hess f)(x) is positive definite for all

x ∈ Bǫ(x0).

Proof. Since (Hess f)(x0) is positive definite,

det







∂2

∂x21
(x0), . . . , ∂2

∂xk∂x1
(x0)

...
. . .

...
∂2

∂x1∂xk
(x0), . . . , ∂2

∂x2
k

(x0)






> 0

holds for k = 1, . . . , N by Theorem A.3.8. Since all second partial derivatives of f are

continuous, there is, for each k = 1, . . . , N , an element ǫk > 0 such that Bǫk(x0) ⊂ U and

det







∂2

∂x21
(x), . . . , ∂2

∂xk∂x1
(x)

...
. . .

...
∂2

∂x1∂xk
(x), . . . , ∂2

∂x2
k

(x)






> 0
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for all x ∈ Bǫk(x0). Let ǫ := min{ǫ1, . . . , ǫN}. It follows that

det







∂2

∂x21
(x), . . . , ∂2

∂xk∂x1
(x)

...
. . .

...
∂2

∂x1∂xk
(x), . . . , ∂2

∂x2
k

(x)






> 0

for all k = 1, . . . , k and for all x ∈ Bǫ(x0) ⊂ U . By Theorem A.3.8 again, this means that

(Hess f)(x) is positive definite for all x ∈ Bǫ(x0).

As for one variable, we can now formulate a second derivative test in several variables:

Theorem 3.6.4. Let ∅ 6= U ⊂ RN be open, let f : U → R be twice continuously partially

differentiable, and let x0 ∈ U be a stationary point for f . Then:

(i) If (Hess f)(x0) is positive definite, then f has a local minimum at x0.

(ii) If (Hess f)(x0) is negative definite, then f has a local maximum at x0.

(iii) If (Hess f)(x0) is indefinite, then f has a saddle at x0.

Proof. (i): By Lemma 3.6.3, there is ǫ > 0 such that Bǫ(x0) ⊂ U and that (Hess f)(x) is

positive definite for all x ∈ Bǫ(x0). Let ξ ∈ RN be such that ||ξ|| < ǫ. By Corollary 3.5.5,

there is θ ∈ [0, 1] such that

f(x0 + ξ) = f(x0) + (grad f)(x0) · ξ
︸ ︷︷ ︸

=0

+
1

2
(Hess f)(x0 + θξ)ξ · ξ
︸ ︷︷ ︸

>0

> f(x0).

Hence, f has a local minimum at x0.

(ii) is proved similarly.

(iii): Suppose that (Hess f)(x0) is indefinite. Then there are λ1, λ2 ∈ R with λ1 <

0 < λ2 and non-zero ξ1, ξ2 ∈ RN such that

(Hess f)(x0)ξj = λjξj

for j = 1, 2. Let ǫ > 0. Making ||ξj || for j = 1, 2 smaller if necessary, we can suppose

without loss of generality that {x0 + tξj : t ∈ [0, 1]} ⊂ Bǫ(x0) for j = 1, 2. Since

(Hess f)(x0)ξj · ξj = λj||ξj ||2
{

< 0, j = 1,

> 0, j = 2,

the continuity of the second partial derivatives yields δ ∈ (0, 1] such that

(Hess f)(x0 + tξ1)ξ1 · ξ1 < 0 and (Hess f)(x0 + tξ2)ξ2 · ξ2 > 0
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for all t ∈ R with |t| ≤ δ. From Corollary 3.5.5, we obtain θ ∈ [0, 1] such that

f(x0 + δξj) = f(x0) +
δ2

2
(Hess f)(x0 + θδξj)ξj · ξj

{

< f(x0), j = 1,

> f(x0), j = 2.

Consequently, for any ǫ > 0, we find x1, x2 ∈ Bǫ(x0) such that f(x1) < f(x0) < f(x2).

Hence, f must have a saddle at x0.

Example. Let

f : R3 → R, (x, y, z) 7→ x2 + y2 + z2 + 2xyz,

so that

∇f(x, y, z) = (2x+ 2yz, 2y + 2zx, 2z + 2xy).

It is not hard to see that

∇f(x, y, z) = 0

⇐⇒ (x, y, z) ∈ {(0, 0, 0), (−1, 1, 1), (1,−1, 1), (1, 1,−1), (−1,−1,−1)}.

Hence, (0, 0, 0), (−1, 1, 1), (1,−1, 1), (1, 1,−1), and (−1,−1,−1), are the only stationary

points of f .

Since

(Hess f)(x, y, z) =






2 2z 2y

2z 2 2x

2y 2x 2




 ,

it follows that

(Hess f)(0, 0, 0) =






2 0 0

0 2 0

0 0 2






is positive definite, so that f attains a local minimum at (0, 0, 0).

To classify the other stationary points, first note that (Hess f)(x, y, z) cannot be neg-

ative definite at any point because 2 > 0. Since

det

[

2 2z

2z 2

]

= 4− 4z2

is zero whenever z2 = 1, it follows that (Hess f)(x, y, z) is not positive definite for all

non-zero stationary points of f . Finally, we have

det






2 2z 2y

2z 2 2x

2y 2x 2




 = 2det

[

2 2x

2x 2

]

− 2z det

[

2z 2x

2y 2

]

+ 2y

[

2z 2

2y 2x

]

= 2(4 − 4x2)− 2z(4z − 4xy) + 2y(4zx − 4y)

= 8− 8x2 − 8z2 + 8xzy + 8xyz − 8y2

= 8(1 − x2 − y2 − z2 + 2xyz).
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This determinant is negative whenever |x| = |y| = |z| = 1 and xyz = −1. Consequently,

(Hess f)(x, y, z) is indefinite for all non-zero stationary points of f , so that f has a saddle

at those points.

Corollary 3.6.5. Let ∅ 6= U ⊂ R2 be open, let f : U → R be twice continuously partially

differentiable, and let (x0, y0) ∈ U be such that

∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0.

Then the following hold:

(i) If ∂2f
∂x2

(x0, y0) > 0 and ∂2f
∂x2

(x0, y0)
∂2f
∂y2

(x0, y0) −
(
∂2f
∂x∂y

(x0, y0)
)2

> 0, then f has a

local minimum at (x0, y0).

(ii) If ∂2f
∂x2

(x0, y0) < 0 and ∂2f
∂x2

(x0, y0)
∂2f
∂y2

(x0, y0) −
(
∂2f
∂x∂y

(x0, y0)
)2

> 0, then f has a

local maximum at (x0, y0).

(iii) If ∂2f
∂x2

(x0, y0)
∂2f
∂y2

(x0, y0)−
(
∂2f
∂x∂y

(x0, y0)
)2

< 0, then f has a saddle at (x0, y0).

Example. Let

D := {(x, y) ∈ R2 : 0 ≤ x, y, x+ y ≤ π},

and let

f : D → R, (x, y) 7→ (sinx)(sin y) sin(x+ y).
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Figure 3.3: The domain D

It follows that f |∂D ≡ 0 and that f(x) > 0 for (x, y) ∈ int D.

Hence f has the global minimum 0, which is attained at each point of ∂D.

In the interior of D, we have

∂f

∂x
(x, y) = (cos x)(sin y) sin(x+ y) + (sinx)(sin y) cos(x+ y)

and
∂f

∂y
(x, y) = (sinx)(cos y) sin(x+ y) + (sinx)(sin y) cos(x+ y).

It follows that ∂f
∂x

(x, y) = ∂f
∂y

(x, y) = 0 implies that

(cos x) sin(x+ y) = −(sinx) cos(x+ y)

and

(cos y) sin(x+ y) = −(sin y) cos(x+ y).

Division yields
cos x

cos y
=

sinx

sin y
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and thus tanx = tan y. It follows that x = y. Since ∂f
∂x

(x, x) = 0 implies

0 = (cos x) sin(2x) + (sinx) cos(2x) = sin(3x),

which — for x + x ∈ [0, π] — is true only for x = π
3 , it follows that

(
π
3 ,

π
3

)
is the only

stationary point of f .

It can be shown that
∂2f

∂x2

(π

3
,
π

3

)

= −
√
3 < 0

and
∂2f

∂x2

(π

3
,
π

3

) ∂2f

∂y2

(π

3
,
π

3

)

−
(
∂2f

∂x∂y

(π

3
,
π

3

))2

=
9

4
> 0.

Hence, f has a local (and thus global) maximum at
(
π
3 ,

π
3

)
, namely f

(
π
3 ,

π
3

)
= 3

√
3

8 .
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Chapter 4

Integration in RN

4.1 Content in RN

What is the volume of a subset of RN?

Let

I = [a1, b1]× · · · × [aN , bN ] ⊂ RN

be a compact N -dimensional interval. Then we define its (Jordan) content µ(I) to be

µ(I) :=
N∏

j=1

(bj − aj).

For N = 1, 2, 3, the jordan content of a compact interval is then just its intuitive lenght/-

area/volume.

To be able to meaningfully speak of the content of more general set, we first define

what it means for a set to have content zero.

Definition 4.1.1. A set S ⊂ RN has content zero [µ(S) = 0] if, for each ǫ > 0, there are

compact intervals I1, . . . , In ⊂ RN with

S ⊂
n⋃

j=1

Ij and

n∑

j=1

µ(Ij) < ǫ.

Examples. 1. Let x = (x1, . . . , xN ) ∈ RN , and let ǫ > 0. For δ > 0, let

Iδ := [x1 − δ, x1 + δ] × · · · × [xN − δ, xN + δ].

It follows that x ∈ Iδ and µ(Iδ) = 2NδN . Choose δ > 0 so small that 2NδN < ǫ and

thus µ(Iδ) < ǫ. It follows that {x} has content zero.
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2. Let S1, . . . , Sm ⊂ RN all have content zero. Let ǫ > 0. Then, for j = 1, . . . ,m, there

are compact intervals I
(j)
1 , . . . , I

(j)
nj ⊂ RN such that

Sj ⊂
nj⋃

k=1

I
(j)
k and

nj∑

k=1

µ(I
(j)
k ) <

ǫ

m
.

It follows that

S1 ∪ · · · ∪ Sm ⊂
m⋃

j=1

nj⋃

k=1

I
(j)
k

and
m∑

j=1

nj∑

k=1

µ(I
(j)
k ) < m

ǫ

m
= ǫ.

Hence, S1 ∪ · · · ∪Sm has content zero. In view of the previous examples, this means

in particular that all finite subsets of RN have content zero.

3. Let f : [0, 1] → R be continuous. We claim that {(x, f(x)) : x ∈ [0, 1]} has content

zero in R2.

Let ǫ > 0. Since f is uniformly continuous. there is δ ∈ (0, 1) such that |f(x) −
f(y)| ≤ ǫ

4 for all x, y ∈ [0, 1] with |x − y| ≤ δ. Choose n ∈ N such that nδ < 1 and

(n+ 1)δ ≥ 1. For k = 0, . . . , n, let

Ik := [kδ, (k + 1)δ] ×
[

f(kδ)− ǫ

4
, f(kδ) +

ǫ

4

]

.

Let x ∈ [0, 1]; then there is k ∈ {0, . . . , n} such that x ∈ [kδ, (k + 1)δ] ∩ [0, 1], so

that |x− kδ| < δ. From the choice of δ, it follows that |f(x)− f(kδ)| ≤ ǫ
4 , and thus

f(x) ∈
[
f(kδ) − ǫ

4 , f(kδ) +
ǫ
4

]
. It follows that (x, f(x)) ∈ Ik.

Since x ∈ [0, 1] was arbitrary, we obtain as a consequence that

{(x, f(x)) : x ∈ [0, 1]} ⊂
n⋃

k=0

Ik.

Moreover, we have

n∑

k=0

µ(Ik) ≤
n∑

k=1

δ
ǫ

2
= (n+ 1)δ

ǫ

2
≤ (1 + δ)

ǫ

2
< ǫ.

This proves the claim.

4. Let r > 0. We claim that {(x, y) ∈ R2 : x2 + y2 = r2} has content zero.

Let

S1 := {(x, y) ∈ R2 : x2 + y2 = r2, y ≥ 0}.
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Let

f : [−r, r] → R, x 7→
√

r2 − x2.

The f is continous, and S1 = {(x, f(x)) : x ∈ [−r, r]}. By the previous example,

µ(S1) = 0 holds. Similarly,

S2 := {(x, y) ∈ R2 : x2 + y2 = r2, y ≤ 0}

has content zero. Hence, S = S1 ∪ S2 has content zero.

For an application later one, we require the following lemma:

Lemma 4.1.2. A set S ⊂ RN does not have content zero if and only if, there is ǫ0 > 0

such, for any compact intervals I1, . . . , In ⊂ RN with S ⊂ ⋃n
j=1 Ij, we have

n∑

j=1
int Ij∩S 6=∅

µ(Ij) ≥ ǫ0.

Proof. Suppose that S does not have content zero. Then there is ǫ̃0 > 0 such that, for

any compact intervals I1, . . . , In ⊂ RN with S ⊂ ⋃n
j=1 Ij , we have

∑n
j=1 µ(Ij) ≥ ǫ̃0.

Set ǫ0 := ǫ̃0
2 , and let I1, . . . , In ⊂ RN a collection of compact intervals such that

S ⊂ I1 ∪ · · · ∪ In. We may suppose that there is m ∈ {1, . . . ,m} such that

int Ij ∩ S 6= ∅

for j = 1, . . . ,m and that

Ij ∩ S ⊂ ∂Ij

for j = m+ 1, . . . , n. Since boundaries of compact intervals always have content zero,
n⋃

j=m+1

Ij ∩ S ⊂
n⋃

j=m+1

∂Ij

has content zero. Hence, there are compact intervals J1, . . . , Jk ⊂ RN such that

n⋃

j=m+1

Ij ∩ S ⊂
k⋃

j=1

Jj and

n∑

j=1

µ(Jj) <
ǫ̃0
2
.

Since

S ⊂ I1 ∪ · · · ∪ Im ∪ J1 ∪ · · · ∪ Jk,
we have

ǫ̃0 ≤
m∑

j=1

µ(Ij) +

k∑

j=1

µ(Jk)

︸ ︷︷ ︸

<
ǫ̃0
2

,

which is possible only if
m∑

j=1

µ(Ij) ≥
ǫ̃0
2

= ǫ0.

This completes the proof.
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4.2 The Riemann integral in RN

Let

I := [a1, b1]× · · · [aN , bN ].

For j = 1, . . . , N , let

aj = tj,0 < tj,1 < · · · < tj,nj
= bj

and

Pj := {tj,k : k = 0, . . . , nj}.

Then P := P1 × · · · PN is called a partition of I.

Each partition of I generates a subdivision of I into subintervals of the form

[t1,k1 , t1,k1+1]× [t2,k2 , t2,k2+1]× · · · × [tN,kN , tN,kN+1];

these intervals only overlap at their boundaries (if at all).
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1 b 1

a 2

b 2

t 1,1 t 1,2

2,1t

t 2,2

t 2,3

a

Figure 4.1: Subdivision generated by a partition

There are n1 · · ·nN such subintervals generated by P.

Definition 4.2.1. Let I ⊂ RN be a compact interval, let f : I → RM be a function, and

let P be a partition of I that generates a subdivision (Iν)ν . For each ν, choose xν ∈ Iν .

Then

S(f,P) :=
∑

ν

f(xν)µ(Iν)

is called a Riemann sum of f corresponding to P.

Note that a Riemann sum is dependent not only on the partition, but also on the
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particular choice of (xν)ν .

Let P and Q be partitions of the compact interval I ⊂ RN . Then Q called a refinement

of P if Pj ⊂ Qj for all j = 1, . . . , N .

refinement of 

Figure 4.2: Subdivisions corresponding to a partition and to a refinement

If P1 and P2 are any two partitions of I, there is always a common refinement Q of

P1 and P2.
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common refinement of

1

2

1 2and 

Figure 4.3: Subdivision corresponding to a common refinement

Definition 4.2.2. Let I ⊂ RN be a compact interval, let f : I → RM be a function,

and suppose that there is y ∈ RM with the following property: For each ǫ > 0, there is a

partition Pǫ of I such that, for each refinement P of Pǫ and for any Riemann sum S(f,P)

corresponding to P, we have ||S(f,P)− y|| < ǫ. Then f is said to be Riemann integrable

on I, and y is called the Riemann integral of f over I.

In the situation of Definition 4.2.2, we write

y =:

∫

I

f =:

∫

I

f dµ =:

∫

I

f(x1, . . . , xN ) dµ(x1, . . . , xN ).

The proof of the following is an easy exercise:

Proposition 4.2.3. Let I ⊂ RN be a compact interval, and let f : I → RM be Riemann

integrable. Then
∫

I
f is unique.

Theorem 4.2.4 (Cauchy criterion for Riemann integrability). Let I ⊂ RN be a compact

interval, and let f : I → RM be a function. Then the following are equivalent:

(i) f is Riemann integrable.
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(ii) For each ǫ > 0, there is a partition Pǫ of I such that, for all refinements P and

Q of Pǫ and for all Riemann sums S(f,P) and S(f,Q) corresponding to P and Q,

respectively, we have ||S(f,P)− S(f,Q)|| < ǫ.

Proof. (i) =⇒ (ii): Let y :=
∫

I
f , and let ǫ > 0. Then there is a partition Pǫ of I such

that

||S(f,P) − y|| < ǫ

2

for all refinements P of Pǫ and for all corresponding Riemann sums S(f,P). Let P and Q
be any two refinements of Pǫ, and let S(f,P) and S(f,Q) be the corresponding Riemann

sums. Then we have

||S(f,P) − S(f,Q)|| ≤ ||S(f,P) − y||+ ||S(f,Q)− y|| < ǫ

2
+
ǫ

2
= ǫ,

which proves (ii).

(ii) =⇒ (i): For each n ∈ N, there is a partition Pn of I such that

||S(f,P) − S(f,Q)|| < 1

2n

for all refinements P and Q of Pn and for all Riemann sums S(f,P) and S(f,Q) cor-

responding to P and Q, respectively. Without loss of generality suppose thatPn+1 is a

refinement of Pn. For each n ∈ N, fix a particular Riemann sum Sn := S(f,Pn). For

n > m, we then have

||Sn − Sm|| ≤
n−1∑

k=m

||Sk+1 − Sk|| <
n−1∑

k=m

1

2k
,

so that (Sn)
∞
n=1 is a Cauchy sequence in RM . Let y := limn→∞ Sn. We claim that

y =
∫

Y
f .

Let ǫ > 0, and choose n0 so large that 1
2n0 < ǫ

2 and ||Sn0 − y|| < ǫ
2 . Let P be a

refinement of Pn0 , and let S(f,P) be a Riemann sum corresponding to P. Then we have:

||S(f,P) − y|| ≤ ||S(f,P) − Sn0 ||
︸ ︷︷ ︸

< 1
2n0 <

ǫ
2

+ ||Sn0 − y||
︸ ︷︷ ︸

< ǫ
2

< ǫ.

This proves (i).

The Cauchy criterion for Riemann integrability has a somewhat surprising — and

very useful — corollary. For its proof, we require the following lemma whose proof is

elementary, but unpleasant (and thus omitted):

Lemma 4.2.5. Let I ⊂ RN be a compact interval, and let P be a partiation of I subdi-

viding it into (Iν)ν. Then we have

µ(I) =
∑

ν

µ(Iν).
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Corollary 4.2.6. Let I ⊂ RN be a compact interval, and let f : I → RM be a function.

Then the following are equivalent:

(i) f is Riemann integrable.

(ii) For each ǫ > 0, there is a partition Pǫ of I such that ||S1(f,Pǫ)− S2(f,Pǫ)|| < ǫ for

any two Riemann sums S1(f,Pǫ) and S2(f,Pǫ) corresponding to Pǫ.

Proof. (i) =⇒ (ii) is clear in the light of Theorem 4.2.4.

(i) =⇒ (i): Without loss of generality, suppose that M = 1.

Let (Iν)ν be the subdivions of I corresponding to Pǫ. Let P and Q be refinements of

Pǫ with subdivision (Jµ)µ and (Kλ)λ of I, respectively. Note that

S(f,P)− S(f,Q) =
∑

µ

f(xµ)µ(Jµ)−
∑

λ

f(yλ)µ(Kλ)

=
∑

ν




∑

Jµ⊂Iν
f(xµ)µ(Jµ)−

∑

Kλ⊂Iν
f(yλ)µ(Kλ)



 .

For any index ν, choose z∗ν , zν∗ ∈ Iν such that

f(z∗ν) = max{f(xµ), f(yλ) : Jµ,Kλ ⊂ Iν}

and

f(zν∗) = min{f(xµ), f(yλ) : Jµ,Kλ ⊂ Iν}.

For ν, we obtain

(f(zν∗)− f(z∗ν))µ(Iν)

= f(zν∗)
∑

Jµ⊂Iν
µ(Jµ)− f(z∗ν)

∑

Kλ⊂Iν
µ(Kλ), by Lemma 4.2.5,

≤
∑

Jµ⊂Iν
f(xµ)µ(Jµ)−

∑

Kλ⊂Iν
f(yλ)µ(Kλ)

≤ f(z∗ν)
∑

Jµ⊂Iν
µ(Jµ)− f(zν∗)

∑

Kλ⊂Iν
µ(Kλ)

= (f(z∗ν)− f(zν∗))µ(Iν),

so that ∣
∣
∣
∣
∣
∣

∑

Jµ⊂Iν
f(xµ)µ(Jµ)−

∑

Kλ⊂Iν
f(yλ)µ(Kλ)

∣
∣
∣
∣
∣
∣

≤ (f(z∗ν)− f(zν∗))µ(Iν).
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It follows that

|S(f,P)− S(f,Q)| ≤
∑

ν

(f(z∗ν)− f(zν∗))µ(Iν)

=

∣
∣
∣
∣
∣

∑

ν

f(z∗ν)µ(Iν)

︸ ︷︷ ︸

=S1(f,Pǫ)

−
∑

ν

f(zν∗)µ(Iν)

︸ ︷︷ ︸

=S2(f,Pǫ)

∣
∣
∣
∣
∣

< ǫ,

which completes the proof.

Theorem 4.2.7. Let I ⊂ RN be a compact interval, and let f : I → RM be continuous.

Then f is Riemann integrable.

Proof. Since I is compact, f is uniformly continuous.

Let ǫ > 0. Then there is δ > 0 such that ||f(x) − f(y)|| < ǫ
µ(I) for x, y ∈ I with

||x− y|| < δ.

Choose a partition P of I with the following property: If (Iν)ν is the subdivision of I

generated by P, then, for each

Iν := [a
(ν)
1 , b

(ν)
1 ]× · · · × [a

(ν)
N , b

(ν)
N ],

we have

max
j=1,...,N

|a(ν)j − b
(ν)
j | < δ√

N
.

Let S1(f,P) and S2(f,P) be any two Riemann sums of f corresponding to P, namely

S1(f,P) =
∑

ν

f(xν)µ(Iν) and S2(f,P) =
∑

ν

f(yν)µ(Iν)

with xν , yν ∈ Iν . Hence,

||xν − yν || =

√
√
√
√

N∑

j=1

(xν,j − yν,j)2 <

√
√
√
√

N∑

j=1

δ2

N
= δ

holds, so that

||S1(f,P)− S2(f,P)|| ≤
∑

ν

||f(xν)− f(yν)||µ(Iν)

<
ǫ

µ(I)

∑

ν

µ(Iν)

= ǫ.

This completes the proof.
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Our next theorem improves Theorem 4.2.8 and has a similar, albeit technically more

involved proof:

Theorem 4.2.8. Let I ⊂ RN be a compact interval, and let f : I → RM be bounded

such that S := {x ∈ I : f is discontinous at x} has content zero. Then f is Riemann

integrable.

Proof. Let C ≥ 0 be such that ||f(x)|| ≤ C for x ∈ I, and let ǫ > 0.

Choose a partition P of I such that

∑

Iν∩S 6=∅

µ(Iν) <
ǫ

4(C + 1)

holds for the corresponding subdivision (Iν)ν of I, and let

K :=
⋃

Iν∩S=∅

Iν .

K

I

S

Figure 4.4: The idea of the proof of Theorem 4.2.8

Then K is compact, and f |K is continous; hence, f |K is uniformly continous.

Choose δ > 0 such that ||f(x)− f(y)|| < ǫ
2µ(I) for x, y ∈ K with ||x− y|| < δ. Choose

a partition Q refining P such that, for each interval Jλ in the corresponding subdivision
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(Jλ)λ of I with

Jλ := [a
(λ)
1 , b

(λ)
1 ]× · · · × [a

(λ)
N , b

(λ)
N ],

we have

max
j=1,...,N

|a(λ)j − b
(λ)
j | < δ√

N
.

Let S1(f,Q) and S2(f,Q) be any two Riemann sums of f corresponding to Q, namely

S1(f,Q) =
∑

λ

f(xλ)µ(Jλ) and S2(f,Q) =
∑

λ

f(yλ)µ(Jλ).

It follows that

||S1(f,Q)− S2(f,Q)|| ≤
∑

λ

||f(xλ)− f(yλ)||µ(Jλ)

=
∑

Jλ 6⊂K
||f(xλ)− f(yλ)||
︸ ︷︷ ︸

≤2C

µ(Jλ) +
∑

Jλ⊂K
||f(xλ)− f(yλ)||
︸ ︷︷ ︸

< ǫ
2µ(I)

µ(Jλ)

≤ 2C
∑

Jλ 6⊂K
µ(Jλ) +

ǫ

2µ(I)

∑

Jλ⊂K
µ(Iλ)

︸ ︷︷ ︸

< ǫ
2

≤ 2C
∑

Iν∩S 6=∅

µ(Iν)

︸ ︷︷ ︸

< ǫ
4(C+1)

+
ǫ

2

<
ǫ

2
+
ǫ

2
= ǫ,

which proves the claim.

Let D ⊂ RN be bounded, and let f : D → RM be a function. Let I ⊂ RN be a

compact interval such that D ⊂ I. Define

f̃ : I → RM , x 7→
{

f(x), x ∈ D,

0, x /∈ D.
(4.1)

We say that f is Riemann integrable on D of f̃ is Riemann integrable on I. We define

∫

D

:=

∫

I

f̃ .

It is easy to see that this definition is independent of the choice of I.

Theorem 4.2.9. Let ∅ 6= D ⊂ RN be bounded with µ(∂D) = 0, and let f : D → RM be

bounded and continuous. Then f is Riemann integrable on D.
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Proof. Define f̃ as in (4.1). Then f̃ is continuous at each point of int D as well as at each

point of int(I \D). Consequently,

{x ∈ I : f̃ is discontinuous at x} ⊂ ∂D

has content zero. The claim then follows from Theorem 4.2.8.

Definition 4.2.10. Let D ⊂ RN be bounded. We say that D has content if 1 is Riemann

integrable on D. We write

µ(D) :=

∫

D

1.

Sometimes, if we want to emphasize the dimension N , we write µN (D).

For any set S ⊂ RN , let its indicator function be

χS : R
N → R, x 7→

{

1, x ∈ S,

0, x /∈ S.

If D ⊂ RN is bounded, and I ⊂ RN is a compact interval with D ⊂ I, then Definition

4.2.10 becomes

µ(D) =

∫

I

χD.

It is important not to confuse the statements “D does not have content” and “D has

content zero”: a set with content zero always has content.

The following theorem characterizes the sets that have content in terms of their bound-

aries:

Theorem 4.2.11. The following are equivalent for a bounded set D ⊂ RN :

(i) D has content.

(ii) ∂D has content zero.

Proof. (ii) =⇒ (i) is clear by Theorem 4.2.9.

(i) =⇒ (ii): Assume towards a contradiction that D has content, but that ∂D does

not have content zero. By Lemma 4.1.2, this means that there is ǫ0 > 0 such that, for any

compact intervals I1, . . . , In ⊂ RN with ∂D ⊂ ⋃n
j=1 Ij, we have

n∑

j=1
(int Ij )∩∂D 6=∅

µ(Ij) =
n∑

j=1

µ(Ij) ≥ ǫ0.

Let I ⊂ RN be a compact interval such that D ⊂ I. Choose a partition P of I such that

|S(χD,P)− µ(D)| < ǫ0
2
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for any Riemann sum of χD corresponding to P. Let (Iν)ν be the subdivision of I corre-

sponding to P. Choose support points xν ∈ Iν with xν ∈ D whenever int Iν ∩ ∂D 6= ∅.

Let

S1(χD,P) =
∑

ν

χD(xν)µ(Iν).

Choose support points yν ∈ Iν such that yν = xν if int Iν ∩ ∂D = ∅ and yν ∈ Dc if

int Iν ∩ ∂D 6= ∅, and let

S2(χD,P) =
∑

ν

χD(yν)µ(Iν).

It follows that

S1(χD,P) − S2(χD,P) =
∑

ν
(int Iν )∩∂D 6=∅

µ(Iν) ≥ ǫ0.

On the other hand, however, we have

|S1(χD,P)− S2(χD,P)| ≤ |S1(χD,P) − µ(D)|+ |S2(χD,P) − µ(D)| < ǫ0,

which is a contradiction.

Before go ahead and actually compute Riemann integrals, we sum up (and prove) a

few properties of the Riemann integral:

Proposition 4.2.12 (properties of the Riemann integral). The following are true:

(i) Let D ⊂ R be bounded, let f, g : D → RM be Riemann integrable on D, and let

λ, µ ∈ R. Then λf + µg is Riemann integrable on D such that

∫

D

(λf + µg) = λ

∫

D

+µ

∫

D

.

(ii) Let D ⊂ RN be bounded, and let f : D → R be non-negative and Riemann integrable

on D. Then
∫

D
f is non-negative.

(iii) If f is Riemann integrable on D, then so is ||f || with
∣
∣
∣
∣
|
∫

D

f

∣
∣
∣
∣
| ≤

∫

D

||f ||.

(iv) Let D1,D2 ⊂ RN be bounded such that µ(D1 ∩D2) = 0, and let f : D1 ∪D2 → RM

be Riemann integrable on D1 and D2. Then f is Riemann integrable on D1 ∪ D2

such that ∫

D1∪D2

f =

∫

D1

f +

∫

D2

f.
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(v) Let D ⊂ RN have content, let f : D → R be Riemann integrable, and let m,M ∈ R

be such that

m ≤ f(x) ≤M

for x ∈ D. Then

mµ(D) ≤
∫

D

f ≤M µ(D)

holds.

(vi) Let D ⊂ RM be compact, connected, and have content, and let f : D → R be

continuous. Then there is x0 ∈ D such that
∫

D

f = f(x0)µ(D).

Proof. (i) is routine.

(ii): Without loss of generality, suppose that I is a compact interval. Assume that
∫

I
f < 0. Let ǫ := −

∫

I
f < 0, and choose a partition P of I such that for all Riemann

sums S(f,P) corresponding to P, the inequality

∣
∣
∣
∣
S(f,P) −

∫

I

f

∣
∣
∣
∣
<
ǫ

2

holds. It follows that

S(f,P) < − ǫ
2
< 0,

whereas, on the other hand,

S(f,P) =
∑

ν

f(xν)µ(Iν) ≥ 0,

where (Iν)ν is the subdivision of I corresponding to P.

(iii): Again, suppose that D is a compact interval I.

Let ǫ > 0, and let f1, . . . , fM denote the components of f . By Corollary 4.2.6, there

is a partition Pǫ of I such that

|S1(fj,Pǫ)− S2(fj ,Pǫ)| <
ǫ

M

for j = 1, . . . ,M and for all Riemann sums S1(fj ,Pǫ) and S2(fj,Pǫ) corresponding to Pǫ.
Let (Iν)ν be the subdivision of I induced by Pǫ. Choose support points xν , yν ∈ Iν . Fix

j ∈ {1, . . . ,M}. Let z∗ν , zν∗ ∈ {xν , yν} be such that

fj(z
∗
ν) = max{fj(xν), fj(yν)} and fj(zν∗) = max{fj(xν), fj(yν)}
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We then have that

∑

ν

|fj(xν)− fj(yν)|µ(Iν) =
∑

ν

(fj(z
∗
ν)− fj(zν∗))µ(Iν)

=
∑

ν

fj(z
∗
ν)µ(Iν)−

∑

ν

fj(zν∗)µ(Iν)

<
ǫ

M
.

It follows that
∣
∣
∣
∣
∣

∑

ν

||f(xν)||µ(Iν)−
∑

ν

||f(yν)||µ(Iν)
∣
∣
∣
∣
∣

≤
∑

ν

||f(xν)− f(yν)||µ(Iν)

≤
∑

ν

M∑

j=1

|fj(xν)− fj(yν)|µ(Iν)

≤
M∑

j=1

∑

ν

|fj(xν)− fj(yν)|µ(Iν)

< M
ǫ

M
= ǫ,

so that ||f || is Riemann integrable by the Cauchy criterion.

Let ǫ > 0 and choose a partition P of I with corresponding subdivision (Iν)ν of I and

support points xν ∈ Iν such that
∣
∣
∣
∣
∣
|
∑

ν

f(xν)µ(Iν)−
∫

I

f

∣
∣
∣
∣
∣
| < ǫ

2

and ∣
∣
∣
∣
∣

∑

ν

||f(xν)||µ(Iν)−
∫

I

||f ||
∣
∣
∣
∣
∣
<
ǫ

2
.

It follows that

∣
∣
∣
∣
|
∫

I

f

∣
∣
∣
∣
| ≤

∣
∣
∣
∣
∣
|
∑

ν

f(xν)µ(Iν)

∣
∣
∣
∣
∣
|+ ǫ

2

≤
∑

ν

||f(xν)||µ(Iν) +
ǫ

2

≤
∫

I

||f ||+ ǫ.

Since ǫ > 0 was arbitrary, this means that
∣
∣|
∫

I
f
∣
∣ | ≤

∫

I
||f ||.

(iv): Choose a compact interval I ⊂ RN such that D1,D2 ⊂ I, and note that
∫

Dj

f =

∫

I

fχDj
=

∫

D1∪D2

fχDj
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for j = 1, 2. In particular, fχD1 and fχD2 are Riemann integrable on D1 ∪ D2. Since

µ(D1 ∩D2) = 0, the function fχD1∩D2 is automatically Riemann integrable, so that

f = fχD1 + fχD2 − fχD1∩D2

is Riemann integrable. It follows from (i) that
∫

D1∪D2

f =

∫

D1

f +

∫

D2

f −
∫

D1∩D2

f

︸ ︷︷ ︸

=0

.

(v): Since M − f(x) ≥ 0 holds for all x ∈ D, we have by (ii) that

0 ≤
∫

D

(M − f) =M

∫

D

1−
∫

D

f =M µ(D)−
∫

D

f.

Similarly, one proves that mµ(D) ≤
∫

D
f .

(vi): Without loss of generality, suppose that µ(D) > 0. Let

m := inf{f(x) : x ∈ D} and M := sup{f(x) : x ∈ D},

so that

m ≤
∫

D
f

µ(D)
≤M.

Let x1, x2 ∈ D be such that f(x1) = m and f(x2) = M . By the intermediate value

theorem, there is x0 ∈ D such that f(x0) =
∫
D
f

µ(D) .

4.3 Evaluation of integrals in one variable

In this section, we review the basic techniques for evaluating Riemann integrals of func-

tions of one variable:

Theorem 4.3.1. Let f : [a, b] → R be continous, and let F : [a, b] → R be defined as

F (x) :=

∫ x

a

f(t) dt

for x ∈ [a, b]. Then F is an antiderivative of f , i.e. F is differentiable such that F ′ = f .

Proof. Let x ∈ [a, b], and let h 6= 0 such that x + h ∈ [a, b]. By the mean value theorem

of integration, we obtain that

F (x+ h)− F (x) =

∫ x+h

x

f(t) dt = f(ξh)h

for some ξh between x+ h and x. It follows that

F (x+ h)− F (x)

h
= f(ξh)

h→0→ f(x)

because f is continuous.
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Proposition 4.3.2. Let F1 and F2 be antiderivatives of a function f : [a, b] → R. Then

F1 − F2 is constant.

Proof. This is clear because (F1 − F2)
′ = f − f = 0.

Theorem 4.3.3 (fundamental theorem of calculus). Let f : [a, b] → R be continuous, and

let F : [a, b] → R be any antiderivative of f . Then
∫ b

a

f(x) dx = F (b)− F (a) =: F (x)
∣
∣
∣

b

a

holds.

Proof. By Theorem 4.3.1 and by Proposition 4.3.2, there is C ∈ R such that
∫ x

a

f(t) dt = F (x)− C

for all x ∈ [a, b]. Since

F (a)− C =

∫ a

a

f(t) dt = 0,

we have C = F (a) and thus
∫ b

a

f(t) dt = F (b)− F (a).

This proves the claim.

Example. Since d
dx

sinx = cos x, it follows that
∫ π

0
sinx dx = cos x

∣
∣
∣

π

0
= 2.

Corollary 4.3.4 (change of variable). Let φ : [a, b] → R be continuously differentiable, let

f : [c, d] → R be continuous, and suppose that φ([a, b]) ⊂ [c, d]. Then
∫ φ(b)

φ(a)
f(x) dx =

∫ b

a

f(φ(t))φ′(t) dt

holds.

Proof. Let F be an antiderivative of f . The chain rule yields that

(F ◦ φ)′ = (f ◦ φ)φ′,

so that F ◦ φ is an antiderivative of (f ◦ φ)φ′. By the fundamental theorem of calculus,

we thus have
∫ φ(b)

φ(a)
f(x) dx = F (φ(b)) − F (φ(a))

= (F ◦ φ)(b)− (F ◦ φ)(b)

=

∫ b

a

f(φ(t))φ′(t) dt

as claimed.
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Examples. 1. We have:

∫ √
π

0
x sin(x2) dx =

1

2

∫ √
π

0
2x sin(x2) dx

=
1

2

∫ π

0
sinu du

= −1

2
cos u

∣
∣
∣
∣

π

0

=
1

2
+

1

2
= 1.

2. We have:

∫ 1

0

√

1− x2 dx =

∫ π
2

0

√

1− sin2 t cos t dt

=

∫ π
2

0

√
cos2 t cos t dt

=

∫ π
2

0
cos2 t dt.

Corollary 4.3.5 (integration by parts). Let f, g : [a, b] → R be continuously differentiable.

Then ∫ b

a

f(x)g′(x) dx = f(b)g(b) − f(a)g(a)−
∫ b

a

f ′(x)g(x) dx

holds.

Proof. By the product rule, we have

d

dx
f(x)g(x) = f(x)g′(x)− f ′(x)g(x)

for x ∈ [a, b], and the fundamental theorem of calculus yields

f(b)g(b)− f(a)g(a) =

∫ b

a

d

dx
f(x)g(x) dx

=

∫ b

a

(f(x)g′(x)− f ′(x)g(x)) dx

=

∫ b

a

f(x)g′(x) dx−
∫ b

a

f ′(x)g(x) dx

as claimed.
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Examples. 1. Note that

∫ π
2

0
cos2 x dx = − sin(0) cos(0) + sin

(π

2

)

cos
(π

2

)

+

∫ π
2

0
cos2 x dx

=

∫ π
2

0
cos2 x dx

=

∫ π
2

0
(1− sin2 x) dx

=
π

2
−
∫ π

2

0
sin2 x dx,

so that
∫ π

2

0
cos2 x dx =

π

4
.

Combining this, we the second example on change of variables, we also obtain that

∫ 1

0

√

1− t2 dt =

∫ π
2

0
cos2 x dx =

π

4
.

2. We have:
∫ x

1
ln t dt =

∫ x

1
1 ln t dt

= t ln t
∣
∣
∣

x

1
−
∫ x

1
t
1

t
dt

= x lnx− (x− 1).

Hence,

(0,∞) → R, x 7→ x lnx− x

is an antiderivative of the natural logarithm.

4.4 Fubini’s theorem

Fubini’s theorem is the first major tool for the actual computation of Riemann integrals in

several dimensions (the other one is change of variables). It asserts that multi-dimensional

Riemann integrals can be computed through iteration of one-dimensional ones:

Theorem 4.4.1 (Fubini’s theorem). Let I ⊂ RN and J ⊂ RM be compact intervals, and

let f : I × J → RK be Riemann integrable such that, for each x ∈ I, the integral

F (x) :=

∫

J

f(x, y) dµM (y)

exists. Then F : I → RK is Riemann integrable such that
∫

I

F =

∫

I×J
f.
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Proof. Let ǫ > 0.

Choose a partition Pǫ of I × J such that

∣
∣
∣
∣
|S(f,P)−

∫

I×J
f

∣
∣
∣
∣
| < ǫ

2

for any Riemann sum S(f,P) of f corresponding to a partition P of I × J finer than Pǫ.
Let Pǫ,x and Pǫ,y be the partitions of I and J , respectively, such that Pǫ := Pǫ,x×Pǫ,y.

Set Qǫ := Pǫ,x, and let Q be a refinement of Qǫ with corresponding subdivision (Iν)ν of

I; pick xν ∈ Iν . For each ν, there is a partition Rǫ,ν of J such that, for each refinement

R of Rν,ǫ with corresponding subdivision (Jλ)λ, we have

∣
∣
∣
∣
∣
|
∑

λ

f(xν , yλ)µM (Jλ)− F (xν)

∣
∣
∣
∣
∣
| < ǫ

2µN (I)
(4.2)

for any choice of yλ ∈ Jλ. Let Rǫ be a common refinement of (Rǫ,ν)ν and Pǫ,y with

corresponding subdivision (Jλ)λ of J . Consequently, Q × Rǫ is a refinement of Pǫ with
corresponding subdivision (Iν × Jλ)λ,ν of I × J . Picking yλ ∈ Jλ, we thus have

∣
∣
∣
∣
∣
∣

|
∑

ν,λ

f(xν , yλ)µN (Iν)µM (Jλ)−
∫

I×J
f

∣
∣
∣
∣
∣
∣

| < ǫ

2
. (4.3)

We therefore obtain:
∣
∣
∣
∣
∣
|
∑

ν

F (xν)µN (Iν)−
∫

I×J
f

∣
∣
∣
∣
∣
|

≤

∣
∣
∣
∣
∣
∣

|
∑

ν

F (xν)µN (Iν)−
∑

ν,λ

f(xν , yλ)µN (Iν)µM (Jλ)

∣
∣
∣
∣
∣
∣

|

+

∣
∣
∣
∣
∣
∣

|
∑

ν,λ

f(xν, yλ)µN (Iν)µM (Jλ)−
∫

I×J
f

∣
∣
∣
∣
∣
∣

|

<

∣
∣
∣
∣
∣
∣

|
∑

ν

f(xν)µN (Iν)−
∑

ν,λ

f(xν , yλ)µN (Iν)µM (Jλ)

∣
∣
∣
∣
∣
∣

|+ ǫ

2
, by (4.3),

≤
∑

ν

∣
∣
∣
∣
∣
|F (xν)−

∑

λ

f(xν , yλ)µM (Jλ)

∣
∣
∣
∣
∣
|µN (Iν) +

ǫ

2

<
∑

ν

ǫ

2µN (I)
µ(Iν) +

ǫ

2

=
ǫ

2
+
ǫ

2
= ǫ.
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Since this holds for each refinement Q of Qǫ, and for any choice of xν ∈ Iν , we obtain

that F is Riemann integrable such that

∫

I

F =

∫

I×J
f,

as claimed.

Examples. 1. Let

f : [0, 1] × [0, 1] → R, (x, y) 7→ xy.

We obtain:

∫

[0,1]×[0,1]
f =

∫ 1

0

(∫ 1

0
xy dy

)

dx

=

∫ 1

0
x

(∫ 1

0
y dy

)

dx

=

∫ 1

0
x

(

y2

2

∣
∣
∣
∣

1

0

)

dx

=
1

2

∫ 1

0
x dx

=
1

4
.

2. Let

f : [0, 1] × [0, 1] → R, (x, y) 7→ y3exy
2
.

Then Fubini’s theorem yields

∫

[0,1]×[0,1]
f =

∫ 1

0

(∫ 1

0
y3exy

2
dy

)

dx =?.

Changing the order of integration, however, we obtain:

∫

[0,1]×[0,1]
f =

∫ 1

0

(∫ 1

0
y3exy

2
dx

)

dy

=

∫ 1

0
yexy

2
∣
∣
∣

1

0
dy

=

∫ 1

0
(yey

2 − y) dy

=
1

2
ey

2 − y2

2

∣
∣
∣
∣

1

0

=
1

2
e− 1

2
− 1

2

=
1

2
e− 1.
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The following corollary is a straightforward specialization of Fubini’s theorem applied

twice (in each variable).

Corollary 4.4.2. Let I = [a, b]× [c, d], let f : I → R be Riemann integrable, and suppose

that

(a) for each x ∈ [a, b], the integral
∫ d

c
f(x, y) dy exists, and

(b) for each y ∈ [c, d], the integral
∫ b

a
f(x, y) dx exists.

Then ∫ b

a

(∫ d

c

f(x, y) dy

)

dx =

∫

I

f =

∫ d

c

(∫ b

a

f(x, y) dx

)

dy

holds.

Similarly straightforward is the next corollary:

Corollary 4.4.3. Let I = [a, b]× [c, d], and let f : I → R be bounded such that the set D0

of its discontinuity points has content zero and satisfies µ1({y ∈ [c, d] : (x, y) ∈ D0}) = 0

for each x ∈ [a, b]. Then f is Riemann integrable such that

∫

I

f =

∫ b

a

(∫ d

c

f(x, y) dy

)

dx.

Another, less straightforwarded consequence is:

Corollary 4.4.4. Let φ,ψ : [a, b] → R be continuous, let

D := {(x, y) ∈ R2 : x ∈ [a, b], φ(x) ≤ y ≤ ψ(y)},

and let f : D → R be bounded such that the set D0 of its discontinuity points has content

zero and satisfies µ1({y ∈ [c, d] : (x, y) ∈ D0}) = 0 for each x ∈ [a, b]. Then f is Riemann

integrable such that
∫

D

f =

∫ b

a

(
∫ ψ(x)

φ(x)
f(x, y) dy

)

dx.
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D

ba

φ

ψ

x

y

Figure 4.5: The domain D in Corollary 4.4.4

Proof. Choose c, d ∈ R such that φ([0, 1]), ψ([0, 1]) ⊂ [c, d] and extend f as f̃ to [a, b]×[c, d]

by setting it equal to zero outside D. It is not difficult to see that the set of discontinuity

points of f̃ is contained in D0 ∪ ∂D and thus has content zero. Hence, Fubini’s theorem

is applicable and yields

∫

D

f =

∫

[a,b]×[c,d]
f̃ =

∫ b

a

(∫ d

c

f̃(x, y) dy

)

dx =

∫ b

a

(
∫ ψ(x)

φ(x)
f(x, y) dy

)

dx.

This completes the proof.

Examples. 1. Let

D := {(x, y) ∈ R2 : 1 ≤ x ≤ 3, x2 ≤ y ≤ x2 + 1}.

It follows that

µ(D) =

∫

D

1 =

∫ 3

1

(
∫ x2+1

x2
1 dy

)

dx =

∫ 3

1
1 dx = 2.

2. Let

D := {(x, y) ∈ R2 : 0 ≤ x, y ≤ 1, y ≤ x},

and let

f : D → R, (x, y) 7→
{

e
y
x , x 6= 0

0, otherwise.
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We obtain:
∫

D

f =

∫ 1

0

(∫ x

0
e

y
x dy

)

dx

=

∫ 1

0
xe

y
x

∣
∣
∣

x

0
dx

=

∫ 1

0
x(e− 1) dx

=
1

2
(e− 1).

Corollary 4.4.5 (Cavalieri’s principle). Let S, T ⊂ RN have content. For each x ∈ R,

let

Sx := {(x1, . . . , xN−1) ∈ RN−1 : (x, x1, . . . , xN−1) ∈ S}

and

Tx := {(x1, . . . , xN−1) ∈ RN−1 : (x, x1, . . . , xN−1) ∈ T}.

Suppose that Sx and Tx have content with µN−1(Sx) = µN−1(Tx) for each x ∈ R. Then

µN (S) = µN (T ) holds.

Proof. Let I ⊂ R and J ⊂ RN−1 be compact intervals such that S, T ⊂ I × J , and note

that

µN (S) =

∫

I×J
χS

=

∫

I

(∫

J

χS(x, x1, . . . , xN−1) dµN1(x1, . . . , xN−1)

)

dx

=

∫

I

(∫

J

χSx

)

=

∫

I

µN−1(Sx)

=

∫

I

µN−1(Tx)

=

∫

I

(∫

J

χTx

)

=

∫

I

(∫

J

χT (x, x1, . . . , xN−1) dµN1(x1, . . . , xN−1)

)

dx

=

∫

I×J
χT

= µN (T ).

This completes the proof.

Example. Let

D := {(x, y, z) ∈ R3 : x ≥ 0, x2 + y2 + z2 ≤ r2},
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where r > 0. For each x ∈ R, we then have

Dx :=

{

{(y, z) ∈ R2 : y2 + z2 ≤ r2 − x2}, x ∈ [0, r],

∅, otherwise.

It follows that µ2(Dx) = π(r2 − x2). By the proof of Cavalieri’s principle, we have:

µ3(D) =

∫ r

0
µ2(Dx) dx

= π

∫ r

0
(r2 − x2) dx

= πr3 − π

∫ r

0
x2 dx

= πr3 − π
x3

3

∣
∣
∣
∣

r

0

=
2π

3
r3.

As a consequence, the volume of a ball in R3 with radius r is 4π
3 r

3.

4.5 Integration in polar, spherical, and cylindrical coordi-

nates

The second main tool for the calculation of multi-dimensional integrals is the multi-

dimensional change of variables formula:

Theorem 4.5.1 (change of variables). Let ∅ 6= U ⊂ RN be open, let ∅ 6= K ⊂ U be

compact with content, let φ : U → RN be continuously partially differentiable, and suppose

that there is a set Z ⊂ K with content zero such that φ|K\Z is injective and detJφ(x) 6= 0

for all x ∈ K \ Z. Then φ(K) has content and

∫

φ(K)
f =

∫

K

(f ◦ φ)|det Jφ|

holds for all continuous functions f : φ(U) → RM .

Proof. Postponed, but not skipped!

Examples. 1. Let a, b, c > 0 and let

E :=

{

(x, y, z) ∈ R3 :
x2

a2
+
y2

b2
+
z2

c2
≤ 1

}

.

What is the content of E?
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Let

φ : [0,∞)×
[

−π
2
,
π

2

]

× [0, 2π] → R3,

(r, θ, σ) 7→ (ar cos θ cos σ, br cos θ sinσ, cr sin θ)

and let

K := [0, 1] ×
[

−π
2
,
π

2

]

× [0, 2π],

so that E = φ(K). Note that

Jφ(r, θ, σ) =






a cos θ cos σ, −ar sin θ cos σ, −ar cos θ sinσ

b cos θ sinσ, −br sin θ sinσ, br cos θ cos σ

c sin θ, cr cos θ, 0




 ,

and thus

detJφ(r, θ, σ) = abc det






cos θ cos σ, −r sin θ cos σ, −r cos θ sinσ

cos θ sinσ, −r sin θ sinσ, r cos θ cosσ

sin θ, r cos θ, 0






= abc

(

sin θ

[

−r sin θ cos σ, −r cos θ sinσ

−r sin θ sinσ, r cos θ cos σ

]

− r cos θ

[

cos θ cos σ, −r cos θ sinσ

cos θ sinσ, r cos θ cos σ

])

= −abc r2
(
sin θ

(
(sin θ)(cos θ)(cos2 σ) + (sin θ)(cos θ)(sin2 σ)

)

+ cos θ ((cos2 θ)(cos2 σ) + (cos2 θ)(sin2 σ))
)

= −abc r2 cos θ
(
(sin2 θ)(cos2 σ) + (sin2 θ)(sin2 σ) + cos2 θ)

)

= −abc r2
(
sin2 θ + cos2 θ

)

= −abc r2 cos θ.
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It follows that

µ(E) =

∫

E

1

=

∫

K

1 |det Jφ|

= abc

∫ 1

0

(
∫ π

2

−π
2

(∫ 2π

0
r2 cos θ dσ

)

dθ

)

dr

= 2π abc

∫ 1

0
r2

(
∫ π

2

−π
2

cos θ dθ

)

dr

= 2π abc

∫ 1

0
r2 sin θ

∣
∣
π
2

−π
2
dr

= 4π abc

∫ 1

0
r2 dr

= 4π abc
r3

3

∣
∣
∣
∣

1

0

=
4π

3
abc.

2. Let

f : R2 → R, (x, y) 7→ 1

x2 + y2 + 1
.

Find
∫

B1[0]
f .

Use polar coordinates, i.e. let

φ : [0,∞) × [0, 2π] → R2, (r, θ) 7→ (r cos θ, r sin θ).

109



r

x

y

θ

Figure 4.6: Polar coordinates

It follows that B1[0] = φ(K), where K = [0, 1] × [0, 2π]. We have

Jφ(r, θ) =

[

cos θ, −r sin θ

sin θ, r cos θ

]

and thus

detJφ(r, θ) = r.
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From the change of variables theorem, we obtain:

∫

B1[0]
f =

∫

K

r

r2 + 1

=

∫ 1

0

(∫ 2π

0

r

r2 + 1
dθ

)

dr

= 2π

∫ 1

0

r

r2 + 1
dr

= π

∫ 1

0

2r

r2 + 1
dr

= π

∫ 2

1

1

s
ds

= π ln s|21
= π ln 2.

3. Let

f : R3 → R, (x, y, z) →
√

x2 + y2 + z2,

and let R > 0.

Find
∫

BR[0] f .

Use spherical coordinates, i.e. let

φ : [0,∞) ×
[

−π
2
,
π

2

]

× [0, 2π] → R3,

(r, θ, σ) 7→ (r cos θ cos σ, r cos θ sinσ, r sin θ),

so that

det Jφ(r, θ, σ) = −r2 cos θ.
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σ

z

y

r θ

x

Figure 4.7: Spherical coordinates

Note that BR[0] = φ(K), where K = [0, R] ×
[
−π

2 ,
π
2

]
× [0, 2π]. By the change of

variables theorem, we thus have:
∫

BR[0]
F =

∫

K

r3 cos θ

=

∫ R

0

(
∫ π

2

−π
2

(∫ 2π

0
r3 cos θ dσ

)

dθ

)

dr

= 2π

∫ R

0

(

r3
∫ π

2

−π
2

cos θ dθ

)

dr

= 4π

∫ R

0
r3 dr

= 4π
r4

4

∣
∣
∣
∣

R

0

= πR4.

4. Let

D := {(x, y, z) ∈ R3 : x, y ≥ 0, 1 ≤ z ≤ x2 + y2 ≤ e2},
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and let

f : D → R, (x, y, z) 7→ 1

(x2 + y2)z
.

Compute
∫

D
f .

Use cylindrical coordinates, i.e. let

φ : [0,∞) × [0, 2π] × R → R3, (r, θ, z) 7→ (r cos θ, r sin θ, z),

so that

Jφ(r, θ, z) =






cos θ, −r sin θ, 0

sin θ, r cos θ, 0

0, 0, 1






and

detJφ(r, θ, z) = r.

r

z

y

θ
x

Figure 4.8: Cylindrical coordinates

It follows that D = φ(K), where

K :=
{

(r, θ, z) : r ∈ [1, e], θ ∈
[

0,
π

2

]

, z ∈ [1, r2]
}

.
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We obtain:
∫

D

f =

∫

K

r

r2z

=

∫ e

1

(
∫ π

2

0

(
∫ r2

1

1

rz
dz

)

dθ

)

dr

=
π

2

∫ e

1

(

1

r

∫ r2

1

1

z
dz

)

dr

=
π

2

∫ e

1

2 log r

r
dr

= π

∫ 1

0
s ds

=
π

2
.

5. Let R > 0, and let

C := {(x, y, z) ∈ R3 : x2 + y2 ≤ R2}

and

B := {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 4R2}.

Find µ(C ∩B).

R 2 x

y

z

R

Figure 4.9: Intersection of ball and cylicer
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Note that

µ(C ∩B) = 2(µ(D1) + µ(D2)),

where

D1 :=
{

(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 4R2, z ≥
√

3(x2 + y2)
}

and

D2 :=
{

(x, y, z) ∈ R3 : x2 + y2 ≤ R2, 0 ≤ z ≤
√

3(x2 + y2)
}

.

Use spherical coordinates to compute µ(D1).

Note that D1 = φ(K1), where

K1 = [0, 2R]×
[π

3
,
π

2

]

× [0, 2π].

We obtain:

µ(D1) =

∫

K1

r2 cos θ

=

∫ 2R

0

(
∫ π

2

π
3

(∫ 2π

0
r2 cos θ dσ

)

dθ

)

dr

= 2π

∫ 2R

0

(

r2
∫ π

2

π
3

cos θ dθ

)

dr

= 2π

∫ 2R

0
r2
(

sin
(π

2

)

− sin
(π

3

))

dr

= 2π

(

1−
√
3

2

)
∫ 2π

0
r2 dr

=
8R2

3
π
(

2−
√
3
)

.

Use cylindrical coordinates to compute µ(D2), and note that D2 = φ(K2), where

K2 =
{

(r, θ, z) : r ∈ [0, R], θ ∈ [0, 2π], z ∈
[

0,
√
3 r
]}

.

We obtain:

µ(D2) =

∫

K2

r

=

∫ R

0

(
∫ 2π

0

(
∫ √

3 r

0
r dz

)

dθ

)

dr

= 2π
√
3

∫ R

0
r2 dr

=
2
√
3

3
πR3.
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All in all, we have:

µ(B ∩ C) = 2(µ(D1) + µ(D2))

= 2

(

8R2

3
π
(

2−
√
3
)

− 2
√
3

3
πR3

)

= 2

(
R3

3
π
(

16− 8
√
3 + 2

√
3
))

=
R3

3
π
(

32− 12
√
3
)

=
4R3

3

(

8− 3
√
3
)

.
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Chapter 5

The implicit function theorem and

applications

5.1 Local properties of C1-functions

In this section, we study “local” properties of certain functions, i.e. properties that hold

if the function is restricted to certain subsets of its domain, but not necessarily for the

function on its whole domain.

We start this section with introducing some “shorthand” notation:

Definition 5.1.1. Let ∅ 6= U ⊂ RN be open. We say that f : U → RM is of class C1 —

in symbols: f ∈ C1(U,RM ) — if f is continuously partially differentiable, i.e. all partial

derivatives of f exist on U and are continuous.

Our first local property is the following:

Definition 5.1.2. Let ∅ 6= D ⊂ RN , and let f : D → RM . Then f is locally injective at

x0 ∈ D if there is a neighborhood U of x0 such that f is injective on U ∩D. If f is locally

injective each point of U , we simply call f locally injective on D.

Trivially, every injective function is locally injective. But what about the converse?

Lemma 5.1.3. Let ∅ 6= U ⊂ RN be open, and let f ∈ C1(U,RN ) be such that detJf (x0) 6=
0 for some x0 ∈ U . Then f is locally injective at x0.

Proof. Choose ǫ > 0 such that Bǫ(x0) ⊂ U and

det







∂f1
∂x1

(
x(1)

)
, . . . , ∂f1

∂xN

(
x(1)

)

...
. . .

...
∂fN
∂x1

(
x(N)

)
, . . . , ∂fN

∂xN

(
x(N)

)






6= 0
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for all x(1), . . . , x(N) ∈ Bǫ(x0).

Choose x, y ∈ Bǫ(x0) such that f(x) = f(y), and let ξ := y − x. By Taylor’s theorem,

there is, for each j = 1, . . . , N , a number θj ∈ [0, 1] such that

fj(x+ ξ
︸ ︷︷ ︸

=y

) = fj(x) +

N∑

k=1

∂fj
∂xk

(x+ θjξ)ξj = fj(x).

It follows that
N∑

k=1

∂fj
∂xk

(x+ θjξ)ξj = 0

for j = 1, . . . , N . Let

A :=







∂f1
∂x1

(x+ θ1ξ) , . . . , ∂f1
∂xN

(x+ θ1ξ)
...

. . .
...

∂fN
∂x1

(x+ θNξ) , . . . , ∂fN
∂xN

(x+ θNξ)






,

so that Aξ = 0. On the other hand, detA 6= 0 holds, so that ξ = 0, i.e. x = y.

Theorem 5.1.4. Let ∅ 6= U ⊂ RN be open, let M ≥ N , and let f ∈ C1(U,RM ) be such

that rank Jf (x) = N for all x ∈ U . Then f is locally injective on U .

Proof. Let x0 ∈ U . Without loss of generality suppose that

rank







∂f1
∂x1

(x0), . . . , ∂f1
∂xN

(x0)
...

. . .
...

∂fN
∂x1

(x0), . . . , ∂fN
∂xN

(x0)






= N.

Let f̃ := (f1, . . . , fN ). It follows that

J
f̃
(x) =







∂f1
∂x1

(x), . . . , ∂f1
∂xN

(x)
...

. . .
...

∂fN
∂x1

(x), . . . , ∂fN
∂xN

(x)







for x ∈ U and, in particular, detJ
f̃
(x0) 6= 0.

By Lemma 5.1.3, f̃ — and hence f — is therefore locally injective at x0.

Example. The function

f : R → R2, x 7→ (cos x, sinx)

satisfies the hypothesis of Theorem 5.1.4 and thus is locally injective. Nevertheless,

f(x+ 2π) = f(x)

holds for all x ∈ R, so that f is not injective.
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Next, we turn to an application of local injectivity:

Lemma 5.1.5. Let ∅ 6= U ⊂ RN be open, and let f ∈ C1(U,RN ) be such that det Jf (x) 6=
0 for x ∈ U . Then f(U) is open.

Proof. Fix y0 ∈ f(U), and let x0 ∈ U be such that f(x0) = y0.

Choose δ > 0 such that

Bδ[x0] := {x ∈ RN : ||x− x0|| ≤ δ} ⊂ U

and such that f is injective on Bδ[x0] (the latter is possible by Lemma 5.1.3). Since

f(∂Bδ[x0]) is compact and does not contain y0, we have that

ǫ :=
1

3
inf{||y0 − f(x)|| : x ∈ ∂Bδ [x0]} > 0.

We claim that Bǫ(y0) ⊂ f(U).

Fix y ∈ Bǫ(y0), and define

g : Bδ[x0] → R, x 7→ ||f(x)− y||2.

Then g is continuous, and thus attains its minimum at some x̃ ∈ Bδ[x0]. Assume towards

a contradiction that x̃ ∈ ∂Bδ[x0]. It then follows that

√

g(x̃) = ||f(x̃)− y||
≥ ||f(x̃)− y0||

︸ ︷︷ ︸

≥3ǫ

− ||y0 − y||
︸ ︷︷ ︸

<ǫ

≥ 2ǫ

> ǫ

> ||f(x0)− y||
=

√

g(x0),

and thus g(x̃) > g(x0), which is a contradiction. It follows that x̃ ∈ Bδ(x0).

Consequently, ∇g(x̃) = 0 holds. Since

g(x) =

N∑

j=1

(fj(x)− yj)
2

for x ∈ Bδ[x0], it follows that

∂g

∂xk
(x) = 2

N∑

j=1

∂fj
∂xk

(x)(fj(x)− yj)
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holds for k = 1, . . . , N and x ∈ Bδ(x0). In particular, we have

0 =

N∑

j=1

∂fj
∂xk

(x̃)(fj(x̃)− yj)

for k = 1, . . . , N , and therefore

Jf (x̃)f(x̃) = Jf (x̃)y,

so that f(x̃) = y. It follows that y = f(x̃) ∈ f(Bδ(x0)) ⊂ f(U).

Theorem 5.1.6. Let ∅ 6= U ⊂ RN be open, let M ≤ N , and let f ∈ C1(U,RM ) with

rank Jf (x) =M for x ∈ U . Then f(U) is open.

Proof. Let x0 = (x0,1, . . . , x0,N ) ∈ U . We need to show that f(U) is a neighborhood of

f(x0). Without loss of generality suppose that

det







∂f1
∂x1

(x0), . . . , ∂f1
∂xM

(x0)
...

. . .
...

∂fM
∂x1

(x0), . . . , ∂fM
∂xM

(x0)






6= 0

and — making U smaller if necessary — even that

det







∂f1
∂x1

(x), . . . , ∂f1
∂xM

(x)
...

. . .
...

∂fM
∂x1

(x), . . . , ∂fM
∂xM

(x)






6= 0

for x ∈ U . Define

f̃ : Ũ → RM , x 7→ f(x1, . . . , xM , x0,M+1, . . . , x0,N ),

where

Ũ := {(x1, . . . , xM ) ∈ RM : (x1, . . . , xM , x0,M+1, . . . , x0,N ) ∈ U} ⊂ RM .

Then Ũ is open in RM , f̃ is of class C1 on Ũ , and detJf̃ (x) 6= 0 holds on Ũ . By Lemma

5.1.5, f̃(Ũ) is open in RM . Consequently, f(U) ⊃ f̃(Ũ) is a neighborhood of f(x0).

5.2 The implicit function theorem

The function we have encountered so far were “explicitly” given, i.e. they were describe by

some sort of algebraic expression. Many functions occurring “in nature”, howere, are not

that easily accessible. For instance, a R-valued function of two variables can be thought
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of as a surface in three-dimensional space. The level curves can often — at least locally

— be parametrized as functions — even though they are impossible to describe explicitly:

y

f

x

domain of 

x , y ) = c 2

f (x , y )f (x , y ) = c 3

f (x y ) = c 3

f (x 0, y 0)

,

f (x , y ) = c 1

f (

Figure 5.1: Level curves

In the figure above, the curves corresponding to the levels c1 and c3 can locally be

parametrized, whereas the curve corresponding to c2 allows no such parametrization close

to f(x0, y0).

More generally (and more rigorously), given equations

fj(x1, . . . , xM , y1, . . . , yN ) = 0 (j = 1, . . . , N),

can y1, . . . , yN be uniquely expressed as functions yj = φj(x1, . . . , xM )?

Examples. 1. “Yes” if f(x, y) = x2 − y: choose φ(x) = x2.

2. “No” if f(x, y) = y2 − x: both φ(x) =
√
x and ψ(x) = −√

x solve the equation.

The implicit function theorem will provides necessary conditions for a positive answer.

Lemma 5.2.1. Let ∅ 6= K ⊂ RN be compact, and let f : K → RM be injective and

continuous. Then the inverse map

f−1 : f(K) → K, f(x) 7→ x

is also continuous.
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Proof. Let x ∈ K, and let (xn)
∞
n=1 be a sequence in K such that limn→∞ f(xn) = f(x).

We need to show that limn→∞ xn = x. Assume that this is not true. Then there is ǫ0 > 0

and a subsequence (xnk
)∞k=1 of (xn)

∞
n=1 such that ||xnk

−x|| ≥ ǫ0 for all k ∈ N. Since K is

compact, we may suppose that (xnk
)∞k=1 converges to some x′ ∈ K. Since f is continuous,

this means that limk→∞ f(xnk
) = f(x′). Since limn→∞ f(xn) = f(x), this implies that

f(x) = f(x′), and the injectivity of f yields x = x′, so that limk→∞ xnk
= x. This,

however, contradicts that ||xnk
− x|| ≥ ǫ0 for all k ∈ N.

Proposition 5.2.2 (baby inverse function theorem). Let I ⊂ R be an open interval, let

f ∈ C1(I,R), and let x0 ∈ I be such that f ′(x0) 6= 0. Then there is an open interval

J ⊂ I with x0 ∈ J such that f restricted to J is injective. Moreover, f−1 : f(J) → R is a

C1-function such that
df−1

dy
(f(x)) =

1

f ′(x)
(x ∈ J). (5.1)

Proof. Without loss of generality, let f ′(x0) > 0. Since I is open, and since f ′ is continu-

ous, there is ǫ > 0 with [x0− ǫ, x0+ ǫ] ⊂ I such that f ′(x) > 0 for all x ∈ [x0− ǫ, x0+ ǫ]. It
follows that f is strictly increasing on [x0− ǫ, x0+ ǫ] and therefore injective. From Lemma

5.2.1, it follows that f−1 : f([x0 − ǫ, x0 + ǫ]) → R is continuous. Let J := (x0 − ǫ, x0 + ǫ),

so that f(J) is an open interval and f−1 : f(J) → R is continuous.

Let y, ỹ ∈ f(J) such that y 6= ỹ. Let x, x̃ ∈ J be such that y = f(x) and ỹ = f(x̃).

Since f−1 is continuous, we obtain that

lim
ỹ→y

f−1(y)− f−1(ỹ)

y − ỹ
= lim

x̃→x

x− x̃

f(x)− f(x̃)
=

1

f ′(x)
,

whiche proves (5.1). From (5.1), it is also clear that df−1

dy
is continuous on f(J).

Lemma 5.2.3. Let ∅ 6= U ⊂ RN be open, let f ∈ C1(U,RN ), and let x0 ∈ U be such that

det Jf (x0) 6= 0. Then there is a neighborhood V ⊂ U of x0 and C > 0 such that

||f(x)− f(x0)|| ≥ C||x− x0||

for all x ∈ V .

Proof. Since det Jf (x0) 6= 0, the matrix Jf (x0) is invertible. For all x ∈ RN , we have

||x|| = ||Jf (x0)−1Jf (x0)x|| ≤ |||Jf (x0)−1|||||Jf (x0)x||

and therefore
1

|||Jf (x0)−1||| ||x|| ≤ ||Jf (x0)x||.

Let C := 1
2

1
|||Jf(x0)−1||| , so that

2C||x− x0|| ≤ ||Jf (x0)(x− x0)||
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holds for all x ∈ RN . Choose ǫ > 0 such that Bǫ(x0) ⊂ U and

||f(x)− f(x0)− Jf (x0)(x− x0)|| ≤ C||x− x0||

for all x ∈ Bǫ(x0) =: V . Then we have for x ∈ V :

C||x− x0|| ≥ ||f(x)− f(x0)− Jf (x0)(x− x0)||
≥ ||Jf (x0)(x− x0)|| − ||f(x)− f(x0)||
≥ 2C||x− x0|| − ||f(x)− f(x0)||.

This proves the claim.

Lemma 5.2.4. Let ∅ 6= U ⊂ RN be open, let f ∈ C1(U,RN ) be injective such that

det Jf (x) 6= 0 for all x ∈ U . Then f(U) is open, and f−1 is a C1-function such that

Jf−1(f(x)) = Jf (x)
−1 for all x ∈ U .

Proof. The openness of f(U) follows immediately from Theorem 5.1.6.

Fix x0 ∈ U , and define

g : U → RN , x 7→
{

f(x)−f(x0)−Jf (x0)(x−x0)
||x−x0|| , x 6= x0,

0, x = x0.

Then g is continuous and satisfies

||x− x0||Jf (x0)−1g(x) = Jf (x0)
−1(f(x)− f(x0))− (x− x0)

for x ∈ U . With C > 0 as in Lemma 5.2.3, we obtain for y0 = f(x0) and y = f(x) for x

in a neighborhood of x0 that

1

C
||y − y0||||Jf (x0)−1g(x)|| =

1

C
||f(x)− f(x0)||||Jf (x0)−1g(x)||

≥ ||x0 − x||||Jf (x0)−1g(x)||
= ||Jf (x0)−1(f(x)− f(x0))− (x− x0)||.

Since f−1 is continuous at y0 by Lemma 5.2.1, we obtain that

||f−1(y)− f−1(y0)− Jf (x0)
−1(y − y0)||

||y − y0||
≤ 1

C
||Jf (x0)−1g(x)|| → 0

as y → y0. Consequently, f
−1 is totally differentiable at y0 with Jf−1(y0) = Jf (x0)

−1.

Since y0 ∈ f(U) was arbitrary, we have that f−1 is totally differentiable at each

point of y ∈ f(U) with Jf−1(y) = Jf (x)
−1, where x = f−1(y). By Cramer’s rule, the

entries of Jf−1(y) = Jf (x)
−1 are rational functions of the entries of Jf (x). It follows that

f−1 ∈ C1(f(U),RN ).
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Theorem 5.2.5 (inverse function theorem). Let ∅ 6= U ⊂ RN be open, let f ∈ C1(U,RN ),

and let x0 ∈ U be such that det Jf (x0) 6= 0. Then there is an open neighborhood V ⊂ U

of x0 such that f is injective on V , f(V ) is open, and f−1 : f(V ) → RN is a C1-function

such that Jf−1 = J−1
f .

Proof. By Theorem 5.1.4, there is an open neighborhood V ⊂ U of x0 with detJf (x) 6= 0

for x ∈ V and such that f restricted to V is injective. The remaining claims then follow

immediately from Lemma 5.2.4.

For the implicit function theorem, we consider the following situation: Let ∅ 6= U ⊂
RM+N be open, and let

f : U → RN , (x1, . . . , xM , y1, . . . , yN ) 7→ f(x1, . . . , xM
︸ ︷︷ ︸

=:x

, y1, . . . , yN
︸ ︷︷ ︸

=:y

)

be such that ∂f
∂yj

and ∂f
∂xk

exists on U for j = 1, . . . , N and k = 1, . . . ,M . We define

∂f

∂x
(x, y) :=







∂f1
∂x1

(x, y), . . . , ∂f1
∂xM

(x, y)
...

. . .
...

∂fN
∂x1

(x, y), . . . , ∂fN
∂xM

(x, y)







and

∂f

∂y
(x, y) :=







∂f1
∂y1

(x, y), . . . , ∂f1
∂yN

(x, y)
...

. . .
...

∂fN
∂y1

(x, y), . . . , ∂fN
∂yN

(x, y)






.

Theorem 5.2.6 (implicit function theorem). Let ∅ 6= U ⊂ RM+N be open, let f ∈
C1(U,RN ), and let (x0, y0) ∈ U be such that f(x0, y0) = 0 and det ∂f

∂y
(x0, y0) 6= 0. Then

there are neighborhoods V ⊂ RM of x0 and W ⊂ RN of y0 with V ×W ⊂ U and a unique

φ ∈ C1(V,RN ) such that

(i) φ(x0) = y0 and

(ii) f(x, y) = 0 if and only if φ(x) = y for all (x, y) ∈ V ×W .

Moreover, we have

Jφ = −
(
∂f

∂y

)−1 ∂f

∂x
.
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x

=φ(x )y

Figure 5.2: The implicit function theorem

Proof. Define

F : U → RM+N , (x, y) 7→ (x, f(x, y)),

so that F ∈ C1(U,RM+N ) with

JF (x, y) =

[

EM 0
∂f
∂x

(x, y) ∂f
∂y
(x, y)

]

.

It follows that

det JF (x0, y0) = det
∂f

∂y
(x0, y0) 6= 0.

By the inverse function theorem, there are therefore open neighborhoods V ⊂ RM of x0

and W ⊂ RN of y0 with V ×W ⊂ U such that:

• F restricted to V ×W is injective;

• F (V ×W ) is open (and therefore a neighborhood of (x0, 0) = F (x0, y0));

• F−1 ∈ C1(F (V ×W ),RM+N ).

Let

π : RM+N → RN , (x, y) 7→ y.

125



Then we have for (x, y) ∈ F (V ×W ) that

(x, y) = F (F−1(x, y))

= F (x, π(F−1(x, y)))

= (x, f(x, π(F−1(x, y))))

and thus

y = f(x, π(F−1(x, y))).

Since {(x, 0) : x ∈ V } ⊂ F−1(V ×W ), we can define

φ : V → RN , x 7→ π(F−1(x, 0)).

It follows that φ ∈ C1(V,RN ) with φ(x0) = y0 and f(x, φ(x)) = 0 for all x ∈ V . If

(x, y) ∈ V ×W is such that f(x, y) = 0 = f(x, φ(x)), the injectivity of F — and hence of

f — yields y = φ(x). This also proves the uniqueness of φ.

Let

ψ : V → RM+N , x 7→ (x, φ(x)),

so that ψ ∈ C1(V,RM+N ) with

Jψ(x) =

[

EM

Jφ(x)

]

for x ∈ V . Since f ◦ ψ = 0, the chain rule yields for x ∈ V :

0 = Jf (ψ(x))Jψ(x)

=
[

∂f
∂x

(ψ(x)) ∂f
∂y

(ψ(x))
]
[

EM

Jφ(x)

]

=
∂f

∂x
(x, φ(x)) +

∂f

∂y
(x, φ(x))Jφ(x)

and therefore

Jφ(x) = −
(
∂f

∂y
(x, φ(x))

)−1 ∂f

∂x
(x, φ(x)).

This completes the proof.

Example. The system

x2 + y2 − 2z2 = 0,

x2 + 2y2 + z2 = 4

of equations has the solutions x0 = 0, y0 =
√

8
5 , and z0 =

√
4
5 . Define

f : R3 → R2, (x, y, z) 7→ (x2 + y2 − 2z2, x2 + 2y2 + z2 − 4),
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so that f(x0, y0, z0) = 0. Note that

[
∂f1
∂y

(x, y, z), ∂f1
∂z

(x, y, z)
∂f2
∂y

(x, y, z), ∂f2
∂z

(x, y, z)

]

=

[

2y, −4z

4y, 2z

]

.

Hence,

det

[
∂f1
∂y

(x, y, z), ∂f1
∂z

(x, y, z)
∂f2
∂y

(x, y, z), ∂f2
∂z

(x, y, z)

]

= 4yz + 16yz 6= 0

whenever y 6= 0 6= z. By the implicit function theorem, there is ǫ > 0 and a unique

φ ∈ C1((−ǫ, ǫ),R2) such that

φ1(0) =

√

8

5
, φ2(0) =

√

4

5
, and f(x, φ1(x), φ2(x)) = 0

for x ∈ (−ǫ, ǫ). Moroever, we have

Jφ(x) =

[
dφ1
dx

(x)
dφ2
dx

(x)

]

= −
[

2y, −4z

4y, 2z

]−1 [

2x

2x

]

= − 1

20y2

[

2z, 4z

−4y, 2y

][

2x

2x

]

=

[
12xz
20yz

−−4yx
20yz

]

=

[

−3
5
x
y

1
5
x
z

]

and thus

φ′1(x) = −3

5

x

φ1(x)
and φ′2(x) =

1

5

x

φ2(x)

5.3 Local extrema with constraints

Example. Let

f : B1[(0, 0)] → R, (x, y) 7→ 4x2 − 3xy.

Since B1[(0, 0)] is compact, and f is continuous, there are (x1, y1), (x2, y2) ∈ B1[(0, 0)]

such that

f(x1, y1) = sup
(x,y)∈B1[(0,0)]

f(x, y) and f(x2, y2) = inf
(x,y)∈B1[(0,0)]

f(x, y).
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The problem is to find (x1, y1) and (x2, y2). If (x1, y1) and (x2, y2) are in B1((0, 0)), then

f has local extrema at (x1, y1) and (x2, y2), and we know how to determine them.

Since
∂f

∂x
(x, y) = 8x− 3y and

∂f

∂y
(x, y) = −3x,

the only stationary point for f in B1((0, 0)) is (0, 0). Furthermore, we have

∂2f

∂x2
(x, y) = 8,

∂2f

∂y2
(x, y) = 0, and

∂2f

∂x∂y
(x, y) = −3,

so that

(Hess f)(x, y) =

[

8 −3

−3 0

]

.

Since det(Hess f)(0, 0) = −9, it follows that f has a saddle at (0, 0).

Hence, (x1, y1) and (x2, y2) must lie in ∂B1[(0, 0)]. . .

To tackle the problem that occurred in the example, we first introduce a definition:

Definition 5.3.1. Let ∅ 6= U ⊂ RN , and let f, φ : U → R. We say that f has a local

maximum [minimum] at x0 ∈ U under the constraint φ(x) = 0 if φ(x0) = 0 and if there

is a neighborhood V ⊂ U of x0 such that f(x) ≤ f(x0) [f(x) ≥ f(x0)] for all x ∈ V with

φ(x) = 0.

Theorem 5.3.2 (Lagrange multiplier theorem). Let ∅ 6= U ⊂ RN be open, let f, φ ∈
C1(U,R), and let x0 ∈ U be such that f has a local extremum, i.e. a minimum or a

maximum, at x0 under the constraint φ(x) = 0 and such that ∇φ(x0) 6= 0. Then there is

λ ∈ R, a Lagrange multiplier, such that

∇f(x0) = λ∇φ(x0).

Proof. Without loss of generality suppose that ∂φ
∂xN

(x0) 6= 0. Let. By the implicit function

theorem, there are an open neighborhood V of x̃0 := (x0,1, . . . , x0,N−1) and ψ ∈ C1(V,R)

such that

ψ(x̃0) = x0,N and φ(x, ψ(x)) = 0 for all x ∈ V .

It follows that

0 =
∂φ

∂xj
(x, ψ(x)) +

∂φ

∂xN
(x, ψ(x))

∂ψ

∂xj
(x)

for all j = 1, . . . , N − 1 and x ∈ V . In particular,

0 =
∂φ

∂xj
(x0) +

∂φ

∂xN
(x0)

∂ψ

∂xj
(x̃0) (5.2)

holds for all j = 1, . . . , N − 1.
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The function

g : V → R, (x1, . . . , xN−1) 7→ f(x1, . . . , xN−1, ψ(x1, . . . , xN−1))

has a local extremum at x̃0, so that ∇g(x̃0) = 0 and thus

0 =
∂g

∂xj
(x̃0)

=
∂f

∂xj
(x0) +

∂f

∂xN
(x0)

∂ψ

∂xj
(x0) (5.3)

for j = 1, . . . , N − 1. Let

λ :=
∂f

∂xN
(x0)

(
∂φ

∂xN
(x0)

)−1

,

so that ∂f
∂xN

(x0) = λ ∂φ
∂xN

(x0) holds trivially. From (5.2) and (5.3), it also follows that

∂f

∂xj
(x0) = λ

∂φ

∂xj
(x0)

holds as well for j = 1, . . . , N − 1.

Example. Consider again

f : B1[(0, 0)] → R, (x, y) 7→ 4x2 − 3xy.

Since f has no local extrema on B1((0, 0)), it must attain its minimum and maximum

on ∂B1[(0, 0)].

Let

φ : R2 → R, (x, y) 7→ x2 + y2 − 1,

so that

∂B1[(0, 0)] = {(x, y) ∈ R2 : φ(x, y) = 0}.

Hence, the mimimum and maximum of f on B1[(0, 0)] are local extrema under the con-

straint φ(x, y) = 0. Since ∇φ(x, y) = (2x, 2y) for x, y ∈ R, ∇φ never vanishes on

∂B1[(0, 0)].

Suppose that f has a local extremum at (x0, y0) under the constraint φ(x, y) = 0. By

the lagrange multiplier theorem, there is thus λ ∈ R such that ∇f(x0, y0) = λ∇φ(x0, y0),
i.e.

8x0 − 3y0 = 2λx0,

−3x0 = 2λy0.
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For notational simplicity, we write (x, y) instead of (x0, y0). Solve the equations:

8x− 3y = 2λx; (5.4)

−3x = 2λy; (5.5)

x2 + y2 = 1. (5.6)

From (5.5), it follows that x = −2
3λy. Plugging this expression into (5.4), we obtain

−16

3
λy − 3y = −4

3
λ2y. (5.7)

Case 1: y = 0. Then (5.5) implies x = 0, which contradicts (5.6). Hence, this case

cannot occur.

Case 2: y 6= 0. Dividing (5.7) by y
3 yields

4λ2 − 16λ− 9 = 0

and thus

λ2 − 4λ− 9

4
= 0.

Completing the square, we obtain (λ−2)2 = 25
4 and thus the solutions λ = 9

2 and λ = −1
2 .

Case 2.1: λ = −1
2 . The (5.5) yields −3x = −y and thus y = 3x. Plugging into (5.6),

we get 10x2 = 1, so that x = ± 1√
10
. Hence,

(
1√
10
, 3√

10

)

and
(

− 1√
10
,− 3√

10

)

are possible

candidates for extrema to be attained at.

Case 2.2: λ = 9
2 . The (5.5) yields −3x = 9y and thus x = −3y. Plugging into (5.6),

we get 10y2 = 1, so that y = ± 1√
10
. Hence,

(
3√
10
,− 1√

10

)

and
(

− 3√
10
, 1√

10

)

are possible

candidates for extrema to be attained at.

Evaluating f at those points, we obtain:

f

(
1√
10
,

3√
10

)

= −1

2
;

f

(

− 1√
10
,− 3√

10

)

= −1

2
;

f

(
3√
10
,− 1√

10

)

=
9

2
;

f

(

− 3√
10
,

1√
10

)

=
9

2
.

All in all, f has on B1[(0, 0)] the maximum 9
2 — attained at

(
3√
10
,− 1√

10

)

and
(

− 3√
10
, 1√

10

)

— and the minimum −1
2 , which is attained at

(
1√
10
, 3√

10

)

and
(

− 1√
10
,− 3√

10

)

.

Given a bounded, open set ∅ 6= U ⊂ RN an open set U ⊂ V ⊂ RN and a C1-function

f : V → R which is of class C1 on U , the following is a strategy to determine the minimum

and maximum (as well as those points in U where they are attained) of f on U :
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• Determine all stationary points of f on U .

• If possible (with a reasonable amount of work), classify those stationary points and

evaluate f there in the case of a local extremum.

• If classifying the stationary points isn’t possible (or simply too much work), simply

evaluate f at all of its stationary points.

• Describe ∂U in terms of a constraint φ(x) = 0 for some φ ∈ C1(V,R) and check if

the Lagrange multiplier theorem is applicable.

• If so, determine all x ∈ V with φ(x) = 0 and ∇f(x) = λ∇φ(x) for some λ ∈ R, and

evaluate f at those points.

• Compare all the values of f you have obtain in the process and pick the largest and

the smallest one.

This is not a fail safe algorithm, but rather a strategy that may have to be modified

depending on the cirucmstances (or that may not even work at all. . . ).
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Chapter 6

Change of variables and the

integral theorems by Green, Gauß,

and Stokes

6.1 Change of variables

In this section, we shall actually prove the change of variables formula stated earlier:

Theorem 6.1.1 (change of variables). Let ∅ 6= U ⊂ RN be open, let ∅ 6= K ⊂ U be

compact with content, let φ ∈ C1(U,RN ), and suppose that there is a set Z ⊂ K with

content zero such that φ|K\Z is injective and detJφ(x) 6= 0 for all x ∈ K \Z. Then φ(K)

has content and ∫

φ(K)
f =

∫

K

(f ◦ φ)|det Jφ|

holds for all continuous functions f : φ(U) → RM .

The reason why we didn’t proof the theorem when we first encountered it were twofold:

first of all, there simply wasn’t enough time to both prove the theorem and cover ap-

plications, but secondly, the proof also requires some knowledge of local properties of

C1-functions, which wasn’t available to us then.

Before we delve into the proof, we give an example:

Example. Let

D := {(x, y) ∈ R2 : 1 ≤ x2 + y2 ≤ 4}

and determine ∫

D

1

x2 + y2
.

Use polar coordinates:

φ : R2 → R2, (r, θ) 7→ (r cos θ, r sin θ),
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so that detJφ(r, θ) = r. Let K = [1, 2] × [0, 2π], so that φ(K) = D. It follows that

∫

D

1

x2 + y2
=

∫

K

r

r2

=

∫

K

1

r

=

∫ 2

1

(∫ 2π

0

1

r
dθ

)

dr

= 2π log 2.

To prove Theorem 6.1.1, we proceed through a series of steps.

Given a compact subset K of RN and a (sufficiently nice) C1-function φ on a neigh-

borhood of K, we first establish that φ(K) does indeed have content.

Lemma 6.1.2. Let ∅ 6= U ⊂ RN be open, let φ ∈ C1(U,RN ), and let K ⊂ U be compact

with content zero. Then φ(K) is compact with content zero.

Proof. Clearly, φ(K) is compact.

Choose an open set V ⊂ RN with K ⊂ V , and such that V ⊂ U is compact. Choose

C > 0 such that

||Jφ(x)ξ|| ≤ C||ξ|| (6.1)

for ξ ∈ RN and x ∈ V (this is possible because φ is a C1-function).

Let ǫ > 0, and choose compact intervals I1, . . . , In ⊂ V with

K ⊂
n⋃

j=1

Ij and
n∑

j=1

µ(Ij) <
ǫ

(2C
√
N)N

.
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Figure 6.1: K, U , V , and I1, . . . , In

Without loss of generality, suppose that each Ij is a cube, i.e.

Ij = [xj,1 − rj, xj,1 + rj ]× · · · × [xj,N − rj, xj,N + rj ]

with (xj,1, . . . , xj,N ) ∈ RN and rj > 0: this can be done by first making sure that each Ij

is of the form

Ij = [a1, b1]× · · · [aN , bN ]

with a1, b1, . . . , an, bN ∈ Q, so that the ratios between the lengths of the different sides of

Ij are rational, and then splitting it into sufficiently many cubes.

Figure 6.2: Splitting a 2-dimensional interval into cubes
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Let j ∈ {1, . . . , n}, and let x, y ∈ Ij. Then we have for k = 1, . . . , N :

|φk(x)− φk(y)| ≤ ||φ(x) − φ(y)||

=

∣
∣
∣
∣
|
∫ 1

0
Jφ(x+ t(y − x))(y − x) dt

∣
∣
∣
∣
|

≤
∫ 1

0
||Jφ(x+ t(y − x))(y − x)|| dt

≤
∫ 1

0
C||x− y|| dt, by (6.1),

= C||x− y||

= C

√
√
√
√

N∑

ν=1

(xν − yν)2

≤ C

√
√
√
√

N∑

ν=1

(2rj)2

= C
√
N 2rj

= C
√
N µ(Ij)

1
N .

Fix x0 ∈ Ij, and Rj := C
√
N µ(Ij)

1
N , and define

Jj := [φ1(x0)−Rj, φ1(x0) +Rj ]× · · · × [φN (x0)−Rj , φN (x0) +Rj ].

It follows that φ(Ij) ⊂ Jj and that

µ(Jj) = (2Rj)
N = (2C

√
N)Nµ(Ij)

All in all we obtain, that

φ(K) ⊂
n⋃

j=1

Jj and

n∑

j=1

µ(Jj) = (2C
√
N)N

n∑

j=1

µ(Ij) < ǫ.

Hence, φ(K) has content zero.

Lemma 6.1.3. Let ∅ 6= U ⊂ RN be open, let φ ∈ C1(U,RN ) be such that det Jφ(x) 6= 0

for all x ∈ U , and let K ⊂ U be compact. Then we have

{x ∈ K : φ(x) ∈ ∂φ(K)} ⊂ ∂K.

In particular, ∂φ(K) ⊂ φ(∂K) holds.

Proof. First note, that ∂φ(K) ⊂ φ(K) because φ(K) is compact and thus closed. Let

x ∈ K be such that φ(x) ∈ ∂φ(K), and let V ⊂ U be a neighborhood x, which we

can suppose to be open. By Lemma 5.1.5, φ(V ) is a neighborhood of φ(x), and since
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φ(x) ∈ ∂φ(K), it follows that φ(V ) ∩ (RN \ φ(K)) 6= ∅. Assume that V ⊂ K. Then

φ(V ) ⊂ φ(K) holds, which contradicts φ(V ) ∩ (RN \ φ(K)) 6= ∅. Consequently, we have

V ∩ (RN \K) 6= ∅. Since trivially V ∩K 6= ∅, we conclude that x ∈ ∂K.

Since φ(K) is compact and thus closed, we have ∂φ(K) ⊂ φ(K) and thus ∂φ(K) ⊂
φ(∂K).

Proposition 6.1.4. Let ∅ 6= U ⊂ RN be open, let φ ∈ C1(U,RN ) be such that detJφ(x) 6=
0 for all x ∈ U , and let K ⊂ U be compact with content. Then φ(K) is compact with

content.

Proof. Since K has content, ∂K has content zero. From Lemma 6.1.2, we conclude that

µ(φ(∂K)) = 0. Since ∂φ(K) ⊂ φ(∂K) by Lemma 6.1.3, it follows that µ(∂φ(K)) = 0. By

Theorem 4.2.11, this means that φ(K) has content.

Next, we investigate how applying a C1-function to a set with content affects that

content.

Lemma 6.1.5. Let D ⊂ RN have content. Then

µ(D) = inf
n∑

j=1

µ(Ij) (6.2)

holds, where the infimum is taken over all n ∈ N and all compact intervals such that

D ⊂ I1 ∪ · · · ∪ In.

Proof. Exercise!

Proposition 6.1.6. Let ∅ 6= K ⊂ RN be compact with content, and let T : RN → RN be

linear. Then T (K) has content such that

µ(T (K)) = |detT |µ(K).

Proof. We first prove three separate cases of the claim:

Case 1:

T (x1, . . . , xN ) = (x1, . . . , λxj , . . . xN )

with λ ∈ R for x1, . . . , xN ∈ R.

Suppose first that K is an interval, say K = [a1, b1]× · · · × [aN , bN ], so that

T (K) = [a1, b1]× · · · × [λaj, λbj ]× · · · × [aN , bN ]

if λ ≥ 0 and

T (K) = [a1, b1]× · · · × [λbj, λaj ]× · · · × [aN , bN ]

if λ < 0. Since detT = λ, this settles the claim in this particular case.
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Suppose that K is now arbitrary and λ 6= 0. Then T is invertible, so that T (K)

has content by Proposition 6.1.4. For any closed intervals I1, . . . , In ⊂ RN with K ⊂
I1 ∪ . . . ∪ In, we then obtain

µ(T (K)) ≤
n∑

j=1

µ(T (Ij)) = |detT |
n∑

j=1

µ(Ij)

and thus µ(T (K)) ≤ |detT |µ(K) by Lemma 6.1.5. Since T−1 is of the same form, we get

also get µ(K) = µ(T−1(T (K))) ≤ |detT |−1µ(T (K)) and thus µ(T (K)) ≥ |detT |µ(K).

For arbitrary K and λ = 0. Let I ⊂ RN be a compact interval with K ⊂ I. Then

T (I) has content zero, and so has T (K) ⊂ T (I).

Case 2:

T (x1, . . . , xj , . . . , xk, . . . , xN ) = (x1, . . . , xk, . . . , xj , . . . , xN )

with j < k for x1, . . . , xN ∈ R. Again, T is invertible, so that T (K) has content by

Proposition 6.1.4. Since detT = −1, the claim is trivially true if K is an interval and for

general K by Lemma 6.1.5 in a way similar to Case 1.

Case 3:

T (x1, . . . , xj, . . . , xk, . . . , xN ) = (x1, . . . , xj , . . . , xk + xj, . . . , xN )

with j < k for x1, . . . , xN ∈ R. It is clear that then T is invertible, so that T (K) has

content by Proposition 6.1.4. Suppose first that K = [a1, b1] × · · · × [aN , bN ]. With the

help of Fubini’s theorem and change of variables in one variable, we obtain:

µ(T (K))

=

∫ b1

a1

· · ·
∫ bk+bj

ak+aj

· · ·
∫ bN

aN

χT (K)(x1, . . . , xk, . . . , xN ) dxN · · · dxk · · · dx1

=

∫ b1

a1

· · ·
∫ bN

aN

· · ·
∫ bk+bj

ak+aj

χT (K)(x1, . . . , xk, . . . , xN ) dxk · · · dxN · · · dx1

=

∫ b1

a1

· · ·
∫ bk+bj

ak+aj

· · ·
∫ bN

aN

χK(x1, . . . , xk − xj , . . . , xN ) dxk · · · dxN · · · dx1

=

∫ b1

a1

· · ·
∫ bN

aN

· · ·
∫ bk+bj

ak+aj

χK(x1, . . . , xk, . . . , xN ) dxk · · · dxN · · · dx1

=

∫ b1

a1

· · ·
∫ bN

aN

1

= µ(K).

Since detT = 1, this settles the claim in this case.

Now, let K be arbitrary. Invoking Lemma 6.1.5 as in Case 1, we obtain µ(T (K)) ≤
µ(K). Obtaining the reversed inequality is a little bit harder than in Cases 1 and 2 because
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T−1 is not of the form covered by Case 3 (in fact, it isn’t covered by any of Case 1, 2, 3).

Let S : RN → RN be defined by

S(x1, . . . , xj, . . . , xN ) = (x1, . . . ,−xj, . . . , xN ).

It follows that T−1 = S ◦ T ◦ S, so that — in view of Case 1 —

µ(K) = µ(T−1(T (K)) = µ(S(T (S(T (K))))) = µ(T (S(T (K)) ≤ µ(S(T (K))) = µ(T (K)).

All in all, µ(T (K)) = µ(K) holds.

Suppose now that T is arbitrary. Then there are linear maps T1, . . . , Tn : R
N → RN

such that T = T1 ◦ · · · ◦Tn, and each Tj is of one of the forms discussed in Cases 1, 2, and

3. We therefore obtain eventually:

µ(T (K)) = µ(T1(· · ·Tn(K) · · · ))
= |detT1|µ(T2(· · · Tn(K) · · · ))
...

= |detT1| · · · |detTn|µ(K)

= |detT |µ(K).

This completes the proof.

Next, we move from linear maps to C1-maps:

Lemma 6.1.7. Let U ⊂ RN be open, let r > 0 be such that K := [−r, r]N ⊂ U , and

let φ ∈ C1(U,R)N be such that detJφ(x) 6= 0 for all x ∈ K. Furthermore, suppose that

α ∈
(

0, 1√
N

)

is such that ||φ(x)− x|| ≤ α||x|| for x ∈ K. Then

(1− α
√
N)N ≤ µ(φ(K))

µ(K)
≤ (1 + α

√
N)N

holds.

Proof. Let x ∈ K. Then

||φ(x)− x|| ≤ α||x|| ≤ α
√
N r

holds and, consequently,

|φj(x)| ≤ |xj|+ ||φ(x)− x|| ≤ (1 + α
√
N)r

for j = 1, . . . , N . This means that

φ(K) ⊂ [−(1 + α
√
N)r, (1 + α

√
N)r]N . (6.3)
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Let x = (x1, . . . , xN ) ∈ ∂K, so that |xj | = r for some j ∈ {1, . . . , N}. Consequently,

r = |xj| ≤ ||x|| ≤
√
N r

holds and thus

|φj(x)| ≥ |xj | − ||x− φ(x)|| ≥ (1− α
√
N)r.

Since ∂φ(K) ⊂ φ(∂K) by Lemma 6.1.3, this means that

∂φ(K) ⊂ φ(∂K) ⊂ RN \ (−(1− α
√
N)r, (1 − α

√
N)r)N

and thus

(−(1− α
√
N)r, (1 − α

√
N)r)N ⊂ RN \ ∂φ(K).

Let U := int φ(K) and V := int (RN \ φ(K)). Then U and V are open, non-empty,

and satisfy

U ∪ V = RN \ ∂φ(K).

Since (−(1 − α
√
N)r, (1 − α

√
N)r)N is connected, this means that it is contained either

in U or in V . Since

||φ(0)|| = ||φ(0) − 0|| ≤ α||0|| = 0,

it follows that 0 ∈ (−(1− α
√
N)r, (1 − α

√
N)r)N ∩ U and thus

(−(1− α
√
N)r, (1 − α

√
N)r)N ⊂ U ⊂ φ(K). (6.4)

From (6.3) and (6.4), we conclude that

(1− α
√
N)N (2r)N ≤ µ(φ(K)) ≤ (1 + α

√
N)N (2r)N .

Division by µ(K) = (2r)N yields the claim.

For x = (x1, . . . , xN ) ∈ RN and r > 0, we denote by

K[x, r] := [x1 − r, x1 + r]× · · · × [xN − r, xN + r]

the cube with center x and side length 2r.

Proposition 6.1.8. Let ∅ 6= U ⊂ RN be open, and let φ ∈ C1(U,RN ) be such that

Jφ(x) 6= 0 for all x ∈ U . Then, for each compact set ∅ 6= K ⊂ U and for each ǫ ∈ (0, 1),

there is rǫ > 0 such that

|det Jφ(x)|(1 − ǫ)N ≤ µ(φ(K[x, r]))

µ(K[x, r])
≤ |detJφ(x)|(1 + ǫ)N

for all x ∈ K and for all r ∈ (0, rǫ).
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Proof. Let C > 0 be such that

||Jφ(x)−1ξ|| ≤ C||ξ||

for all x ∈ K and ξ ∈ RN , and choose rǫ > 0 such that

||φ(x + ξ)− φ(x)− Jφ(x)ξ|| ≤
ǫ

C
√
N

||ξ||

for all x ∈ K and ξ ∈ K[0, rǫ]. Fix x ∈ K, and define

ψ(ξ) := Jφ(x)
−1(φ(x+ ξ)− φ(x)).

For r ∈ (0, rǫ), we thus have

||ψ(ξ)−ξ|| = ||Jφ(x)−1(φ(x+ξ)−φ(x)−Jφ(x)ξ)|| ≤ C||φ(x+ξ)−φ(x)−Jφ(x)ξ|| ≤
ǫ√
N

||ξ||

for ξ ∈ K[0, r]. From Lemma 6.1.7 (with α = ǫ√
N
), we conclude that

(1− ǫ)N ≤ µ(ψ(K[0, r]))

µ(K[0, r])
≤ (1 + ǫ)N . (6.5)

Since

ψ(K[0, r]) = Jφ(x)
−1φ(K[x, r])− Jφ(x)

−1φ(x),

Proposition 6.1.6 yields that

µ(ψ(K[0, r])) = µ(Jφ(x)
−1φ(K[x, r])) = |det Jφ(x)−1|µ(K[x, r]).

Since µ(K[0, r]) = µ(K[x, r]), multiplying (6.5) with |det Jφ(x)| we obtain

|det Jφ(x)|(1 − ǫ)N ≤ µ(φ(K[x, r]))

µ(K[x, r])
≤ |det Jφ(x)|(1 + ǫ)N ,

as claimed.

We can now prove:

Theorem 6.1.9. Let ∅ 6= U ⊂ RN be open, let ∅ 6= K ⊂ U be compact with content, let

φ ∈ C1(U,RN ) be injective on K and such that detJφ(x) 6= 0 for all x ∈ K. Then φ(K)

has content and ∫

φ(K)
f =

∫

K

(f ◦ φ)|det Jφ| (6.6)

holds for all continuous functions f : φ(U) → RM .
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Proof. Let f : φ(K) → RM be continuous. By Proposition 6.1.4, φ(K) has content. Hence,

both integrals in (6.6) exist, and we are left with showing that they are equal.

Suppose without loss of generality that M = 1. Since

f =
1

2
(f + |f |)
︸ ︷︷ ︸

≥0

− 1

2
(|f | − f)
︸ ︷︷ ︸

≥0

,

we can also suppose that f ≥ 0.

For each x ∈ K, choose Ux ⊂ U open with det Jφ(y) 6= 0 for all y ∈ Ux. Since

{Ux : x ∈ K} is an open cover of K, there are x1, . . . , xl ∈ K with

K ⊂ Ux1 ∪ · · · ∪ Uxl .

Replacing U by Ux1 ∪ · · · ∪ Uxm , we can thus suppose that det Jφ(x) 6= 0 for all x ∈ U .

Let ǫ ∈ (0, 1), and choose compact intervals I1, . . . , In with the following properties:

(a) for j 6= k, the intervals Ij and Ik have only boundary points in common, and we

have K ⊂ ⋃n
j=1 Ij ⊂ U ;

(b) if m ≤ n is such that Ij ∩∂K 6= ∅ if and only if j ∈ {1, . . . ,m}, then∑m
j=1 µ(Ij) < ǫ

holds (this is possible because µ(∂K) = 0);

(c’) for any choice of ξj, ηj ∈ Ij for j = 1, . . . , n we have

∣
∣
∣
∣
∣
∣

∫

K

(f ◦ φ)|det Jφ| −
n∑

j=1

(f ◦ φ)(ξj)|det Jφ(ηj)|µ(Ij)

∣
∣
∣
∣
∣
∣

< ǫ.

Arguing as in the proof of Lemma 6.1.2, we can suppose that I1, . . . , In are actually cubes

with centers x1, . . . , xn, respectively. From (c’), we then obtain

(c)
∣
∣
∣
∣
∣
∣

∫

K

(f ◦ φ)|det Jφ| −
n∑

j=1

(f ◦ φ)(ξj)|det Jφ(xj)|µ(Ij)

∣
∣
∣
∣
∣
∣

< ǫ.

for any choice of ξj ∈ Ij for j = 1, . . . , n.

Making our cubes even smaller, we can also suppose that

(d)

|det Jφ(xj)|(1 − ǫ)N ≤ µ(φ(Ij))

µ(Ij)
≤ |det Jφ(xj)|(1 + ǫ)N

for j = 1, . . . , n.
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Let V ⊂ U be open and bounded such that

n⋃

j=1

Ij ⊂ V ⊂ V ⊂ U,

and let C := sup{|det Jφ(x)| : x ∈ V }. Together, (b) and (d) yield that

m∑

j=1

µ(φ(Ij)) ≤ 2NCǫ.

Let j ∈ {m+ 1, . . . , n}, so that Ij ∩ ∂K = ∅, but Ij ∩K 6= ∅. As in the proof of Lemma

6.1.7, the connectedness of Ij yields that Ij ⊂ K. Note that, thanks to the injectivity of

φ on K, we have

φ(K) \
n⋃

j=m+1

φ(Ij) = φ



K \
n⋃

j=m+1

Ij



 .

Let C̃ := sup{|f(φ(x))| : x ∈ V }, and note that
∣
∣
∣
∣
∣
∣

∫

φ(K)
−

n∑

j=1

∫

φ(Ij)
f

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∫

φ(K)
−

n∑

j=m+1

∫

φ(Ij)
f

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

m∑

j=1

∫

φ(Ij)
f

∣
∣
∣
∣
∣
∣

≤
∫

φ(K\
⋃n

j=m+1 Ij)
f + 2NCC̃ǫ

≤
∫

φ(
⋃m

j=1 Ij)
f + 2NCC̃ǫ

≤ 2N+1CC̃ǫ. (6.7)

Let j ∈ {1, . . . , n}. Since the set φ(Ij) is connected, there is yj ∈ φ(Ij) such that
∫

φ(Ij)
f = f(yj)µ(φ(Ij)); choose ξj ∈ Ij such that yj = φ(ξj). It follows that

n∑

j=1

∫

φ(Ij)
f =

n∑

j=1

f(yj)µ(φ(Ij)) =

n∑

j=1

f(φ(ξj))µ(φ(Ij)). (6.8)

Since f ≥ 0, we obtain:

n∑

j=1

f(φ(ξj))|det Jφ(xj)|µ(Ij)(1− ǫ)N (6.9)

≤
n∑

j=1

f(φ(ξj))µ(φ(Ij)), by (d),

=

n∑

j=1

∫

φ(Ij)
f, by (6.8), (6.10)

≤
n∑

j=1

f(φ(ξj))|det Jφ(xj)|µ(Ij)(1 + ǫ)N . (6.11)
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As ǫ→ 0, both (6.9) and (6.11) converge to the right hand side of (6.6) by (c), whereas

(6.10) converges to the left hand side of (6.6) by (6.7).

Even though Theorem 6.1.1 almost looks like the change of variables theorem, it is

still not general enough to cover polar, spherical, or cylindrical coordinates.

of Theorem 6.1.1. We leaving showing that φ(K) has content as an exercise.

Let ǫ > 0, and let C > 0 be such that

C ≥ sup{|f(φ(x)) det Jφ(x)|, |f(φ(x))| : x ∈ K}.

Choose compact intervals I1, . . . , In ⊂ U and J1, . . . , Jn ⊂ RN such that φ(Ij) ⊂ Jj for

j = 1, . . . , N ,

Z ⊂
n⋃

j=1

int Ij ,

n∑

j=1

µ(Ij) <
ǫ

2C
, and

n∑

j=1

µ(Jj) <
ǫ

2C
.

Let K0 := K \⋃n
j=1 int Ij. Then K0 is compact, φ|K0 is injective and detJφ(x) 6= 0 for

x ∈ K0. From Theorem 6.1.9, we conclude that

∫

φ(K0)
f =

∫

K0

(f ◦ φ)|det Jφ|.

From the choice of the intervals Ij , it follows that

∣
∣
∣
∣

∫

K

(f ◦ φ)|det Jφ| −
∫

K0

(f ◦ φ)|det Jφ|
∣
∣
∣
∣
<
ǫ

2
,

and since φ(K) \ φ(K0) ⊂ J1 ∪ · · · ∪ Jn, the choice of J1, . . . , Jn yields

∣
∣
∣
∣
∣

∫

φ(K)
f −

∫

φ(K0)
f

∣
∣
∣
∣
∣
<
ǫ

2
.

We thus conclude that ∣
∣
∣
∣
∣

∫

φ(K)
f −

∫

K

(f ◦ φ)|det Jφ|
∣
∣
∣
∣
∣
< ǫ.

Since ǫ > 0 is arbitrary, this completes the proof.

Example. For R > 0, let D ⊂ R3 be the upper hemisphere of the ball centered at 0 with

radius R intersected with the cylinder standing on the xy-plane, whose hull interesect that

plane in the circle given by the equation

x2 −Rx+ y2 = 0. (6.12)

What is the volume of D?
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First note that

x2 −Rx+ y2 = 0 ⇐⇒ x2 − 2
R

2
x+

R2

4
+ y2 =

R2

4

⇐⇒
(

x− R

2

)2

+ y2 =
R2

4
.

Hence, (6.12) describes a circle centered at
(
R
2 , 0
)
with radius R

2 . It follows that

D =

{

(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ R2, z ≥ 0,

(

x− R

2

)2

+ y2 ≤ R2

4

}

= {(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ R2, z ≥ 0, x2 + y2 ≤ Rx}.

R_
2

z

y

x
R

Figure 6.3: Intersection of a ball with a cylinder

Use cylindrical coordinates:

φ : R3 → R3, (r, θ, z) 7→ (r cos θ, r sin θ, z).

Since

x2 + y2 ≤ Rx ⇐⇒ r2 = r2(cos θ)2 + r2(sin θ)2 ≤ Rr cos θ

⇐⇒ r ≤ R cos θ,

it follows that D = φ(K) with

K :=
{

(r, θ, z) ∈ [0,∞) × [−π, π]× R : θ ∈
[

−π
2
,
π

2

]

, r ∈ [0, R cos θ], z ∈
[

0,
√

R2 − r2
]}

.
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The change of variables formula then yields:

µ(D) =

∫

D

1

=

∫

K

(1 ◦ φ)|det Jφ|

=

∫

K

r

=

∫ π
2

−π
2

(
∫ R cos θ

0

(
∫ √

R2−r2

0
r dz

)

dr

)

dθ

=

∫ π
2

−π
2

(∫ R cos θ

0
r
√

R2 − r2 dr

)

dθ

= −1

2

∫ π
2

−π
2

(∫ R cos θ

0
(−2r)

√

R2 − r2, dr

)

dθ

= −1

2

∫ π
2

−π
2

(
∫ R2−R2(cos θ)2

R2

√
u du

)

dθ

=
1

2

∫ π
2

−π
2

(
∫ R2

R2(sin θ)2

√
u du

)

dθ

=
1

2

∫ π
2

−π
2

2

3
u

3
2

∣
∣
∣
∣

u=R2

u=R2(sin θ)2
dθ

=
1

3

∫ π
2

−π
2

(R3 −R3| sin θ|3) dθ

=
R3

3
π − R3

3

∫ π
2

−π
2

| sin θ|3 dθ.

We perform an auxiliary calculation. First note that

∫ π
2

−π
2

| sin θ|3 dθ = 2

∫ π
2

0
(sin θ)3 dθ.
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Since

∫ π
2

0
(sin θ)3 dθ =

∫ π
2

0
(sin θ)(sin θ)2 dθ

=

∫ π
2

0
(sin θ)(1− (cos θ)2) dθ

=

∫ π
2

0
sin θ dθ +

∫ π
2

0
(− sin θ)(cos θ)2 dθ

= 1 +

∫ 0

1
u2 du

= 1−
∫ 1

0
u2 du

=
2

3
,

it follows that ∫ π
2

−π
2

| sin θ|3 dθ = 4

3
.

All in all, we obtain that

µ(D) =
R3

3

(

π − 4

3

)

.

6.2 Curves in RN

What is the circumference of a circle of radius r > 0? Of course, we “know” the ansers:

2πr. But how can this be proven? More generally, what is the length of a curve in the

plane, in space, or in general N -dimensional Euclidean space?

We first need a rigorous definition of a curve:

Definition 6.2.1. A curve in RN is a continuous map γ : [a, b] → RN . The set {γ} :=

γ([a, b]) is called the trace or line element of γ.

Examples. 1. For r > 0, let

γ : [0, 2π] → R2, t 7→ (r cos t, r sin t).

Then {γ} is a circle centered at (0, 0) with radius r.

2. Let c, v ∈ RN with v 6= 0, and let

γ : [a, b] → RN , t 7→ c+ tv.

Then {γ} is the line segment from c + av to c + bv. Slightly abusing terminology,

we will also call γ a line segment.
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3. Let γ : [a, b] → RN be a curve, and suppose that there is a partition a = t0 < t1 <

· · · < tn = b such that γ|[tj−1,tj ] is a line segment for j = 1, . . . , n. Then γ is called

a polygonal path: one can think of it as a concatenation of line segments.

4. For r > 0 and s 6= 0, let

γ : [0, 6π] → R3, t 7→ (r cos t, r sin t, st).

Then {γ} is a spiral.

y

x

z

r

Figure 6.4: Spiral

If γ : [a, b] → RN is a line segment, it makes sense to define its length as ||γ(b)−γ(a)||.
It is equally intuitive how to define the length of a polygonal path: sum up the lengths of

all the line sements it is made up of.

For more general curves, one tries to successively approximate them with polygonal

paths:
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y

γ

x

Figure 6.5: Successive approximation of a curve with polygonal paths

This motivates the following definition:

Definition 6.2.2. A curve γ : [a, b] → RN is called rectifiable if







n∑

j=1

||γ(tj−1)− γ(tj)|| : n ∈ N, a = t0 < t1 < · · · < tn = b






(6.13)

is bounded. The supremum of (6.13) is called the length of γ.

Even though this definition for the lenght of a curve is intuitive, it does not provide

any effective means to calculate the length of a curve (except for polygonal paths).

Lemma 6.2.3. Let γ : [a, b] → RN be a C1-curve. Then, for each ǫ > 0, there is δ > 0

such that ∣
∣
∣
∣
|γ(t)− γ(s)

t− s
− γ′(t)

∣
∣
∣
∣
| < ǫ

for all s, t ∈ [a, b] such that 0 < |s− t| < δ.

Proof. Let ǫ > 0, and suppose first that N = 1. Since γ′ is uniformly continuous on [a, b],

there is δ > 0 such that

|γ′(s)− γ′(t)| < ǫ

for s, t ∈ [a, b] with |s − t| < δ. Fix s, t ∈ [a, b] with 0 < |s − t| < δ. By the mean value

theorem, there is ξ between s and t such that

γ(t)− γ(s)

t− s
= γ′(ξ).
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It follows that ∣
∣
∣
∣

γ(t)− γ(s)

t− s
− γ′(t)

∣
∣
∣
∣
= |γ′(ξ)− γ′(t)| < ǫ

Suppose now that N is arbitrary. By the case N = 1, there are δ1, . . . , δN > 0 such

that, for j = 1, . . . , N , we have

∣
∣
∣
∣

γj(t)− γj(s)

t− s
− γ′j(t)

∣
∣
∣
∣
<

ǫ√
N

for s, t ∈ [a, b] such that 0 < |s− t| < δ. Since

∣
∣
∣
∣
|γ(t)− γ(s)

t− s
− γ′(t)

∣
∣
∣
∣
| ≤

√
N max

j=1,...,N

∣
∣
∣
∣

γj(t)− γj(s)

t− s
− γ′j(t)

∣
∣
∣
∣

for s, t ∈ [a, b], s 6= t, this yields the claim with δ := minj=1,...,N δj .

Theorem 6.2.4. Let γ : [a, b] → RN be a C1-curve. Then γ is rectifiable, and its length

is calculated as ∫ b

a

||γ′(t)|| dt.

Proof. Let ǫ > 0.

There is δ1 > 0 such that

∣
∣
∣
∣
∣
∣

∫ b

a

||γ′(t)|| dt−
n∑

j=1

||γ′(ξj)||(tj − tj−1)

∣
∣
∣
∣
∣
∣

<
ǫ

2

for each partition a = t0 < t1 < · · · < tn = b and ξj ∈ [tj−1, tj ] such that tj − tj−1 < δ1

for j = 1, . . . , n. Moreover, by Lemma 6.2.3, there is δ2 > 0 such that

∣
∣
∣
∣
|γ(t) − γ(s)

t− s
− γ′(t)

∣
∣
∣
∣
| < ǫ

2(b− a)

for s, t ∈ [a, b] such that 0 < |s− t| < δ2.

Let δ := min{δ1, δ2}, and let a = t0 < t1 < · · · < tn = b such that maxj=1,...,n(tj −
tj−1) < δ. First, note that

|||γ(tj)− γ(tj−1)|| − ||γ′(tj)||(tj − tj−1)| <
ǫ

2

tj − tj−1

b− a
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for j = 1, . . . , n. It follows that
∣
∣
∣
∣
∣
∣

n∑

j=1

||γ(tj)− γ(tj−1)|| −
∫ b

a

||γ′(t)|| dt

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

n∑

j=1

||γ(tj)− γ(tj−1)|| −
n∑

j=1

||γ′(tj)||(tj − tj−1)

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

n∑

j=1

||γ′(tj)||(tj − tj−1)−
∫ b

a

||γ′(t)|| dt

∣
∣
∣
∣
∣
∣

<

n∑

j=1

|||γ(tj)− γ(tj−1)|| − ||γ′(tj)||(tj − tj−1)|
︸ ︷︷ ︸

< ǫ
2

tj−tj−1
b−a

+
ǫ

2

< ǫ.

This yields the claim.

Let now a = s0 < s1 < · · · < sm = b be any partition, and choose a partition a = t0 <

t1 < · · · < tn = b such that maxj=1,...,N (tj − tj−1) < δ and {s0, . . . , sm} ⊂ {t0, . . . , tn}. By
the foregoing, we then obtain that

m∑

j=1

||γ(sj−1)− γ(sj)|| ≤
n∑

j=1

||γ(tj−1)− γ(tj)|| <
∫ b

a

||γ′(t)|| dt+ ǫ

and, since ǫ > 0 is arbitrary,

m∑

j=1

||γ(sj−1)− γ(sj)|| ≤
∫ b

a

||γ′(t)|| dt.

Hence,
∫ b

a
||γ′(t)|| dt is an upper bound of the set (6.13), so that γ is rectifiable. Since, for

any ǫ > 0, we can find a = t0 < t1 < · · · < tn = b with
∣
∣
∣
∣
∣
∣

n∑

j=1

||γ(tj)− γ(tj−1)|| −
∫ b

a

||γ′(t)|| dt

∣
∣
∣
∣
∣
∣

< ǫ,

it is clear that
∫ b

a
||γ′(t)|| dt is even the supremum of (6.13).

Examples. 1. A circle of radius r is described through the curve

γ : [0, 2π] → R2, t 7→ (r cos t, r sin t).

Clearly, γ is a C1-curve with

γ′(t) = (−r sin t, r cos t),

so that ||γ′(t)|| = r for t ∈ [0, 2π]. Hence, the length of γ is
∫ 2π

0
r dt = 2πr.
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2. A cycloid is the curve on which a point on the boundary of a circle travels while the

circle is rolled along the x-axis:

tπ

2

π

t

2

Figure 6.6: Cycloid

In mathematical terms, it is described as follows:

γ : [0, 2π] → R2, t 7→ (t− sin t, 1− cos t).

Consequently,

γ′(t) = (1− cos t, sin t)

holds and thus

||γ′(t)||2 = (1− cos t)2 + (sin t)2

= 1− 2 cos t+ (cos t)2 + (sin t)2

= 2− 2 cos t

= 2− 2 cos

(
t

2
+
t

2

)

= 2− 2 cos

(
t

2

)2

+ 2 sin

(
t

2

)2

= 2

(

sin

(
t

2

)2

+ sin

(
t

2

)2
)

= 4 sin

(
t

2

)2

for t ∈ [0, 2π]. Therefore, γ has the length

∫ 2π

0
2

∣
∣
∣
∣
sin

(
t

2

)∣
∣
∣
∣
dt = 4

∫ π

0
sinu du = 8.

3. The first example is a very natural, but not the only way to describe a circle. Here

is another one:

γ : [0,
√
2π] → R2, t 7→ (r cos(t2), r sin(t2)).
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Then

γ′(t) = (−2rt sin(t2), 2tr cos(t2)),

so that

||γ′(t)|| =
√

4r2t2 (sin(t2)2 + cos(t2)2) = 2rt

holds for t ∈ [0,
√
2π]. Hence, we obtain as length:

∫ √
2π

0
||γ′(t)|| dt =

∫ √
2π

0
2rt dt = 2r

t2

2

∣
∣
∣
∣

t=
√
2π

t=0

= 2πr,

which is the same as in the first example.

Theorem 6.2.5. Let γ : [a, b] → RN be a C1-curve, and let φ : [α, β] → [a, b] be a bijective

C1-function. Then γ ◦ φ is a C1-curve with the same length as γ.

Proof. First, consider the case where φ is increasing, i.e. φ′ ≥ 0. It follows that

∫ β

α

||(γ ◦ φ)′(t)|| dt =

∫ β

α

||(γ′ ◦ φ)(t)φ′(t)|| dt

=

∫ β

α

||(γ′ ◦ φ)(t)||φ′(t) dt

=

∫ φ(β)=b

φ(α)=a
||γ′(s)|| ds.

Suppose now that φ is decreasing, meaning that φ′ ≤ 0. We obtain:

∫ β

α

||(γ ◦ φ)′(t)|| dt =

∫ β

α

||(γ′ ◦ φ)(t)φ′(t)|| dt

= −
∫ β

α

||(γ′ ◦ φ)(t)||φ′(t) dt

= −
∫ φ(β)=a

φ(α)=b
||γ′(s)|| ds

=

∫ b

a

||γ′(s)|| ds.

This completes the proof.

The theorem and its proof extend easily to piecewise C1-curves.

Next, we turn to defining (and computing) the angle between two curves:

Definition 6.2.6. Let γ : [a, b] → RN be a C1-curve. The vector γ′(t) is called the tangent

vector to γ at t. If γ′(t) 6= 0, γ is called regular at t and singular at t otherwise. If γ′(t) 6= 0

for all t ∈ [a, b], we simply call γ regular .

Definition 6.2.7. Let γ1 : [a1, b1] → RN and γ2 : [a2, b2] → RN be two C1-curves, and let

t1 ∈ [a1, b1] and t2 ∈ [a2, b2] be such that:
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(a) γ1 is regular at t1;

(b) γ2 is regular at t2;

(c) γ1(t1) = γ2(t2).

Then the angle between γ1 and γ2 at γ1(t1) = γ2(t2) is the unique θ ∈ [0, π] such that

cos θ =
γ′1(t1) · γ′2(t2)

||γ′1(t1)||||γ′2(t2)||
.

Loosely speaking, the angle between two curves is the angle between the corresponding

tangent vectors:

θ

1

γ 2

γ 1 t 1( ) γ 2 t 2( )=

γ

Figure 6.7: Angle between two curves

Example. Let

γ1 : [0, 2π] → R2, t 7→ (cos t, sin t)

and

γ2 : [−1, 2] → R2, t 7→ (t, 1− t).

We wish to find the angle between γ1 and γ2 at all points where the two curves intersect.

Since

||γ2(t)||2 = 2t2 − 2t+ 1 = (2t− 2)t+ 1
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for all t ∈ [−1, 2], it follows that ||γ2(t)|| > 1 for all t ∈ [−1, 2] with t > 1 or t < 0 and

||γ2(t)|| < 1 for all t ∈ (0, 1), whereas γ(0) = (0, 1) and γ2(1, 0) = (1, 0) both have norm

one and thus lie on {γ1}. Consequently, we have

{γ1} ∩ {γ2} =
{

(0, 1) = γ2(0) = γ1

(π

2

)

, (1, 0) = γ2(1) = γ1(0)
}

.

Let θ and σ denote the angle between γ1 and γ2 at (0, 1) and (1, 0), respectively. Since

γ′1(t) = (− sin t, cos t) and γ′2(t) = (1,−1)

for all t in the respective parameter intervals, we conclude that

cos θ =
γ′1
(
π
2

)
· γ′2(0)

∣
∣|γ′1

(
π
2

)∣
∣ |||γ′2(0)||

=
(−1, 0) · (1,−1)√

2
= − 1√

2

and

cos σ =
γ′1(0) · γ′2(1)

||γ′1(0)||||γ′2(1)||
=

(0, 1) · (1,−1)√
2

= − 1√
2
,

so that θ = σ = 3π
4 .

σ

1

γ 2

x

y

(1,0)

(0,1)

θ

γ

Figure 6.8: Angles between a circle and a line

How is the angle between two curves affected if we choose a different parametrization?

To answer this question, we introduce another definition:
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Definition 6.2.8. A bijective map φ : [a, b] → [α, β] is called a C1-parameter transfor-

mation if both φ and φ−1 are continuously differentiable. If φ is increasing, we call it

orientation preserving ; if φ is decreasing, we call it orientation reversing .

Definition 6.2.9. Two curves γ1 : [a1, b1] → RN and γ2 : [a2, b2] → RN are called

equivalent if there is a C1-parameter transformation φ : [a1, b1] → [a2, b2] such that γ2 =

γ1 ◦ φ.

By Theorem 6.2.5, equivalent C1-curves have the same length.

Proposition 6.2.10. Let γ1 : [a1, b1] → RN and γ2 : [a2, b2] → RN be two regular C1-

curves, and let θ be the angle between γ1 and γ2 at x ∈ RN . Moreover, let φ1 : [α1, β1] →
[a1, b1] and φ2 : [α2, β2] → [a2, b2] be two C1-parameter transformations. Then γ1 ◦ φ1 and

γ2 ◦ φ2 are regular C1-curves, and the angle between γ1 ◦ φ1 and γ2 ◦ φ2 at x is:

(i) θ if φ1 and φ2 are both orientation preserving or both orientation reversing;

(ii) π − θ if of of φ1 and φ2 is orientation preserving and the other one is orientation

reversing.

Proof. It is easy to see — from the chain rule — that γ1 ◦ φ1 and γ2 ◦ φ2 are regular.

We only prove (ii).

For j = 1, 2, let tj ∈ [αj , βj ] such that γ1(φ1(t1)) = γ2(φ2(t2)) = x. Suppose that φ1

preserves orientation and that φ2 reverses it. We obtain

(γ1 ◦ φ1)′(t1) · (γ2 ◦ φ2)′(t2)
||(γ1 ◦ φ1)′(t1)||||(γ2 ◦ φ2)′(t2)||

=
γ′1(φ1(t1))φ

′
1(t1) · γ′2(φ2(t2))φ′2(t2)

||γ′1(φ1(t1))φ′1(t1)||||γ′2(φ2(t2))φ′2(t2)||

=
φ′1(t1)φ

′
2(t2)

−φ′1(t1)φ′2(t2)
γ′1(φ1(t1)) · γ′2(φ2(t2))

||γ′1(φ1(t1))||||γ′2(φ2(t2))||

= − γ′1(φ1(t1)) · γ′2(φ2(t2))
||γ′1(φ1(t1))||||γ′2(φ2(t2))||

= − cos θ

= cos(π − θ),

which proves the claim.

6.3 Curve integrals

Let v : R3 → R3 be a force field, i.e. at each point x ∈ R3, the force v(x) is exerted. This

force field moves a particle along a curve γ : [a, b] → R3. We would like to know the work

done in the process.

If γ is just a line segment and v is constant, this is easy:

work = v · (γ(b) − γ(a)).
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For general γ and v, choose points γ(tj) and γ(tj−1) on γ so close that γ is “almost” a

line segment and that v is “almost” constant between those points. The work done by v

to move the particle from γ(tj−1) to γ(tj) is then approximately v(ηj) · (γ(tj)− γ(tj−1)),

for any ηj on γ “between” γ(tj−1) and γ(tj). For the the total amount of work, we thus

obtain

work ≈
n∑

j=1

v(ηj) · (γ(tj)− γ(tj−1)).

The finer we choose the partition a = t0 < t1 < · · · < tn = b, the better this approximation

of the work done should become.

These considerations, motivate the following definition:

Definition 6.3.1. Let γ : [a, b] → RN be a curve, and let f : {γ} → RN be a function.

Then f is said to be integrable along γ, if there is I ∈ R such that, for each ǫ > 0, there is

δ > 0 such that, for each partition a = t0 < t1 < · · · < tn = b with maxj=1,...,n(tj− tj−1) <

δ, we have ∣
∣
∣
∣
∣
∣

I −
n∑

j=1

f(γ(ξj)) · (γ(tj)− γ(tj−1))

∣
∣
∣
∣
∣
∣

< ǫ

for each choice ξj ∈ [tj−1, tj] for j = 1, . . . , n. The number I is called the (curve) integral

of f along γ and denoted by

∫

γ

f · dx or

∫

γ

f1 dx1 + · · · + fN dxN .

Theorem 6.3.2. Let γ : [a, b] → RN be a rectifiable curve, and let f : {γ} → RN be

continuous. Then
∫

γ
f · dx exists.

We will not prove this theorem.

Proposition 6.3.3. The following properties of curve integrals hold:

(i) Let γ : [a, b] → RN and f, g : {γ} → RN be such that
∫

γ
f · dx and

∫

γ
g · dx both exist,

and let α, β ∈ R. Then
∫

γ
(α f + β g) · dx exists such that

∫

γ

(α f + β g) · dx = α

∫

γ

f · dx+ β

∫

γ

g · dx.

(ii) Let γ1 : [a, b] → RN , γ2 : [b, c] → RN and f : {γ1} ∪ {γ2} → RN be such that

γ1(b) = γ2(b) and that
∫

γ1
f · dx and

∫

γ2
f · dx both exist. Then

∫

γ1⊕γ2 f · dx exists

such that ∫

γ1⊕γ2
f · dx =

∫

γ1

f · dx+

∫

γ2

f · dx.
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(iii) Let γ : [a, b] → RN be rectifiable, and let f : {γ} → RN be bounded such that
∫

γ
f · dx

exists. Then
∣
∣
∣
∣

∫

γ

f · dx
∣
∣
∣
∣
≤ sup{||f(γ(t))|| : t ∈ [a, b]} · length of γ

holds.

Proof. (Only of (iii)).

Let ǫ > 0, and choose are partition a = t0 < t1 < · · · < tn = b such that

∣
∣
∣
∣
∣
∣

∫

γ

f · dx−
n∑

j=1

f(γ(tj)) · (γ(tj)− γ(tj−1))

∣
∣
∣
∣
∣
∣

< ǫ.

It follows that

∣
∣
∣
∣

∫

γ

f · dx
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

n∑

j=1

f(γ(tj)) · (γ(tj)− γ(tj−1))

∣
∣
∣
∣
∣
∣

+ ǫ

≤
n∑

j=1

||f(γ(tj))||||γ(tj)− γ(tj−1)||+ ǫ

≤ sup{||f(γ(t))|| : t ∈ [a, b]} ·
n∑

j=1

||γ(tj)− γ(tj−1)||+ ǫ

≤ sup{||f(γ(t))|| : t ∈ [a, b]} · length of γ + ǫ.

Since ǫ > 0 was arbitrary, this yields (iii).

Theorem 6.3.4. Let γ : [a, b] → RN be a C1-curve, and let f : {γ} → RN be continuous.

Then ∫

γ

f · dx =

∫ b

a

f(γ(t)) · γ′(t) dt

holds.

Proof. Let ǫ > 0, and choose δ1 > 0 such that, for each partition a = t0 < t1 < · · · < tn = b

with maxj=1,...,n(tj − tj−1) < δ1 and for any choice ξj ∈ [tj−1, tj ] for j = 1, . . . , n, we have

∣
∣
∣
∣
∣
∣

∫ b

a

f(γ(t)) · γ′(t) dt−
n∑

j=1

f(γ(ξj)) · γ′(ξj)(tj − tj−1)

∣
∣
∣
∣
∣
∣

<
ǫ

2
.

Let C > 0 be such that C ≥ sup{||f(γ(t))|| : t ∈ [a, b]}, and choose δ2 > 0 such that

∣
∣
∣
∣
|γ(t)− γ(s)

t− s
− γ′(t)

∣
∣
∣
∣
| < ǫ

4C(b− a)
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for s, t ∈ [a, b] with 0 < |s − t| < δ2. Since γ′ is uniformly continuous, we may choose δ2

so small that

||γ′(t)− γ′(s)| < ǫ

4C(b− a)

for s, t ∈ [a, b] with |s−t| < δ2. Consequently, we obtain for s, t,∈ [a, b] with 0 < t−s < δ2

and for ξ ∈ [s, t]:

∣
∣
∣
∣
|γ(t)− γ(s)

t− s
− γ′(ξ)

∣
∣
∣
∣
| ≤

∣
∣
∣
∣
|γ(t)− γ(s)

t− s
− γ′(t)

∣
∣
∣
∣
|+ ||γ′(t)− γ′(ξ)|

<
ǫ

4C(b− a)
+

ǫ

4C(b− a)

=
ǫ

2C(b− a)
(6.14)

Let δ := min{δ1, δ2}, and choose a partition a = t0 < t1 < · · · < tn = b with

maxj=1,...,n(tj − tj−1) < δ. From (6.14), we obtain:

||(γ(tj)− γ(tj−1))− γ′(ξj)(tj − tj−1)|| <
ǫ

2C

tj − tj−1

b− a
(6.15)

for any choice of ξj ∈ [tj−1, tj ] for j = 1, . . . , n. Moreover, we have:

∣
∣
∣
∣
∣
∣

∫ b

a

f(γ(t)) · γ′(t) dt−
n∑

j=1

f(γ(ξj)) · (γ(tj)− γ(tj−1))

∣
∣
∣
∣
∣
∣

≤

∣
∣
∣
∣
∣
∣

∫ b

a

f(γ(t)) · γ′(t) dt−
n∑

j=1

f(γ(ξj)) · γ′(ξj)(tj − tj−1)

∣
∣
∣
∣
∣
∣

+

∣
∣
∣
∣
∣
∣

n∑

j=1

f(γ(ξj)) · γ′(ξj)(tj − tj−1)−
n∑

j=1

f(γ(ξj)) · (γ(tj)− γ(tj−1))

∣
∣
∣
∣
∣
∣

<
ǫ

2
+

n∑

j=1

|f(γ(ξj)) · (γ′(ξj)(tj − tj−1)− (γ(tj)− γ(tj−1)))|

≤ ǫ

2
+

n∑

j=1

||f(γ(ξj))||||γ′(ξj)(tj − tj−1)− (γ(tj)− γ(tj−1))||

<
ǫ

2
+

n∑

j=1

C
ǫ

2C

tj − tj−1

b− a
, by (6.15),

=
ǫ

2
+
ǫ

2
= ǫ.

By the definition of a curve integral, this yields the claim.

Of course, this theorem has an obvious extension to piecewise C1-curves.
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Example. Let

γ : [0, 4π] → R3, t 7→ (cos t, sin t, t),

and let

f : R3 → R3, (x, y, z) 7→ (1, cos z, xy).

It follows that
∫

γ

f · d(x, y, z) =

∫

γ

1 dx+ cos z dy + xy dz

=

∫ 4π

0
(1, cos t, cos t sin t) · (− sin t, cos t, 1) dt

=

∫ 4π

0
(− sin t+ (cos t)2 + (cos t)(sin t)) dt

=

∫ 4π

0
(cos t)2 dt

= 2π.

We next turn to how a change of parameters affects curve integrals:

Proposition 6.3.5. Let γ : [a, b] → RN be a piecewise C1-curve, let f : {γ} → RN be

continuous, and let φ : [α, β] → [a, b] be a C1-parameter trasnformation. Then, if φ is

orientation preserving, ∫

γ◦φ
f · dx =

∫

γ

f · dx

holds, and ∫

γ◦φ
f · dx = −

∫

γ

f · dx

if φ is orientation reversing.

Proof. Without loss of generality, suppose that γ is a C1-curve.

We only prove the assertion for orientation reversing φ.

We have:
∫

γ◦φ
f · dx =

∫ β

α

f(γ(φ(t))) · (γ ◦ φ)′(t) dt

=

∫ β

α

f(γ(φ(t))) · γ(φ(t))φ′(t) dt

=

∫ a

b

f(γ(s)) · γ′(s) ds

= −
∫ b

a

f(γ(s)) · γ′(s) ds

= −
∫

γ

f · dx.

This proves the claim.
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Theorem 6.3.6. Let U ⊂ RN be open, let F ∈ C1(U,R), and let γ : [a, b] → U be a

piecewise C1-curve. Then
∫

γ

∇F · dx = F (γ(b)) − F (γ(a))

holds.

Proof. Choose a = t0 < t1 < · · · < tn = b such that γ|[tj−1,tj ] is continuously differentiable.

We then obtain
∫

γ

∇F · dx =
n∑

j=1

∫ tj

tj−1

N∑

k=1

∂f

∂xk
(γ(t))γ′k(t) dt

=

n∑

j=1

∫ tj

tj−1

d

dt
F (γ(t)) dt

=
n∑

j=1

(F (γ(tj))− F (γ(tj−1)))

= F (γ(b)) − F (γ(a)),

as claimed.

Example. Let

f : R3 → R3, (x, y, z) 7→ (2xz,−1, x2),

and let γ : [a, b] → R3 be any curve with γ(a) = (−4, 6, 1) and γ(b) = (3, 0, 1). Since f is

the gradient of

F : R3 → R, (x, y, z) 7→ x2z − y,

Theorem 6.3.6 yields that
∫

γ

f · dx = F (3, 0, 1) − F (−4, 6, 1) = 10− 9 = 1.

Theorem 6.3.6 greatly simplifies the calculation of curve integrals of gradient fields.

Not every vector field, however, is a gradient field:

Example. Let

f : R2 → R2, (x, y) 7→ (−y, x),
and let γ be the counterclockwise oriented unit circle, i.e.

γ(t) = (cos t, sin t)

for t ∈ [0, 2π]. We obtain:
∫

γ

f · dx =

∫ 2π

0
((sin t)2 + (cos t)2) dt

=

∫ 2π

0
1 dt

= 2π.
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Assume that f is the gradient of a C1-function, say F . Then we would have

∫

γ

f · dx = F (γ(2π)) − F (γ(0)) = 0

by Theorem 6.3.6 because γ(0) = γ(2π). Hence, f cannot be the gradient of any C1-

function.

More generally, we have:

Corollary 6.3.7. Let U ⊂ RN be open, and let F ∈ C1(U,R), and let f = ∇F . Then

∫

γ

f · dx = 0

for piecewise C1-curve γ : [a, b] → U with γ(b) = γ(a).

To make formulations easier, we define:

Definition 6.3.8. A curve γ : [a, b] → RN is called closed if γ(a) = γ(b).

Under certain circumstances, a converse of Corollary 6.3.7 is true:

Theorem 6.3.9. Let ∅ 6= U ⊂ RN be open and convex, and let f : U → RN be continuous.

The the following are equivalent:

(i) there is F ∈ C1(U,R) such that f = ∇F ;

(ii)
∫

γ
f · dx = 0 for each closed, piecewise C1-curve γ in U .

Proof. (i) =⇒ (ii) is Corollary 6.3.7.

(ii) =⇒ (i): For any x, y ∈ U , define

[x, y] := {x+ t(y − x) : t ∈ [0, 1]}.

Since U is convex, we have [x, y] ⊂ U . Clearly, [x, y] can be parametrized as a C1-curve:

[0, 1] → RN , t 7→ x+ t(y − x).

Fix x0 ∈ U , and define

F : U → R, x 7→
∫

[x0,x]
f · dx.
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Let x ∈ U , and let ǫ > 0 be such that Bǫ(x) ⊂ U . Let h 6= 0 be such that ||h|| < ǫ.

We obtain:

F (x+ h)− F (x) =

∫

[x0,x+h]
f · dx−

∫

[x0,x]
f · dx

=

∫

[x0,x+h]
f · dx−

∫

[x,x+h]
f · dx+

∫

[x,x+h]
f · dx−

∫

[x0,x]
f · dx

=

∫

[x0,x+h]
f · dx+

∫

[x+h,x]
f · dx+

∫

[x,x0]
f · dx+

∫

[x,x+h]
f · dx

=

∫

[x0,x+h]⊕[x+h,x]⊕[x,x0]
f · dx

︸ ︷︷ ︸

=0

+

∫

[x,x+h]
f · dx

=

∫

[x,x+h]
f · dx.

U

0

+x h

x 0 +x h[ , ]
x 0[ , x ]

+x h[ x , ]

x

x

Figure 6.9: Integration curves in the proof of Theorem 6.3.9

It follows that

1

||h|| |F (x+ h)− F (x)− f(x) · h| =
1

||h||

∣
∣
∣
∣
∣

∫

[x,x+h]
f · dx−

∫

[x,x+h]
f(x) · dx

∣
∣
∣
∣
∣

=
1

||h||

∣
∣
∣
∣
∣

∫

[x,x+h]
(f − f(x)) · dx

∣
∣
∣
∣
∣

≤ sup{||f(y)− f(x)|| : y ∈ [x, x+ h]}. (6.16)

Since f is continuous at x, the right hand side of (6.16) tends to zero as h→ 0.

This theorem remains true for general open, connected sets: the given proof can be

adapted to this more general situation.
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6.4 Green’s theorem

Definition 6.4.1. A normal domain in R2 with respect to the x-axis is a set of the form

{(x, y) ∈ R2 : x ∈ [a, b], φ1(x) ≤ y ≤ φ2(x)},

where a < b, and φ1, φ2 : [a, b] → R are piecewise C1-functions such that φ1 ≤ φ2.

y

1

φ 2

a b
x

φ

Figure 6.10: A normal domain with respect to the x-axis

Examples. 1. A rectangle [a, b] × [c, b] is a normal domain with respect to the x-axis:

Define

φ1(x) = c and φ2(x) = d

for x ∈ [a, b].

2. A disc (centered at (0, 0)) with radius r > 0 is a normal domain with respect to the

x-axis. Let

φ1(x) = −
√

r2 − x2 and φ2(x) =
√

r2 − x2

for x ∈ [−r, r].

Let K ⊂ R2 be any normal domain with respect to the x-axis. Then there is a natural

parametrization of ∂K:

∂K = γ1 ⊕ γ2 ⊕ γ3 ⊕ γ4
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with

γ1(t) := (t, φ1(t)) for t ∈ [a, b],

γ2(t) := (b, φ1(b) + t(φ2(b)− φ1(b))) for t ∈ [0, 1],

γ3(t) := (a+ b− t, φ2(a+ b− t)) for t ∈ [a, b],

and

γ4(t) := (a, φ2(a) + t(φ1(a)− φ2(a)) for t ∈ [0, 1].

K

1

γ 2

γ 3

4γ

b
x

y

a

γ

Figure 6.11: Natural parametrization of ∂K

We then say that ∂K is positively oriented .

Lemma 6.4.2. Let ∅ 6= U ⊂ R2 be open, let K ⊂ U be a normal domain with respect to

the x-axis, and let P : U → R be continuous such that ∂P
∂y

exists and is continuous. Then
∫

K

∂P

∂y
= −

∫

∂K

P dx (+0 dy)

holds.

Proof. First note that
∫

K

∂P

∂y
=

∫ b

a

(
∫ φ2(x)

φ1(x)

∂P

∂y
(x, y) dy

)

dx, by Fubini’s theorem,

=

∫ b

a

(P (x, φ2(x))− P (x, φ1(x))) dx,

by the fundamental theorem of calculus.
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Moreover, we have

∫ b

a

P (x, φ1(x)) dx =

∫ b

a

P (γ1(t)) dt

=

∫ b

a

(P (γ1(t)), 0) · γ′1(t) dt

=

∫

γ1

P dx

and similarly

∫ b

a

P (x, φ2(x)) dx =

∫ b

a

P (a+ b− x, φ2(a+ b− x)) dx

=

∫ b

a

P (γ3(t)) dt

= −
∫ b

a

(P (γ3(t)), 0) · γ′1(t) dt

= −
∫

γ3

P dx.

It follows that ∫

K

∂P

∂y
= −

(∫

γ1

P dx+

∫

γ3

P dx

)

.

Since ∫

γ2

P dx =

∫

γ4

P dx = 0,

we eventually obtain

∫

K

∂P

∂y
= −

∫

γ1⊕γ2⊕γ3⊕γ4
P dx = −

∫

∂K

P dx

as claimed.

As for the x-axis, we can define normal domains with respect to the y-axis:

Definition 6.4.3. A normal domain in R2 with respect to the y-axis is a set of the form

{(x, y) ∈ R2 : y ∈ [c, d], ψ1(y) ≤ x ≤ ψ2(y)},

where c < d, and φ1, φ2 : [a, b] → R are piecewise C1-functions such that ψ1 ≤ ψ2.
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Figure 6.12: A normal domain with respect to the y-axis

Example. Rectangles and discs are normal domains with respect to the y-axis as well.

As for normal domains with respect to the x-axis, there is a canonical parametrization

for the boundary of every normal domain in R2 with respect to the x-axis. We then also

call the boundary positively oriented .

With an almost identical proof as for Lemma 6.4.2, we obtain:

Lemma 6.4.4. Let ∅ 6= U ⊂ R2 be open, let K ⊂ U be a normal domain with respect to

the y-axis, and let Q : U → R be continuous such that ∂P
∂x

exists and is continuous. Then
∫

K

∂Q

∂x
=

∫

∂K

(0 dx+)Qdy

holds.

Proof. As for Lemma 6.4.2.

Definition 6.4.5. A set K ⊂ R2 is called a normal domain if it is a normal domain with

respect to both the x- and the y-axis.

Theorem 6.4.6 (Green’s theorem). Let ∅ 6= U ⊂ R2 be open, let K ⊂ U be a normal

domain, and let P,Q ∈ C1(U,R). Then
∫

K

(
∂Q

∂x
− ∂P

∂y

)

=

∫

∂K

P dx+Qdy
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holds.

Proof. Add the identities in Lemmas 6.4.2 and 6.4.4.

Green’s theorem is often useful to compute curve integrals:

Examples. 1. Let K = [0, 2] × [1, 3]. Then we obtain:

∫

∂K

xy dx+ (x2 + y2) dy =

∫

K

2x− x =

∫ 2

0

(∫ 3

1
x dy

)

dx = 4.

2. Let K = B1[(0, 0)]. We have:

∫

∂K

xy2 dx+ (arctan(log y + 3)) − x) dy

=

∫

K

−1− 2xy

= −
∫

K

2xy + 1

= −
∫ 2π

0

(∫ 1

0
2r2 cos θ sin θ + 1)r dr

)

dθ

= −
(∫ 2π

0
(cos θ)(sin θ) dθ

)

︸ ︷︷ ︸

=0

(

2

∫ 1

0
r3 dr

)

− 2π

∫ 1

0
r dr

= −π.

Another nice consequence of Green’s theorem is:

Corollary 6.4.7. Let K ⊂ R2 be a normal domain. Then we have:

µ(K) =
1

2

∫

∂K

x dy − y dx.

Proof. Apply Green’s theorem with P (x, y) = −y and Q(x, y) = x.

6.5 Surfaces in R3

What is the area of the surface of the Earth or — more generally — what is the surface

area of a sphere of radius r?

Before we can answer this question, we need, of course, make precise what we mean

by a surface

Definition 6.5.1. Let U ⊂ R2 be open, and let ∅ 6= K ⊂ U be compact and with content.

A surface with parameter domain K is the restriction of a C1-function Φ: U → R3 to K.

The set K is called the parameter domain of Φ, and {Φ} := Φ(K) is called the trace or

the surface element of Φ.
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Examples. 1. Let r > 0, and let

Φ: R2 → R, (s, t) 7→ (r(cos s)(cos t), r(sin s)(cos t), r sin t)

with parameter domain

K := [0, 2π] ×
[

−π
2
,
π

2

]

.

Then {Φ} is a sphere of radius r centered at (0, 0, 0).

2. Let a, b ∈ R3, and let

Φ: R2 → R3, (s, t) 7→ sa+ tb

with parameter domain K := [0, 1]2. Then {Φ} is the paralellogram spanned by a

and b.

To motivate our definition of surface area below, we first discuss (and review) the

surface are of a parallelogram P ⊂ R3 spanned by a, b ∈ R3. In linear algebra, one defines

area of P := ||a× b||,

where a× b ∈ R3 is the cross product of a and b.

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

P
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a

a

Figure 6.13: Cross product of two vectors in R3

The vector a× b is computed as follows: Let a = (a1, a2, a3) and b = (b1, b2, b3), then

a× b = (a2b3 − a3b2, b1a3 − a1b3, a1b2 − b1a2)

=

(∣
∣
∣
∣
∣

a2 a3

b2 b3

∣
∣
∣
∣
∣
,−
∣
∣
∣
∣
∣

a1 a3

b1 b3

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

a1 a2

b1 b2

∣
∣
∣
∣
∣

)

.
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Letting i := (1, 0, 0), j := (0, 1, 0), and k := (0, 0, 1), it is often convenient to think of a× b
as a formal determinant:

a× b =

∣
∣
∣
∣
∣
∣
∣

i j k

a1 a2 a3

b1 b2 b3

∣
∣
∣
∣
∣
∣
∣

.

We need to stress, hoever, that this determinant is not “really” a determinant (even

though it conveniently very much behaves like one).

The verification of the following is elementary:

Proposition 6.5.2. The following hold for a, b, c ∈ R3 and λ ∈ R:

(i) a× b = −b× a;

(ii) a× a = 0;

(iii) λ(a× b) = λa× b = a× λb;

(iv) a× (b+ c) = a× b+ a× c;

(v) (a+ b)× c = a× c+ b× c.

Moreover, we have:

c · (a× b) =

∣
∣
∣
∣
∣
∣
∣

c1 c2 c3

a1 a2 a3

b1 b2 b3

∣
∣
∣
∣
∣
∣
∣

.

Corollary 6.5.3. For a, b ∈ R3, we have

a · (a× b) = b · (a× b) = 0.

In geometric terms, this result means that a × b stands perpendicularly on the plane

spanned by a and b.

Definition 6.5.4. Let Φ be a surface with parameter domain K, and let (s, t) ∈ K. Then

the normal vector to Φ in Φ(s, t) is defined as

N(s, t) :=
∂Φ

∂s
(s, t)× ∂Φ

∂t
(s, t)

Example. Let a, b ∈ R3, and let

Φ: R2 → R3, (s, t) 7→ sa+ tb

with parameter domain K := [0, 1]2. It follows that

N(s, t) = a× b,

so that

surface area of Φ = ||a× b|| =
∫

K

||N(s, t)||.

169



Thinking of approximating a more general surface by braking it up in small pieces

reasonably close to parallelograms, we define:

Definition 6.5.5. Let Φ be a surface with parameter domain K. Then the surface area

of Φ is defined as ∫

K

||N(s, t)|| =
∫

K

∣
∣
∣
∣
|∂Φ
∂s

(s, t)× ∂Φ

∂t
(s, t)

∣
∣
∣
∣
|.

Example. Let r > 0, and let

Φ: R2 → R3, (s, t) 7→ (r(cos s)(cos t), r(sin s)(cos t), r sin t)

with parameter domain

K := [0, 2π] ×
[

−π
2
,
π

2

]

.

It follows that
∂Φ

∂s
(s, t) = (−r(sin s)(cos t), r(cos s)(cos t), 0)

and
∂Φ

∂t
(s, t) = (−r(cos s)(sin t),−r(sin s)(sin t), r cos t)

and thus

N(s, t)

=
∂Φ

∂s
(s, t)× ∂Φ

∂t
(s, t)

=

(∣
∣
∣
∣
∣

r(cos s)(cos t) 0

−r(sin s)(sin t) r cos t

∣
∣
∣
∣
∣
,−
∣
∣
∣
∣
∣

−r(sin s)(cos t) 0

−r(cos s)(sin t) r cos t

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

−r(sin s)(cos t) r(cos s)(cos t)

−r(cos s)(sin t) −r(sin s)(sin t)

∣
∣
∣
∣
∣

)

= (r2(cos s)(cos t)2, r2(sin s)(cos t)2, r2(sin s)2(cos t)(sin t) + r2(cos s)2(cos t)(sin t))

= (r2(cos s)(cos t)2, r2(sin s)(cos t)2, r2(cos t)(sin t))

= r cos tΦ(s, t).

Consequently,

||N(s, t)|| = ||r cos tΦ(s, t)| | = r cos t ||Φ(s, t)|| = r2 cos t

holds for (s, t) ∈ K. The surface area of Φ is therefore computed as

∫

K

||N(s, t)|| =
∫ 2π

0

(
∫ π

2

−π
2

r2 cos t dt

)

ds = 2πr2
∫ π

2

−π
2

cos t dt = 4πr2.

For r = 6366 (radius of the Earth in kilometers), this yields a surface are of approximately

509, 264, 183 (square kilometers).
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As for the length of a curve, we will now check what happens to the area of a surface

if the parametrization is changed:

Definition 6.5.6. Let ∅ 6= U, V ⊂ R2 be open. A C1-map ψ : U → V is called an

admissible parameter transformation if

(a) it is injective, and

(b) detJψ(x) 6= 0 for all x ∈ U and does not change signs.

Let Φ be a surface with parameter domain K. Let V ⊂ R2 be open such that K ⊂ V

and such that Φ : V → R3 is a C1-map. Let ψ : U → V be an admissible parameter

transformation with ψ(U) ⊃ K. Then Ψ := Φ ◦ ψ is a surface with parameter domain

ψ−1(K). We then say that Ψ is obtained from Φ by means of admissible parameter

transformation.

Proposition 6.5.7. Let Φ and Ψ be surfaces such that Ψ is obtained from Φ by means

of admissible parameter transformation. Then Φ and Ψ have the same surface area.

Proof. Let ψ denote the admissible parameter transformation in question. The chain rule

yields:

(
∂Ψ

∂s
,
∂Ψ

∂t

)

=

(
∂Φ

∂u
,
∂Φ

∂v

)

Jψ

=






Φ1
∂u
, Φ1

∂v
Φ2
∂u
, Φ2

∂v
Φ3
∂u
, Φ3

∂v






[
∂ψ1

∂s
, ∂ψ1

∂t
∂ψ2

∂s
, ∂ψ2

∂t

]

=






Φ1
∂u

∂ψ1

∂s
+ Φ1

∂v
∂ψ2

∂s
, Φ1

∂u
∂ψ1

∂t
+ Φ1

∂v
∂ψ2

∂t
Φ2
∂u

∂ψ1

∂s
+ Φ2

∂v
∂ψ2

∂s
, Φ2

∂u
∂ψ1

∂t
+ Φ2

∂v
∂ψ2

∂t
Φ3
∂u

∂ψ1

∂s
+ Φ3

∂v
∂ψ2

∂s
, Φ3

∂u
∂ψ1

∂t
+ Φ3

∂v
∂ψ2

∂t




 .

Consequently, we obtain:

∂Ψ

∂s
× ∂Ψ

∂t

=

(

det

([
Φ2
∂u
, Φ2

∂v
Φ3
∂u
, Φ3

∂v

]

Jψ

)

,− det

([
Φ1
∂u
, Φ1

∂v
Φ3
∂u
, Φ3

∂v

]

Jψ

)

,det

([
Φ1
∂u
, Φ1

∂v
Φ2
∂u
, Φ2

∂v

]

Jψ

))

=

(
∂Φ

∂u
× ∂Φ

∂v

)

detJψ.
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Change of variables finally yields:

surface area of Φ =

∫

K

∣
∣
∣
∣
|∂Φ
∂u

× ∂Φ

∂v

∣
∣
∣
∣
|

=

∫

ψ−1(K)

∣
∣
∣
∣
|∂Φ
∂u

◦ ψ × ∂Φ

∂v
◦ ψ
∣
∣
∣
∣
||det Jψ|

=

∫

ψ−1(K)

∣
∣
∣
∣
|∂Ψ
∂s

× ∂Ψ

∂t

∣
∣
∣
∣
|

= surface area of Ψ.

This was the claim.

6.6 Surface integrals and Stokes’ theorem

After having defined surfaces in R3 along with their areas, we now turn to defining — and

computing — integrals of (R-valued) functions and vector fields over them:

Definition 6.6.1. Let Φ be a surface with parameter domain K, and let f : {Φ} → R be

continuous. Then the surface integral of f over Φ is defined as
∫

Φ
f dσ :=

∫

K

f(Φ(s, t))||N(s, t)||.

It is immediate that there surface area of φ is just the integral
∫

φ
1 dσ. Like the surface

area, th value of such an integral is invariant under admissible parameter transformations

(the proof of Proposition 6.5.7 carries over verbatim).

Definition 6.6.2. Let Φ be a surface with parameter domainK, and let P,Q,R : {Φ} → R

be continuous. Then the surface integral of f = (P,Q,R) over Φ is defined as

∫

Φ
P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy :=

∫

K

f(Φ(s, t)) ·N(s, t).

Example. Let K := [0, 1] × [0, 2π], and let

Φ(s, t) := (s cos t, s sin t, t).

It follows that

∂Φ

∂s
(s, t) := (cos t, sin t, 0) and

∂Φ

∂t
(s, t) := (−s sin t, s cos t, 1),

so that

N(s, t) =

(∣
∣
∣
∣
∣

sin t 0

s cos t 1

∣
∣
∣
∣
∣
,−
∣
∣
∣
∣
∣

cos t 0

−s sin t 1

∣
∣
∣
∣
∣
,

∣
∣
∣
∣
∣

cos t sin t

−s sin t s cos t

∣
∣
∣
∣
∣

)

= (sin t,− cos t, s).
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We therefore obtain that
∫

Φ
y dy ∧ dz − x dz ∧ dx =

∫

[0,1]×[0,2π]
(s sin t,−s cos t, 0) · (sin t,− cos t, s)

=

∫

[0,1]×[0,2π]
s(sin t)2 + s(cos t)2

=

∫

[0,1]×[0,2π]
s

= π.

Proposition 6.6.3. Let Ψ and Φ be surfaces such that Ψ is obtained from Φ by and

admissible parameter transformation ψ, and let P,Q,R : {Φ} → R be continuous. Then

∫

Ψ
P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy = ±

∫

Φ
P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

holds with “+” if detJψ > 0 and “−” if det Jψ < 0.

We skip the proof, which is very similar to that of Proposition 6.5.7.

Definition 6.6.4. Let Φ be a surface with parameter domain K. The normal unit vector

n(s, t) to Φ in Φ(s, t) is defined as

n(s, t) :=

{
N(s,t)

||N(s,t)|| , if N(s, t) = 0,

0, otherwise.

Let Φ be a surface (with parameter domain K), and let f = (P,Q,R) : {Φ} → R3 be

continuous. Then we obtain:
∫

Φ
P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy =

∫

K

f(Φ(s, t)) ·N(s, t)

=

∫

K

f(Φ(s, t)) · n(s, t)||N(s, t)||

=:

∫

Φ
f · n dσ.

Theorem 6.6.5 (Stokes’ theorem). Suppose that the following hypotheses are given:

(a) Φ is a C2-surface whose parameter domain K is a normal domain (with respect to

both axes).

(b) The positively oriented boundary ∂K of K is parametrized by a piecewise C1-curve

γ : [a, b] → R2.

(c) P , Q, and R are C1-functions defined on an open set containing {Φ}.
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Then
∫

Φ◦γ
P dx+Qdy +Rdz

=

∫

Φ

(
∂R

∂y
− ∂Q

∂z

)

dy ∧ dz +
(
∂P

∂z
− ∂R

∂x

)

dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)

dx ∧ dy

=

∫

Φ
(curl f) · n dσ

holds, where f = (P,Q,R).

Proof. Let Φ = (X,Y,Z), and

p(s, t) := P (X(s, t), Y (s, t), Z(s, t)).

We obtain:
∫

Φ◦γ
P dx =

∫ b

a

p(γ(τ))
d(X ◦ γ)

dτ
(τ) dτ

=

∫ b

a

p(γ(τ))

(
∂X

∂s
(γ(τ))γ′1(τ) +

∂X

∂t
(γ(τ))γ′2(τ)

)

dτ

=

∫

γ

p
∂X

∂s
ds+ p

∂X

∂t
dt.

By Green’s theorem we have
∫

γ

p
∂X

∂s
ds+ p

∂X

∂t
dt =

∫

K

(
∂

∂s

(

p
∂X

∂t

)

− ∂

∂t

(

p
∂X

∂s

))

. (6.17)

We now transform the integral on the right hand side of (6.17). First note that

∂

∂s

(

p
∂X

∂t

)

− ∂

∂t

(

p
∂X

∂s

)

=
∂p

∂s

∂X

∂t
+ p

∂2X

∂s∂t
− ∂p

∂t

∂X

∂s
− ∂2X

∂t∂s

=
∂p

∂s

∂X

∂t
− ∂p

∂t

∂X

∂s
.

Furthermore, the chain rule yields that

∂p

∂s
=
∂P

∂x

∂X

∂s
+
∂P

∂y

∂Y

∂s
+
∂P

∂z

∂Z

∂s

and
∂p

∂t
=
∂P

∂x

∂X

∂t
+
∂P

∂y

∂Y

∂t
+
∂P

∂z

∂Z

∂t
.

Combining all this, we obtain that

∂p

∂s

∂X

∂t
− ∂p

∂t

∂X

∂s

=

(
∂P

∂x

∂X

∂s
+
∂P

∂y

∂Y

∂s
+
∂P

∂z

∂Z

∂s

)
∂X

∂t
−
(
∂P

∂x

∂X

∂t
+
∂P

∂y

∂Y

∂t
+
∂P

∂z

∂Z

∂t

)
∂X

∂s

=
∂P

∂y

(
∂Y

∂s

∂X

∂t
− ∂Y

∂t

∂X

∂s

)

+
∂P

∂z

(
∂Z

∂s

∂X

∂t
− ∂Z

∂t

∂X

∂s

)

= −∂P
∂y

∣
∣
∣
∣
∣

∂X
∂s

∂X
∂t

∂Y
∂s

∂Y
∂t

∣
∣
∣
∣
∣
+
∂P

∂z

∣
∣
∣
∣
∣

∂Z
∂s

∂Z
∂t

∂X
∂s

∂X
∂t

∣
∣
∣
∣
∣
,
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and therefore

∂

∂s

(

p
∂X

∂t

)

− ∂

∂t

(

p
∂X

∂s

)

= −∂P
∂y

∣
∣
∣
∣
∣

∂X
∂s

∂X
∂t

∂Y
∂s

∂Y
∂t

∣
∣
∣
∣
∣
+
∂P

∂z

∣
∣
∣
∣
∣

∂Z
∂s

∂Z
∂t

∂X
∂s

∂X
∂t

∣
∣
∣
∣
∣
.

In view of (6.17), we thus have:

∫

Φ◦γ
P dx =

∫

γ

p
∂X

∂s
ds+ p

∂X

∂t
dt

=

∫

K

(

−∂P
∂y

∣
∣
∣
∣
∣

∂X
∂s

∂X
∂t

∂Y
∂s

∂Y
∂t

∣
∣
∣
∣
∣
+
∂P

∂z

∣
∣
∣
∣
∣

∂Z
∂s

∂Z
∂t

∂X
∂s

∂X
∂t

∣
∣
∣
∣
∣

)

=

∫

Φ
−∂P
∂y

dx ∧ dy + ∂P

∂z
dz ∧ dx. (6.18)

In a similar vein, we obtain:
∫

Φ◦γ
Qdy =

∫

Φ
−∂Q
∂z

dy ∧ dz + ∂Q

∂x
dx ∧ dy (6.19)

and ∫

Φ◦γ
Rdz =

∫

Φ
−∂R
∂x

dz ∧ dx+
∂R

∂y
dy ∧ dz. (6.20)

Adding (6.18), (6.19), and (6.20) completes the proof.

Example. Let γ be a counterclockwise parametrization of the circle {(x, y, z) ∈ R3 :

x2 + z2 = 1, y = 0}, and let

f(x, y, z) := (x2z +
√

x3 + x2 + 2
︸ ︷︷ ︸

=:P

, xy
︸︷︷︸

=:Q

, xy,+
√

z3 + z2 + 2
︸ ︷︷ ︸

=:R

).

We want to compute ∫

γ

P dx+Qdy +Rdz.

Let Φ be a surface with surface element {(x, y, z) ∈ R3 : x2 + z2 ≤ 1, y = 0}, e.g.

Φ(s, t) := (s cos t, 0, s sin t)

for s ∈ [0, 1] and t ∈ [0, 2π]. It follows that

∂Φ

∂s
(s, t) = (cos t, 0, sin t) and

∂Φ

∂t
(s, t) = (−s sin t, 0, s cos t)

and thus

N(s, t) = (0,−s, 0).

for (s, t) ∈ K := [0, 1] × [0, 2π], so that

n(s, t) = (0,−1, 0)
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for s ∈ (0, 1] and t ∈ [0, 2π]. It follows that

(curl f)(Φ(s, t)) · n(s, t) = −s2(cos t)2

for s ∈ (0, 1] and t ∈ [0, 2π]. From Stokes’ theorem, we obtain

∫

γ

P dx+Qdy +Rdz =

∫

Φ
(curl f) · n dσ

=

∫

K

−s2(cos t)2s

= −
(∫ 1

0
s3 ds

)(∫ 2π

0
(cos t)2 dt

)

= −π
4
.

6.7 Gauß’ theorem

Suppose that a fluid is flowing through a certain part of three dimensional space. At each

point (x, y, z) in that part of space, suppose that a particle in that fluid has the velocity

v(x, y, z) ∈ R3 (independent of time; this is called a stationary flow). At time t, suppose

that the fluid has the density ρ(x, y, z, t) at the point (x, y, z). The vector

f(x, y, z, t) := ρ(x, y, z, t)v(x, y, z)

is the density of the flow at (x, y, z) at time t.

Let S be a surface placed in the flow, and suppose that N 6= 0 throughout on S. Then

the mass per second passing through S in the direction of n is computed as

∫

S

f · n dσ. (6.21)

Fix a point (x0, y0, z0), and suppose for the sake of simplicity that ρ — and hence f

— is independent of time. Let

f = P i+Q j+Rk.

Let (x0, y0, z0) be the lower left corner of a box with sidenlengths ∆x, ∆y, and ∆z.
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Figure 6.14: Fluid streaming through a box

The mass passing through the two sides of the box parallel to the yz-plane is approx-

imately given by

P (x0, y0, z0)∆y∆z and P (x0 +∆x, y0, z0)∆y∆z.

We therefore obtain the following approximation for the mass flowing out of the box in

the direction of the positive x-axis:

(P (x0 +∆x, y0, z0)− P (x0, y0, z0))∆y∆z =
P (x0 +∆x, y0, z0)− P (x0, y0, z0)

∆x
∆y∆z

≈ ∂P

∂x
(x0, y0, z0)∆x∆y∆z.

Similar considerations can be made fot the y- and the z-axis. We thus have:

mass flowing out of the box the box ≈
(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)

∆x∆y∆z

= div f ∆x∆y∆z.

If V is a three-dimensional shape in the flow, we thus have

mass flowing out of V =

∫

V

div f. (6.22)

If V has the surface S, (6.21) and (6.22), yield Gauß’s theorem:
∫

S

f · n dσ =

∫

V

div f
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Of course, this is a far cry from a mathematically acceptable argument. To prove

Gauß’ theorem rigorously, we first have to define the domains in R3 over which we shall

be integrating:

Definition 6.7.1. Let U1, U2 ⊂ R2 be open, and let Φ1 ∈ C1(U1,R
3) and Φ2 ∈ C1(U2,R

3)

be surfaces with parameter domains K1 and K2, respectively, and write

Φν(s, t) = Xν(s, t) i+ Yν(s, t) j+ Zν(s, t)k (ν = 1, 2, (s, t) ∈ Uν).

Suppose that the following hold:

(a) The functions

gν : Uν 7→ R3, (s, t) 7→ Xν(s, t) i+ Yν(s, t) j (ν = 1, 2)

are injective and satisfy det Jg1 < 0 and detJg2 > 0 on K1 and K2, respectively

(except on a set of content zero).

(b) g1(K1) = g2(K2) =: K.

(c) The boundary of K is parametrized by a piecewise C1-curve.

(d) There are continuous functions φ1, φ2 : K → R with φ1 ≤ φ2 such that

Zν(s, t) = φν(Xν(s, t), Yν(s, t)) (ν = 1, 2, (s, t) ∈ Kν).

Then

V := {(x, y, z) ∈ R3 : (x, y) ∈ K, φ1(x, y) ≤ z ≤ φ2(x, y)}

is called a normal domain with respect to the xy-plane. The surfaces Φ1 and Φ2 are called

the generating surfaces of V ; S1 := {Φ1} is called the lower lid , and S2 := {Φ2} the upper

lid of V .
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Figure 6.15: A normal domain with respect to the xy-plane

Examples. 1. Let V := [a1, a2] × [b1, b2] × [c1, c2]. Then V is a normal domain with

respect to the xy-plane: Let K1 := [b1, b2]× [a1, a2] and K2 := [a1, a2]× [b1, b2], and

define

Φ1(s, t) := (t, s, c1) and Φ2(s, t) := (s, t, c2)

for (s, t) ∈ R2. For ν = 1, 2, let φν ≡ cν .

2. Let V be the closed ball in R3 centered at (0, 0, 0) with radius r > 0. Let K1 :=

[0, 2π] ×
[
−π

2 , 0
]
and K2 := [0, 2π] ×

[
0, π2

]
, and define

Φ1(s, t) := Φ2(s, t) = (r cos s cos t, r sin s cos t, r sin t)

for (s, t) ∈ R2. It follows that K is the closed disc centered at (0, 0) with radius r.

Letting

φ1(x, y) = −
√

r2 − x2 − y2 and φ2(x, y) =
√

r2 − x2 − y2

for (x, y) ∈ K, we see that V is a normal domain with respect to the xy-axis.

Lemma 6.7.2. Let U ⊂ R3 be open, let V ⊂ U be a normal domain with respect to the

xy-plane, and let R ∈ C1(U,R). Then
∫

V

∂R

∂z
=

∫

Φ1

Rdx ∧ dy +
∫

Φ2

Rdx ∧ dy
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holds.

Proof. First note that

∫

V

∂R

∂z
=

∫

K

(
∫ φ2(x,y)

φ1(x,y)

∂R

∂z
dz

)

=

∫

K

(R(x, y, φ2(x, y)) −R(x, y, φ1(x, y))).

Furthermore, we have:
∫

K

R(x, y, φ2(x, y)) =

∫

g2(K2)
R(x, y, φ2(x, y))

=

∫

K2

R(g2(s, t), φ2(g2(s, t))) det Jg2(s, t)

=

∫

K2

R(Φ2(s, t))

∣
∣
∣
∣
∣

∂X2
∂s

(s, t) ∂X2
∂t

(s, t)
∂Y2
∂s

(s, t) ∂Y2
∂t

(s, t)

∣
∣
∣
∣
∣

=

∫

K2

(0, 0, R(Φ2(s, t))) ·N(s, t)

=

∫

Φ2

Rdx ∧ dy.

In a similar vein, we obtain
∫

K

R(x, y, φ1(x, y)) = −
∫

Φ1

Rdx ∧ dy.

All in all,
∫

V

∂R

∂z
=

∫

K

(R(x, y, φ2(x, y)) −R(x, y, φ1(x, y))) =

∫

Φ1

Rdx ∧ dy +
∫

Φ2

Rdx ∧ dy

holds as claimed.

Let V ⊂ R3 be a normal domain with respect to the xy-plane, and let γ : [a, b] → R2

be a piecewise C1-curve that parametrizes ∂K. Let

K3 := {(s, t) ∈ R2 : s ∈ [a, b], φ1(γ(s)) ≤ t ≤ φ2(γ(s))}

and

Φ3(s, t) := γ1(s) i+ γ2(s) j+ tk =: X3(s, t) i+ Y3(s, t) j+ Z3(s, t)k

for (s, t) ∈ K. Then Φ3 is a “generalized surface” whose surface element S3 := {Φ3} is

the vertical boundary of V .

Except for the points (s, t) ∈ K3 such that γ is not C1 at s — which is a set of content

zero — we have ∣
∣
∣
∣
∣

∂X3
∂s

(s, t) ∂X3
∂t

(s, t)
∂Y3
∂s

(s, t) ∂Y3
∂t

(s, t)

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

γ′1(s) 0

γ′2(s) 0

∣
∣
∣
∣
∣
= 0.
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It therefore makes sense to define
∫

Φ3

Rdx ∧ dy := 0.

Letting S := S1 ∪ S2 ∪ S3 = ∂V , we define

∫

S

Rdx ∧ dy :=

3∑

ν=1

∫

Φν

Rdx ∧ dy.

In view of Lemma 6.7.2, we obtain:

Corollary 6.7.3. Let U ⊂ R3 be open, let V ⊂ U be a normal domain with respect to the

xy-plance with boundary S, and let R ∈ C1(U,R). Then
∫

V

∂R

∂z
=

∫

S

Rdx ∧ dy

holds.

Normal domains in R3 can, of course, be defined with respect to all coordiate planes.

If a subset of R3 is a normal domain with respect to all coordinate planes, we simply

speak of a normal domain.

Theorem 6.7.4 (Gauß’ theorem). Let U ⊂ R3 be open, let V ⊂ U be a normal domain

with boundary S, and let f ∈ C1(U,R3). Then
∫

S

f · n dσ =

∫

V

div f

holds.

Proof. Let f = P i+Q j+Rk. By Corollary 6.7.3, we have
∫

S

Rdx ∧ dy =

∫

V

∂R

∂z
. (6.23)

Analogous considerations yield
∫

S

Qdz ∧ dx =

∫

V

∂Q

∂y
(6.24)

and ∫

S

P dy ∧ dz =

∫

V

∂P

∂x
. (6.25)

Adding (6.23), (6.24), and (6.25), we obtain
∫

S

f · n dσ =

∫

S

P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

=

∫

V

∂P

∂x
+
∂Q

∂y
+
∂R

∂z

=

∫

V

div f.

This proves Gauß’ theorem.
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Examples. 1. Let

V =

{

(x, y, z) ∈ R3 : x2 + y2 + z2 ≤ 49

πe

}

,

and let

f(x, y, z) :=

(

arctan(yz) + esin y, log(2 + cos(xz)),
1

1 + x2y2

)

.

Then Gauß’ theorem yields that
∫

S

f · n dσ =

∫

V

div f =

∫

V

0 = 0.

2. Let S be the closed unit sphere in R3. Then
∫

S

2xy dy ∧ dz − y2 dz ∧ dx+ z3 dx ∧ dy =

∫

S

(2xy,−y2, z3) · n(x, y, z) dσ

is difficult — if not impossible — to compute just using the definition of a surface

integral. With Gauß’ theorem, however, the task becomes relatively easy. Let

f(x, y, z) := (2xy,−y2, z3) ((x, y, z) ∈ R3),

so that

(div f)(x, y, z) = 2y − 2y + 3z2 = 3z2

By Gauß’ theorem, we have
∫

S

f · n dσ =

∫

V

div v = 3

∫

V

z2,

where V is the closed unit ball in R3. Passing to spherical coordinates and applying

Fubini’s theorem, we obtain
∫

V

z2 =

∫

[0,1]×[0,2π]×[−π
2
,π
2 ]
r4(sinσ)2(cos σ)

= 2π

∫ 1

0

(

r4
∫ π

2

−π
2

(sin σ)2(cos σ) dσ

)

dr

= 2π

∫ 1

0

(∫ 1

−1
u2 dy

)

dr

= 2π

∫ 1

0

2

3
r4 dr

=
4π

15
.

It follows that ∫

S

f · n dσ =

∫

V

div f = 3

∫

V

z2 =
4

5
π.
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Chapter 7

Infinite series and improper

integrals

7.1 Infinite series

Consider
∞∑

n=0

(−1)n =

{

(1− 1) + (1− 1) + · · · = 0,

1 + (−1 + 1) + (−1 + 1) + · · · = 1.

Which value is correct?

Definition 7.1.1. Let (an)
∞
n=1 be a sequence in R. Then the sequence (sn)

∞
n=1 with

sn :=
∑n

k=1 ak for n ∈ N is called an (infinite) series and denoted by
∑∞

n=1 an; the terms

sn of that sequence are called the partial sums of
∑∞

n=1 an. We say that the series
∑∞

n=1 an

converges if limn→∞ sn exists; this limit is then also denoted by
∑∞

n=1 an.

Hence, the symbol
∑∞

n=1 an stands both for the sequence (sn)
∞
n=1 as well as — if that

sequence converges — for its limit.

Since infinite series are nothing but particular sequences, all we know about sequences

can be applied to series. For example:

Proposition 7.1.2. Let
∑∞

n=1 an and
∑∞

n=1 bn be convergent series, and let α, β ∈ R.

Then
∑∞

n=1(αan + βbn) converges and satsifies

∞∑

n=1

(αan + βbn) = α

∞∑

n=1

an + β

∞∑

n=1

bn.
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Proof. The limit laws yield:

α

∞∑

n=1

an + β

∞∑

n=1

bn = α lim
n→∞

n∑

k=1

ak + β lim
n→∞

n∑

k=1

bk

= lim
n→∞

n∑

k=1

(αak + βbk)

=

∞∑

n=1

(αan + βbn).

This proves the claim.

Here are a few examples:

Examples. 1. Harmonic series. For n ∈ N, let an := 1
n
, so that

s2n − sn =

2n∑

k=n+1

1

k
≥

2n∑

k=n+1

1

2n
=

1

2
.

Hence, (sn)
∞
n=1 is not a Cauchy sequence, so that

∑∞
n=1

1
n
diverges.

2. Geometric series. Let θ 6= 1, and let an := θn for n ∈ N0. We obtain for n ∈ N0

that

sn − θ sn =

n∑

k=0

θk −
n∑

k=0

θk+1

=

n∑

k=0

θk −
n+1∑

k=1

θk

= 1− θn+1,

i.e.

(1− θ)sn = 1− θn+1

and therefore

sn =
1− θn+1

1− θ
.

Hence,
∑∞

n=0 θ
n diverges if |θ| ≥ 1, whereas

∑∞
n=0 θ

n = 1
1−θ if |θ| < 1.

Proposition 7.1.3. Let (an)
∞
n=1 be a sequence of non-negative reals. Then

∑∞
n=1 an

converges if and only if (sn)
∞
n=1 is a bounded sequence.

Proof. Since an ≥ 0 for n ∈ N, we have sn+1 = sn + an+1 ≥ sn. It follows that (sn)
∞
n=1 is

an increasing sequence, which is convergent if and only if it is bounded.

If (an)
∞
n=1 is a sequence of non-negative reals, we write

∑∞
n=1 an < ∞ if the series

converges and
∑∞

n=1 an = ∞ otherwise.
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Examples. 1. As we have just seen,
∑∞

n=1
1
n
= ∞ holds.

2. We claim that
∑∞

n=1
1
n2 <∞. To see this, let an := 1

n(n+1) for n ∈ N, so that

an =
1

n
− 1

n+ 1
.

It follows that
n∑

k=1

an =

n∑

k=1

(
1

k
− 1

k + 1

)

= 1− 1

n+ 1
→ 1,

so that
∑∞

n=1 an <∞. Since

n∑

k=1

1

k2
= 1 +

n∑

k=2

1

k2
≤ 1 +

n∑

k=2

1

k(k − 1)
= 1 +

n−1∑

k=1

ak,

this means that
∑∞

n=1
1
n2 <∞.

The following is an immediate consequence of the Cauchy criterion for convergent

sequences:

Theorem 7.1.4 (Cauchy criterion). The infinite series
∑∞

n=1 an converges if, for each

ǫ > 0, there is nǫ ∈ N such that, for all n,m ∈ N with n ≥ m ≥ nǫ, we have

∣
∣
∣
∣
∣

n∑

k=m+1

ak

∣
∣
∣
∣
∣
< ǫ.

Corollary 7.1.5. Suppose that the infinite series
∑∞

n=1 an converges. Then limn→∞ an =

0 holds.

Proof. Let ǫ > 0, and let nǫ ∈ N be as in the Cauchy criterion. It follows that

|an+1| =
∣
∣
∣
∣
∣

n+1∑

k=n+1

ak

∣
∣
∣
∣
∣
< ǫ

for all n ≥ nǫ.

Examples. 1. The series
∑∞

n=0(−1)n diverges.

2. The series
∑∞

n=1
1
n
also diverges even though limn→∞

1
n
= 0.

Definition 7.1.6. A series
∑∞

n=1 an is said to be absolutely convergent if
∑∞

n=1 |an| <∞.

Example. For θ ∈ (−1, 1), the geometric series
∑∞

n=0 θ
n converges absolutely.

Proposition 7.1.7. Let
∑∞

n=1 an be an absolutely convergent series. Then
∑∞

n=1 an con-

verges.
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Proof. Let ǫ > 0. The Cauchy criterion for
∑∞

n=1 |an| yields nǫ ∈ N such that

n∑

k=m+1

|ak| < ǫ

for n ≥ m ≥ nǫ. Since ∣
∣
∣
∣
∣

n∑

k=m+1

ak

∣
∣
∣
∣
∣
≤

n∑

k=m+1

|ak| < ǫ

for n ≥ m ≥ nǫ, the convergence of
∑∞

n=1 an follows from the Cauchy criterion (this time

applied to
∑∞

n=1 an).

Proposition 7.1.8. Let
∑∞

n=1 an and
∑∞

n=1 bn be absolutely convergent series, and let

α, β ∈ R. Then
∑∞

n=1(αan + βbn) is also absolutely convergent.

Proof. Since both
∑∞

n=1 an and
∑∞

n=1 bn converge absolutely, we have for n ∈ N that

n∑

k=1

|αak + βbk| ≤ |α|
n∑

k=1

|ak|+ |β|
n∑

k=1

|bk| ≤ |α|
∞∑

k=1

|ak|+ |β|
∞∑

k=1

|bk|.

Hence, the increasing sequence (
∑n

k=1 |αak + βbk|)∞n=1 is bounded and thus convergent.

Is the converse also true?

Theorem 7.1.9 (alternating series test). Let (an)
∞
n=1 be a decreasing sequence of non-

negative reals such that limn→∞ an = 0. Then
∑∞

n=1(−1)n−1an converges.

Proof. For n ∈ N, let

sn :=

n∑

k=1

(−1)k−1ak.

It follows that

s2n+2 − s2n = −a2n+2 + a2n+1 ≥ 0

for n ∈ N, i.e. the sequence (s2n)
∞
n=1 increases. In a similar way, we obtain that the

sequence (s2n−1)
∞
n=1 decreases. Since

s2n = s2n−1 − a2n ≤ s2n−1

for n ∈ N, we see that the sequences (s2n)
∞
n=1 and (s2n−1)

∞
n=1 both converge.

Let s := limn→∞ s2n−1. We will show that s =
∑∞

n=1(−1)n−1an.

Let ǫ > 0. Then there is n1 ∈ N such that

∣
∣
∣
∣
∣

2n−1∑

k=1

(−1)k−1ak − s

∣
∣
∣
∣
∣
<
ǫ

2
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for all n ≥ n1. Since limn→∞ an = 0, there is n2 ∈ N such that |an| < ǫ
2 for all n ≥ n2.

Let nǫ := max{2n1, n2}, and let n ≥ nǫ.

Case 1: n is odd, i.e. n = 2m− 1 with m ∈ N. Since n > 2n1, it follows that m ≥ n1,

so that

|sn − s| = |s2m−1 − s| < ǫ

2
< ǫ.

Case 2: n is even, i.e. n = 2m with m ∈ N, so that necessarily m ≥ n1. We obtain:

|sn − s| = |s2m−1 − an − s|
≤ |s2m−1 − s|

︸ ︷︷ ︸

< ǫ
2

+ |an|
︸︷︷︸

< ǫ
2

< ǫ.

This completes the proof.

Example. The alternating harmonic series
∑∞

n=1(−1)n−1 1
n
is convergent by the alternat-

ing series test, but it is not absolutely convergent.

Theorem 7.1.10 (comparison test). Let (an)
∞
=1 and (bn)

∞
n=1 be sequences in R such that

bn ≥ 0 for all n ∈ N.

(i) Suppose that
∑∞

n=1 bn <∞ and that there is n0 ∈ N such that |an| ≤ bn for n ≥ n0.

Then
∑∞

n=1 an converges absolutely.

(ii) Suppose that
∑∞

n=1 bn = ∞ and that there is n0 ∈ N such that an ≥ bn for n ≥ n0.

Then
∑∞

n=1 an diverges.

Proof. (i): Let n ≥ n0, and note that

n∑

k=1

|ak| =

n0−1∑

k=1

|ak|+
n∑

k=n0

|ak|

≤
n0−1∑

k=1

|ak|+
n∑

k=n0

bk

≤
n0−1∑

k=1

|ak|+
∞∑

k=1

bk.

Hence, the sequence (
∑n

k=1 |ak|)
∞
n=1 is bounded, i.e.

∑∞
n=1 an converges absolutely.

(ii): Let n ≥ n0, and note that

n∑

k=1

ak =

n0−1∑

k=1

ak +
n∑

k=n0

ak ≥ 0 ≥
n0−1∑

k=1

ak +
n∑

k=n0

bk.

Since
∑∞

n=1 bn = ∞, it follows that that (
∑n

k=1 ak)
∞
n=1 is unbounded and thus divergent.
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Examples. 1. Let p ∈ R. Then

∞∑

n=1

1

np

{

diverges if p ≤ 1,

converges if p ≥ 2.

2. Since ∣
∣
∣
∣

sin(n2005)

4n2 + cos(en13)

∣
∣
∣
∣
≤ 1

3n2

for n ∈ N, and since
∑∞

n=1
1

3n2 < ∞, it follows that
∑∞

n=1
sin(n2003)

4n2+cos(en13 )
converges

absolutely.

Corollary 7.1.11 (limit comparison test). Let (an)
∞
=1 and (bn)

∞
n=1 be sequences in R such

that bn ≥ 0 for all n ∈ N.

(i) Suppose that
∑∞

n=1 bn < ∞ and that limn→∞
|an|
bn

exists (and is finite). Then
∑∞

n=1 an converges absolutely.

(ii) Suppose that
∑∞

n=1 bn = ∞ and that limn→∞
an
bn

exists and is strictly positive (pos-

sibly infinite). Then
∑∞

n=1 an diverges.

Proof. (i): There is C ≥ 0 such that |an|
bn

≤ C for all n ∈ N, i.e. |an| ≤ Cbn. The claim

then follows from the comparison test.

(ii): Let n0 ∈ N and δ > 0 be such that an
bn
> δ for n ≥ n0, i.e. an ≥ δbn. The claim

follows again from the comparison test.

Examples. 1. Let

an :=
4n+ 1

6n2 + 7n
and bn :=

1

n

for n ∈ N. Since
an
bn

=
4n2 + n

6n2 + 7n
→ 2

3
> 0,

and since
∑∞

n=1
1
n
= ∞, it follows that

∑∞
n=1

4n+1
6n2+7n

diverges.

2. Let

an :=
17n cos(n)

n4 + 49n2 − 16n + 7
and bn :=

1

n2

for n ∈ N. Since
|an|
bn

=
17n3| cos(n)|

n4 + 49n2 − 16n+ 7
→ 0,

and since
∑∞

n=1
1
n2 <∞, it follows that

∑∞
n=1

17n cos(n)
n4+49n2−16n+7 converges absolutely.

Theorem 7.1.12 (ratio test). Let (an)
∞
n=1 be a sequence in R.

(i) Suppose that there are n0 ∈ N and θ ∈ (0, 1) such that an 6= 0 and |an+1|
|an| ≤ θ for

n ≥ n0. Then
∑∞

n=1 an converges absolutely.
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(ii) Suppose that there are n0 ∈ N and θ ≥ 1 such that an 6= 0 and |an+1|
|an| ≥ θ for n ≥ n0.

Then
∑∞

n=1 an diverges.

Proof. (i): Since |an+1| ≤ |an|θ for n ≥ n0, it follows by induction that

|an| ≤ θn−n0 |an0 |

for those n. Since θ ∈ (0, 1), the series
∑∞

n=n0
|an0 |θn−n0 converges. The comparison test

yields the convergence of
∑∞

n=n0
|an| and thus of

∑∞
n=1 |an|.

(ii): Since |an+1| ≥ θ|an|θ for n ≥ n0, it follows by induction that

|an| ≥ θn−n0 |an0 |

for those n. Consequently, (an)
∞
n=1 is unbounded (and thus does not converge to zero), so

that
∑∞

n=1 an diverges.

Corollary 7.1.13 (limit ratio test). Let (an)
∞
n=1 be a sequence in R such that an 6= 0 for

all but finitely many n ∈ N.

(i) Then
∑∞

n=1 an converges absolutely if limn→∞
|an+1|
|an| < 1.

(ii) Then
∑∞

n=1 an diverges if limn→∞
|an+1|
|an| > 1.

Example. Let x ∈ R \ {0}, and let an := xn

n! for n ∈ N. It follows that

an+1

an
=

xn+1

(n + 1)!

n!

xn
=
x

n
→ 0.

Consequently,
∑∞

n=0
xn

n! converges for all x ∈ R.

If limn→∞
|an+1|
|an| = 1, nothing can be said about the convergence of

∑∞
n=1 an:

• If an := 1
n
for n ∈ N, then

an+1

an
=

n

n+ 1
→ 1,

and
∑∞

n=1
1
n
diverges.

• If an := 1
n2 for n ∈ N, then

an+1

an
=

n2

(n+ 1)2
→ 1,

and
∑∞

n=1
1
n2 converges.

Theorem 7.1.14 (root test). Let (an)
∞
n=1 be a sequence in R.

(i) Suppose that there are n0 ∈ N and θ ∈ (0, 1) such that n
√

|an| ≤ θ for n ≥ n0. Then
∑∞

n=1 an converges absolutely.
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(ii) Suppose that there are n0 ∈ N and θ ≥ 1 such that n
√

|an| ≥ θ for n ≥ n0. Then
∑∞

n=1 an diverges.

Proof. (i): This follows immediately from the comparison test because |an| ≤ θn for

n ≥ n0.

(ii): This is also clear because |an| ≥ θn for n ≥ n0, so that an 6→ 0.

Corollary 7.1.15 (limit root test). Let (an)
∞
n=1 be a sequence in R.

(i) Then
∑∞

n=1 an converges absolutely if limn→∞ n
√

|an| < 1.

(ii) Then
∑∞

n=1 an diverges if limn→∞ n
√

|an| > 1.

Example. For n ∈ N, let

an :=
2 + (−1)n

2n−1
.

It follows that

an+1

an
=

2 + (−1)n+1

2n
2n−1

2 + (−1)n
=

1

2

2− (−1)n

2 + (−1)n
=

{
1
6 , if n is even,
3
2 , if n is odd.

Hence, the ratio test is inconclusive. However, we have

n
√
an =

n

√

2(2 + (−1)n

2n
≤

n
√
6

2
→ 1

2
.

Hence, there is n0 ∈ N such that n
√
an <

2
3 for n ≥ n0. Hence,

∑∞
n=1

2+(−1)n

2n−1 converges

absolutely by the root test.

Theorem 7.1.16. Let
∑∞

n=1 an be absolutely convergent. Then
∑∞

n=1 aσ(n) converges

absolutely for each bijective σ : N → N such that
∑∞

n=1 an =
∑∞

n=1 aσ(n)

Proof. Let ǫ > 0, and choose n0 ∈ N such that
∑∞

n=n0
|an| < ǫ

2 . Set x :=
∑∞

n=1 an. It

follows that ∣
∣
∣
∣
∣
x−

n0−1∑

n=1

an

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

n=n0

an

∣
∣
∣
∣
∣
≤

∞∑

n=n0

|an| <
ǫ

2
.

Let σ : N → N be bijective. Choose nǫ ∈ N large enough, so that {1, . . . , n0 − 1} ⊂
{σ(1), . . . , σ(nǫ)}. We then have for m ≥ nǫ:

∣
∣
∣
∣
∣

m∑

n=1

aσ(n) − x

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

m∑

n=1

aσ(n) −
n0−1∑

n=1

an

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣

n0−1∑

n=1

an − x

∣
∣
∣
∣
∣

≤
∞∑

n=n0

|an|+
ǫ

2

< ǫ.

Consequently,
∑∞

n=1 aσ(n) converges to x as well. The same argument, applied to the

series
∑∞

n=1 |an|, yields the absolute convergence of
∑∞

n=1 aσ(n).

190



Theorem 7.1.17. Let
∑∞

n=1 an be convergent, but not absolutely convergent, and let

x ∈ R. Then there is a bijective map σ : N → N such that
∑∞

n=1 aσ(n) = x.

Proof. Without loss of generality, let an 6= 0 for n ∈ N. We denote by b1, b2, . . . the

positive terms of (an)
∞
n=1, and by c1, c2, . . . its negative terms. It follows that limn→∞ bn =

limn→∞ cn = 0 and
∞∑

n=1

bn =

∞∑

n=1

(−cn) = ∞.

Choose m1 ∈ N minimal such that
m1∑

n=1

bn > x.

Then, choose m2 ∈ N minimal such that

m1∑

n=1

bn +

m2∑

n=1

cn < x.

Now, choose m3 ∈ N minimal such that

m1∑

n=1

bn +

m2∑

n=1

cn +

m3∑

n=m1+1

bn > x,

and then m4 ∈ N minimal such that

m1∑

n=1

bn +

m2∑

n=1

cn +

m3∑

n=m1+1

bn +

m4∑

n=m2+1

cn < x.

Continuing in this fashion, we obtain a rearrangement of
∑∞

n=1 an.

Let m ∈ N. Then the m-th partial sum sm of the rearranged series is either

m1∑

n=1

bn +

m1∑

n=1

cn + · · ·+
m∑

n=mk+1

bn (7.1)

or
m1∑

n=1

bn +

m1∑

n=1

cn + · · ·+
m∑

n=mk+1

cn (7.2)

for some k. Suppose that k is odd, i.e. sm is of the form (7.1). Ifm = mk+2, the minimality

of mk+2 yields

|x− sm| =

∣
∣
∣
∣
∣
∣

x−
m1∑

n=1

bn +

m1∑

n=1

cn + · · ·+
m∑

n=mk+1

bn

∣
∣
∣
∣
∣
∣

≤ bmk+2
;

if m < mk+2, we obtain

|x− sm| =

∣
∣
∣
∣
∣
∣

x−
m1∑

n=1

bn +

m1∑

n=1

cn + · · ·+
m∑

n=mk+1

bn

∣
∣
∣
∣
∣
∣

≤ −cmk+1
.
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In a similar vein, we treat the case where k is even, i.e. if sm is of the form (7.2). No

matter which of the two cases (7.1) or (7.2) is given, we obtain the estimate

|x− sm| ≤ max{bmk+2
,−cmk+1

,−cmk+2
, bmk+1

}.

Since limn→∞ bn = limn→∞ cn = 0, this implies that x = limm→∞ sm.

Theorem 7.1.18 (Cauchy product). Suppose that
∑∞

n=0 an and
∑∞

n=0 bn converge abso-

lutely. Then
∑∞

n=0

∑n
k=0 akbn−k converges absolutely such that

∞∑

n=0

n∑

k=0

akbn−k =

( ∞∑

n=0

an

)( ∞∑

n=0

bn

)

.

Proof. For notational simplicity, let

cn :=

n∑

k=0

akbn−k and Cn :=

n∑

k=0

ck

for n ∈ N0; moreover, define

A :=
∞∑

k=0

ak and B :=
∞∑

k=0

bk.

We first claim that limn→∞Cn = AB. To see this, define for n ∈ N0,

Dn :=

(
n∑

k=0

ak

)(
n∑

k=0

bk

)

,

so that limn→∞Dn = AB. It is therefore sufficient to show that limn→∞(Dn − Cn) = 0.

First note that, for n ∈ N0,

Cn =

n∑

k=0

k∑

j=0

ajbk−j =
∑

0≤j,l
j+l≤n

albj

and

Dn =
∑

0≤j,l≤n
albj ,

so that

Dn − Cn =
∑

0≤j,l≤n
j+l>n

albj.

For n ∈ N0, let

Pn :=

(
n∑

k=0

|ak|
)(

n∑

k=0

|bk|
)

.
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The absolute convergence of
∑∞

n=0 an and
∑∞

n=0 bn, yields the convergence of (Pn)
∞
n=0.

Let ǫ > 0, and choose nǫ ∈ N such that |Pn − Pnǫ | < ǫ for n ≥ nǫ. Let n ≥ 2nǫ; it follows

that

|Dn −Cn| ≤
∑

0≤j,l≤n
j+l>n

|albj|

≤
∑

0≤j,l≤n
j+l>2nǫ

|albj|

≤
∑

0≤j,l≤n
j > nǫ or l > nǫ

|albj|

= Pn − Pnǫ

< ǫ.

Hence, we obtain limn→∞(Dn − Cn) = 0.

To show that
∑∞

n=0 |cn| < ∞, let c̃n :=
∑n

k−0 |akbn−k|. An argument analogous to

the first part of the proof yields the convergence of
∑∞

n=0 c̃n. The absolute convergence

of
∑∞

n=0 cn then follows from the comparison test.

Example. For x ∈ R, define

exp(x) :=

∞∑

n=0

xn

n!
;

we know that exp(x) converges absolutely for all x ∈ R. Let x, y ∈ R. From the previous

theorem, we obtain:

exp(x) exp(y) =

∞∑

n=0

∑

k=0

xk

k!

yn−k

(n− k)!

=

∞∑

n=0

1

n!

∑

k=0

n!

(k!(n − k)!
xkyn−k

=
∞∑

n=0

1

n!

∑

k=0

(
n

k

)

xkyn−k

=
∞∑

n=0

(x+ y)n

n!

= exp(x+ y).

This identity has interesting consequence.

For instance, since

1 = exp(0) = exp(x− x) = exp(x) exp(−x)
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for all x ∈ R, it follows that exp(x) 6= 0 for all x ∈ R with exp(x)−1 = exp(−x). Moreover,

we have

exp(x) = exp
(x

2
+
x

2

)

= exp
(x

2

)2
> 0

for all x ∈ R. Induction on n shows that

exp(n) = exp(1)n

for all n ∈ N0. It follows that

exp(q) = exp(1)q

for all q ∈ Q.

7.2 Improper integrals

What is ∫ 1

0

1√
x
dx?

Since d
dx
2
√
x = 1√

x
, it is tempting to argue that

∫ 1

0

1√
x
dx = 2

√
x
∣
∣1

0
= 2.

However:

• 1√
x
is not defined at 0.

• 1√
x

is unbounded on (0, 1] and thus cannot be extended to [0, 1] as a Riemann-

integrable function.

Hence, the fundamental theorem of calculus is not applicable.

What can be done?

Let ǫ > 0. Since 1√
x
is continuous on [ǫ, 1], the fundamental theorem yields (correctly)

that ∫ 1

ǫ

1√
x
dx = 2

√
x
∣
∣1

ǫ
= 2(1 −

√
ǫ).

It therefore makes sense to define
∫ 1

0

1√
x
dx := lim

ǫ↓0

∫ 1

ǫ

1√
x
dx = 2.

Definition 7.2.1. (a) Let a ∈ R, let b ∈ R ∪ {∞} such that a < b, and suppose that

f : [a, b) → R is Riemann integrable on [a, c] for each c ∈ [a, b). Then the improper

integral of f over [a, b] is defined as
∫ b

a

f(x) dx := lim
c↑b

∫ c

a

f(x) dx

if the limit exists.
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(b) Let a ∈ R ∪ {−∞}, let b ∈ R such that a < b, and suppose that f : (a, b] → R is

Riemann integrable on [c, b] for each c ∈ (a, b]. Then the improper integral of f over

[a, b] is defined as
∫ b

a

f(x) dx := lim
c↓a

∫ b

c

f(x) dx

if the limit exists.

(c) Let a ∈ R ∪ {−∞}, let b ∈ R ∪ {∞} such that a < b, and suppose that f : (a, b) → R

is Riemann integrable on [c, d] for each c, d ∈ (a, b) with c < d. Then the improper

integral of f over [a, b] is defined as

∫ b

a

f(x) dx :=

∫ c

a

f(x) dx+

∫ b

c

f(x) dx (7.3)

with c ∈ (a, b) if the integrals on the right hand side of (7.3) both exists in the sense

of (a) and (b).

We note:

1. Suppose that f : [a, b] → R is Riemann integrable. Then the original meaning of
∫ b

a
f(x) dx and the one from Definition 7.2.1 coincide.

2. The definition of
∫ b

a
f(x) dx in Definition 7.2.1(c) is independent of the choice of

c ∈ (a, b).

3. Since
∫ R

−R sin(x) dx = 0 for all R > 0, the limit limR→∞
∫ R

−R sin(x) dx exists (and

equals zero). However, since the limit of

∫ R

0
sin(x) dx = − cos(x)|R0 = − cos(R) + 1

does not exist for R→ ∞, the improper integral
∫∞
−∞ sin(x) dx does not exist.

In the sequel, we will focus on the case covered by Definition 7.2.1(a): The other cases

can be treated analoguously.

As for infinite series, there is a Cauchy criterion for improper integrals:

Theorem 7.2.2 (Cauchy criterion). Let a ∈ R, let b ∈ R ∪ {∞} such that a < b, and

suppose that f : [a, b) → R is Riemann integrable on [a, c] for each c ∈ [a, b). Then
∫ b

a
f(x) dx exists if and only if, for each ǫ > 0, there is cǫ ∈ [a, b) such that

∣
∣
∣
∣
∣

∫ c′

c

f(x) dx

∣
∣
∣
∣
∣
< ǫ

for all c ≤ c′ with cǫ ≤ c ≤ c′ < b.
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And, as for infinite series, there is a notion of absolute convergence:

Definition 7.2.3. Let a ∈ R, let b ∈ R ∪ {∞} such that a < b, and suppose that

f : [a, b) → R is Riemann integrable on [a, c] for each c ∈ [a, b). Then
∫ b

a
f(x) dx is said to

be absolutely convergent if
∫ b

a
|f(x)| dx exists.

Theorem 7.2.4. Let a ∈ R, let b ∈ R ∪ {∞} such that a < b, and suppose that f :

[a, b) → R is Riemann integrable on [a, c] for each c ∈ [a, b). Then
∫ b

a
f(x) dx exists if it

is absolutely convergent.

Proof. Let ǫ > 0. By the Cauchy criterion, there is cǫ ∈ [a, b) such that

∫ c′

c

|f(x)| dx < ǫ

for all c ≤ c′ with cǫ ≤ c ≤ c′ < b. For any such c and c′, we thus have

∣
∣
∣
∣
∣

∫ c′

c

f(x) dx

∣
∣
∣
∣
∣
< ǫ ≤

∫ c′

c

|f(x)| dx < ǫ.

Hence,
∫ b

a
f(x) dx exists by the Cauchy criterion.

The following are also proven as the corresponding statements about infinite series:

Proposition 7.2.5. Let a ∈ R, let b ∈ R∪{∞} such that a < b, and let f : [a, b) → [0,∞)

be Riemann integrable on [a, c] for each c ∈ [a, b). Then
∫ b

a
f(x) dx exists if and only if

[a, b] → [0, 1), c 7→
∫ c

a

f(x) dx

is bounded.

Theorem 7.2.6 (comparison test). Let a ∈ R, let b ∈ R ∪ {∞} such that a < b, and

suppose that f, g : [a, b) → R are Riemann integrable on [a, c] for each c ∈ [a, b).

(i) Suppose that |f(x)| ≤ g(x) for x ∈ [a, b) and that
∫ b

a
g(x) dx exists. Then

∫ b

a
f(x) dx

converges absolutely.

(ii) Suppose that 0 ≤ g(x) ≤ f(x) for x ∈ [a, b) and that
∫ b

a
g(x) dx does not exist. Then

∫ b

a
f(x) dx doex not exist.

Example. We want to find out if
∫∞
0

sinx
x
dx exists or even converges absolutely.

Fix c > 0, and let R > c. Integration by parts yields

∫ R

c

sinx

x
dx =

cos x

x

∣
∣
∣

R

c
+

∫ R

c

cos x

x2
dx.
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Clearly,
∫ R

c

1

x2
dx = −1

x

∣
∣
∣
∣

R

c

= − 1

R
+

1

c

R→∞→ 1

c

holds, so that
∫∞
c

1
x2
dx exists. Since

∣
∣ cos x
x2

∣
∣ ≤ 1

x2
for all x > 0, the comparison test shows

that
∫∞
c

cos x
x2

dx exists. Since

cosx

x

∣
∣
∣

R

c
=

cosR

R
− cos c

c

R→∞→ −cos c

c
,

it follows that
∫∞
c

sinx
x
dx exists. Define

f : [0, c] → R, x 7→
{

sinx
x
, x 6= 0,

1, x = 0.

Since limx↓0
sinx
x

= 1, the function f is continuous. Consequently, there is C ≥ 0 such

that |f(x)| ≤ C for x ∈ [0, c]. Let ǫ ∈ (0, c), and note that

∣
∣
∣
∣

∫ c

ǫ

sinx

x
dx−

∫ c

0
f(x) dx

∣
∣
∣
∣
≤
∫ ǫ

0
|f(x)| dx ≤ Cǫ

ǫ→0→ 0,

i.e.
∫ c

0
sinx
x
dx exists. All in all, the improper integral

∫∞
0

sinx
x
dx exists.

However,
∫∞
0

sinx
x
dx does not converge absolutely. To see this, let n ∈ N, and note

that

∫ nπ

0

| sin x|
x

dx =

n∑

k=1

∫ kπ

(k−1)π

| sinx|
x

dx

≥
n∑

k=1

1

kπ

∫ kπ

(k−1)π
| sinx| dx

=
2

π

n∑

k=1

1

k
.

Since the harmonic series diverges, it follows that the improper integral
∫∞
0

| sinx|
x

dx does

not exist.

The many parallels between infinite series and improper integrals must not be used to

jump to (false) conclusions: there are, functions, for which
∫∞
0 f(x) dx exists, even though

f(x)
x→∞
6→ 0:

Example. For n ∈ N, define

fn : [n− 1, n) → R, x 7→
{

n, x ∈
[
n− 1, (n − 1) + 1

n3

)
,

0, otherwise,

and define f : R → R by letting f(x) := fn(x) if x ∈ [n− 1, n). Clearly, f(x)
x→∞
6→ 0.
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Let R ≥ 0, and choose n ∈ N such that n ≥ R. It follows that

∫ R

0
f(x) dx ≤

∫ n

0
f(x) dx

=

n∑

k=1

∫ k

k−1
fk(x) dx

=
n∑

k=1

k

k3

≤
∞∑

k=1

1

k2
.

Hence,
∫∞
0 f(x) dx exists.

The parallels between infinite series and improper integrals are put to use in the

following convergence test:

Theorem 7.2.7 (integral comparison test). Let f : [1,∞) → [0,∞) be a decreasing

function such that f is Riemann-integrable on [1, R] for each R > 1. Then the following

are equivalent:

(i)
∑∞

n=1 f(n) <∞;

(ii)
∫∞
1 f(x) dx exists.

Proof. (i) =⇒ (ii): Let R ≥ 0 and choose n ∈ N such that n ≥ R. We obtain that

∫ R

1
f(x) dx ≤

∫ n

1
f(x) dx

=
n−1∑

k=1

∫ k+1

k

f(x) dx

≤
n−1∑

k=1

∫ k+1

k

f(k) dx

=

n−1∑

k=1

f(k).

Since
∑∞

k=1 f(k) <∞, it follows that
∫∞
1 f(x) dx exists.
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(ii) =⇒ (i): Let n ∈ N, and note that

n∑

k=1

f(k) = f(1) +

n∑

k=2

∫ k

k−1
f(k) dx

≤ f(1) +

n∑

k=2

∫ k

k−1
f(x) dx

= f(1) +

∫ n

1
f(x) dx

≤ f(1) +

∫ ∞

1
f(x) dx.

Hence,
∑∞

k=1 f(k) converges.

Examples. 1. Let p > 0 and R > 1, so that

∫ R

1

1

xp
dx =

{

logR, p = 1
1

1−p
(

1
Rp−1 − 1

)
, p 6= 1.

It follows that
∫∞
1

1
xp
dx exists if and only if p > 1. Consequently,

∑∞
n=1

1
np converges

if and only if p > 1.

2. Let R > 2. Then change of variables yields that

∫ R

2

1

x log x
dx =

∫ logR

log 2

1

u
du = log u|logRlog 2 = log(logR)− log(log 2).

Consequently,
∫∞
2

1
x log x dx does not exist, and

∑∞
n=2

1
n logn diverges.

3. Does the series
∑∞

n=1
logn
n2 converge?

Let

f : [1,∞) → R, x 7→ log x

x2
.

It follows that

f ′(x) =
x− 2x log x

x4
≤ 0

for x ≥ 3. Hence, f is decreasing on [3,∞): this is sufficient for the integral

comparison test to be applicable. Let R > 1, and note that

∫ R

1

log x

x2
dx = − log x

x

∣
∣
∣
∣

R

1
︸ ︷︷ ︸

R→∞→ 0

+

∫ R

1

1

x2
dx

︸ ︷︷ ︸

=− 1
x |R1

R→∞→ 1

→ 1.

Hence,
∫∞
1

log x
x2

dx exists, and
∑∞

n=1
logn
n2 converges.
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4. For which θ > 0 does
∑∞

n=1(
n
√
θ − 1) converge?

Let

f : [1,∞) → R, x 7→ θ
1
x − 1.

First consider the case where θ ≥ 1. Since

f ′(x) = − log θ

x2
θ

1
x ≤ 0,

and f(x) ≥ 0 for x ≥ 1, the integral comparison test is applicable. For any x ≥ 1,

there is ξ ∈
(
0, 1

x

)
such that

θ
1
x − 1
1
x

= θξ log θ ≥ log θ,

so that

θ
1
x − 1 ≥ log θ

x

for x ≥ 1. Since
∫∞
1

1
x
dx does not exist, the comparison test yields that

∫∞
1 f(x) dx

does not exist either unless θ = 1. Consequently, if θ ≥ 1, the series
∑∞

n=1(
n
√
θ − 1)

converges only if θ = 1.

Consider now the case where θ ≤ 1, the same argument with −f instead of f shows

that
∑∞

n=1(
n
√
θ − 1) converges only if θ = 1.

All in all, for θ > 0, the infinite series
∑∞

n=1(
n
√
θ− 1) converges if and only if θ = 1.
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Chapter 8

Sequences and series of functions

8.1 Uniform convergence

Definition 8.1.1. Let ∅ 6= D ⊂ RN , and let f, f1, f2, . . . be R-valued functions on D.

Then the sequence (fn)
∞
n=1 is said to converge pointwise to f on D if

lim
n→∞

fn(x) = f(x)

holds for each x ∈ D.

Example. For n ∈ N, let

fn : [0, 1] → R, x 7→ xn,

so that

lim
n→∞

fn(x) =

{

0, x ∈ [0, 1),

1, x = 1.

Let

f : [0, 1] → R, x 7→
{

0, x ∈ [0, 1),

1, x = 1.

It follows that fn → f pointwise on [0, 1].

The example shows one problem with the notion of pointwise convergence: All the fns

are continuous whereas f clearly isn’t. To find a better notion of convergence, let us first

rephrase the definition of pointwise convergence.

(fn)
∞
n=1 converges pointwise to f if, for each x ∈ D and each ǫ > 0, there is

nx,ǫ ∈ N such that |fn(x)− f(x)| < ǫ for all n ≥ nx,ǫ.

The index nx,ǫ depends both on x ∈ D and on ǫ > 0.

The key to a better notion of convergence to functions is to remove the dependence of

the index nx,ǫ on x:
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Definition 8.1.2. Let ∅ 6= D ⊂ RN , and let f, f1, f2, . . . be R-valued functions on D.

Then the sequence (fn)
∞
n=1 is said to converge uniformly to f on D if, for each ǫ > 0,

there is nǫ ∈ N such that |fn(x)− f(x)| < ǫ for all n ≥ nǫ and for all x ∈ D.

Example. For n ∈ N, let

fn : R → R, x 7→ sin(nπx)

n
.

Since ∣
∣
∣
∣

sin(nπx)

n

∣
∣
∣
∣
≤ 1

n

for all x ∈ R and n ∈ N, it follows that fn → 0 uniformly on R.

Theorem 8.1.3. Let ∅ 6= D ⊂ RN , and let f, f1, f2, . . . be functions on D such that

fn → f uniformly on D and such that f1, f2, . . . are continuous. Then f is continuous.

Proof. Let ǫ > 0, and let x0 ∈ D. Choose nǫ ∈ N such that

|fn(x)− f(x)| < ǫ

3

for all n ≥ nǫ and for all x ∈ D. Since fnǫ is continuous, there is δ > 0 such that

|fnǫ(x)− fnǫ(x0)| < ǫ
3 for all x ∈ D with ||x− x0|| < δ. Fox any such x we obtain:

|f(x)− f(x0)| ≤ |f(x)− fnǫ(x)|
︸ ︷︷ ︸

< ǫ
3

+ |fnǫ(x)− fnǫ(x0)|
︸ ︷︷ ︸

< ǫ
3

+ |fnǫ(x0)− f(x0)|
︸ ︷︷ ︸

< ǫ
3

< ǫ.

Hence, f is continuous at x0. Since x0 ∈ D was arbitrary, f is continuos on all of D.

Corollary 8.1.4. Let ∅ 6= D ⊂ RN have content, and let (fn)
∞
n=1 be a sequence of

continuous functions on D that converges uniformly on D to f : D → R. Then f is

continuous, and we have ∫

D

f = lim
n→∞

∫

D

fn.

Proof. Let ǫ > 0. Choose nǫ ∈ N such that

|fn(x)− f(x)| < ǫ

µ(D) + 1

for all x ∈ D and n ≥ nǫ. For any n ≥ nǫ, we thus obtain:
∣
∣
∣
∣

∫

D

fn −
∫

D

f

∣
∣
∣
∣

≤
∫

D

|fn − f |

≤
∫

D

ǫ

µ(D) + 1

=
ǫµ(D)

µ(D) + 1
< ǫ.

This proves the claim.
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Unlike integration, differentiation does not switch with uniform limits:

Example. For n ∈ N, let

fn : [0, 1] → R, x 7→ xn

n
,

so that fn → 0 uniformly on [0, 1]. Nevertheless, since

f ′n(x) = xn−1

for x ∈ [0, 1] and n ∈ N, it follows that f ′n 6→ 0 (not even pointwise).

Theorem 8.1.5. Let (fn)
∞
n=1 be a sequence in C1([a, b]) such that

(a) (fn(x0))
∞
n=1 converges for some x0 ∈ [a, b] and

(b) (f ′n)
∞
n=1 is uniformly convergent.

Then there is f ∈ C1([a, b]) such that fn → f and f ′n → f ′ uniformly on [a, b].

Proof. Let g : [a, b] → R be such that limn→∞ f ′n = g uniformly on [a, b], and let y0 :=

limn→∞ fn(x0). Define

f : [a, b] → R, x 7→ y0 +

∫ x

x0

g(t) dt.

It follows that f ′ = g, so that f ′n → f ′ uniformly on [a, b].

Let ǫ > 0, and choose nǫ > 0 such that |f ′n(x) − g(x)| < ǫ
2(b−a) for all x ∈ [a, b] and

n ≥ nǫ and that |fn(x0)− y0| < ǫ
2 . For any n ≥ nǫ and x ∈ [a, b], we then obtain:

|fn(x)− f(x)| =

∣
∣
∣
∣
fn(x0) +

∫ x

x0

f ′n(t) dt− y0 −
∫ x

x0

g(t) dt

∣
∣
∣
∣

≤ |fn(x0)− y0|+
∣
∣
∣
∣

∫ x

x0

f ′n(t) dt−
∫ x

x0

g(t) dt

∣
∣
∣
∣

<
ǫ

2
+

∣
∣
∣
∣

∫ x

x0

|f ′n(t)− g(t)| dx
∣
∣
∣
∣

≤ ǫ

2
+
ǫ|x− x0|
2(b− a)

≤ ǫ

2
+
ǫ

2
= ǫ.

This proves that fn → f uniformly on [a, b].

Definition 8.1.6. Let ∅ 6= D ⊂ RN . A sequence (fn)
∞
n=1 of R-valued functions on D

is called a uniform Cauchy sequence on D if, for each ǫ > 0, there is nǫ ∈ N such that

|fn(x)− fm(x)| < ǫ for all x ∈ D and all n,m ≥ nǫ.
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Theorem 8.1.7. Let ∅ 6= D ⊂ RN , and let (fn)
∞
n=1 be a sequence of R-valued functions

on D. Then the following are equivalent:

(i) There is a function f : D → R such that fn → f uniformly on D.

(ii) (fn)
∞
n=1 is a uniform Cauchy sequence on D.

Proof. (i) =⇒ (ii): Let ǫ > 0 and choose nǫ ∈ N such that

|fn(x)− f(x)| < ǫ

2

for all x ∈ D and n ≥ nǫ. For x ∈ D and n,m ≥ nǫ, we thus obtain:

|fn(x)− fm(x)| < |fn(x)− f(x)|+ |f(x)− fm(x)| <
ǫ

2
+
ǫ

2
= ǫ.

This proves (ii).

(ii) =⇒ (i): For each x ∈ D, the sequence (fn(x))
∞
n=1 in R is a Cauchy sequence and

therefore convergent. Define

f : D → R, x 7→ lim
n→∞

fn(x).

Let ǫ > 0 and choose nǫ ∈ N such that

|fn(x)− fm(x)| <
ǫ

2

for all x ∈ D and all n,m ≥ nǫ. Fix x ∈ D and n ≥ nǫ. We obtain that

|fn(x)− f(x)| = lim
m→∞

|fn(x)− fm(x)| ≤
ǫ

2
< ǫ.

Hence, (fn)
∞
n=1 converges to f not only pointwise, but uniformly.

Theorem 8.1.8 (Weierstraß M -test). Let ∅ 6= D ⊂ RN , let (fn)
∞
n=1 be a sequence of

R-valued functions on D, and suppose that, for each n ∈ N, there is Mn ≥ 0 such that

|fn(x)| ≤Mn for x ∈ D and such that
∑∞

n=1Mn <∞. Then
∑∞

n=1 fn converges uniformly

and absolutely on D.

Proof. Let ǫ > 0 and choose nǫ > 0 such that

n∑

k=m+1

Mk < ǫ

for all n ≥ m ≥ nǫ. For all such n and m and for all x ∈ D, we obtain that
∣
∣
∣
∣
∣

n∑

k=1

fk(x)−
n∑

k=1

fk(x)

∣
∣
∣
∣
∣
≤

n∑

k=m+1

|fk(x)| ≤
n∑

k=m+1

Mk < ǫ.

Hence, the sequence (
∑n

k=1 fk)
∞
n=1 is uniformly Cauchy on D and thus uniformly conver-

gent. It is easy to see that the convergence is even absolute.
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Example. Let R > 0, and note that

∣
∣
∣
∣

xn

n!

∣
∣
∣
∣
≤ Rn

n!

for all n ∈ N and x ∈ [−R,R]. Since
∑∞

n=1
Rn

n! < ∞, it follows from the M -test that
∑∞

n=1
xn

n! converges uniformly on [−R,R]. From Theorem 8.1.3, we conclude that exp

is continuous on [−R,R]. Since R > 0 was arbitrary, we obtain the continuity of exp

on all of R. Let x ∈ R be arbitrary. Then there is a sequence (qn)
∞
n=1 in Q such that

x = limn→∞ qn. Since exp(q) = eq for all q ∈ Q, and since both exp and the exponential

function are continuous, we obtain

exp(x) = lim
n→∞

exp(qn) = lim
n→∞

eqn = ex.

Theorem 8.1.9 (Dini’s theorem). Let ∅ 6= K ⊂ RN be compact and let (fn)
∞
n=1 a

sequence of continuous functions on K that decreases pointwise to a continuous function

f : K → R. Then (fn)
∞
n=1 converges to f uniformly on K.

Proof. Let ǫ > 0. For each n ∈ N, let

Vn := {x ∈ K : fn(x)− f(x) < ǫ}.

Since each fn − f is continuous, there is an open set Un ⊂ RN such that Un ∩ K = Vn.

Let x ∈ K. Since limn→∞ fn(x) = f(x), there is n0 ∈ N such that fn0(x) − f(x) < ǫ, i.e.

x ∈ Vn0 . It follows that

K =

∞⋃

n=1

Vn ⊂
∞⋃

n=1

Un.

Since K is compact, there are n1, . . . , nk ∈ N such that K ⊂ Un1 ∪ · · · ∪ Unk
and hence

K = Vn1 ∪ · · · ∪ Vnk
. Let nǫ := max{n1, . . . , nk}. Since (fn)

∞
n=1 is a decreasing sequence,

the sequence (Vn)
∞
n=1 is an increasing sequence of sets. Hence, we have for n ≥ nǫ that

Vn ⊃ Vnǫ ⊃ Vnj

for j = 1, . . . , k, and thus Vn = K. For n ≥ nǫ and x ∈ K, we thus have x ∈ Vn and

therefore

|fn(x)− f(x)| = fn(x)− f(x) < ǫ.

Hence, we have uniform convergence.

8.2 Power series

Power series can be thought of as “polynomials of infinite degree”:
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Definition 8.2.1. Let x0 ∈ R, and let a0, a1, a2, . . . ∈ R. The power series about x0 with

coefficients a0, a1, a2, . . . is the infinite series of functions
∑∞

n=0 an(x− x0)
n.

This definitions makes no assertion whatsoever about convergence of the series. Whe-

ther or not
∑∞

n=0 an(x−x0)n converges depends, of course, on x, and the natural question

that comes up immediately is: Which are the x ∈ R for which
∑∞

n=0 an(x−x0)n converges?

Examples. 1. Trivially, each power series
∑∞

n=0 an(x− x0)
n converges for x = x0.

2. The power series
∑∞

n=0
xn

n! converges for each x ∈ R.

3. The series
∑∞

n=0 n
n(x− π)n converges only for x = π.

4. The series
∑∞

n=0 x
n converges if and only if x ∈ (−1, 1).

Theorem 8.2.2. Let x0 ∈ R, let a0, a1, a2, . . . ∈ R, and let R > 0 be such that the

sequence (anR
n)∞n=0 is bounded. Then the power series

∞∑

n=0

an(x− x0)
n and

∞∑

n=1

nan(x− x0)
n−1

converge uniformly and absolutely on [x0 − r, x0 + r] for each r ∈ (0, R).

Proof. Let C ≥ 0 such that |an|Rn ≤ C for all n ∈ N0. Let r ∈ (0, R), and let x ∈
[x0 − r, x0 + r]. It follows that

n|an||x− x0|n−1 ≤ n|an|rn−1

= n
( r

R

)n−1 anR
n

R

=
C

R
n
( r

R

)n−1
.

Since r
R

∈ (0, 1), the series
∑∞

n=1 n
(
r
R

)n−1
converges. By the Weierstraß M -test, the

power series
∑∞

n=1 nan(x− x0)
n−1 converges uniformly and absolutely on [x0 − r, x0 + r].

The corresponding claim for
∑∞

n=0 an(x− x0)
n is proven analogously.

Definition 8.2.3. Let
∑∞

n=0 an(x−x0)
n be a power series. The radius of convergence of

∑∞
n=0 an(x− x0)

n is defined as

R := sup {r ≥ 0 : (anr
n)∞n=0 is bounded} ,

where possibly R = ∞ (in case
∑∞

n=0 anr
n converges for all r ≥ 0).

If
∑∞

n=0 an(x − x0)
n has radius of convergence R, then it converges uniformly on

[x0 − r, x0 + r] for each r ∈ [0, R), but diverges for each x ∈ R with |x − x0| > R: this

is an immediate consequence of Theorem 8.2.2 and the fact that (anr
n)∞n=1 converges to

zero — and thus is bounded — whenever
∑∞

n=0 anr
n converges.

And more is true:
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Corollary 8.2.4. Let
∑∞

n=0 an(x − x0)
n be a power series with radius of convergence

R > 0. Then
∑∞

n=0 an(x − x0)
n converges, for each r ∈ (0, R), uniformly and absolutely

on [x0 − r, x0 + r] to a C1-function f : (x0 −R,x0 +R) → R whose first derivative is given

by

f ′(x) =
∞∑

n=1

nan(x− x0)
n−1

for x ∈ (x0 −R,x0 +R). Moreover, F : (x0 −R,x0 +R) → R given by

F (x) :=

∞∑

n=0

an
n+ 1

(x− x0)
n+1

for x ∈ (x0 −R,x0 +R) is an antiderivative of f .

Proof. Just combine Theorems 8.2.2 and 8.1.5.

In short, Corollary 8.2.4 asserts that power series can be differentiated and integrated

term by term.

Examples. 1. For x ∈ (−1, 1), we have:

∞∑

n=1

nxn = x
n∑

n=1

nxn−1

= x

n∑

n=0

d

dx
xn

= x
d

dx

n∑

n=0

xn, by Corollary 8.2.4,

= x
d

dx

1

1− x

=
x

(1− x)2
.

2. For x ∈ (−1, 1), we have

1

x2 + 1
=

1

1− (−x2) =
∞∑

n=0

(−1)nx2n.

Corollary 8.2.4 yields C ∈ R such that

arctan x+ C =

∞∑

n=0

(−1)n
x2n+1

2n+ 1

for all x ∈ (−1, 1). Letting x = 0, we see that C = 0, so that

arctanx =

∞∑

n=0

(−1)n
x2n+1

2n + 1

for x ∈ (−1, 1).
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3. For x ∈ (0, 2), we have

1

x
=

1

1− (1− x)
=

∞∑

n=0

(1− x)n =

∞∑

n=0

(−1)n(x− 1)n.

By Corollary 8.2.4, there is C ∈ R such that

log x+ C =

∞∑

n=0

(−1)n

n+ 1
(x− 1)n+1 =

∞∑

n=1

(−1)n−1

n
(x− 1)n

for x ∈ (0, 2). Letting x = 1, we obtain that C = 0, so that

log x =

∞∑

n=1

(−1)n−1

n
(x− 1)n

for x ∈ (0, 2).

Proposition 8.2.5 (Cauchy–Hadamard formula). The radius of convergence R of the

power series
∑∞

n=0 an(x− x0)
n is given by

R =
1

lim supn→∞
n
√

|an|
,

where the convention applies that 1
0 = ∞ and 1

∞ = 0.

Proof. Let

R′ :=
1

lim supn→∞
n
√

|an|
.

Let x ∈ R \ {x0} be such that |x− x0| < R′, so that

lim sup
n→∞

n
√

|an| <
1

|x− x0|
.

Let θ ∈
(

lim supn→∞
n
√

|an|, 1
|x−x0|

)

. From the definition of lim sup, we obtain n0 ∈ N

such that
n
√

|an| < θ

for n ≥ n0 and therefore

n
√

|an||x− x0|n < θ|x− x0| < 1

for n ≥ n0. Hence, by the root test,
∑∞

n=0 an(x− x0)
n converges, so that R′ ≤ R.

Let x ∈ R \ {x0} such that |x− x0| > R′, i.e.

lim sup
n→∞

n
√

|an| >
1

|x− x0|
.
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By Proposition C.1.5, there is a subsequence (ank
)∞k=1 of (an)

∞
n=0 such that we have

lim supn→∞
n
√

|an| = limk→∞ nk

√

|ank
|. Without loss of generality, we may suppose that

nk

√

|ank
| > 1

|x− x0|
for all k ∈ N and thus

nk

√

|ank
||x− x0|nk > 1

for k ∈ N. Consequently, (an(x−x0)n)∞n=0 does not converge to zero, so that
∑∞

n=0 an(x−
x0)

n has to diverge. It follows that R ≤ R′.

Examples. 1. Consider the power series,

∞∑

n=1

(

1− 1

n

)n2

xn,

so that

n
√
an =

(

1− 1

n

)n2

for n ∈ N. It follows from the Cauchy–Hadamard formula that

lim
n→∞

n
√
an = lim

n→∞

(

1− 1

n

)n

=
1

e
,

so that e is the radius of convergence of the power series.

2. We will now use the Cauchy–Hadamard formula to prove that limn→∞ n
√
n = 1.

Since
∑∞

n=1 nx
n converges for |x| < 1 and diverges for |x| > 1, the radius of conver-

gence R of that series must equal 1. By the Cauchy–Hadamard formula, this means

that lim supn→∞
n
√
n = 1. Hence, 1 is the largest accumulation point of ( n

√
n)∞n=1.

Since, trivially, n
√
n ≥ 1 for all n ∈ N, all accumulation points of the sequence must

be greater or equal to 1. Hence, ( n
√
n)∞n=1 has only one accumulation point, namely

1, and therefore converges to 1.

Definition 8.2.6. We say that a function f has a power series expansion about x0 ∈ R

if f(x) =
∑∞

n=0 an(x − x0)
n for some power series

∑∞
n=0 an(x − x0)

n and all x in some

open interval centered at x0.

From Corollary 8.2.4, we obtain immediately:

Corollary 8.2.7. Let f be a function with a power series expansion
∑∞

n=0 an(x − x0)
n

about x0 ∈ R. Then f is infinitely often differentiable on an open interval about x0, i.e. a

C∞-function, such that

an =
f (n)(x0)

n!

holds for all n ∈ N0. In particular, the power series expansion of f about x0 is unique.
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Let f be a function that is infinitely often differentiable on some neighborhood of

x0 ∈ R. Then the Taylor series of f at x0 is the power series
∑∞

n=0
f(n)(x0)

n! (x − x0)
n.

Corollary 8.2.7 asserts that, whenever f has a power series expansion about x0, then the

corresponding power series must be the function’s Taylor series. We thus may also speak

of the Taylor expansion of f about x0.

Does every C∞-function have a Taylor expansion?

Example. Let F be the collection of all functions f : R → R of the following form: There

is a polynomial p such that

f(x) =

{

p
(
1
x

)
e−

1
x2 , x 6= 0,

0, x = 0,
(8.1)

for all x ∈ R. It is clear that each f ∈ F is continuous on R\{0}, and from de l’Hospital’s

rule, it follows that each f ∈ F is also continuous at x = 0.

We claim that each f ∈ F is differentiable such that f ′ ∈ F .

Let f ∈ F be as in (8.1). It is easy to see that f is differentiable at each x 6= 0 with

f ′(x) = − 1

x2
p′
(
1

x

)

e−
1
x2 + p

(
1

x

)(

− 2

x3

)

e−
1
x2

=

(

− 1

x2
p′
(
1

x

)

− 2

x3
p

(
1

x

))

e−
1
x2 ,

so that

f ′(x) = q

(
1

x

)

e−
1
x2

for such x, where

q(y) := −y2p′(y)− 2y3p(y)

for all y ∈ R. Let r(y) := y p(y) for y ∈ R, so that r is a polynomial. Since functions in

F are continuous at x = 0, we see that

lim
h→0
h6=0

f(h)− f(0)

h
= lim

h→0
h6=0

1

h
p

(
1

h

)

e−
1
h2 = lim

h→0
h6=0

r

(
1

h

)

e−
1
h2 = 0.

This proves the claim.

Consider

f : R → R, x 7→
{

e−
1
x2 , x 6= 0,

0, x = 0,

so that f ∈ F . By the claim just proven, it follows that f is a C∞-function with f (n) ∈ F
for all n ∈ N. In particular, f (n)(0) = 0 holds for all n ∈ N. The Taylor series of f thus

converges (to 0) on all of R, but f does not have a Taylor expansion about 0.
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Theorem 8.2.8. Let x0 ∈ R, let R > 0, and let f ∈ C∞([x0 − R,x0 + R]) such that the

set

{|f (n)(x)| : x ∈ [x0 −R,x0 +R], n ∈ N0} (8.2)

is bounded. Then

f(x) =
∞∑

n=0

f (n)(x0)

n!
(x− x0)

n

holds for all x ∈ [x0 −R,x0 +R] with uniform convergence on [x0 −R,x0 +R]

Proof. Let C ≥ 0 be an upper bound for (8.2), and let x ∈ [x0 − R,x0 + R]. For each

n ∈ N, Taylor’s theorem yields ξ ∈ [x0 −R,x0 +R] such that

f(x) =
n∑

k=0

f (k)(x0)

k!
(x− x0)

k +
f (n+1)(ξ)

(n+ 1)!
(x− x0)

n+1,

so that
∣
∣
∣
∣
∣
f(x)−

n∑

k=0

f (k)(x0)

k!
(x− x0)

k

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

f (n+1)(ξ)

(n+ 1)!

∣
∣
∣
∣
∣
|x− x0|n+1 ≤ C

Rn+1

(n+ 1)!
.

Since limn→∞
Rn+1

(n+1)! = 0, this completes the proof.

Example. For all x ∈ R,

sinx =
∞∑

n=0

(−1)n
x2n+1

(2n + 1)!
and cos x =

∞∑

n=0

(−1)n
x2n

(2n)!

holds.

Let
∑∞

n=0 an(x− x0)
n be a power series with radius of convergence R. What happens

if x = x0 ±R?

In general, nothing can be said.

Theorem 8.2.9 (Abel’s theorem). Suppose that the series
∑∞

n=0 an converges. Then the

power series
∑∞

n=0 anx
n converges pointwise on (−1, 1] to a continuous function.

Proof. For x ∈ (−1, 1], define

f(x) :=
∞∑

n=0

anx
n.

Since
∑∞

n=1 anx
n converges uniformly on all compact subsets of (−1, 1), it is clear that

f is continuous on (−1, 1). What remains to be shown is that f is continuous at 1, i.e.

limx↑1 f(x) = f(1).
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For n ∈ Z with n ≥ −1, define rn :=
∑∞

k=n+1 ak. It follows that r−1 = f(1), rn−rn−1 =

−an for all n ∈ N0, and limn→∞ rn = 0. Since (rn)
∞
n=−1 is bounded, the series

∑∞
n=0 rnx

n

and
∑∞

n=0 rn−1x
n converge for x ∈ (−1, 1). We obtain for x ∈ (−1, 1) that

(1− x)
∞∑

n=0

rnx
n =

∞∑

n=0

rnx
n −

∞∑

n=0

rnx
n+1

=

∞∑

n=0

rnx
n −

∞∑

n=0

rn−1x
n + r−1

=
∞∑

n=0

(rn − rn−1)x
n + r−1

= −
∞∑

n=1

anx
n

︸ ︷︷ ︸

=f(x)

+f(1),

i.e.

f(1)− f(x) = (1− x)
∞∑

n=0

rnx
n.

Let ǫ > 0 and let C ≥ 0 be such that |rn| ≤ C for n ≥ −1. Choose nǫ ∈ N such that

|rn| ≤ ǫ
2 for n ≥ nǫ, and set δ := ǫ

2Cnǫ+1 . Let x ∈ (0, 1) such that 1 − x < δ. It follows

that

|f(1)− f(x)| ≤ (1− x)

∞∑

n=0

|rn|xn

= (1− x)

nǫ−1∑

n=0

|rn|xn + (1− x)

∞∑

n=nǫ

|rn|xn

≤ (1− x)Cnǫ + (1− x)
ǫ

2

∞∑

n=nǫ

xn

<
ǫ

2
+ (1− x)

ǫ

2

∞∑

n=0

xn

︸ ︷︷ ︸

= 1
1−x

=
ǫ

2
+
ǫ

2
= ǫ,

so that f is indeed continuous at 1.

Examples. 1. For x ∈ (−1, 1), the identity

log(x+ 1) =

∞∑

n=1

(−1)n−1

n
xn (8.3)
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holds. By Abel’s theorem, the right hand side of (8.3) defines a continuous function

on all of (−1, 1]. Since the left hand side of (8.3) is also continuous on (−1, 1], it

follows that (8.3) holds for all x ∈ (−1, 1]. Letting x = 1, we obtain that

∞∑

n=1

(−1)n−1

n
= log 2.

2. Since

arctanx =

∞∑

n=0

(−1)n
x2n+1

2n + 1

holds for all x ∈ (−1, 1), a similar argument as in the previous example yields that

this identity holds for all x ∈ (−1, 1]. In particular, letting x = 1 yields

π

4
= arctan 1 =

∞∑

n=0

(−1)n

2n + 1
.

8.3 Fourier series

The theory of Fourier series is about approximating periodic functions through terms

involving sine and cosine.

Definition 8.3.1. Let ω > 0, and let PCω(R) denote the collection of all functions

f : R → R with the following properties:

(a) f(x+ ω) = f(x) for x ∈ R.

(b) There is a partition t0 < · · · < tn of
[
−ω

2 ,
ω
2

]
such that f is continuous on (tj−1, tj)

for j = 1, . . . , n and such that limt↑tj f(t) exists for j = 1, . . . , n and limt↓tj f(t) exists

for j = 0, . . . , n− 1.

Example. The functions sin and cos belong to PC2π(R).
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ω
2

− _ω
2

t 1 t 2_

Figure 8.1: A function in PCω(R)

How can we approximate arbitrary f ∈ PC2π(R) by linear combinations of sin and

cos?

Definition 8.3.2. For f ∈ PC2π(R), the Fourier coefficients a0, a1, a2, . . . , b1, b2, . . . of f

are defined as

an :=
1

π

∫ π

−π
f(t) cos(nt) dt

for n ∈ N0 and

bn :=
1

π

∫ π

−π
f(t) sin(nt) dt

for n ∈ N. The infinite series a0
2 +

∑∞
n=1(an cos(nx) + bn sin(nx)) is called the Fourier

series of f . We write:

f(x) ∼ a0
2

+

∞∑

n=1

(an cos(nx) + bn sin(nx)).

The fact that

f(x) ∼ a0
2

+
∞∑

n=1

(an cos(nx) + bn sin(nx))

does not mean that we have convergence — not even pointwise.
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Example. Let

f : (−π, π] → R, x 7→
{

−1, x ∈ (−π, 0),
1, x ∈ [0, π].

Extend f to a function in PC2π(x) (using Definition 8.3.2(a)). For n ∈ N0, we obtain:

an =
1

π

∫ π

−π
f(t) cos(nt) dt

=
1

π

(

−
∫ 0

−π
cos(nt) dt+

∫ π

0
cos(nt) dt

)

=
1

π

(

−
∫ π

0
cos(nt) dt+

∫ π

0
cos(nt) dt

)

= 0.

For n ∈ N, we have:

bn =
1

π

∫ π

−π
f(t) sin(nt) dt

=
1

π

(

−
∫ 0

−π
sin(nt) dt+

∫ π

0
sin(nt) dt

)

=
1

π

(

− 1

n

∫ 0

−πn
sin(t) dt+

1

n

∫ πn

0
sin(t) dt

)

=
1

πn

(

cos t|0−πn − cos t|πn0
)

=
1

πn
(1− cos(πn)− cos(nπ) + 1)

=
2− 2 cos(πn)

πn

=

{

0, n even,
4
πn
, n odd.

It follows that

f(x) ∼ 4

π

∞∑

n=0

1

2n+ 1
sin((2n + 1)x).

The Fourier series, however, does not converge to f for x = −π, 0, π.
In general, it is too much to expect pointwise convergence. Suppose that f ∈ PC2π(R)

has a Fourier series that converges pointwise to f . Let g : R → R be another function in

PC2π(R) obtained from f by altering f at finitely many points in (−π, π]. Then f and g

have the same Fourier series, but at those points where f differs from g, the series cannot

converge to g.

We need a different type of convergence:

Definition 8.3.3. For f ∈ PC2π(R), define

||f ||2 :=
(∫ π

−π
|f(t)|2 dt

) 1
2

.
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Proposition 8.3.4. Let f, g ∈ PC2π(R), and let λ ∈ R. Then we have:

(i) ||f ||2 ≥ 0;

(ii) ||λf ||2 = |λ|||f ||2;

(iii) ||f + g||2 ≤ ||f ||2 + ||g||2.

Proof. (i) and (ii) are obvious.

For (iii), we first claim that

∫ π

−π
|f(t)g(t)| dt ≤ ||f ||2||g||2 (8.4)

Let ǫ > 0, and choose a partition −π = t0 < · · · < tn = π and support points ξj ∈ (tj−1, tj)

for j = 1, . . . , n such that

∣
∣
∣
∣
∣
∣

∫ π

−π
|f(t)g(t)| dt −

n∑

j=1

|f(ξj)g(ξj)|(tj − tj−1)

∣
∣
∣
∣
∣
∣

< ǫ,

∣
∣
∣
∣
∣
∣
∣

(∫ π

−π
|f(t)|2 dt

) 1
2

−





n∑

j=1

|f(ξj)|2(tj − tj−1)





1
2

∣
∣
∣
∣
∣
∣
∣

< ǫ,

and ∣
∣
∣
∣
∣
∣
∣

(∫ π

−π
|g(t)|2 dt

) 1
2

−





n∑

j=1

|g(ξj)|2(tj − tj−1)





1
2

∣
∣
∣
∣
∣
∣
∣

< ǫ.

We therefore obtain:

∫ π

−π
|f(t)g(t)| dt <

n∑

j=1

|f(ξj)g(ξj)|(tj − tj−1) + ǫ

=

n∑

j=1

|f(ξj)|(tj − tj−1)
1
2 |g(ξj)|(tj − tj−1)

1
2 + ǫ

≤





n∑

j=1

|f(ξj)|2(tj − tj−1)





1
2




n∑

j=1

|g(ξj)|2(tj − tj−1)





1
2

+ ǫ,

by the Cauchy–Schwarz inequality,

<

((∫ π

−π
|f(t)|2 dt

) 1
2

+ ǫ

)((∫ π

−π
|g(t)|2 dt

) 1
2

+ ǫ

)

+ ǫ.

Since ǫ > 0 is arbitrary, this yields (8.4).
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Since

||f + g||2 =

∫ π

−π
(f(t)2 + 2f(t)g(t) + g(t)2) dt

=

∫ π

−π
|f(t)|2 dt+ 2

∫ π

−π
f(t)g(t) dt +

∫ π

−π
|g(t)|2 dt

≤ ||f ||22 + 2

∫ π

−π
|f(t)g(t)| dt + ||g||22

≤ ||f ||22 + 2||f ||2||g||2 + ||g||22, by (8.4),

= (||f ||2 + ||g||2)2,

this proves (iii).

One cannot improve Proposition 8.3.4(i) to ||f ||2 > 0 for non-zero f : Any function f

that is different from zero only in finitely many points provides a counterexample.

Definition 8.3.5. Let α0, α1, . . . , αn, β1, . . . , βn ∈ R. A function of the form

Tn(x) =
α0

2
+

n∑

k=1

(αk cos(kx) + βk sin(kx)) (8.5)

for x ∈ R is called a trigonometric polynomial of degree n.

Is is obvious that trigonometric polynomials belong to PC2π(R).

Lemma 8.3.6. Let f ∈ PC2π(R) have the Fourier coefficients a0, a1, a2 . . . , b1, b2, . . ., and

let Tn be a trigonometric polynomial of degree n ∈ N as in (8.5). Then we have:

||f − Tn||22

= ||f ||22 − π

(

a20
2

+
n∑

k=1

(a2k + b2k)

)

+ π

(

1

2
(α0 − a0)

2 +
n∑

k=1

(αk − ak)
2 + (βk − bk)

2

)

.

Proof. First note that

||f − Tn||22 =
∫ π

−π
f(t)2 dt

︸ ︷︷ ︸

=||f ||22

−2

∫ π

−π
f(t)Tn(t) dt+

∫ π

−π
Tn(t)

2 dt.

Then, observe that
∫ π

−π
f(t)Tn(t) dt

=
α0

2

∫ π

−π
f(t) dt+

n∑

k=1

αk

∫ π

−π
f(t) cos(kt) dt+

n∑

k=1

βk

∫ π

−π
f(t) sin(kt) dt

= π

(

α0

2
a0 +

n∑

k=1

(αkak + βkbk)

)

,
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and, moreover, that
∫ π

−π
Tn(t)

2 dt

= 2π
α2
0

4
+
α0

2

n∑

k=1

(

αk

∫ π

−π
cos(kt) dt

︸ ︷︷ ︸

=0

+βk

∫ π

−π
sin(kt) dt

︸ ︷︷ ︸

=0

)

+
n∑

k,j=1

(

αkαj

∫ π

−π
cos(kt) cos(jt) dt+ 2αkβj

∫ π

−π
cos(kt) sin(jt) dt

+ βkβj

∫ π

−π
sin(kt) sin(jt) dt

)

= π
α2
0

2
+

n∑

k=1

(

α2
k

∫ π

−π
cos(kt)2 dt+ β2k

∫ π

−π
sin(kt)2 dt

)

= π

(

α2
0

2
+

n∑

k=1

(α2
k + β2k)

)

.

We thus obtain:

||f − Tn||22

= ||f ||22 + π

(

−α0a0 −
n∑

k=1

(2αkak + 2βkbk) +
α2
0

2
+

n∑

k=1

(α2
k + β2k)

)

= ||f ||22 + π

(

1

2
(α2

0 − 2α0a0) +

n∑

k=1

(α2
k − 2αkak + β2k − 2βkbk)

)

= ||f ||22 + π

(

1

2
(α0 − a0)

2 +
n∑

k=1

((αk − ak)
2 + (βk − bk)

2)− 1

2
a20 −

n∑

k=1

(a2k + b2k)

)

This proves the claim.

Proposition 8.3.7. For f ∈ PC2π(R) with the Fourier coefficients a0, a1, a2 . . . , b1, b2, . . .

and n ∈ N, let Sn(f) ∈ PC2π(R) be given by

Sn(f)(x) =
a0
2

+

n∑

k=1

(ak cos(kx) + bk sin(kx))

for x ∈ R. Then Sn(f) is the unique trigonometric polynomial Tn of degree n for which

||f − Sn(f)||2 becomes minimal. In fact, we have

||f − Sn(f)||22 = ||f ||22 − π

(

a20
2

+

n∑

k=1

(a2k + b2k)

)

.

Corollary 8.3.8 (Bessel’s inequality). Let f ∈ PC2π(R) have the Fourier coefficients

a0, a1, a2 . . . , b1, b2, . . .. Then we have the inequality

a20
2

+
∞∑

n=1

(a2n + b2n) ≤
1

π
||f ||22.
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In particular, limn→∞ an = limn→∞ bn = 0 holds.

Definition 8.3.9. Let n ∈ N0. The n-th Dirichlet kernel is defined on [−π, π] by letting

Dn(t) :=







sin((n+ 1
2)t)

2 sin( 1
2
t)

, 0 < |t| ≤ π,

n+ 1
2 , t = 0.

Lemma 8.3.10. Let f ∈ PC2π(R). Then

Sn(f)(x) =
1

π

∫ π

−π
f(x+ t)Dn(t) dt

for all n ∈ N0 and x ∈ [−π, π].

Proof. Let n ∈ N0 and let x ∈ [−π, π]. We have:

Sn(f)(x) =
1

2π

∫ π

−π
f(t) dt+

1

π

∫ π

−π

n∑

k=1

f(t)(cos(kx) cos(kt) + sin(kx) sin(kt)) dt

=
1

π

∫ π

−π
f(t)

(

1

2
+

n∑

k=1

(cos(kx) cos(−kt)− sin(kx) sin(−kt))
)

dt

=
1

π

∫ π

−π
f(t)

(

1

2
+

n∑

k=1

cos(k(x− t))

)

dt

=
1

π

∫ π+x

−π−x
f(x+ s)

(

1

2
+

n∑

k=1

cos(ks)

)

ds

=
1

π

∫ π

−π
f(x+ s)

(

1

2
+

n∑

k=1

cos(ks)

)

ds.

We now claim that

Dn(s) =
1

2
+

n∑

k=1

cos(ks)

holds for all x ∈ [−π, π]. First note that, for any s ∈ R and k ∈ Z, the identity

2 cos(ks) sin

(
1

2
s

)

= sin

((

k +
1

2

)

s

)

− sin

((

k − 1

2

)

s

)

.

Hence, we obtain for s ∈ [−π, π] and n ∈ N0 that

2 sin

(
1

2
s

) n∑

k=1

cos(ks) =

n∑

k=1

(

sin

((

k +
1

2

)

s

)

− sin

((

k − 1

2

)

s

))

= sin

((

n+
1

2

)

s

)

− sin

(
1

2
s

)

and thus, for s 6= 0,

n∑

k=1

cos(ks) =
sin
((
n+ 1

2

)
s
)
− sin

(
1
2s
)

2 sin
(
1
2s
) = Dn(s)−

1

2
.

For s = 0, the left and the right hand side of the previous equation also coincide.
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Lemma 8.3.11 (Riemann–Lebesgue lemma). For f ∈ PC2π(R), we have that

lim
n→∞

∫ π

−π
f(t) sin

((

n+
1

2

)

t

)

dt = 0.

Proof. Note that, for n ∈ N

∫ π

−π
f(t) sin

((

n+
1

2

)

t

)

dt

=

∫ π

−π
f(t)

(

cos

(
1

2
t

)

sin(nt) + sin

(
1

2
t

)

cos(nt)

)

dt

=
1

π

∫ π

−π

(

πf(t) cos

(
1

2
t

))

sin(nt) dt

+
1

π

∫ π

−π

(

πf(t) sin

(
1

2
t

))

cos(nt) dt.

Since 1
π

∫ π

−π
(
πf(t) cos

(
1
2t
))

sin(nt) dt and 1
π

∫ π

−π
(
πf(t) sin

(
1
2t
))

cos(nt) dt are Fourier co-

efficients, it follows from Bessel’s inequality that

lim
n→∞

1

π

∫ π

−π

(

πf(t) cos

(
1

2
t

))

sin(nt) dt = lim
n→∞

1

π

∫ π

−π

(

πf(t) sin

(
1

2
t

))

cos(nt) dt = 0.

This proves the claim.

Definition 8.3.12. Let f : R → R, and let x ∈ R.

(a) We say that f has a right hand derivative at x if

lim
h→0
h>0

f(x+ h)− f(x+)

h

exists, where f(x+) := lim h→0
h>0

f(x+ h) is supposed to exist.

(b) We say that f has a left hand derivative at x if

lim
h→0
h<0

f(x+ h)− f(x−)
h

exists, where f(x−) := lim h→0
h<0

f(x+ h) is supposed to exist.

Theorem 8.3.13. Let f ∈ PC2π(R) and suppose that f has left and right hand derivatives

at x ∈ R. Then

a0
2

+

∞∑

n=1

(an cos(nx) + bn sin(nx)) =
1

2
(f(x+) + f(x−))

holds.
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Proof. In the proof of Lemma 8.3.10, we saw that

1

2
+

n∑

k=1

cos(kt) = Dn(t)

holds for all t ∈ [−π, π] and n ∈ N, so that

1

π

∫ π

0
f(x+)Dn(t) =

1

2
f(x+) +

n∑

k=1

1

π

∫ π

0
f(x+) cos(kt) dt

︸ ︷︷ ︸

=0

=
1

2
f(x+)

and similarly
1

π

∫ 0

−π
f(x−)Dn(t) dt =

1

2
f(x−).

for n ∈ N. It follows that

Sn(f)(x)−
1

2
(f(x+) + f(x−))

=
1

π

∫ π

−π
f(x+ t)Dn(t) dt−

1

π

∫ π

0
f(x+)Dn(t) dt−

1

π

∫ 0

−π
f(x−)Dn(t) dt

=
1

π

∫ 0

−π

f(x+ t)− f(x−)

2 sin
(
1
2 t
) sin

((

n+
1

2

)

t

)

dt

+
1

π

∫ π

0

f(x+ t)− f(x+)

2 sin
(
1
2t
) sin

((

n+
1

2

)

t

)

dt

holds for n ∈ N. Define g : (−π, π] → R by letting

g(t) :=







0, t ∈ (−π, 0),
2005, t = 0,

f(x+t)−f(x+)

2 sin( 1
2
t)

, t ∈ (0, π].

Since

lim
t→0
t>0

f(x+ t)− f(x+)

2 sin
(
1
2t
) = lim

t→0
t>0

f(x+ t)− f(x+)

t

t

2 sin
(
1
2t
) = lim

t→0
t>0

f(x+ t)− f(x+)

t

exists, it follows that g ∈ PC2π(R). From the Riemann–Lebesgue lemma, it follows that

lim
n→∞

∫ π

0

f(x+ t)− f(x+)

2 sin
(
1
2t
) sin

((

n+
1

2

)

t

)

dt = lim
n→∞

∫ π

−π
g(t) sin

((

n+
1

2

)

t

)

dt = 0

and, analogously,

lim
n→∞

∫ 0

−π

f(x+ t)− f(x−)

2 sin
(
1
2t
) sin

((

n+
1

2

)

t

)

dt = 0.

This completes the proof.
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Example. Let

f : (−π, π] → R, x 7→
{

−1, x ∈ (−π, 0),
1, x ∈ [0, π].

It follows that

f(x) =
4

π

∞∑

n=0

1

2n+ 1
sin((2n + 1)x)

for all x ∈ [−π, π] \ {−π, 0, π}.

Corollary 8.3.14. Let f ∈ PC2π(R) be continuous and piecewise differentiable. Then

a0
2

+

∞∑

n=1

(an cos(nx) + bn sin(nx)) = f(x)

holds for all x ∈ R.

Theorem 8.3.15. Let f ∈ PC2π(R) be continuous and piecewise continuously differen-

tiable. Then
a0
2

+

∞∑

n=1

(an cos(nx) + bn sin(nx)) = f(x) (8.6)

holds for all x ∈ R with uniform convergence on R.

Proof. Let −π = t0 < · · · < tm = π be such that f is continuously differentiable on

[tj−1, tj ] for j = 1, . . . ,m. Then f ′(t) exists for t ∈ [−π, π] — except possibly for t ∈
{t0, . . . , tn} — and thus gives rise to a function in PC2π(R), which we shall denote by f ′

for the sake of simplicity.

Let a′0, a
′
1, a

′
2, . . . , b

′
1, b

′
2, . . . be the Fourier coefficients of f ′. For n ∈ N, we obtain that

a′n =
1

π

∫ π

−π
f ′(t) cos(nt) dt

=
1

π

m∑

j=1

∫ tj

tj−1

f ′(t) cos(nt) dt

=
1

π

m∑

j=1

(

f(t) cos(nt)|tjtj−1
+ n

∫ tj

tj−1

f(t) sin(nt) dt

)

=
n

π

∫ π

−π
f(t) sin(nt) dt

= nbn

and, in a similar vein,

b′n = −nan.
From Bessel’s inequality, we know that

∑∞
n=1(b

′
n)

2 < ∞, and from the Cauchy–Schwarz

inequality , we conclude that

∞∑

n=1

|an| =
∞∑

n=1

1

n
|b′n| ≤

( ∞∑

n=1

1

n2

) 1
2
( ∞∑

n=1

(b′n)
2

) 1
2

<∞;
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analogously, we see that
∑∞

n=1 |bn| <∞ as well.

Since

|an cos(nx) + bn sin(nx)| ≤ |an|+ |bn|

for all x ∈ R, the Weierstraß M -test yields that the Fourier series a0
2 +

∑∞
n=1(an cos(nx)+

bn sin(nx)) converges uniformly on R. Since the identity (8.6) holds pointwise by Corollary

8.3.14, the uniform limit of the Fourier series must be f .

Example. Let f ∈ PC2π(R) be given by f(x) := x2 for x ∈ (−π, π]. It is easy to see that

bn = 0 for all n ∈ N.

We have

a0 =
1

π

∫ π

−π
t2 dt =

1

π

(
t3

3

∣
∣
∣
∣

π

−π

)

=
1

π

(
π3

3
+
π3

3

)

=
2π2

3
.

For n ∈ N, we compute

an =
1

π

∫ π

−π
t2 cos(nt) dt

=
1

π

(
t2

n
sin(nt)

∣
∣
∣
∣

π

−π
− 2

n

∫ π

−π
t sin(nt) dt

)

= − 2

πn

∫ π

−π
t sin(nt) dt

= − 2

πn

(

− t

n
cos(nt)

∣
∣
∣
∣

π

−π
+

1

n

∫ π

−π
cos(nt) dt

)

=
4

n2
cos(πn)

= (−1)n
4

n2
.

Hence, we have the identity

f(x) =
π2

3
+

∞∑

n=1

(−1)n
4

n2
cos(nx)

with uniform convergence on all of R.

Letting x = 0, we obtain

0 =
π2

3
+

∞∑

n=1

(−1)n
4

n2
,

so that
π2

12
=

∞∑

n=1

(−1)n−1

n2
.

Letting x = π yields

π2 =
π2

3
+

∞∑

n=1

(−1)n
4

n2
(−1)n =

π2

3
+

∞∑

n=1

4

n2
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and thus ∞∑

n=1

1

n2
=
π2

6
.

Theorem 8.3.16. Let f ∈ PC2π(R) be arbitrary. Then limn→∞ ||f −Sn(f)||2 → 0 holds.

Proof. Let ǫ > 0, and choose a partition −π = t0 < · · · < tm = π such that f is continuous

on (tj−1, tj) for j = 1, . . . ,m. Let C ≥ 0 be such that |f(x)| ≤ C for x ∈ R, and choose

δ > 0 so small that the intervals

[−π, t0 + δ], [t1 − δ, t1 + δ], [t2 − δ, t2 + δ], . . . , [tm − δ, π] (8.7)

are pairwise disjoint. Define g : [−π, π] → R as follows:

• g(−π) = g(π) = 0;

• g(t) = f(t) for all t in the complement of the union of the intervals (8.7);

• g linearly connects its values at the endpoints of the intervals (8.7) on those intervals.

−π
1 t 2

g

f

πt

Figure 8.2: The functions f and g

It follows that g is continuous such that |g(x)| ≤ C for x ∈ [−π, π] and extends to a

continuous function in PC2π(R), which is likewise denoted by g.
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We have:

||f − g||22
=

∫ π

−π
|f(t)− g(t)|2 dt

=

∫ t0+δ

−π
|f(t)− g(t)|2
︸ ︷︷ ︸

≤4C2

dt+
m−1∑

j=1

∫ tj+δ

−tj−δ
|f(t)− g(t)|2
︸ ︷︷ ︸

≤4C2

dt+

∫ π

tm−δ
|f(t)− g(t)|2
︸ ︷︷ ︸

≤4C2

dt

≤ δ4C2 + (m− 1)δ8C2 + δ4C2

= mδ8C2.

Making δ > 0 small enough, we can thus suppose that ||f − g||2 < ǫ
7 .

Since g is continuous on [−π, π] and thus uniformly continuous, we can find a piecewise

linear function h : [−π, π] → R such that

|g(x) − h(x)| < ǫ

7

for x ∈ [−π, π] and h(−π) = g(−π) = g(π) = h(π).

h _
7

π−π

g

ε

Figure 8.3: The functions g and h

By Theorem 8.3.15, there is nǫ ∈ N such that

|h(x) − Sn(h)(x)| <
ǫ

7
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for n ≥ nǫ and x ∈ R. We thus obtain for n ≥ nǫ:

||f − Sn(h)||2 ≤ ||f − g||2 + ||g − h||2 + ||h− Sn(h)||2
<

ǫ

7
+

√
2π sup{|g(t) − h(t)| : t ∈ [−π, π]}

+
√
2π sup{|h(t) − Sn(h)(t)| : t ∈ [−π, π]}

<
ǫ

7
+ 3

ǫ

7
+ 3

ǫ

7
= ǫ.

Since Sn(h) is a trigonometric polynomial of degree n, we obtain from Proposition 8.3.7

that

||f − Sn(f)||2 ≤ ||f − Sn(h)||2 < ǫ

for n ≥ nǫ.

Corollary 8.3.17 (Parselval’s identity). Let f ∈ PC2π(R) have the Fourier coefficients

a0, a1, a2 . . . , b1, b2, . . .. Then the identity

a20
2

+
∞∑

n=1

(a2n + b2n) =
1

π
||f ||22

holds.
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Appendix A

Linear algebra

A.1 Linear maps and matrices

Definition A.1.1. A map T : RN → RM is called linear if

T (λx+ µy) = λT (x) + µT (y)

holds for all x, y ∈ RN and λ, µ ∈ R.

Example. Let A be an M ×N -matrix, i.e.

A =







a1,1, . . . , a1,N
...

. . .
...

aM,1, . . . , aM,N






.

Then we obtain a linear map TA : RN → RM by letting TA(x) = Ax for x ∈ RN , i.e., for

x = (x1, . . . , xN ), we have

TA(x) = Ax =







a1,1x1 + · · ·+ a1,NxN
...

aM,1x1 + · · ·+ aM,NxN






.

Theorem A.1.2. The following are equivalent for a map T : RN → RM :

(i) T is linear.

(ii) There is a (necessarily unique) M ×N -matrix A such that T = TA.

Proof. (i) =⇒ (ii) is clear in view of the example.

(ii) =⇒ (i): For j = 1, . . . , N let ej be the j-th canonical basis vector of RN , i.e.

ej := (0, . . . , 0, 1, 0, . . . , 0),
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where the 1 stands in the j-th coordinate. For j = 1, . . . , N , there are a1,j , . . . , aM,j ∈ R

such that

T (ej) =







a1,j
...

aM,j






.

Let

A :=







a1,1, . . . , a1,N
...

. . .
...

aM,1, . . . , aM,N






.

In order to see that TA = T , let x = (x1, . . . , xN ) ∈ RN . Then we obtain:

T (x) = T (x1e1 + · · · xNeN )
= x1T (e1) + · · ·+ xNT (eN )

= x1







a1,1
...

aM,1






+ · · · + xN







a1,N
...

aM,N







=







a1,1x1 + · · ·+ a1,NxN
...

aM,1x1 + · · ·+ aM,NxN







= Ax.

This completes the proof.

Corollary A.1.3. Let T : RN → RM be linear. Then T is continuous.

We will henceforth not strictly distinguish anymore between linear maps and their

matrix representations.

Lemma A.1.4. Let A : RN → RM be a linear map. Then {||Ax|| : x ∈ RN , ||x|| ≤ 1} is

bounded.

Proof. Assume otherwise. Then, for each n ∈ N, there is xn ∈ RN such that ||xn|| ≤ 1

such that ||Axn|| ≥ n. Let yn := xn
n
, so that yn → 0. However,

||Ayn|| =
1

n
||Axn|| ≥

1

n
n = 1

holds for all n ∈ N, so that Ayn 6→ 0. This contradicts the continuity of A.

Definition A.1.5. Let A : RN → RM be a linear map. Then the operator norm of A is

defined as

|||A||| := sup{||Ax|| : x ∈ RN , ||x|| ≤ 1}.
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Theorem A.1.6. Let A,B : RN → RM and C : RM → RK be linear maps, and let λ ∈ R.

Then the following are true:

(i) |||A||| = 0 ⇐⇒ A = 0.

(ii) |||λA||| = |λ||||A|||.

(iii) |||A+B||| ≤ |||A||| + |||B|||.

(iv) |||CA||| ≤ |||C||| |||A|||.

(v) |||A||| is the smallest number γ ≥ 0 such that |||Ax||| ≤ γ||x|| for all x ∈ RN .

Proof. (i) and (ii) are straightforward.

(iii): Let x ∈ RN such that ||x|| ≤ 1. Then we have

||(A +B)x|| ≤ ||Ax||+ ||Bx|| ≤ |||A||| + |||B|||

and consequently

|||A+B||| = sup{||(A +B)x|| : x ∈ RN , ||x|| ≤ 1} ≤ |||A|||+ |||B|||.

We prove (v) before (iv): Let x ∈ RN \ {0}. Then
∣
∣
∣
∣
|A
(

x
1

||x||

)∣
∣
∣
∣
| ≤ |||A|||

holds, so that ||Ax|| ≤ |||A|||||x||. On the other and let γ ≥ 0, be any number such that

|||Ax||| ≤ γ||x|| for all x ∈ RN . It then is immediate that

|||A||| = sup{||Ax|| : x ∈ RN , ||x|| ≤ 1} ≤ sup{γ||x|| : x ∈ RN , ||x|| ≤ 1} = γ.

This completes the proof.

(iv): Let x ∈ RN , then applying (v) twice yields

||CAx|| ≤ |||C||| ||Ax|| ≤ |||C||| |||A||| ||x||,

so that |||CA||| ≤ |||C||| |||A|||, by (v) again.

Corollary A.1.7. Let A : RN → RM be a linear map. Then A is uniformly continuous.

Proof. Let ǫ > 0, and let x, y ∈ RN . Then we have

||Ax−Ay|| = ||A(x − y)|| ≤ |||A|||||x − y||.

Let δ := ǫ
|||A|||+1 .
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A.2 Determinants

There is some interdependence between this section and the following one (on eigenvalues).

For N ∈ N, let SN denote the permutations of {1, . . . , N}, i.e. the bijective maps from

{1, . . . , N} into itself. There are N ! such permutations. The sign sgnσ of a permutation

σ ∈ SN is −1 to the number of times σ reverses the order in {1, . . . , N}, i.e.

sgnσ :=
∏

1≤j<k≤n

σ(k) − σ(j)

k − j
.

Definition A.2.1. The determinant of an N ×N -matrix

A =







a1,1, . . . , a1,N
...

. . .
...

aN,1, . . . , aN,N







(A.1)

with entries from C is defined as

detA :=
∑

σ∈SN

(sgn σ)a1,σ(1) · · · aN,σ(N). (A.2)

Example.

det

[

a b

c d

]

= ad− bc.

To compute the determinant of larger matrices, the formula (A.2) is of little use. The

determinant has the following properties: (A) If we multiply one column of a matrix A

with a scalar λ, then the determinant of that new matrix is λdetA, i.e.

det







a1,1, . . . , λa1,j , . . . , a1,N
...

. . .
...

. . .
...

aN,1, . . . , λaN,j , . . . , aN,N






= λdet







a1,1, . . . , a1,j, . . . , a1,N
...

. . .
...

. . .
...

aN,1, . . . , aN,j, . . . , aN,N






;

(B) the determinant respects addition in a fixed column, i.e.

det







a1,1, . . . , a1,j + b1,j, . . . , a1,N
...

. . .
...

. . .
...

aN,1, . . . , aN,j + bN,j, . . . , aN,N







= det







a1,1, . . . , a1,j, . . . , a1,N
...

. . .
...

. . .
...

aN,1, . . . , aN,j, . . . , aN,N






+ det







a1,1, . . . , b1,j, . . . , a1,N
...

. . .
...

. . .
...

aN,1, . . . , bN,j, . . . , aN,N






;
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(C) switching two columns of a matrix changes the sign of the determinant, i.e. for j < k,

det







a1,1, . . . , a1,j, . . . , a1,k, . . . , a1,N
...

. . .
...

. . .
...

. . .
...

aN,1, . . . , aN,j, . . . , aN,k . . . , aN,N







= − det







a1,1, . . . , a1,k, . . . , a1,j, . . . , a1,N
...

. . .
...

. . .
...

. . .
...

aN,1, . . . , aN,k, . . . , aN,j . . . , aN,N






;

(D) detEN = 1.

These properties have several consequences:

• If a matrix has two identical columns, its determinant is zero (by (C)).

• More generaly, if the columns of a matrix are linearly dependent, the matrix’s de-

terminant is zero (by (A), (B), and (C)).

• Adding one column to another one, does not change the valume of the determinant

(by (B) and (D)).

More importantly, properties (A), (B), (C), and (D), characterize the determinant:

Theorem A.2.2. The determinant is the only map from MN (C) to C such that (A), (B),

(C), and (D) hold.

Given a square matrix as in (A.1), its transpose is defined as

At =







a1,1, . . . , aN,1
...

. . .
...

a1,N , . . . , aN,N






.

We have:

Corollary A.2.3. Let A be an N ×N -matrix. Then detA = detAt holds.

Proof. The map

MN (C) → C, A 7→ detAt

satisfies (A), (B), (C), and (D).

Remark. In particular, all operations on columns of a matrix can be performed on the

rows as well and affect the determinant in the same way.

Given A ∈ MN (C) and j, k ∈ {1, . . . , N}, the (N − 1) × (N − 1)-matrix A(j,k) is

obtained from A by deleting the j-th row and the k-th column.
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Theorem A.2.4. For any N ×N -matrix A, we have

detA =

N∑

k=1

(−1)j+kaj,k detA
(j,k)

for all j = 1, . . . , N as well as

detA =

N∑

j=1

(−1)j+kaj,k detA
(j,k)

for all k = 1, . . . , N .

Proof. The right hand sides of both equations satisfy (A), (B), (C), and (D).

Example.

det






1 3 −2

2 4 8

0 −5 1




 = 2det






1 3 −2

1 2 4

0 −5 1






= 2det






1 3 −2

0 −1 6

0 −5 1






= 2det

[

−1 6

−5 1

]

= 2[−1 + 30]

= 58.

Corollary A.2.5. Let T = [tj,k]j,k=1,...,N be a triangular N ×N -matrix. Then

detT =

N∏

j=1

tj,j

holds.

Proof. By induction on N : The claim is clear for N = 1. Let N > 1, and suppose the

claim has been proven for N − 1. Since T (1,1) is again a triangular matrix, we conclude

from Theorem A.2.4 that

detT = t1,1 detT
(1,1)

= t1,1

N∏

j=2

tj,j, by induction hypothesis,

=

N∏

j=1

tj,j.

This proves the claim.
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Lemma A.2.6. Let A,B ∈MN (C). Then det(AB) = (detA)(detB) holds

Theorem A.2.7. Let A be an N ×N -matrix with eigenvalues λ1, . . . , λN (counted with

multiplicities). Then

detA =

N∏

j=1

λj

holds.

Proof. By the Jordan normal form theorem, there are a triangular matrix T with tj,j = λj

for j = 1, . . . , N and an invertible matrix S such that A = STS−1. With Lemma A.2.6

and Corollary A.2.5, it follows that

detA = det(STS−1)

= (detS)(detT )(detS−1)

= (detSS−1) detT

= detT

=

N∏

j=1

λj.

Ths completes the proof.

A.3 Eigenvalues

Definition A.3.1. Let A ∈ MN (C). Then λ ∈ C is called an eigenvalue of A if there is

x ∈ CN \ {0} such that Ax = λx; the vector x is called an eigenvector of A.

Definition A.3.2. Let A ∈ MN (C). Then the characteristic polynomial χA of A is

defined as χA(λ) := det(λEN −A).

Theorem A.3.3. The following are equivalent for A ∈MN (C) and λ ∈ C:

(i) λ is an eigenvalue of A.

(ii) χA(λ) = 0.

Proof. We have:

λ is an eigenvalue of A ⇐⇒ there is x ∈ CN \ {0} such that Ax = λx

⇐⇒ there is x ∈ CN \ {0} such that λx−Ax = 0

⇐⇒ λEN −A has rank strictly less than N

⇐⇒ det(λEN −A) = 0.

This proves (i) ⇐⇒ (ii).
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Examples. 1. Let

A =






3 7 −4

0 1 2

0 −1 −2




 .

It follows that

χA(λ) = det






λ− 3 −7 4

0 λ− 1 −2

0 1 λ+ 2






= (λ− 3) det

[

λ− 1 −2

1 λ+ 2

]

= (λ− 3)(λ2 + λ− 2 + 2)

= λ(λ+ 1)(λ− 3).

Hence, 0, −1, and 3 are the eigenvalues of A.

2. Let

A =

[

0 1

−1 0

]

,

so that χA(λ) = λ2 + 1. Hence, i and −i are the eigenvalues of A.

This last examples shows that a real matrix, need not have real eigenvalues in general.

Theorem A.3.4. Let A ∈MN (R) be symmetric, i.e. A = At. Then:

(i) All eigenvalues of A are real.

(ii) There is an orthonormal basis of RN consisting of eigenvectors of A, i.e. there are

ξ1, . . . , ξN ∈ R such that

(i) ξ1, . . . , ξN are eigenvectors of A,

(ii) ||ξj || = 1 for j = 1, . . . , N , and

(iii) ξj · ξk = 0 for j 6= k.

Definition A.3.5. Let A ∈MN (R) be symmetric. Then:

(a) A is called positive definite if all eigenvalues of A are positive.

(b) A is called negativ definite if all eigenvalues of A are positive.

(c) A is called indefinite if A has both positive and negative eigenvalues.

Remark. Note that

A is positive definite ⇐⇒ −A is negative definite.
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Theorem A.3.6. The following are equivalent for a symmetric matrix A ∈MN (R):

(i) A is positive definite.

(ii) Ax · x > 0 for all x ∈ RN \ {0}.

Proof. (i) =⇒ (ii): Let λ ∈ R be an eigenvalue of A, and let x ∈ RN be a corresponding

eigenvector. It follows that

0 < Ax · x = λx · x = λ||x||,

so that λ > 0.

(ii) =⇒ (i): Let x ∈ RN \ {0}. By Theorem A.3.4, RN has an orthonormal basis

ξ1, . . . , ξN of eigenvectors of A. Hence, there are t1, . . . , tN ∈ R — not all of them zero

— such that x = t1ξ1 + · · · + tNξN . For j = 1, . . . , N , let λj denote the eigenvalue

corresponding to the eigenvector ξj. Hence, we have:

Ax · x =
∑

j,k

tjtkAξj · ξk

=
∑

j,k

tjtkλj(ξj · ξk)

=

n∑

j=1

t2jλj

> 0,

which proves (i).

Corollary A.3.7. The following are equivalent for a symmetric matrix A ∈MN (R):

(i) A is negative definite.

(ii) Ax · x < 0 for all x ∈ RN \ {0}.

We will not prove the following theorem:

Theorem A.3.8. A symmetric matrix A ∈MN (R) as in (A.1) is positive definite if and

only if

det







a1,1, . . . , a1,k
...

. . .
...

ak,1, . . . , ak,k






> 0

for all k = 1, . . . , N .
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Corollary A.3.9. A symmetric matrix A ∈MN (R) is negative definite if and only if

(−1)k−1 det







a1,1, . . . , a1,k
...

. . .
...

ak,1, . . . , ak,k






< 0

for all k = 1, . . . , N .

Example. Let

A =

[

a b

c d

]

be symmetric, i.e. b = c. Then we have:

• A is positive definite if and only if a > 0 and ad− b2 > 0.

• A is negative definite if and only if a < 0 and ad− b2 > 0.

• A is indefinite if and only if ad− b2 < 0.
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Appendix B

Stokes’ theorem for differential

forms

In this appendix, we briefly formulate Stoke’s theorem for differential forms and then see

how the integral theorem by Green, Stokes, and Gauß can be derived from it.

B.1 Alternating multilinear forms

Definition B.1.1. Let r ∈ N. A map ω : (RN )r → R is called an r-linear form if, for

each j = 1, . . . , r, and all x1, . . . , xj−1, xj+1, . . . , xr ∈ RN , the map

RN → R, x 7→ ω(x1, . . . , xj−1, x, xj+1, . . . , xr)

is linear.

Example. Let ω1, . . . , ωr : R
N → R be linear. Then

(RN )r → R, (x1, . . . , xr) 7→ ω1(x1) · · ·ωr(xr)

is an r-linear form.

Definition B.1.2. Let r ∈ N. An r-linear form ω : (RN )r → R is called alternating if

ω(x1, . . . , xj , . . . , xk, . . . , xr) = −ω(x1, . . . , xk, . . . , xj , . . . , xr)

holds for all x1, . . . , xr ∈ RN and j 6= k.

We note the following:

1. If ω is an alternating, r-linear form, we have

ω(xσ(1), . . . , xσ(r)) = (sgnσ)ω(x1, . . . , xr)

for all x1, . . . , xr ∈ RN and all permutations σ of {1, . . . , r}.
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2. If we identify MN with (RN )N , then det is an alternating, N -linear form.

3. If r = 1, then every linear map from RN to R is alternating.

4. If r > N , then zero is the only alternating, r-linear form.

Example. Let ω1, . . . , ωr : R
N → R be linear. Then

ω1 ∧ · · · ∧ ωr : (RN )r → R, (x1, . . . , xr) 7→
∑

σ∈Sr

(sgn r)ω1(xσ(1)) · · ·ωr(xσ(r))

is an an alternating r-form, where Sr is the group of all permutations of the set {1, . . . , r}.

Definition B.1.3. For r ∈ N0, let Λ
r(RN ) := R if r = 0, and

Λr(RN ) := {ω : (RN )r → R : ω is an alternating, r-linear form}

if r ≥ 1.

It is immediate that Λr(RN ) is a vector space for all r ∈ N0.

Theorem B.1.4. For j = 1, . . . , N , let

ej : R
N → R, (x1, . . . , xN ) 7→ xj.

Then, for r ∈ N,

{ei1 ∧ · · · ∧ eir : 1 ≤ i1 < · · · < ir ≤ N}

is a basis for Λr(RN ).

Corollary B.1.5. For all r ∈ N0, we have dimΛr(RN ) =
(
N
r

)
.

B.2 Integration of differential forms

Let ∅ 6= U ⊂ RN be open, and let r, p ∈ N0. By Corollary B.1.5, we can canonically

identify the vector spaces Λr(RN ) and R(
N
r ). Hence, it makes sense to speak of p-times

continuously partially differentiable maps from U to Λr(RN ).

Definition B.2.1. Let ∅ 6= U ⊂ RN be open, and let r, p ∈ N0. A differential r-form

(or short: r-form) of class Cp on U is a Cp-function from U to Λr(RN ). The space of all

r-forms of class Cp is denoted by Λr(Cp(U)).

We note:
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1. Each ω ∈ Λr(Cp(U)) can uniquely be written as

ω =
∑

1≤i1<···<ir≤N
fi1,...,irei1 ∧ · · · ∧ eir (B.1)

It is customary, for j = 1, . . . , N , to use the symbol dxj instead of ej . Hence, (B.1)

becomes:

ω =
∑

1≤i1<···<ir≤N
fi1,...,irdxi1 ∧ · · · ∧ dxir . (B.2)

2. A zero-form of class Cp is simply a Cp-function with values in R.

Definition B.2.2. Let U ⊂ Rr be open, and let ∅ 6= K ⊂ U be compact and with

content. An r-surface Φ of class Cp in RN with parameter domain K is the restriction of

a Cp-function Φ : U → RN to K. The set K is called the parameter domain of Φ, and

{Φ} := Φ(K) is called the trace or the surface element of Φ.

Definition B.2.3. Let Φ be an r-surface of class C1 with parameter domain K, and let

ω be an r-form of class C0 on a neighborhood of {Φ} with a unique representation as in

(B.2). Then the integral of ω over Φ is defined as

∫

Φ
ω :=

∑

1≤i1<···<ir≤N

∫

K

fi1,...,ir ◦ Φ

∣
∣
∣
∣
∣
∣
∣
∣

∂Φi1
∂x1

, . . . ,
∂Φi1
∂xr

...
...

∂Φir

∂x1
, . . . ,

∂Φir

∂xr

∣
∣
∣
∣
∣
∣
∣
∣

.

Examples. 1. Let N be arbitrary, and let r = 1. Then ω is of the form

ω = f1 dx1 + · · ·+ fN dxN ,

Φ is a C1-curve γ, and the meaning of the symbol

∫

γ

f1 dx1 + · · ·+ fN dxN

according to Definition B.2.3 coincides with the usual one by Theorem 6.3.4.

2. Let N = 3, and let r = 2, i.e. Φ is a surface in the sense of Definition 6.5.1. Then ω

has the form

ω = P dy ∧ dz −Qdx ∧ dz +Rdx ∧ dy = P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy,

and the meanings assigned to the symbol

∫

Φ
P dy ∧ dz +Qdz ∧ dx+Rdx ∧ dy

by Definitions B.2.3 and 6.6.2 are identical.
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B.3 Stokes’ theorem

In this section, we shall formulate Stokes’ theorem for differential forms. We shall be

deliberately vague with the precise hypothesis, but we shall indicate how the classical

integral theorems by Green, Stokes, and Gauß follow from Stokes’ theorem for differential

forms.

For sufficiently nice surfaces Φ, the oriented boundary ∂Φ can be defined. It need no

longer be a surface, but can be thought of as a formal linear combinations of surfaces with

integer coefficients:

Examples. 1. For 0 < r < R, let

K := {(x, y) ∈ R2 : r2 ≤ x2 + y2 ≤ R2}.

Then ∂K can be parametrized as ∂K = γ1 ⊖ γ2 with

γ1 : [0, 2π] → R2, t 7→ (R cos t, R sin t)

and

γ2 : [0, 2π] → R2, t 7→ (r cos t, r sin t),

so that ∫

∂K

P dx+Qdy =

∫

γ1

P dx+Qdy −
∫

γ2

P dx+Qdy.

Geometrically, this means that the outer circle is parametrized in counterclockwise

and the inner circle in clockwise direction:
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R

r

K

Figure B.1: The oriented boundary of an annulus

2. If K = [a, b], then ∂K = {b} ⊖ {a}, so that

∫

∂K

f = f(b)− f(a)

for every zero form, i.e. function, f .

Definition B.3.1. Let ∅ 6= U ∈ RN be open, let r ∈ N0, let p ∈ N, and let ω ∈ Λr(Cp(U))

be of the form (B.2). Then dω ∈ Λr+1(Cp−1(U)) is defined as

dω =
N∑

j=1

∑

1≤i1<···<ir≤N

∂fi1,...,ir
∂xj

dxj ∧ dxi1 ∧ · · · ∧ dxir .

We can now formulate Stokes’ theorem (deliberately vague):

Theorem B.3.2 (Stokes’ theorem for differential forms). For sufficiently nice r-forms ω

and r + 1-surfaces Φ in RN , we have:

∫

Φ
dω =

∫

∂Φ
ω.
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We now look at Stoke’s theorem for particular values of N and r:

Examples. 1. Let N = 3 and r = 1, so that

ω = P dx+Qdy +Rdz.

It follows that
∫

∂Φ
P dx+Qdy +Rdz

=

∫

∂Φ
ω

=

∫

Φ
dω

=

∫

Φ

(
∂R

∂y
− ∂Q

∂z

)

dy ∧ dz +
(
∂P

∂z
− ∂R

∂x

)

dz ∧ dx+

(
∂Q

∂x
− ∂P

∂y

)

dx ∧ dy,

i.e. we obtain Stokes’ classical theorem.

2. Let N = 2 and r = 1, so that

ω = P dx+Qdy

and suppose that Φ has parameter domain K. We obtain:
∫

∂Φ
P dx+Qdy =

∫

Φ

(
∂Q

∂x
− ∂P

∂y

)

dx ∧ dy

=

∫

K

(
∂Q

∂x
◦ Φ− ∂P

∂y
◦ Φ
)

det JΦ

=

∫

{Φ}

(
∂Q

∂x
− ∂P

∂y

)

, by change of variables.

We therefore get Green’s theorem (we have supposed for convenience that the change

of variables formula was applicable and that det Φ was positive throughout).

3. Let N = 3 and r = 2, i.e.

ω = P dy ∧ dz +Qdz ∧ dy +Rdx ∧ dy

and

dω =

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)

dx ∧ dy ∧ dz.

Letting f = P i+Q j+Rk, we have:
∫

∂Φ
f · n dσ =

∫

∂P

P dy ∧ dz +Qdz ∧ dy +Rdx ∧ dy

=

∫

Φ

(
∂P

∂x
+
∂Q

∂y
+
∂R

∂z

)

dx ∧ dy ∧ dz

=

∫

{Φ}
div f.

This is Gauß theorem.
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4. Let N be arbitrary and let r = 0, i.e. Φ is a curve γ : [a, b] → RN . For any sufficiently

smooth funtion F , we we thus obtain

∫

γ

∇F · dx =

∫

Φ

∂F

∂x1
dx1 + · · ·+ ∂F

∂xN
dxN =

∫

∂Φ
F = F (γ(b)) − F (γ(a)).

We have thus recovered Theorem 6.3.6.

5. Let N = 1 and r = 0, i.e. Φ = [a, b]. We obtain for sufficiently smooth f : [a, b] → R

that ∫ b

a

f ′(x) dx =

∫

Φ
f ′(x) dx =

∫

∂Φ
f = f(b)− f(a).

This is the fundamental theorem of calculus.
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Appendix C

Limit superior and limit inferior

C.1 The limit superior

Definition C.1.1. A number a ∈ R is called an accumulation point of a sequence (an)
∞
n=1

if there is a subsequence (ank
)∞n=1 of (an)

∞
n=1 such that limk→∞ ank

= a.

Clearly, (an)
∞
n=1 is convergent with limit a, then a is the only accumulation point of

(an)
∞
n=1. It is possible that (an)

∞
n=1 has only one accumulation point, but nevertheless

does not converge: for n ∈ N, let

an :=

{

n, n odd,

0, n even.

Then 0 is the only accumulation point of (an)
∞
n=1, even though the sequence is unbounded

and thus not convergent. On the other hand, we have:

Proposition C.1.2. Let (an)
∞
n=1 be a bounded sequence in R which only one accumulation

point, say a. Then (an)
∞
n=1 is convergent with limit a.

Proof. Assume otherwise. Then there is ǫ0 > 0 and a subsequence (ank
)∞k=1 of (an)

∞
n=1

with |ank
− a| ≥ ǫ0. Since (ank

)∞k=1 is bounded, it has — by the Bolzano–Weierstraß

theorem — a convergent subsequence
(

ankj

)∞

j=1
with limit a′. Since |a−a′| ≥ ǫ0, we have

a′ 6= a. On the other hand,
(

ankj

)∞

j=1
is also a subsequence of (an)

∞
n=1, so that a′ is also

an accumulation point of (an)
∞
n=1. Since a

′ 6= a, this is a contradiction.

Proposition C.1.3. Let (an)
∞
n=1 be a bounded sequence in R. Then the set of accumula-

tion points of (an)
∞
n=1 is non-empty and bounded.

Proof. By the Bolzano–Weierstraß theorem, (an)
∞
n=1 has at least one accumulation point.

Let a be any accumulation point of (an)
∞
n=1, and let C ≥ 0 be such that |an| ≤ C for

n ∈ N. Let (ank
)∞k=1 be a subsequence of (an)

∞
n=1 such that a = limk→∞ ank

. It follows

that |a| = limk→∞ |ank
| ≤ C.
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Definition C.1.4. Let (an)
∞
n=1 be bounded below. If (an)

∞
n=1 is bounded, define the limit

superior lim supn→∞ an of (an)
∞
n=1 by letting

lim sup
n→∞

an := sup{a ∈ R : a is an accumulation point of (an)
∞
n=1};

otherwise, let lim supn→∞ an := ∞.

Of course, if (an)
∞
n=1 converges, we have lim supn→∞ an = limn→∞ an.

Proposition C.1.5. Let (an)
∞
n=1 be bounded below. Then there is a subsequence (ank

)∞k=1

of (an)
∞
n=1 such that lim supn→∞ an = limk→∞ ank

.

Proof. If lim supn→∞ an = ∞, the claim is clear (since (an)
∞
n=1 is not bounded above,

there has to be a subsequence converging to ∞)

Suppose that a := lim supn→∞ an <∞. There is an accumulation point p1 of (an)
∞
n=1

such that |a− p1| < 1
2 . From the definition of an accumulation point, we can find n1 ∈ N

such that |p1 − an1 | < 1
2 , so that

|a− an1 | ≤ |a− p1|+ |p1 − an1 | < 1.

Suppose now that n1 < · · · < nk have already been found such that

|a− anj
| < 1

j

for j = 1, . . . , k. Let pk+1 be an accumulation point of (an)
∞
n=1 such that |a − pk+1| <

1
2(k+1) . By the definition of an accumulation point, there is nk+1 > nk such that |pk+1 −
ank+1

| < 1
2(k+1) , so that

|a− ank+1
| ≤ |a− pk+1|+ |pk+1 − ank+1

| < 1

k + 1
.

Inductively, we thus obtain a subsequence (ank
)∞k=1 of (an)

∞
n=1 such that a = limk→∞ ank

.

Example. It is easy to see that

lim sup
n→∞

n(1 + (−1)n) = ∞ and lim sup
n→∞

(−1)n
(

1 +
1

n

)n

= e.

The following is easily checked:

Proposition C.1.6. Let (an)
∞
n=1 and (bn)

∞
n=1 be bounded below, and let λ, µ ≥ 0. Then

lim sup
n→∞

(λan + µbn) ≤ λ lim sup
n→∞

an + µ lim sup
n→∞

bn

holds.

The scalars in this proposition have to be non-negative, and in general, we cannot

expect equality:

0 = lim sup
n→∞

(
(−1)n + (−1)n−1

)
< 2 = lim sup

n→∞
(−1)n + lim sup

n→∞
(−1)n−1.
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C.2 The limit inferior

Paralell to the limit superior, there is a limit inferior:

Definition C.2.1. Let (an)
∞
n=1 be bounded above. If (an)

∞
n=1 is bounded, define the limit

inferior lim infn→∞ an of (an)
∞
n=1 by letting

lim inf
n→∞

an := inf{a ∈ R : a is an accumulation point of (an)
∞
n=1};

otherwise, let lim infn→∞ an := −∞.

As for the limit superior, we have that, if (an)
∞
n=1 converges, we have lim infn→∞ an =

limn→∞ an.

Also, as for the limit superior, we have:

Proposition C.2.2. Let (an)
∞
n=1 be bounded above. Then there is a subsequence (ank

)∞k=1

of (an)
∞
n=1 such that lim infn→∞ an = limk→∞ ank

.

If (an)
∞
n=1 is bounded, then lim supn→∞ an and lim infn→∞ an both exist. Then, by

definition,

lim inf
n→∞

an ≤ lim sup
n→∞

an

holds with equality if and only if (an)
∞
n=1 converges.

Furthermore, if (an)
∞
n=1 is bounded below, then

lim inf
n→∞

(−an) = − lim sup
n→∞

an

holds, as is straightforwardly verified. (An analoguous statement holds for (an)
∞
n=1 boun-

ded above.)
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