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Introduction

The present notes are based on the courses Math 217 and 317 as I taught them in the
academic year 2004,/2005.

These notes are not intended to replace any of the many textbooks on the subject, but
rather to supplement them by relieving the students from the necessity of taking notes
and thus allowing them to devote their full attention to the lecture.

It should be clear that these notes may only be used for educational, non-profit pur-

poses.

Volker Runde, Edmonton October 4, 2017



Chapter 1

The real number system and

finite-dimensional Euclidean space

1.1 The real line

What is R?

Intuitively, one can think of R as of a line stretching from —oo to oco. Intuitition,
however, can be deceptive in mathematics. In order to lay solid foundations for calculus,
we introduce R from an entirely formalistic point of view: we demand from a certain set
that it satisfies the properties that we intuitively expect R to have, and then just define R
to be this set!

What are the properties of R that we need to do mathematics? First of all, we should

be able to do arithmetic.

Definition 1.1.1. A field is a set F together with two binary operations + and - that
satisfy the following properties:

(F1) For all z,y € F, we have x +y € F and z -y € F as well.
(F2) For all x,y € F, we have z + y =y + x and x - y = y -  (commutativity).

(F3) For all z,y,z € F, we have x + (y+2) = (x +y)+zand x-(y-2) = (x-y) - 2
(associativity).

(F4) For all z,y,z € F, we have x - (y + z) = x -y + = - z (distributivity).

(F5) There exist 0,1 € F with 0 # 1 such that for all x € F, we have 2 + 0 = z and

x -1 =z (existence of identity (neutral) elements).

(F6) For each = € I, there exists —x € I such that x+ (—z) = 0, and for each = € F\ {0},

there is x=! € F such that o - 27! = 1 (ezistence of inverse elements).



Items (F1) to (F6) in Definition 1.1.1 are called the field azioms.

For the sake of simplicity, we use the following shorthand notation:

Ty = Ty
r+y+z = x+Yy+2);
ryz = w(yz);
x—y = z+(—y);
T zy ! (where y # 0);
Y
" = peeeg (where n € N);
S~
n times
20 = 1

Ezamples. 1. Q, R, and C are fields.

2. Let F be any field then
F(X):= {g : p and ¢ are polynomials in X with coeffients in F and ¢ # O}

is a field.

3. Define + and - on {A, B} through the following tables:

This turns {A, B} into a field.

4. Define 4+ and - on {0, &, V}:

ESCIEIEA |- [o]s]@]
olol&]*] ., [o]ololo
NRENE NI
VA IRVERGRN ) OO 9| &

This turns {O), &, U} into a field.

5. Let
F[X] :={p: pis a polynomial in X with coefficients in F}.

Then F[X] is not a field.



6. Both Z and N are not fields.

There are several properties of a field that are not part of the field axioms, but which,

nevertheless, can easily be deduced from them:

1. The identity elements 0 and 1 are unique: suppose that both 0; and 0y are identity

elements for +. Then we have

0 = 071409, by (F5),
= 02+ 0y, by (F2),
= 0o, again by (F5).

A similar argument works for 1.

2. The inverses —z and z~! are uniquely determined by z: let = # 0, and let y,z € F

be such that xy = xz = 1. Then we have:

y = y(zz), by (F5) and (F6),
= (yz)z, by (F3),
= (zy)z, by (F2),
= z(zy), again by (F2),
= z, again by (F5) and (F6).

A similar argument works for —zx.
3. 2-0=0forall x € F.
Proof. We have

z+2-0 = 1-2+4+x-0, by (F5),
= z-(1+40), by (F4)
= z-1, by (F5)
= by (F5).
From the uniqueness of the additive inverse, we then see that -0 = 0. O

4. (—z)y = —(xy) holds for all =,y € R.

Proof. We have
zy+ (—z)y = (z —2)y = 0.

The uniqueness of —xy then yields that (—z)y = —xy. O



5. For any z,y € F, the identity

holds.

6. If zy =0, then x =0 or y = 0.
Proof. Suppose that x # 0, so that 2~ ! exists. Then we have

y=ylea™) = (yx)a™" =0,

which proves the claim. O

Of course, Definition 1.1.1 is not enough to fully describe R. Hence, we need to take

properties of R into account that are not merely arithmetic anymore.

Definition 1.1.2. An ordered field is a field O together with a subset P with the following

properties:
(O1) For z,y € P, we have x +y € P as well.
(02) For z,y € P, we have zy € P, as well.
(O3) For each x € O, exactly one of the following holds:
(i) =z € P;
(ii) = =0;
(ili) —xz € P.
Again, we introduce shorthand notation:
<y = y—x € P;
x>y = y < x;
z <y = rT<yorz=y;
<~

x>y x>yorx=y.

As for the field axioms, there are several properties of ordered fields that are not part
of the order azxioms (Definition 1.1.2 (O1) to (03)), but follow from them without too

much trouble:

1. z <yandy < z implies z < z.

Proof. f y—xz € P and z—y € P, then (O1), implies that z—x = (z—y)+(y—z) € P

as well. O



2. If x <y, then x + 2z < y + 2z for any z € O.
Proof. This holds because (y+ z) — (x +2) =y —z € P. O

3. x <y and z < u implies that x + z < y + w.

4. x <y and t > 0 implies tx < ty.
Proof. We have ty — tx = t(y — x) € P by (02). O

5. 0 <z <yand 0 <t<simplies tr < sy.

6. z <y and t < 0 implies tx > ty.

Proof. We have
tr —ty=t(x —y)=—tly—x) € P

because —t € P by (03). O
7. 22 > 0 holds for any x # 0.

Proof. If x > 0, then 22 > 0 by (02). Otherwise, —z > 0 must hold by (03), so
that 22 = (—z)? > 0 as well. O

In particular 1 = 12 > 0.

8. z~1 >0 for each z > 0.

Proof. This is true because

holds. O
9. 0 <z <y implies y~! <z~
Proof. The fact that 2y > 0 implies that 2~ !y~! = (zy)~! > 0. It follows that
y =Ty <yleTlyT) =a7!

holds as claimed. O

Examples. 1. Q and R are ordered.

2. C cannot be ordered.



Proof. Assume that P C C as in Definition 1.1.2 does exist. We know that 1 € P.
On the other hand, we have —1 = 72 € P, which contradicts (03). O

3. {0,1} cannot be ordered.

Proof. Assume that there is a set P as required by Definition 1.1.2. Since 1 € P
and 0 ¢ P, it follows that P = {1}. But this implies 0 = 14 1 € P contradicting
(O1). O

Similarly, it can be shown that {0,1,2} cannot be ordered.
The last two of these examples are just instances of a more general phenomenon:

Proposition 1.1.3. Let O be an ordered field. Then we can identify the subset {1,1 +
1,1+1+1,...} of O with N.

Proof. Let n,m € N be such that

1o l=1+4--+1.

n times m times

Without loss of generality, let n > m. Assume that n > m. Then

O=1+-+1-14 - +1=1+-+1>0

n times m times n — m times

must hold, which is impossible. Hence, we have n = m. O

Hence, if O is an ordered field, it contains a copy of the infinite set N and thus has to
be infinite itself. This means that no finite field can be ordered.

Both R and Q satisfy (O1), (02), and (O3). Hence, (F1) to (F6) combined with (O1),
(02), and (03) still do not fully characterize R.

Definition 1.1.4. Let O be an ordered field, and let S C @. Then C € O is called

(a) an upper bound for S if x < C for all # € S (in this case S is called bounded above);
(b) a lower bound for S if x > C for all z € S (in this case S is called bounded below).
If S is both bounded above and below, we call it simply bounded.

Example. The set
{geQ:qg>0and ¢®> <2}

is bounded below (by 0) and above (say) by 2015.

Definition 1.1.5. Let O be an ordered field, and let @ # S C O.



(a) An upper bound for S is called the supremum of S (in short: sup S) if sup S < C for
every upper bound C for S.

(b) A lower bound for S is called the infimum of S (in short: inf S) if inf S > C for every
lower bound C for S.

Ezample. The set
S={qeQ:-2<qg<3}

is bounded such that inf S = —2 and sup S = 3. Clearly, —2 is a lower bound for S and
since —2 € S, it must be inf S. Cleary, 3 is an upper bound for S; if » € Q were an upper
bound of S with r < 3, then

1 1

Sr+3)>5r+r)=r
can not be in S anymore whereas

1 1

§(r+3) < 5(34—3) =3

implies the opposite. Hence, 3 is the supremum of S.
Do infima and suprema always exist in ordered fields? We shall soon see that this is

not the case in Q.

Definition 1.1.6. An ordered field O is called complete if sup S exists for every @ # S C
O which is bounded above.

We shall use completeness to define R:
Definition 1.1.7. R is a complete ordered field.

It can be shown that R is the only complete ordered field even though this is of little
relevance for us: the only properties of R we are interested in are those of a complete
ordered field. From now on, we shall therefore rely on Definition 1.1.7 alone when dealing
with R.

Here are a few consequences of completeness:

Definition 1.1.8. An ordered field is Archimedean if for every element a of the field there

exists a natural number n with n > a. That is, N is not bounded above by the field.
Theorem 1.1.9. R is Archimedean, i.e. N is not bounded above by R.

Proof. Assume otherwise. Then C := sup N exists. Since C'—1 < C, it is impossible that
C' — 1 is an upper bound for N. Hence, there is n € N such that C'—1 < n. This, in turn,
implies that C' < n + 1, which is impossible. U

10



Corollary 1.1.10. Let € > 0. Then there is n € N such that 0 < % < €.
Proof. By Theorem 1.1.9, there is n € N such that n > e~ . This yields % < e. U

Example. Let
S = {1—l:n€N}CR
n

Then S is bounded below by 0 and above by 1. Since 0 € S, we have inf S = 0.
Assume that sup S < 1. Let € := 1 —supS. By Corollary 1.1.10, there is n € N with
0< % < €. But this, in turn, implies that
l—=—>1—e=supls,
n
which is a contradiction. Hence, sup S = 1 holds.

Corollary 1.1.11. Let x,y € R be such that x < y. Then there is ¢ € Q such that
r<q<y.

Proof. By Corollary 1.1.10, there is n € N such that % < y—u=z. Let m € Z be the smallest

integer such that m > nx, so that m — 1 < nx. This implies
nr<m<nr+1l<nz+n(y—z)=ny.

Division by n yields » < = < y. O

Theorem 1.1.12. There is a unique x € R\ Q with > 0 such that 22 =2.

Proof. Let
S:={yecR:y>0andy® <2}

Then S is non-empty and bounded above, so that z := sup S exists. Clearly, > 0 holds.
We first show that 2% = 2.
Assume that 22 < 2. Choose n € N such that % < %(2 — 2). Since z is certainly less
than 2, we know that 2z + 1 < 5. Then

1)\? , 22 1
T+ — = 2+ —+ =
n n

n2
2 1
< "+ —(2x+1)
n
< 224 =
n
< 2?4222
< 2

holds, so that & cannot be an upper bound for S. Hence, we have a contradiction, so that
22 > 2 must hold.

11



Assume now that 22 > 2. Choose n € N such that % < %(:172 — 2), and note that

N
8
|
S|
~——
[\
|
)
|
=¥
3w|’i

vV

8
N
|

|

v
8
V)
|
—~
8
[\
|
[\)
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v
<
o

for all y € S. This, in turn, implies that x — % >y for all y € S. Hence, x — % < xis an
upper bound for S, which contradicts the definition of x = sup S.

Hence, z? = 2 must hold.

To prove the uniqueness of z, let z > 0 be such that z? = 2. It follows that

0=2-2=22-22=(z—2)(z+2),

so that t+z=0o0r x — z = 0. Since x,z > 0, z + z = 0 would imply that x = z = 0,
which is impossible. Hence,  — z = 0 must hold, i.e. x = z.
We finally prove that x ¢ Q.

m

Assume that x = % with n,m € N. Without loss of generality, suppose that m and n

2

have no common divisor except 1. We clearly have 2n? = m?, so that m? must be even.

Therefore, m is even, i.e. there is p € N such that m = 2p. Thus, we obtain 2n? = 4p?

2

and consequently n? = 2p?. Hence, n? is even and so is n. But if m and n are both even,

they have the divisor 2 in common. This is a contradiction. O
The proof of this theorem shows that Q is not complete: if the set
{geQ:q>0and ¢*> <2}

had a supremum in Q, this this supremum would be a rational number z > 0 with 22 = 0.
But the theorem asserts that no such rational number can exist.

For a,b € R with a < b, we introduce the following notation:

[a,b] = {xeR:a<z<b} (closed interval);
(a,b) = {reR:a<x<b} (open interval);
(a,b] == {reR:a<x<b}
[a,b) = {reR:a<xz<b}.

Theorem 1.1.13 (nested interval property). Let Iy, I, I3,... be a nested sequence of
closed intervalls, i.e. I, = [ay,by] such that I,41 C I, for allm € N. Then (22, I, # @.

12



Proof. For all n € N, we have

<y Sy S <o Sy by <o < by,

Hence, each by, is an upper bound of {a, : n € N} for every m € N. Let z := sup{a,, :
n € N}. Hence, a, < z < by, holds for all n € N, i.e. x € I, for all n € N and thus
ze oy In. O

Figure 1.1: Nested interval property

The theorem becomes false if we no longer require the intervals to be closed:

Ezample. Forn € N, let [, := (0, %], so that I, 11 C I,,. Assume that thereise € ()72, I,
so that € > 0. By Corollary 1.1.10, there is n € N with 0 < % < €, so that e ¢ I,,. This is

a contradiction.

Definition 1.1.14. For x € R, let

x, if x>0,
|| := .
—z, ifz <0.

Proposition 1.1.15. Let z,y € R, and let t > 0. Then the following hold:
(i) |[z|=0 <= z=0;

(i) | — x| = |=[;

(iil) |zy| = |zllyl;

(iv) |z| <t = —t<az<t;

(v) |z +y| <l|z| + |y (triangle inequality );

(vi) [l=] = [yl < |z —yl.

Proof. (i), (ii), and (iii) are routinely checked.

(iv): Suppose that |z| < t. If x > 0, we have —t < x = |z| < t; for z < 0, we have
—x > 0 and thus —t < —z < t. This implies —t < x < t. Hence, —t < z <t holds for any
x with |z <t

Conversely, suppose that —t < 2 < t. For # > 0, this means z = |z| < ¢t. For <0,
the inequality —t < x implies that |z| = —z < t.

13



(v): By (iv), we have
—lzl <@ <fz[  and  —fyl <y <[yl
Adding these two inequalities yields
(| + |y) <z +y < |z +yl.

Again by (iv), we obtain |x 4+ y| < |z| + |y| as claimed.
(vi): By (v), we have

|z =z —y+y| < |z —y|l+ ]yl

and hence

| =yl < |z —yl.
Exchanging the roles of x and y yields
—(zl = ly) = [yl = |z| < |y — = = & = y],

so that
[z = [yll < [z =yl
holds by (iv). O

1.2 Functions

In this section, we give a somewhat formal introduction to functions and introduce the
notions of injectivity, surjectivity, and bijectivity. We use bijective maps to define what
it means for two (possibly infinite) sets to be “of the same size” and show that N and Q

have “the same size” whereas R is “larger” than Q.

Definition 1.2.1. Let A and B be non-empty sets. A subset f of A x B is called a
function or map if for each = € A, there is a unique y € B such that (x,y) € f.

For a function f C A x B, we write f: A — B and
y=[fx) = (x,y) e/

We then often write
fiA—= B, xzw— f(x).

The set A is called the domain of f, and B is called its target.

14



Definition 1.2.2. Let A and B be non-empty sets, let f: A — B be a function, and let
X CAandY C B. Then

F(X) = {f(x) ;v € X} C B
is the image of X (under f), and
Yy ={zcA: fz)eY}CA
is the inverse image of Y (under f).
Ezample. Consider sin: R — R, i.e. {(z,sin(z)) : z € R} C R x R. Then we have:
sin(R) = [-1,1];
sin([0,7]) = [0,1];

)
)

sin~1({0}) = {nw:neZl;
)

snl{reR:2>7}) = 2.

Definition 1.2.3. Let A and B be non-empty sets, and let f: A — B be a function.
Then f is called

(a) ingective (one-to-one) if f(x1) # f(x2) whenever x1 # x4y for zq1, 29 € A,
(b) surjective (onto) if f(A) = B, and
(c) bijective (one-to-one and onto) if it is both injective and surjective.

Ezamples. 1. The function
fi:R—=R, z~— z?

is neither injective nor surjective, whereas

fa: [0,00) — R, x>z’

——
={zecR:z>0}

is injective, but not surjective, and
f3:[0,00) = [0,00), x> x?
is bijective.

2. The function
sin: [0,27] — [-1,1], x> sin(z)

is surjective, but not injective.

15



For finite sets, it is obvious what it means for two sets to have the same size or for
one of them to be smaller or larger than the other one. For infinite sets, matters are more

complicated:

Ezample. Let Ny := N U {0}. Then N is a proper subset of Ny, so that N should be
“smaller” than Ny. On the other hand,

No—=N, n—=n+1

is bijective, i.e. there is a one-to-one correspondence between the elements of Ny and N.

Hence, Ny and N should “have the same size”.
We use the second idea from the previous example to define what it means for two

sets to have “the same size”:

Definition 1.2.4. Two sets A and B are said to have the same cardinality (in symbols:
|A| = |B]) if there is a bijective map f: A — B.

Ezamples. 1. If A and B are finite, then |A| = |B] holds if and ony if A and B have

the same number of elements.

2. By the previous example, we have |N| = |Ny|—even though N is a proper subset of
No.
3. The function
fIN—=Z, n—(-1)" LgJ

is bijective, so that we can enumerate Z as {0,1,—1,2,—2,...}. As a consequence,
IN| = |Z| holds even though N C Z.

4. Let ay,a9,as,... be an enumeration of Z. We can then write Q as a rectangular

scheme that allows us to enumerate Q, so that |Q| = |NJ.

16



/az /33 84 a5

2 2 2 2
a2 a3 s a5
3 3 3 3
a, dsj dy dsg

w‘fa l\)"gb

A‘g

4———()"' ‘ g’
'—\

Figure 1.2: Enumeration of Q

5. Let a < b. The function

r—a

filabl =+ [0,1), @ T

is bijective, so that |[a,b]| = |[0, 1]|.
Definition 1.2.5. A set A is called countable if it is finite or if |A| = |N]|.

A set A is countable, if and only if we can enumerate it, i.e. A = {aq,az,as,...}.
As we have already seen, the sets N, Ny, Z, and QQ are all countable. But not all sets

are:
Theorem 1.2.6. The sets [0,1] and R are not countable.

Proof. We only consider [0, 1] (this is enough because it is easy to see that a an infinite
subsets of a countable set must again be countable).

Each z € [0, 1] has a decimal expansion
T = 0.616263--- (1.1)

17



with €, €9,€3,... € {0,1,2,...,9}.
Assume that there is an enumeration [0,1] = {a1,as2,as,...}. Define x € [0, 1] using
(1.1) by letting, for n € N,

6, if the n-th digit of a, is 7,
€n 1=
7, if the n-th digit of a, is not 7

Let n € N be such that z = a,.

Case 1: The n-th digit of a,, is 7. Then the n-th digit of z is 6, so that a, # z.

Case 2: The n-th digit of a, is not 7. Then the n-th digit of x is 7, so that a,, # x,
too.

Hence, x ¢ {a1,as9,as, ...}, which contradicts [0, 1] = {a1, az,as,...}. O

The argument used in the proof of Theorem 1.2.6 is called Cantor’s diagonal argu-

ment.

1.3 The Euclidean space RY

Recall that, for any sets S1,..., Sy, their (N-fold) Cartesian product is defined as
Six - x Sy i={(s1,...,sn):s;€ S forj=1,...,N}.

The N-dimensional Fuclidean space is defined as

RN ;:]RX~'XR:{(xl,...,xN)le,...,xNGR}.

N times
An element x := (x1,...,zy) € RY is called a point or vector in RY; the real numbers
Z1,...,xN € R are the coordinates of x. The vector 0 := (0,...,0) is the origin or zero

vector of RN, (For N = 2 and N = 3, the space R" can be identified with the plane and
three-dimensional space of geometric intuition.)
We can add vectors in RY and multiply them with real numbers: For two vectors

r=(x1,...,2N),y := (y1,...,yn) € RY and a scalar A € R define:

r+y = (x1+Y,....oN +YN) (addition);

Ar = (Axg,...,A\zN) (scalar multiplication).

18



The following rules for addition and scalar multiplication in RY are easily verified:

T+Y = Y+
(T+y)+z = z+y+2);

O+z = ux;
z+(=l)x = 0

lz = uz;
Ox = 0
Apr) = (Ap)z;
Mz+y) = X+ Ay

A+ p)z = Az+ px.
This means that RY is a vector space.

Definition 1.3.1. The inner product on RY is defined by
N
Ty = Zgjjyy (33‘ = (xlw")xN))y = (ylv"'7yN) € RN)
j=1

Proposition 1.3.2. The following hold for all z,y,z € RY and \ € R:
(i) z-x>0;

(i) z-2=0 <= z=0;

(i) - y=y-x;

(iv) z-(y+2)=z-y+az-2;

(v) (Az)-y=Az-y) =z Xy

Definition 1.3.3. The (Euclidean) norm on R¥ is defined by

l|lz|] == V& -z =

For N = 2,3, the norm ||z|| of a vector x € RY can be interpreted as its length. The
Euclidean norm on RY thus extends the notion of length in 2- and 3-dimensional space,

respectively, to arbitrary dimensions.

Lemma 1.3.4 (Geometric and Arithmetic Mean). For z,y > 0, the inequality

VT < 50+ )

holds with equality if and only if x = y.
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Proof. We have
2 —2ry+y° =(x—9)*>0 (1.2)

with equality if and only if = y. This yields

1
xy < xy+1(a:2—2a:y+y2) (1.3)
PEYCTIR S W
= ay+-z°— —zy+ -
Y 1 B Y 4y
PR S o
TR R
1
= Z($2+2$y+y2)
1
= Z($+y)2-

Taking roots yields the desired inequality. It is clear that we have equality if and only if
the second summand in (1.3) vanishes; by (1.2) this is possible only if z = y. O

Theorem 1.3.5 (Cauchy—Schwarz inequality). We have

N

-yl < laysl < lellllyl] (2= (21, an),y = (y1,...,yn) €RY).
j=1

Proof. The first inequality is clear due to the triangle inequality in R.
If ||z|| = 0, then 2y = --- = &y = 0, so that Z;Vzl |zjy;| = 0; a similar argument
applies if ||y|| = 0. We may therefore suppose that ||z]|||y|| # 0. We then obtain:

éﬂéﬂ'ff’ﬁ B éﬂﬂ) <||ZZ—||>

IN
=
DO | =
| — |

i SR

Multiplication by ||z||||y|| yields the claim. O
Proposition 1.3.6 (properties of || - ||). For z,y € RY and X\ € R, we have:
(i) [zl = 0;

(i) ||z]|=0 <= a=0;



(i) [[Az[| = [A[l[=]];
(iv) ||z +yl| < ||z|| + ||y]] (triangle inequality );

) Ml =Tyl < ll = yll-

Proof. (i), (ii), and (iii) are easily verified.
For (iv), note that

[l + ylI”

(z+y)-(z+y)

rTytr-yty-x+y-y

= |l=[[ + 22 -y + ||yI?

[l||* + 21|z [[[ly[| +[ly[[>, by Theorem 1.3.5,
(el + Iyl

A

Taking roots yields the claim.
For (v), note that — by (iv) with = and y replaced by x — y and y —

2l = Iz —y) +yll < [lz =yl + [lyll,

so that
Il =yl < |l = yl].
Interchanging = and y yields
yll = |l < [ly = @l = Il = yll,
so that
—llz = yll < llzl] = [lyll < [lz = yll.

This proves (v).
We now use the norm on R to define two important types of subsets of R :
Definition 1.3.7. Let 2o € RY and let r > 0.

(a) The open ball in RV centered at zo with radius 7 is the set

By(z0) == {z e RN : ||z — zo]| < r}.

(b) The closed ball in RN centered at xy with radius r is the set

B, (z0) = {z € RN : ||z — xo|| < r}.
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For N =1, B,(z¢) and B, [x¢] are nothing but open and closed intervals, respectively,
namely

By (z9) = (xg —ry20 + 1) and By lxo] = [xo — 7,0 + 7).

Moreover, if a < b, then
(a,b) = (wo —r,zo+7) and  [a,b] = [zo — 1,20 + 1]

holds, with zg := 2(a +b) and 7 := (b — a).

For N =1, By(xo) and B,[x¢] are just disks with center z¢ and radius r, where the
circle is not included in the case of B,.(zg), but is included for B, [xo].

Finally, if N = 3, then B,(z¢) and B,[zo] are balls in the sense of geometric intuation.
In the open case, the surface of the ball is not included, but it is included in the closed
ball.

Definition 1.3.8. A set C C R is called convez if tz + (1 —t)y € C for all z,y € C and
te0,1].

In plain language, a set is convex if, for any two points x and y in the C, the whole

line segment joining x and y is also in C.

Figure 1.3: A convex subset of R?
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Figure 1.4: Not a convex subset of R?

Proposition 1.3.9. Let 29 € R, Then B,(xq) and B,[x] are convex.

Proof. We only prove the claim for B, (xg) in detail.
Let 2,y € By(z9) and t € [0,1]. Then we have

Itz + (1 =)y — ol [t(z = 2o) + (1 = £)(y — xo)l|

< tflz = 2ol + (1 = 8[|y — o]
< tr+(1-t)r
= 7‘7

so that tx + (1 — t)y € B, (x0).
The claim for B,[zo] is proved similarly, but with < instead of < in (1.4).

Let I1,...,Iny C R be closed intervals, i.e. I; = [aj, b;] where a; < b; for j =1,...
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Then I :=1I; x --- x Iy is called a closed interval in R™V. We have
I={(z1,...,2n) €ERY a; <x; <bjfor j=1,...,N}.
For N = 2, a closed interval in RY, i.e. in the plane, is just a rectangle.

Theorem 1.3.10 (nested interval property in RN). Let Iy, I3, I3,... be a decreasing se-
quence of closed intervals in RN . Then (2, I, # @ holds.

Proof. Each interval I, is of the form
In: n,l X - ><In,N
with closed intervals I, 1,...,I, v in R. For each j =1,..., N, we have

Il,j D IQJ D) Ig,j Doy,

i.e. the sequence Iy ;,15;,13,... is a decreasing sequence of closed intervals in R. By
Theorem 1.1.13, this means that (2, I, ; # &, i.e. there is z; € I, ; for all n € N. Let
x = (x1,...,2n). Then z € I, x --- x I, y holds for all n € N, which means that
ze N In. O

1.4 Topology

The word topology derives from the Greek and literally means “study of places”. In
mathematics, topology is the discipline that provides the conceptual framework for the

study of continuous functions:

Definition 1.4.1. Let g € RY. A set U ¢ RY is called a neighborhood of g if there is
€ > 0 such that B.(zg) C U.
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B: (Xo)

Figure 1.5: A neighborhood of z(, but not of g

Ezamples. 1. If 2y € RY is arbitrary, and » > 0, then both B,(x¢) and B,[zq] are
neighborhoods of xy.

2. The interval [a,b] is not a neighborhood of a: To see this assume that is is a
neighborhood of a. Then there is € > 0 such that

BE(CL) = (CL —€a+ 6) - [CL, b]a
which would mean that @ — € > a. This is a contradiction.

Similarly, [a,b] is not a neighborhood of b, [a,b) is not a neighborhood of a, and
(a,b] is not a neighborhood of b.

Definition 1.4.2. A set U C R is open if it is a neighborhood of each of its points.
Ezamples. 1. @ and RY are open.

2. Let 29 € RY, and let » > 0. We claim that B,(xg) is open. Let 2 € B,(xg). Choose
e <r—|lx — ||, and let y € Bc(x). It follows that

lly —xoll < |y — || +[|z — x0]]
——
<€
< r—|lz = 2o|| + ||z — 20|

= 7";
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hence, B(x) C By(x) holds.

Br (XO)

Figure 1.6: Open balls are open

In particular, (a,b) is open for all a,b € R such that a < b. On the other hand,

[a,b], (a,b], and [a,b) are not open.

3. The set
S :={(z,y,2) eR?: >+ 22 =1, 2 > 0}

is not open.

Proof. Clearly, 2 := (1,0,1) € S. Assume that there is € > 0 such that B(xg) C S.
It follows that

(1,0, 1+ g) € B.(w0) C .

On the other hand, however, we have

62
1 —) >,
(145
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so that (1,0, 1+ %) cannot belong to 5. O

To determine whether or not a given set is open is often difficult if one has nothing
more but the definition at one’s disposal. The following two hereditary properties are

often useful:
Proposition 1.4.3. (i) If U,V C RY are open, then U NV is open.

(ii) Let I be any index set, and let {U; : i € I} be a collection of open sets. Then | J;; Us

1S open.

Proof. (i): Let gy € UN V. Since U is open, there is € > 0 such that B, (zg) C U, and
since V' is open, there is €2 > 0 such that B.,(x¢) C V. Let € := min{e;,ea}. Then

BE(JEQ) C B, (l‘o) N B, (l‘o) cUnv

holds, so that U NV is open.
(ii): Let o € U := J;c; Ui- Then there is 4o € I such that x € Us,. Since Uj, is open,
there is € > 0 such that B(z¢) C U;, C U. Hence, U is open. O

Ezample. The subset |J;7 Bz ((n,0)) of R? is open because it is the union of a sequence

of open sets.

Definition 1.4.4. A set F' C R" is called closed if
FC=RV\F:={zecR":z¢ F}

is open.

Ezamples. 1. @ and RY are closed.

2. Let g € RY, and let » > 0. We claim that B,[z¢] is closed. To see this, let
x € Bylxo]¢, ie. ||v — xo|| > r. Choose € < ||z — x¢|| —r, and let y € Be(z). Then

we have

ly —zoll = |lly — =[] = |l — zol||
= lz = ol — [ly — =]
> |z — zol| — ||z — zol| + 7
= 7

so that Be(z) C Bylzol. It follows that B,[xo|¢ is open, i.e. B[] is closed.
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Br [XO]

Figure 1.7: Closed balls are closed

In particular, [a,b] is closed for all a,b € R with a < b.

3. For a,b € R with a < b, the interval (a,b] is not open because (b — ¢,b+ €) ¢ (a, b
for all e > 0. But (a,b] is not open either because (a —e,a + €) ¢ R\ (a,b].

Proposition 1.4.5. (i) If F,G C R are closed, then F UG is closed.

(ii) LetI be any index set, and let {F; : i € I} be a collection of closed sets. Then ;¢ F;

is closed.

Proof. (i): Since F and G are open, so is F*N G = (F U G)® by Proposition 1.4.3(i).
Hence, F'U G is closed.
(ii): Since FY is open for each i € I, Proposition 1.4.3(ii) hields the openness of

Jr = (ﬂF)

1€l 1€l

which, in turn, means that (,c; F; is closed. O
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Ezample. Let z € RY. Since {z} = (), B[], it follows that {z} is closed. Consequently,
if £1,...,2, € RV, then

{$17"'7$n} = {ﬂi'l}U U{:EN}
is closed.
Arbitrary unions of closed sets are, in general, not closed again.

Definition 1.4.6. A point z € RY is called a cluster point of S C R¥ if each neighborhood
of z contains a point y € S\ {z}.
1
S = {— in e N} .
n

Then 0 is a cluster point of S. Let € R be any cluster point of S, and assume that
x#0. Ifx €8, itisoftheform:nz%forsomenGN. Lete::%—%ﬂ,sotha‘c
Be(x) NS = {x}. Hence, x cannot be a cluster point. If = ¢ S, choose ny € N such that
1

= < % This implies that % < |i2| for all n > ng. Let

Example. Let

no
1
e:zmin{%,]l—x!,..., no_l—w}>0.
It follows that ) )
1,—, ... B
727 7n0_1§Yé E(‘T)
(because ‘x—%‘ >efor k=1,...,n9 — 1. For n > ng, we have |%—1’|2|i2|26. All in

all, we have % ¢ Be(z) for all n € N. Hence, 0 is the only accumulation point of S.
Definition 1.4.7. A set S C RY is bounded if S C B,[0] for some r > 0.

Theorem 1.4.8 (Bolzano-WeierstraBl). Every bounded, infinite subset S C RN has a

cluster point.

Proof. Let r > 0 such that S C B,[0]. It follows that

S Cl=rr] x- - x[-rr]=1.

N times

We can find 2V closed intervals I}l), . ,I£2N) such that I} = U?Zl I{j), where

=10 << 19)

)

for j =1,...,2" such that each interval I{?,g has length 7.

Since S is infinite, there must be jo € {1,...,2¥} such that SN I{jo) is infinite. Let
Iy =19,

Inductively, we obtain a decreasing sequence I, I5, I3, ... of closed intervals with the

following properites:
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(a) SN I, is infinite for all n € N;
(b) for I,, = I,1 x --- I N and

¢(I,) = max{length of I,, ; : j =1,...,N},

we have . X 1
T
) = 5H00) = 70(Inr) = - = 5-0(1) = 37
| @ l,
r 1 2
| 1,2
VO
L@
: 2
% :
| @ |
1 1
mr

Figure 1.8: Proof of the Bolzano—Weierstrafy theorem

From Theorem 1.3.10, we know that there is « € ()2, .
We claim that x is a cluster point of S.
Let € > 0. For y € I,, note that

max{|z; —y;j|:j=1,...,N} <{(I,) = 52
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and thus

2

N
|z —yl| > g =yl
j=1
< VNmax{|lz; —y;|:§j=1,...,N}
VNr

n—2 :

Choose n € N so large that % < e. It follows that I,, C Bc(x). Since S N I, is infinite,
B.(z) NS must be infinite as well; in particular, B.(x) contains at least one point from

S\ {z}. O
Theorem 1.4.9. A set ' C RY is closed if and only if it contains all of its cluster points.

Proof. Suppose that F' is closed. Let z € RY be a cluster point of F' and assume that
x ¢ F. Since F¢ is open, it is a neighborhood of z. But F* N F' = & holds by definition.

Suppose conversely that F' contains its cluster points, and let z € RV \ F. Then z is
not a cluster point of F'. Hence, there is € > 0 such that B.(z) N F' C {x}. Since z ¢ F,
this means in fact that B.(x) N F = @, i.e. Bc(z) C F°. O

For our next definition, we first give an example as motivation:

Example. Let g € RY and let 7 > 0. Then
S,xo) == {z € RN : ||z — xo]| = r}

is the the sphere centered at zp with radius r. We can think of S,[z¢] as the “surface” of
Br [xo]

Suppose that € S,[zg], and let ¢ > 0. We claim that both B(z) N By[zo] and
B(z) N B, [xo] are not empty. For Be(x) N B[], this is trivial because S, [xo] C B,[zo],
so that © € B¢(x) N By[xg]. Assume that Bc(z) N B,[z]¢ = &, i.e. Be(x) C By[xg]. Let
t > 1, and set y; := t(x — x0) + 2. Note that

lye = 2|l = [[t(x = 20) + xo — 2|| = ||(t = V) (z — zo)[| < (¢ = 1)r.
Choose t < 1+ £, then y; € Be(z). On the other hand, we have
lye = @ol| = t||z — wol| >,

so that y; ¢ B,[xo]. Hence, B.(x) N B,[xo]¢ # & is empty.
Define the boundary of B,|xg] as

OB, [xo] := {z € RN : B.(z) N B, [xo] and Bc(z) N B,[z0)® are not empty for each € > 0}.
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By what we have just seen, S, [xg] C 0B;[xg] holds. Conversely, suppose that = ¢ S,.[z¢].
Then there are two possibilities, namely x € B,(xg) or x € B,[zo]¢. In the first case, we
find € > 0 such that Be(x) C By(z0), so that Bc(z) N By[zo]° = &, and in the second
case, we obtain € > 0 with Be(z) C B,[z¢]¢, so that Be(x) N By[zg] = @. It follows that
x ¢ OBy [xg).

All in all, 0B, [z¢] is Sy|zo].

This example motivates the following definition:

Definition 1.4.10. Let S ¢ RY. A point z € RY is called a boundary point of S if
B(x) NS # @ and Be(x) NS¢ # & for each € > 0. We let

98 := {x € RV : z is a boundary point of S}

denote the boundary of S.

Ezamples. 1. Let 29 € RY, and let » > 0. As for B,[z¢], one sees that 0B,(xg) =
Sr[:EO]'

2. Let x € R, and let € > 0. Then the interval (x — €,z + €) contains both rational and
irrational numbers. Hence, x is a boundary point of QQ. Since x was arbitrary, we
conclude that 0Q = R.

Proposition 1.4.11. Let S C RY be any set. Then the following are true:
(i) 95 =0(5°);

(il) 9SNNS = if and only if S is open;

(iii) 0S C S if and only if S is closed.

Proof. (i): Since S = S, this is immediate from the definition.

(ii): Let S be open, and let € S. Then there is € > 0 such that B.(z) C S, i.e.
B(z) NS¢ = @. Hence, x is not a boundary point.

Conversely, suppose that 9SNNS = @, and let z € S. Since B,(x) NS # & for each
r > 0 (it contains x), and since x is not a boundary point, there must be € > 0 such that
B (z) NS¢ =@, ie. Be(zx) CS.

(iii): Let S be closed. Then S is open, and by (iii), 05°NS¢ = @, i.e. 95¢ C S. With
(ii), we conclude that 0S5 C S.

Suppose that S C S, i.e. 9S NS¢ = @. With (ii) and (iii), this implies that S€¢ is

open. Hence, S is closed. ]

Definition 1.4.12. Let S € RY. Then S, the closure of S, is defined as

S:=SU{zr R :zis a cluster point of S}.
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Theorem 1.4.13. Let S C RN be any set. Then:

(i) S is closed;

(i) S is the intersection of all closed sets containing S;
(iii) S=SUdS.

Proof. (i): Let x € RN \''S. Then, in particular, z is not a cluster point of S. Hence,
there is € > 0 such that B.(z) NS C {z}; since x ¢ S, we then have automatically that
B(x) NS = @. Since B((z) is a neighborhood of each of its points, it follows that no
point of B.(x) can be a cluster point of S. Hence, B(x) lies in the complement of S.
Consequently, S is closed.

(ii): Let FF C RY be closed with S C F. Clearly, each cluster point of S is a cluster
point of F', so that

S c FU{z € RY :zis a cluster point of F} = F.

This proves that S is contained in every closed set containing S. Since S itself is closed,
it equals the intersection of all closed set scontaining S.

(iii): By definition, every point in 0S not belonging to S must be a cluster point of
S, so that SUAS C S. Conversely, let z € S and suppose that = ¢ S, i.e. z € S¢. Then,
for each € > 0, we trivially have B.(x) NS¢ # &, and since = must be a cluster point, we
have Bc(z) NS # @ as well. Hence, z must be a boundary point of S. O

Ezamples. 1. For zg € R and r > 0, we have

BT(l‘o) = BT(JEQ) U aBr(l‘o) = Br(l‘o) U ST[JE(]] = BT[JEQ].

2. Since 0Q = R, we also have Q = R.

Definition 1.4.14. A point z € S C RY is called an interior point of S if there is € > 0
such that Be(x) C S. We let

int S:={z € S:z is an interior point of S}
denote the interior of S.
Theorem 1.4.15. Let S C RN be any set. Then:
(i) int S is open and equals the union of all open subsets of S;

(ii) int S =S\ 5.
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Proof. For each x € int S, there is ¢, > 0 such that B, (z) C S, so that

int SC | J Be(). (1.5)

z€int S

Let y € RY be such that there is € int S such that y € B, (z). Since B, () is open,
there is 0, > 0 such that
Bgy C B, (x) C S.

It follows that y € int S, so that the inclusion (1.5) is, in fact, an equality. Since the right
hand side of (1.5) is open, this proves the first part of (i).

Let U C S be open, and let « € U. Then there is ¢ > 0 such that B.(x) C U C S, so
that x € int S. Hence, U C int S holds.

For (ii), let € int S. Then there is € > 0 such that B.(z) C S and thus B.(z)NS¢ = @.
It follos that = € S\ 0S. Conversely, let x € S such that z ¢ 9S. Then there is € > 0 such
that Be(z) NS = @ or Be(x) NS¢ = @. Since x € Be(x) NS, the first situation cannot
occur, so that Be(x) NS¢ = @, i.e. Be(x) C S. It follows that « is an interior point of
S. O

Exzample. Let o € RV, and let r > 0. Then
int By[xo] = Bylxo] \ Sr[zo] = Byr(x0)
holds.

Definition 1.4.16. An open cover of S C RY is a family {U; : i € I} of open sets in RY
such that S C ;1 Us.

Ezample. The family {B,(0) : » > 0} is an open cover for RY.

Definition 1.4.17. A set K C RY is called compact if every open cover {U; : i € I} of

K has a finite subcover, i.e. there are iq,...,%, € I such that
KcU,u---uu,,.
Ezamples. 1. Every finite set is compact.

Proof. Let S = {z1,...,2,} C RY, and let {U; : i € I} be an open cover for S,
ie. x1,...,7, € UjgqUi. For j =1,...,n, there is thus i; € I such that z; € Uj;.
Hence, we have

ScU,U---uU;,.

Hence, {U;,,---,U;,} is a finite subcover of {U; : i € I}. O
2. The open unit interval (0,1) is not compact.
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Proof. For n € N, let U, := (%, 1). Then {U,, : n € N} is an open cover for (0,1).
Assume that (0, 1) is compact. Then there are ni,...,n; € N such that

(0,1) = Up, U---UU,,.

Without loss of generality, let nq < --- < ng, so that

1
0,1) =Up, U---UU,, =U,, = <—,1>,

ng

which is nonsense. O
3. Every compact set K C R is bounded.

Proof. Clearly, {B,(0) : » > 0} is an open cover for K. Since K is compact, there
are 0 <ry <--- <r, such that

K C B, (0)U---UB,,(0)=B,,(0),
which is possible only if K is bounded. O

Lemma 1.4.18. Every compact set K C RY is closed.
Proof. Let z € K¢ For n € N, let U, := B1[x]%, so that

K cRY\ {z} c GUn.

n=1
Since K is compact, there are ny < --- < ny in N such that
KcU,U---uU,, =U,,.
It follows that
B (v) C B4 [z]=U; C K"

Hence, K€ is a neighborhood of z. O

Lemma 1.4.19. Let K C RY be compact, and let F C K be closed. Then F is compact.

Proof. Let {U; : i € I} be an open cover for F. Then {U; : i € I} U{RY \ F} is an open
cover for K. Compactness of K yields iy, ...,i, € I such that

KcU,U---UU;, URV\ F.
Since F'N (RN \ F) = @, it follows that
FcU,U---UU;,.

Since {U; : i € I} is an arbitrary open cover for F', this entails the compactness of F. [

35



Theorem 1.4.20 (Heine Borel). The following are equivalent for K C RV :
(i) K is compact.
(il) K is closed and bounded.

Proof. (i) = (ii) is clear (no unbounded set is compact, as seen in the examples, and
every compact set is closed by Lemma 1.4.18).

(ii) = (i): By Lemma 1.4.19, we may suppose that K is a closed interval I in R,
Let {U; : i € I} be an open cover for I, and suppose that it does not have a finite
subcover.

As in the proof of the Bolzano—Weierstrafi theorem, we may find closed intervals

IS),...,IfN) with E(Ifj)) = %E(Il) for j = 1,...,2" such that I; = U?Zl I{j). Since

{U; : i € T} has no finite subcover for Iy, there is jo € {1,...,2"} such that {U; : i € I}

has no finite subcover for Ifjo). Let I := Ifjo).

Inductively, we thus obtain closed intervals I1 D I D I3 D -+ such that:
(a) L(Ins1) = 20(1,) =+ = £0(1) for all n € N;
(b) {U; : i € I} does not have a finite subcover for I,, for each n € N.

Let z € ﬂfle I, and let ig € I be such taht « € U;,. Since Uj, is open, there is € > 0
such that Be(z) C U;,. Let y € I,,. It follows that

VN

ly —z[| < \/szllll"f}?f]v!yj = 25| < 5oy t(fy)-

Choose n € N so large that 2\,{—&@(]1) < e. It follows that

I, C Bc(z) C Uy,
so that {U; : i € I} has a finite subcover for I,,. O
Definition 1.4.21. A disconnection for S C R is a pair {U,V'} of open sets such that:
(a) UNS#@#VNS;
(b) (UNS)N(VNS)=wg;
(c) (UNS)u(Vns)=S=s.

If a disconnection for S exists, S is called disconnected; otherwise, we say that S is

connected.
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Note that we do not require that U NV = &.

Figure 1.9: A set with disconnection

Examples. 1. Z is disconnected: Choose

1 1
U := (—oo,§> and V.= <§,oo> ;
the {U,V'} is a disconnection for Z.

2. Q is disconnected: A disconnection {U,V'} is given by
U = (—o0,V?2) and V= (V2,00).
3. The closed unit interval [0, 1] is connected.

Proof. We assume that there is a disconnection {U,V'} for [0, 1]; without loss of
generality, suppose that 0 € U. Since U is open, there is ¢y > 0, which we can
suppose without loss of generality to be from (0,1), such that (—eg,e9) C U and
thus [0,e9) C UNS. Let ¢ty :=sup{e > 0:[0,¢) € UN[0,1]}, so that 0 < ey <ty < 1.

Assume that ty € U. Since U is open, there is § > 0 such that (tg — 0,9+ 0) C U.
Since top — d < tp, there is € >ty — 0 such that [0,€) with [0,€¢) C U, so that

0,40 +8)N[0,1] c UN[0,1].
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If ty < 1, we can choose 6 > 0 so small that to+d < 1, so that [0,to+ ) C UNJ0, 1],
which contradicts the definition of ¢g. If ¢y = 1, this means that U N [0,1] = [0, 1],
which is also impossible because it would imply that V' N [0,1] = @. We conclude
that ¢ ¢ U.

It follows that ty € V. Since V is open, there is 8 > 0 such that (to — 0,to+6) C V.
Since to — 0 < to, there is € > tg — 6 such that [0,¢) C UN[0,1]. Pick t € (t9 — 0, ¢).
It follows taht t € (U N[0,1]) N (V' N0, 1]), which is a contradiction.

All in all, there is no disconnection for [0, 1], and [0, 1] is connected. O
Theorem 1.4.22. Let C C RN be conver. Then C' is connected.

Proof. Assume that there is a disconnection {U, V'} for C. Let z € UNC and let y € VNC.
Let

U:={tcR:te+(1—-t)ycU}
and

Vi={tcR:tz+(1—-t)yecV}

We claim that U is open. To see this, let ty € U. It follows that xq := toz + (I-ty)yeU.

Since U is open, there is € > 0 such that B.(x¢) C U. For t € R with [t — to| < IFIEITIE

we thus have that

|tz + (1= t)y) —xol| = |tz + (1= 1)y) — (fox + (1 = to)y)]]
[t = tol([|z[] + [lyl])

€

IN

A

and therefore tx + (1 —t)y € Bc(z¢) C U. It follows that t € U.
Analoguously, one sees that V is open.
The following hold for {U, V'}:

(a) UN[0,1] # @ #VN[0,1]: Sincez =1-2+(1—1)-y cUandy=0-2+(1-0)-y € V,
we have 1 ¢ U and 0 € V.

(b) (UN[0,1])N(VN[0,1]) = @: Ift € (UN[0,1]) N (V N]0,1]), then tz+ (1 —t)yin(U N
C)N (VN ), which is impossible.

(c) (UN]0,1]) U(V N[0,1]) = [0,1]: For t € [0,1], we have tx + (1 —t)y € C = (UNC)U
(V UC) — due to the convexity of C'—, so that t € (U N [0,1]) U (V N [0,1]).

Hence, {U,V) is a disconnection for [0,1], which is impossible. O

Example. @, RV, and all closed and open balls and intervals in RV are connected.
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Corollary 1.4.23. The only subsets of RV which are both open and closed are @ and
RV,

Proof. Let U C RY be both open and closed, and assume that @ # U # RY. Then
{U,U*} would be a disconnection for R, O
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Chapter 2

Limits and continuity

2.1 Limits of sequences

Definition 2.1.1. A sequence in a set S is a function s: N — S.

When dealing with a sequence s: N — S, we prefer to write s,, instead of s(n) and

oo

denote the whole sequence s by (s,,)72 .

Definition 2.1.2. A sequence (z,)9°; in RN converges or is convergent to z € RY if, for
each neighborhood U of z, there is ny € N such that z,, € U for all n > ny. The vector
x is called the limit of (x,)52 ;. A sequence that does not converge is said to diverge or

to be divergent.

Equivalently, the sequence (z,,)52; converges to x € RN if, for each € > 0, there is
ne € N such that ||z, — z|| < € for all n > n,.
If a sequence (z,,)%; in RY converges to z € RV, we write z = lim,, o, 7, or Z,, "

or simply z,, — .
Proposition 2.1.3. Every sequence in RY has at most one limit.

Proof. Let (:cn),fle be a sequence in R with limits =,y € R™. Assume that = # y, and
. eyl
set € : e
Since z = limy,—yo0 Ty, there is n, € N such that ||z, —z|| < € for n > n,, and since also
y = limy, o Ty, there is n, € N such that ||z, —y|| < € for n > n,. For n > max{ns,n,},
we then have

|z = yll <l = @[l +[|zn — yl| < 2¢ = [lz —yll,

which is impossible. O
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Figure 2.1: Uniqueness of the limit

Proposition 2.1.4. Every convergent sequence in RN is bounded.

We omit the proof which is almost verbatim like in the one-dimensional case.

(1) (N)>)OO be a sequence in RYN. Then the

Tyn'y...,Tn
n=1

Theorem 2.1.5. Let (z,)22, = ((

following are equivalent for x = (3:(1) .,x(N)):

(i) limy oo Ty = .
(ii) limyyoo 2y =20 forj=1,...,N.
Proof. (i) = (ii): Let € > 0. Then there is n, € N such that ||z, — z|| < € for all n > n,,

so that
(:cﬁ{) —aj(j)‘ <|zn — || <€

holds for all n > n. and for all j = 1,..., N. This proves (ii).
(ii) = (i): Let € > 0. For each j =1,..., N, there is nY) € N such that

€

2 _:C(j)‘ <=
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holds for all 5 =1,..., N and for all n > ngj). Let n. := max{ngl), e ,nEN)}. It follows

that
€

VN

_max :c;ﬂ - x(j)‘ <

]:17"'7N
and thus
l|zn —z|| < VN max |20) —20)| <€
j=L.,NI "

for all n > n.. O

1 5 3n2 — 4\~
n’ ' n?4+2n

n=1

Examples. 1. The sequence

3n—4
n24+2n

n=1

converges to (0, 3,3), because % — 0,3 — 3 and — 3 in R.

2. The sequence

diverges because ((—1)")2; does not converge in R.

Since convergence in RY is nothing but coordinatewise convergence, the following is a

straightforward consequence of the limit rules in R:

Proposition 2.1.6 (limit rules). Let (2,)3%;, (yn)3%, be convergent sequences in R,
and let (M\p)52, be a sequence in R. Then the sequences (n, + Yn)o>q, (Anzpn)ie,, and

(Tn - Yn)o2, are also convergent such that

lim (z, +y,) = lim x, + lim y,,
n—00 n—00 n—00
lim Apz, = (lim A\,)(lim ;)
n—oo n—oo n—oo
and
Ayl ) = (g, =) (10, )
Definition 2.1.7. Let (s,)72, be a sequence in a set S, and let ny < ny < ---. Then

oo

(Sny )72, is called a subsequence of (xy,)52 .

As in R, we have:
Theorem 2.1.8. Every bounded sequence in RN has a convergent subsequence.

Proof. Let (,,)°; be a bounded sequence in RY, and let S := {x, : n € N}.
If S is finite, (z,,)72; obviously has a constant and thus convergent subsequence.
Suppose therefore that S is infinite. By the Bolzano—Weierstrafl theorem, it therefore
has a cluster point x. Choose n; € N such that z,, € Bi(z) \ {z}. Suppose now that

ny < ng < --- < ny have already been constructed such that
Tp; € B%(az) \ {z}
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forj=1,...,k Let
= mi —1 |lze — 2l : 1=1
€ 1= min T — x|l : coo,npand xp F T,
Er1’ l ) s Tk l

Then there is ng41 € N such that ,,, ,, € Bc(z) \ {x}. By the choice of ¢, it is clear that
Ty, # xp for I =1,... ng, so that that ng1 > ny.

The subsequence (z,, )7, obtained in this fashion satisfies

1
fom, —all < 7
for all k € N, so that x = limy_, =, - O
Definition 2.1.9. A sequence (z,)7 ; in R is called decreasing if x1 > 9 > x3 > --- and
wcereasing if x1 < xo < xg3 < ---. It is called monotone if it is increasing or decreasing.

Theorem 2.1.10. A monotone sequence converges if and only if it is bounded.

Proof. Let (z,)52; be a bounded, monotone sequence. Without loss of generality, suppose
that (x,)2°

o0 | is increasing. By Theorem 2.1.8, (z,,)52; has a subsequence (zy, )72, which

converges. Let x := limy_,o xy,. We will show that actually = lim, o zp.
Let € > 0. Then there is k. € N such that

T — Ty, = |Tp, — x| <e¢,
ie.
T—€e< Ty <T+E

for all k > kc. Let n. := ng,_, and let n > n.. Pick m € N be such that n,, > n, and note
that z,, <z, <x,,,, so that

T — €< Tp, < Tp < Ty, <T A6

ie.

T — xp| < e

This means that indeed x = lim,,— o0 T, - O
Ezample. Let 6 € (0,1), so that
0<tt=90" <" <1

for all n € N. Hence, the sequence (™)7; is bounded and decreasing and thus convergent.
Since

lim " = lim "™ =6 lim 0",
n—oo n—o0 n—o0

it follows that lim,,_,., 6™ = 0.
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Theorem 2.1.11. The following are equivalent for a set ' C RN :
(i) F is closed.
(i) For each sequence ()5 in F with limit x € RN, we already have x € F.

Proof. (i) = (i): Let (7,)%2; be a convergent sequence in F with limit € RY. Assume
that x ¢ F, i.e. x € F° Since F€ is open, there is € > 0 such that B.(z) C F°. Since
x = limy,_, o0 Ty, there is n. € N such that ||z, — z|| < € for all n > n.. But this, in turn,
means that x,, € B¢(x) C F° for n > n,, which is absurd.

(ii) = (i): Assume that F' is not closed, i.e. F is not open. Hence, there is € F°
such that Be(x) N F # @& for all € > 0. In particular, there is, for each n € N, an element
z, € F with ||z, — z|| < 1. It follows that z = lim, o @, even though (z,,)5%, lies in F
whereas x ¢ F'. O

Ezample. The set
F:{(xl,...,a:N) GRN:xl—x2—~~—xN€ [0,1]}

is closed. To see this, let (x,)2°, be a sequence in F' which converges to some x € RN,
We have

Tp,l —Tp2 — " — Ty N € [0, 1]

for n € N. Since [0, 1] is closed this means that
x—xy— - —axy = lim (zp1 —Tp2— - —xpN) € [0,1],
n—o0
so that z € F.
Theorem 2.1.12. The following are equivalent for a set K C RY:
(i) K is compact.
(ii) Ewvery sequence in K has a subsequence that converges to a point in K.

Proof. (i) = (ii): Let (z,)52; be a sequence in K, which is then necessarily bounded.
Hence, it has a convergent subsequence with limit, say € RY. Since K is also closed, it
follows from Theorem 2.1.11 that z € K.

(ii) = (i): Assume that K is not compact. By the Heine-Borel theorem, this leaves
two cases:

Case 1: K is not bounded. In this case, there is, for each n € N, and element z,, € K

with ||z,|| > n. Hence, every subsequence of (x,,)5 ; is unbounded and thus diverges.
Case 2: K is not closed. By Theorem 2.1.11, there is a sequence (z,)52; in K that
converges to a point x € K°. Since every subsequence of (x,)2° converges to x as well,

this violates (ii). O

44



Corollary 2.1.13. Let @ # F C RY be closed, and let @ # K C RN be compact such
that
inf{|jzx —y||:x € K,y € F} =0.

Then F and K have non-empty intersection.

This is wrong if K is only required to be closed, but not necessarily compact:

y

Figure 2.2: Two closed sets in R? with distance zero, but empty intersection

Proof. For each n € N, choose , € K and y —n € F such that ||z, — ya|| < .

n
By Theorem 2.1.12, (x,)s2, has a subsequence (x,, )7, converging to x € K. Since

limy, 00 (zy, — yp) = 0, it follows that
= Jim g, = Jm (o) ) = i o
and thus, from Theorem 2.1.11, € F' as well. O

Definition 2.1.14. A sequence (z,,)2% in RY is called a Cauchy sequence if, for each

€ > 0, there is n. € N such that ||z, — zy,]|| < € for n,m > n..
Theorem 2.1.15. A sequence in RY is a Cauchy sequence if and only if it converges.

Proof. Let (2,)3%; be a sequence in RY with limit 2 € RY. Let ¢ > 0. Then there is
ne € N such that ||z, — z|| < § for all n > n.. It follows that

€ €
o =l < llen — ol + llz = amll < 5+ 5 =

[e.e]

o°_, is a Cauchy sequence.

for n,m > n.. Hence, (z,)

[e.9]

o, is a Cauchy sequence. Then there is n; € N such

Conversely, suppose that (x,)

that ||z, — x|| < 1 for all n,m > ny. For n > ny, this means in particular that
nll < llen = @ny ||+ [Jen [[ <14 ([ ]
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Let

C:=max{[|z1|],. .., [|zn, -1l 1+ [[zn, [}

Then it is immediate that ||z,|| < C for all n € N. Hence, (x,)52, is bounded and thus
has a convergent subsequence, say (mnk)z‘;l Let z := limy_,oo T, , and let € > 0. Let
no € N be such that ||z, —z,,|| < § for n > ng, and let k. € N be such that ||z, —z|| < §

for k > ke. Let ne := nyax{k.,no}- Then it follows that

|n — 2l| < [|2n = 2 ||+ |J2n, —2]] <€

<5 <5
for n > n.. O
Ezample. For n € N| let
"1
Sp 1= —.
k=1 k
It follows that
2n 1 2n 1 1
‘3271_371’: Z EE Z %257
k=n+1 k=n-+1

so that (s,)72; cannot be a Cauchy sequence and thus has to diverge. Since (s,)s2; is

increasing, this does in fact mean that it must be unbounded.

2.2 Limits of functions

We define the limit of a function (at a point) through limits of sequences:

Definition 2.2.1. Let @ # D C RY, let f: D — RM be a function, and let 2y € D.
Then L € RM is called the limit of f for x — xo (in symbols: L = lim,_,, f(x)) if

limy, oo f(25) = L for each sequence (z,,)5%; in D with lim,,_, z,, = .

It is important that xy € D: otherwise there are not sequences in D converging to x.

For example, lim,_,_1 y/z is simply meaningless.

Ezamples. 1. Let D = [0,00), and let f(z) = /z. Let (x,)22; be a sequence in D

with lim,,_ s z, = 2g. For n € N, we have

[Van = Vaol* < [V = aol (Van + Vo) = lan — wol.

Let ¢ > 0, and choose n, € N such that |z,, — 29| < €2 for n > n.. It follows that

V@ — Vxo| < €

for n > ne. Since € > 0 was arbitrary, lim, .~ /T, = /2o holds. Hence, we have

lim, sz, V2 = \/T0.
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2. Let D = (0,00), and let f(z) = 1. Let (2,,)°%, be a sequence in D with lim,_,o0 z, =
0. Let R > 0. Then there is ng € N such that z,, < & and thus f(z,,) = =— > R.

Tng

Hence, the sequence (f(zy))s2; is unbounded and thus divergent. Consequently,

lim, 0 f(z) does not exist.

3. Let

Ty
:R%\ {(0,0)} = R G A
FRA{0.0) 2R, (@)~ 5o

Let xn:(%,%),so that lim,, ;oo 2, = 0. Then
11 2
fa =1 (32) =51 =3
" n'n %—1—# 2

holds for all n € N.
On the other hand, let z,, = (%, #), so that

1 1 % 1 nt n* %
j — - — — [ — pry p— —>0
f(@n) f(n n2> L+ L o wdalel wdind 144

Consequently, lim, ), (0,0) f(7,y) does not exist.
As in one variable, the limit of a function at a point can be described in alternative

ways:

Theorem 2.2.2. Let @ # D C RV, let f: D — RM, and let g € D. Then the following
are equivalent for L € RM :

(i) limg—ys, f(z) = L.

(ii) For each € > 0, there is § > 0 such that ||f(x) — L|| < € for each x € D with
|z — x| < 0.

(iii) For each neighborhood U of L, there is a neighborhood V of xo such that f~1(U) =
VnD.

Proof. (i) = (ii): Assume that (i) holds, but that (ii) is false. Then there is ¢y > 0
sucht that, for each ¢ > 0, there is x5 € D with ||zs — xo|| < 0, but ||f(xs) — L|| > €. In
particular, for each n € N, there is z,, € D with ||z, — zo|| < 1, but || f(zn) — L|| > €. It
follows that lim,,_,~ @, = xg whereas f(x,) 4 L. This contradicts (i).

(ii) = (iii): Let U be a neighborhood of L. Choose € > 0 such that B.(L) C U, and
choose § > 0 as in (ii). It follows that

DN Bs(xo) C f~H(Be(L)) C f~HU).
Let V := Bs(xo) U f~1(U).
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(i) = (i): Let (x,):2, be a sequence in D with lim, ,. x, = zg. Let U be a
neighborhood of L. By (iii), there is a neighborhood V of xq such that f~1(U) =V N D.
Since g = limy,_.s0 Ty, there is ny € N such that x, € V for all n > ny. Conse-
quently, f(z,) € U for all n > ny. Since U is an arbitrary neighborhood of L, we have
limy, 00 f(zy) = L. Since (x,)5%,

follows. O

is an arbitrary sequence in D converging to xg, (i)

Definition 2.2.3. Let @ # D C RV, let f: D — RM and let z9 € D. Then f is

continuous at xo if limy ., f(z) = f(zo).
Applying Theorem 2.2.2 with L = f(xq) yields:

Theorem 2.2.4. Let @ # D C RN, let f: D — RM, and let xo € D. Then the following
are equivalent for L € RM :

(i) f is continuous at xg.

(ii) For each € > 0, there is 6 > 0 such that ||f(z) — f(xo)|| < € for each x € D with
|z — zo]| < 9.

(iii) For each neighborhood U of f(xg), there is a neighborhood V of zo such that
Y U)=vnDb.

Continuity in several variables has hereditary properties similar to those in the one

variable situation:

Proposition 2.2.5. Let @ # D C RN, and let f,g: D — RM and ¢: D — R be

continuous at xog € D. Then the functions

f+g:D—RM, x— f(z)+ g(z),
¢f: D —RY, z = o(x) f(x),

and
frgD=RY 2w f(z) g()

are continuous at xg.

Proposition 2.2.6. Let @ # D; C RN, @ # Dy C RM | let f: Dy — RX and g: D; —
RM be such that g(D1) C Do, and let xy € Dy be such that g is continuous at x¢ and that

f is continuous at g(xg). Then
fog:Di = RN, = f(g(x))

18 continuous at xg.
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Proof. Let (z,)5%; be a sequence in D such that x,, — z¢. Since g is continuous at

xg, we have g(z,) — g(x¢), and since f is continuous at g(zp), this ultimately yields

flg(zn)) = f(g(x0)). -

Proposition 2.2.7. Let @ # D C RN, Then f = (f1,..., fur): D — RM is continuous
at xo if and only if fj: D — R is continuous at xo for j =1,..., M.

Ezamples. 1. The function

) ) ny 417
f: R — R s (.Z', y) — | sin W , e sin(log(r+cos(x)2)) 7 2004
Pyt +m

is continuous at every point of R2.

2. Let
fR—>R2 T (‘Tal)a .Z'SO,
’ (3:7_1)7 $>07
so that
fiiR—=>R, z—=x
and
1 <0
frRoR, zesd 0 T
-1, =z>0.

It follows that fi is continuous at every point of R, where is f5 is continuous only
at o # 0. It follows that f is continuous at every point xy # 0, but discontinuous

at xg = 0.

2.3 Global properties of continuous functions

So far, we have discussed continuity only in local terms, i.e. at a point. In this section,

we shall consider continuity globally:

Definition 2.3.1. Let @ # D c RY. A function f: D — RM is continuous if it is

continuous at each point xg € D.

Theorem 2.3.2. Let @ # D C RN. Then the following are equivalent for f: D — RM:
(i) f is continuous.
(ii) For each open U C RM | there is an open set V.C RYN such that f~2(U) =V N D.

Proof. (i) = (ii): Let U c RM be open, and let z € D such that f(z) € U, i.e.
x € f~Y(U). Since U is open, there is ¢, > 0 such that B, (f(x)) C U. Since f is

49



continuous at z, there is §, > 0 such that ||f(y) — f(z)|| < €, for all y € D with
ly — @[] < 0, ie.
Bs,(x) N D C f~H(Be, (f(x))) € f7H(U).

Letting V' := U, -1(1) Bs. (%), we obtain an open set such that
fYUycvnbDc fH).

(ii) = (i): Let 29 € D, and choose ¢ > 0. Then there is an open subset V of R" such
that VN D = f~1(B.(f(x0))). In particular, zo € V. Choose § > 0 such that Bs(zg) C V.
It follows that || f(z) — f(z0)|| < € for all z € D with ||z —z|| < 0. Hence, f is continuous
at xg. Ol

Corollary 2.3.3. Let @ # D C RN. Then the following are equivalent for f: D — RM:
(i) f is continuous.
(ii) For each closed F C RM, there is a closed set G C RY such that f~'(F) =GN D.

Proof. (i) = (ii): Let F € RM be closed. By Theorem 2.3.2, there is an open set V' C RY
such that
VD= fTH(F) = fTHF)

Let G :=V*.
(ii) = (i): Let U € RM be open. By (ii), there is a closed set G C R with

GnD=f"U°) = fH(U)"

Letting V := G¢, we obtain an open set with V N D = f~}(U). By Theorem 2.3.2, this
implies the continuity of f. O

Exzample. The set
F ={(z,y,z,u) € R*: " sin(zu?) € [0,2] and = — y* + 2> — u* € [-7,2002]}
is closed. This can be seen as follows: The function
f:RY S R% (x,y,2,u) — (e7sin(zu?), 2 — y* + 25 — u?)
is continuous, [0,2] x [—,2002] is closed, and F = f~1([0,2] x [, 2002]).

Theorem 2.3.4. Let @ # K C RN be compact, and let f: K — RM be continuous. Then
f(K) is compact.
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Proof. Let {U; : i € I} be an open cover for f(K). By Theorem 2.3.2, there is, for each
i € T and open subset V; of RY such that V; N K = f~%(U;). Then {V; : i € I} is an open

cover for K. Since K is compact, there exists i1,...,4, € I such that

KCV,U---UV

n*

Let x € K. Then there is j € {1,...,n} such that x € V;; and thus f(x) € U;,. It follows
that
f(K) CUZ'1 U---uJy;

n’

so that f(K) is compact. O

Corollary 2.3.5. Let @ # K C RY be compact, and let f: K — RM be continuous.
Then f(K) is bounded.

Corollary 2.3.6. Let @ # K C RN be compact, and let f: K — R be continuous. Then

there exists Tmax, Tmin € K such that
f(xmax) = Sup{f(:E) HEUS K} and f(xmin) = 1nf{f(x) HES K}

Proof. Since K is compact, it is bounded and closed. Let (y,)52, be a sequence in f(K)
such that y, — yo := sup{f(z) : x € K}. Since f(K) is closed and yq is a cluster point of
f(K), there exists xyax € K such that f(zmax) = Yo- O

The two previous corollaries generalize two well known results on continuous functions
on closed, bounded intervals of R. They show that the crucial property of an interval, say
[a,b] that makes these results work in one variable is precisely compactness.

The intermediate value theorem does not extend to continuous functions on arbitrary
compact sets, as can be seen by very easy examples. The crucial property of [a,b] that

makes this particular theorem work is not compactness, but connectedness.

Theorem 2.3.7. Let @ # D C RN be connected, and let f: D — RM be continuous.
Then f(D) is connected.

Proof. Assume that there is a disconnection {U, V'} for f(D). Since f is continuous, there

are open sets U,V € RY open such that
UND=f1U) and VnND=f}HV).
But then {U,V} is a disconnection for D, which is impossible. O

This theorem can be used, for example, to show that certain sets are connected:
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Ezample. The unit circle in the plane

Sti={(z,y) € R?: [[(w,y)]| = 1}
is connected because R is connected,

f:R—=R% t— (cost,sint),

SN_l

and S' = f(R). Inductively, one can then go on and show that is connected for all

N > 2.

Corollary 2.3.8 (Intermediate Value Theorem). Let & # D C RN be connected, let
f: D — R be continuous, and let x1,z9 € D be such that f(x1) < f(x2). Then, for each
y € (f(z1), f(x2)), there exists vy, € D with f(xy) =y.

Proof. Assume that there is yo € (f(x1), f(x2)) with yo ¢ f(D). Then {U,V} with
U={yeR:y<yo} and Vi={yeR:y>yo}
is a disconnection for f(D), which contradicts Theorem 2.3.7. O

Ezamples. 1. Let p be a polynomial of odd degree with leading coefficient one, so that

lim p(z) = o0 and lim p(z) = —oo.

Hence, there are x1,z2 € R such that p(z1) < 0 < p(z2). By the intermediate value
theorem, there is x € R with p(x) = 0.

2. Let
D :={(z,y,2) €R’: ||(x,y,2)|| < 7},
so that D is connected. Let

xy + 2

:D—R _»—
! o (@,2) cos(zyz)? + 1

Then . .

Hence, there is (xg, Yo, z0) € D such that f(xq,yo,20) = %

2.4 Uniform continuity

We conclude the chapter on continuity, with a property related to, but stronger than

continuity:
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Definition 2.4.1. Let @ # D C RN. Then f: D — RM is called uniformly continuous
if, for each € > 0, there is § > 0 such that ||f(z1) — f(z2)|| < € for all z1,29 € D with
Ha;l — LEQH < 9.

The difference between uniform continuity and continuity at every point is that the
0 > 0 in the definition of uniform continuity depends only on € > 0, but not on a particular

point of the domain.

Ezxamples. 1. All constant functions are uniformly continuous.

2. The function
f:00,1] = R? x4+ 22

is uniformly continuous. To see this, let € > 0, and observe that
|22 — 23| = |21 + 20| (21 + 22) < 2|z1 — 29|
for all 21,2 € [0,1]. Choose ¢ := 5.
3. The function

1
f:(0,1] >R, z+— —
X

is continuous, but not uniformly continuous. For each n € N, we have

HORTES [

Therefore, there is no § > 0 such that ‘f (%) —f (%—l—l)‘ < % whenever
0.

1 1
z——1‘<

4. The function
f:[0,00) = R%, x4+ 2?

is continuous, but not uniformly continuous. Assume that there is § > 0 such that
|f(z1) — f(z2)] < 1 for all 21,29 > 0 with |21 — 25| < 6. Choose, z; := 2 and
Ty 1= % + g. It follows that |z — 22| = % < 6. However, we have

|f(x1) = flz2)] = |21+ 22|(21 + 22)

_ 02,20
o2\ 4§ 2

04
29
= 2.

v

The following theorem is very valuable when it comes to determining that a given

function is uniformly continuos:
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Theorem 2.4.2. Let @ # K C RN be compact, and let f: K — RM be continuous. Then

f is uniformly continuous.

Proof. Assume that f is not uniformly continuous, i.e. there is eg > 0 such that, for all
d > 0, there are x5, ys € K with ||zs—ys|| < 0 whereas || f(zs)— f(ys5)|| > €o. In particular,

there are, for each n € N, elements x,,,y, € K such that

e —gall <+ and[IfGe) — fll 2 o

Since K is compact, (2,)52 has a subsequence (xy, )72, converging to some € K. Since

T, — Yn, — 0, it follows that

= lim z,, = lim .
k—o0 "k k—)ooynk

The continuity of f yields

f(x) = klim f(xnk) = lim f(ynk)
—00 k—o0
Hence, there are k1, ko € N such that
€ €
1f@) = flan)ll <5 fork =k and [[f(@) = f(ya)l| < 5 for k> ko

For k > max{k1, k2}, we thus have

N (@ng) = Fn )l < F(@ne) — F@)+ (1 (@) = Flyn)l] < %0 n %0 .

which is a contradiction. O
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Chapter 3

Differentiation in RYY

3.1 Differentiation in one variable

In this section, we give a quick review of differentiation in one variable.

Definition 3.1.1. Let I C R be an interval, and let o € I. Then f: I — R is said to be
differentiable at x if
i £ @0+ 1) — f(zo)

h—0 h
h#£0

exists. This limit is denoted by f/(x¢) and called the first derivative of f at xo.

Intuitively, differentiability of f at zy means that we can put a tangent line to the

curve given by f at (xo, f(z0)):

y

PR | .
Figure 3.1: Tangent lines to f(z) at xp and x4
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Ezample. Let n € N, and let
ffR=>R, x— 2"

Let h € R\ {0}. By the binomial theorem, we have
rhy =3 <”> I
=0\
and thus

(@ +h)" — 2" = nf <7>xﬂ'h"—j.

=0 N

Letting h — 0, we obtain:

(x +h)" —a" _ (n) jpn—i—1
h = J
n—2 n /—5L
= X (4)ent I T
X J
7=0
— na" !

Proposition 3.1.2. Let I C R be an interal, and let f: I — R be a differentiable at

xg € I. Then f is continuous at xg.

Proof. Let (x,)7%, be a sequence in I such that =, — xo. Without loss of generality,
suppose that x, # z¢ for all n € N. It follows that

flzn) — fl=
F () = Flao)] = [r — ] |[LE IO
Tp — X0
—0
= f (o)l
Hence, f is continuous at z. ]

We recall the differentiation rules without proof:

Proposition 3.1.3 (rules of differentiation). Let I C R be an interval, and let f,g: I — R
be differentiable at xy € I. Then f+g, fg, and — if g(xg) # 0 — are differentiable at xg
such that

f'(x0) + ¢’ (20),
f(@0)g' (x0) + f'(x0)g(0),

(f + 9)' (o)
(f9) (z0)

and




Proposition 3.1.4 (chain rule). Let I,J C R be intervals, let g: I — R and f: J — R
be functions such that g(I) C J, and suppose that g is differentiable at xoy € I and that f
is differentiable at g(xg) € J. Then fog: I — R is differentiable at xo such that

(fog)(x0) = f'(g(x0))d (wo).

Definition 3.1.5. Let I C R be an interval. We call f: I — R differentiable if it is
differentiable at each point of I.

Ezample. Define
sin (%) , x#0,

2
fTR—=R, x|—>{ *
0, T =

It is clear f is differentiable at all x # 0 with

f'(z) = 2wsin (%) — 3:2% cos (%)

o(2)-(5)
= 2zsin|{— | —cos|—].
x x
Let h # 0. Then we have

SO () o )

so that f is also differentiable at = = 0 with f'(0) = 0. Let z,, := so that x,, — 0. It

follows that

1
2mn?

™
ﬁ,—/ _
=0 =1

f(zp) = € sin(27n) — cos(2mn) 4 f(0).
—_——

Hence, f’ is not continuous at z = 0.

Definition 3.1.6. Let @ # D C R, and let x( be an interior point of D. Then f: D — R is
said to have a local maximum [minimum] at ¢ if there is € > 0 such that (xg—e, zo+€) C D
and f(x) < f(xo) [f(z) > f(xo)] for all x € (g — €, 20+ €). If f has a local maximum or

minimum at zg, we say that f has a local extremum at xg.

Theorem 3.1.7. Let @ # D C R, let f: D — R have a local extremum at xg € int D,
and suppose that f is differentiable at xo. Then f'(xg) = 0 holds.

Proof. We only treat the case of a local maximum.
Let € > 0 be as in Definition 3.1.6. For h € (—¢,0), we have z¢g + h € (xg — €, 20 + €),

so that
<0

J(xo+ h) — f(x0) > 0.
NP -
<0
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It follows that f’(z¢) > 0. On the other hand, we have for h € (0,¢) that

<0
f(@o +h) — fzo) <0,
o <
——
>0
so that f/(x¢) <0.
Consequently, f'(x¢) = 0 holds. O

Lemma 3.1.8 (Rolle’s theorem). Let a < b, and let f: [a,b] — R be continuous such that
fla) = f(b) and such that f is differentiable on (a,b). Then there is & € (a,b) such that
[ =o.

Proof. The claim is clear if f is constant. Hence, we may suppose that f is not constant.

Since f is continuous, there is &1, &2 € [a, b] such that

f(&) =sup{f(z):z €fa,b]}  and  f(&) =sup{f(z):x € [a,0]}.

Since f is not constant and since f(a) = f(b), it follows that f attains at least one local

extremum at some point £ € (a,b). By Theorem 3.1.7, this means f’(£) = 0. O

Theorem 3.1.9 (mean value theorem). Let a < b, and let f: [a,b] — R be continuous
and differentiable on (a,b). Then there is & € (a,b) such that

Jb) ~ fa)

7€) = 25—

o8



Figure 3.2: Mean value theorem

Proof. Define g: [a,b] — R by letting

g(x) = (f(z) = f(a)(b - a) = (f(b) = f(a))(x —a)

for x € [a,b]. Tt follows that g(a) = g(b) = 0. By Rolle’s theorem, there is £ € (a,b) such
that

0=g'(&) = f(E)b—a) = (f(b) — f(a)),
which yields the claim. O

Corollary 3.1.10. Let I C R be an interval, and let f: I — R be differentiable such that
f'=0. Then f is constant.

Proof. Assume that f is not constant. Then there are a,b € I, a < bsuch that f(a) # f(b).
By the mean value theorem, there is £ € (a,b) such that

0=rie =1L

which is a contradiction. O

3.2 Partial derivatives

The notion of partial differentiability is the weakest of the several generalizations of dif-

ferentiablity to several variables:
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Definition 3.2.1. Let @ # D C R, and let 2y € int D. Then f: D — RM is called
partially differentiable at xg if, for each j = 1,..., N, the limit

f(zo+ hej) — f(zo)

h—0 h

exists, where e; is the j-th canonical basis vector of RN,

We use the notations

ﬁ(:g )
o o + he;
Y 0+ hej) — f(x0)
Djf(x) ¢ = lim Y
ij (:EO) h#0
for the (first) partial derivative of f at x¢ with respect to z;.
To calculate 887];(3:0), fix x1,...,2j-1,%j41,..., 2N, i.e. treat them as constants, and

consider f as a function of z;.

Examples. 1. Let
f:RZ R, (x,y)— e® 4 zcos(zy).

Then we have

of _ oz o of o
%(:E,y) = ¢ + cos(zy) — xysin(zy) and 9y (z,y) = —x*sin(zy).

2. Let
[R5 R, (x,y,2)— exp(zsin(y)z?).
It follows that

of of

%(:U, y,z) = sin(y)z” exp(z sin(y)z*), 8_y($’ y,z) = zcos(y)z” exp(w sin(y)z7),
and
of . . 9
&(:E,y,z) = 2zx sin(y) exp(z sin(y)z~).
3. Let
PR SR (ny) e mre @000,
- 0, (z,y)=(0,0)
Since

11 5 1
— — = —_— = — 0
() - e
the function f is not continuous at (0,0). Clearly, f is partially differentiable at

each (z,y) # (0,0) with

y(z? +y?) — 227y
(22 + 42)2

0
a_i(‘rvy) =
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Moreover, we have

Of (0 01— i £(1:0) = £(0,0) _
5 (00) = fim ZEE S o0

Hence, % exists everywhere.

The same is true for g—y.

Definition 3.2.2. Let @ # D C RN, let 29 € int D, and let f: D — R be partially
differentiable at xg. Then the gradient (vector) of f at z is defined as

9 0
(grad £)an) = (V) (a0) = (L)oo 5 (o))
Ezample. Let
FRY SR, 2w ||z]| = /23 +- -+ 2%,

so that, forx #0and j=1,..., N,
E?f o 2:Ej T

> (1) = —F——r

holds. Hence, we have (grad f)(x) = ﬁ for = # 0.

Definition 3.2.3. Let @ # D C RY, and let 2o be an interior point of D. Then f: D — R
is said to have a local mazimum [minimum] at xg if there is e > 0 such that B.(zg) C D
and f(z) < f(xg) [f(x) > f(xo)] for all x € Be(xp). If f has a local maximum or minimum

at xg, we say that f has a local extremum at xg.

Theorem 3.2.4. Let @ # D C RV, let zg € int D, and let f: D — R be partially
differentiable and have local extremum at xo. Then (grad f)(xg) =0 holds.

Proof. Suppose without loss of generality that f has a local maximum at zg.
Fix j € {1,...,N}. Let € > 0 be as in Definition 3.2.3, and define

g:(—€,€) >R, t— f(xo+te)).
It follows that, for all t € (—¢,€), the inequality

g(t) = f(zo +tej) < f(zo) = g(0)
——

€B. (:C())

holds, i.e. g has a local maximum at 0. By Theorem 3.1.7, this means that

0= ¢/(0) = lim 9(h) —9(0) _ . flwo+hej) — flzo) _ OF

xo).
h—0 h h—0 h 8%_7 ( 0)
h#£0 h+£0
Since j € {1,..., N} was arbitrary, this completes the proof. O
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Let @ # U C RY be open, and let f: U — R be partially differentiable, and let
j €{l,...,N} be such that E?Tfj : U — R is again partially differentiable. One can then

form the second partial derivatives
*f _ 9 (9
Oxpdz; Oy \ Oxy,
fork=1,...,N.

Ezample. Let U := {(z,y) € R? : x # 0}, and define

zy
f:U =R, (x,y)H%.

It follows that:

of  wye™ —e™
or x2
zy — 1
= x2 exy
_ (Y e
- ()
8_f = ",
Ay

For the second partial derivatives, this means:

O f AV A R
5@“(1@*@'6*‘5‘? yer;

Pf e,
Oy? ’
82f o ey
oxdy ye
>’f Lo  (y 1 Y
ay0z  z° *(5‘@ re
1 1
= e (vg)er
= yemy
This means, we have
*f  Of
0zdy  Oyoz’

Is this coincidence?

Theorem 3.2.5. Let @ # U C RY be open, and suppose that f: U — R is twice
continuously partially differentiable, i.e. all second partial derivatives of f exist and are

continuous on U. Then
Of o) — O f .
O0x;0xy, n 0,0z,
holds for all x € U and for oll j,k=1,...,N.
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Proof. Without loss of generality, let N =2 and = = 0.
Since U is open, there is € > 0 such that (—¢,¢)? C U. Fix y € (—¢,¢€), and define

Fy: (—e,¢) = R, =+ f(z,y) — f(z,0).

Then F), is differentiable. By the mean value theorem, there is, for each x € (—¢,€), and
element § € (—e, €) with |£] < |z| such that

Fy(o) = 0 = £ = (G - GHen ) s

Applying the mean value theorem to the function

(e 2R,y L(ey)

we obtain n with |n| < |y| such that

f f _ 0%
Consequently,
0’ f
o) = £(2.0) = F0.9) + F(0.0) = Fy(a) = F(0) = 7 (€.m)y

holds.
Now, fix x € (—e¢,¢€), and define

Ey: (—e,6) = R, y— f(z,y) — f(0,y).
Proceeding as with F,, we obtain &, 7 with |£| < |z| and |j| < |y| such that

82f

Therefore,
0% f 0’f - _

holds whenever zy # 0. Let 0 # 2 — 0 and 0 # y — 0. It follows that & — 0, £ — 0,

n — 0, and n — 0. Since 68 8fx and 68 5y are continuous, this yields

2 2
7S 0.0= 2L
Oyox oxdy

(0,0)

as claimed. O
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The usefulness of Theorem 3.2.5 appears limited: in order to be able to interchange
the order of differentiation, we first need to know that the second oder partial derivatives
are continuous, i.e. we need to know the second oder partial derivatives before the theorem

can help us save any work computing them. For many functions, however, e.g. for

arctan(z? — ")
eTYZ

f:R3—>R,(a:,y,z)n—>

)

it is immediate from the rules of differentiation that their higher order partial derivatives

are continuous again without explicitly computing them.

3.3 Vector fields

Suppose that there is a force field in some region of space. Mathematically, a force is a
vector in R?. Hence, one can mathematically describe a force filed a function v that that
assigns to each point z in a region, say D, of R3 a force v(z).

Slightly generalizing this, we thus define:
Definition 3.3.1. Let @ # D C RY. A wector field on D is a function v: D — R,

Example. Let @ # U C RY be open, and let f: U — R be partially differentiable. Then
V f is a vector field on U, a so-called gradient field.

Is every vector field a gradient field?
Definition 3.3.2. Let @ # U C R? be open, and let v: U — R3 be partially differentiable.

Then the curl of v is defined as

<8’U3 8’02 8v1 8’03 8112 6U1>
curl v := .

8ZE2 8ZE37 83:3 8:E1 ’ 83:1 83:2

Very loosely speaking, one can say that the curl of a vector field measures “the tendency

of the field to swirl around”.

Proposition 3.3.3. Let @ # U C R? be open, and let f: U — R be twice continuously
differentiable. Then curl grad f = 0 holds.

Proof. We have, by Theorem 3.2.5, that

curlgrad f = (200 0 0f 0 0f 9 0f 9 90f 9 Of
& n axg 8333 8953 83327 8953 8331 8951 83:37 8951 83:2 8952 8&31
= 0

holds. O
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Definition 3.3.4. Let @ # U C RY be open, and let v: U — R be a partially differen-

tiable vector field. Then the divergence of v is defined as

div v := Z g;]
J

Ezamples. 1. Let @ # U C RY be open, and let v: U — RY and f: U — R be
partially differentiable. Since

0 _of ovj
aTj(f%) = om0t fé)a:j
for j=1,..., N, it follows that
div fo = Z 83:] (fvj)
N
v,
= +f J
= 0 Z@x]
= Vf'v+fdlvv.
2. Let
v: RV {0} = RN a:n—>HiH
Then v = fu with
1 1
u(r) ==z and flz) = =
||| x%_|_. + x%
for z € RV \ {0}. It follows that
8f( ) 1 2.%']' T4
D) 3 T3
AN R
for j=1,..., N and thus
x
Vi) = -
| |?

for z € RV \ {0}. By the previous example, we thus have

—N
.z n i
=B el
N1
]l

for z € RV \ {0}.
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Definition 3.3.5. Let @ # U C RY be open, and let f: U — R be twice partially
differentiable. Then the Laplace operator A of f is defined as

N an
Af:Z@ = div grad f.
j=1""J

Ezample. The Laplace operator occurs in several important partial differential equations:

e Let @ # U C RY be open. Then the functions f: U — R solving the potential

equation

Af=0
are called harmonic functions.

e Let @ # U C RY be open, and let I C R be an open interval. Then a function
f:U x I — R is said to solve the wave equation if

10%f
A=z =0
and the heat equation if
1 0f
A -Fa =0

where ¢ > 0 is a constant.

3.4 Total differentiability

One of the drawbacks of partial differentiability is that partially differentiable functions
may well be discontinuous. We now introduce a stronger notion of differentiability in

several variables that — as will turn out — implies continuity:

Definition 3.4.1. Let @ # D C RY, and let 2y € int D. Then f: D — RM is called
[totally| differentiable at xq if there is a linear map T': RY — RM such that

lim |1 f(zo + h) ||_hﬁ($0) —Thll _

h#£0

0. (3.1)

If N =2 and M = 1, then the total differentiability of f at zg can be interpreted
as follows: the function f: D — R models a two-dimensional surface, and if f is totally

differentiable at zg, we can put a tangent plane — describe by T" — to that surface.

Theorem 3.4.2. Let @ # D C RV, let g € int D, and let f: D — RM be differentiable
at xg. Then:

(i) f is continuous at xg.
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(ii) f is partially differentiable at xq, and the linear map T in (3.1) is given by the matrix

o] l°]

Tg{;i(x())v ceey 6xf]1\, (330)
Jy(x0) = : . :

0 2]

8 (o), ..., GL(xp)

Proof. Since
iy 1 @0+ 1) — f(ao) = ThI| _
ho0 [|A]]

h#£0

0,

we have
lim || f (o + h) = f(zo) — Th[ = 0.

h#£0
Since limy,_,0 Th = 0 holds, we have limy_o || f(x0 + h) — f(z0)|| = 0. This proves (i).

Let
ail, .-, Q1N

am1, ---, QMN

be such that T'=Ty4. Fix j € {1,..., N}, and note that

lim || f (w0 + hej) — f(xo) — Th|

h=0 =1
N——
k]
. 1
=l |5 [f (o + hej) = f(z0)] = Tej | |.
h#0

From the definition of a partial derivative, we have

) oL (o)
lim E[f(xo + hej) — f(xo)] = : ;
h#0 %Lm]\j(xo)

whereas
al 7j

M5

This proves (ii). O

The linear map in (3.1) is called the differential of f at xy and denoted by D f(x).
The matrix J¢(xo) is called the Jacobian matriz of f at x.

Ezamples. 1. Each linear map is totally differentiable.
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2. Let My(R) be the N x N matrices over R (note that My (R) = RN?). Let
f: My(R) = My(R), X +— X2
Fix Xg € My (R), and let H € My (R) \ {0}, so that
f(Xo+ H) = XZ + XoH + HX, + H?

and hence
f(Xo+H) - f(Xo) = XoH + HXo + H.

Let
T: My(R) = My(R), X +— XoX + X X,.

It follows that, for H — 0,

If(Xo — H) — f(Xo) —TX)|| _ |IH?]
1H]] 1H]]
H
= (| 7 |
~= [l
~——
bounded
— 0.

Hence, f is differentiable at Xy with D f(X)X = XoX + X Xj.

The last of these two examples shows that is is often convenient to deal with the
differential coordinate free, i.e. as a linear map, instead of with coordinates, i.e. as a
matrix.

The following theorem provides a very usueful sufficient condition for a function to be
totally differentiable.

Theorem 3.4.3. Let @ # U C RY be open, and let f: U — RM be partially differentiable

such that aa—gl, ey 8%\; are continuous at xg. Then f is totally differentiable at xq.

Proof. Without loss of generality, let M = 1, and let U = B¢(x) for some ¢ > 0. Let
h=(hi,...,hy) € RN with 0 < ||h]| <e. For k=0,...,N, let

k
2 =20+ Y hje;.
=1

It follwos that

[ IE(O) = :I;‘()’

o x(N):xo—i—h,
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e and z*=1 and 2 differ only in the k-th coordinate.

For each k=1,...,N, let
gk (—€,6) = R, t— f(w(k_l) + teg);

it is clear that g (0) = f(z*~Y) and g (hy) = f(z®). By the mean value theorem, there
is & with €| < |hg| such that

FE®) — f@* D) = gp(hi) — gi(0)
= ge(&)he
or

= o (=5~ 1 grep) by

This, in turn, yields

N
flao+h) = flxo) = D (f@?)— f(zU™D))

It follows that

|f (o + ) = f(xo) = 32301 (o) hy|

|7
LN~ (9, oy
Al ;(5]( T+ gGeg) 9 (!EO)> h;
- (2o _9r OF - _of >
; ||h||‘< 331(x taey) axl(O)’ "8:13]\/(33 +énen) ox (o) | -
0 o P P
< ‘I Tfl(m(0)+£1e1)—a—xl( 0); -,%(wu\[—l)%—&ve]\/)—a?( 0)>'|
—0 —0
— 0,
as h — 0. -

Very often, we can spot immediately that a function is continuously partially differ-
entiable without explicitly computing the partial derivatives. We then know that the

function has to be totally differentiable (and, in particular, continuous).

Theorem 3.4.4 (chain rule). Let @ # U C RN and @ # V C RM be open, and let
g:U = RM and f: V — RE be functions with g(U) C V such that g is differentiable and
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xo € U and f is differentiable at g(xo) € V. Then fog: U — RE is differentiable at x
such that

D(f o g)(wo) = Df(g9(x0))Dg(z0)
and
Jpog(x0) = Jr(9(20))J4(0)-
Proof. Since g is differentiable at xg, there is 6 > 0 such that

|lg(wo + h) — g(z0) — Dg(xo)hl|
[[R]

<1

for 0 < ||h|| < . Consequently, we have for all h € R with 0 < ||h|| < 6 that

llg(zo + h) — g(xo) — Dg(xo)h|| + [|[Dg(xo)hl|
(14 [[[Dg(zo)[)]IA]]-
=:C

llg(wo +h) —g(zo)|| <
<

Let € > 0. Then there is § € (0,6) such that

1£(g(x0) + ) = F(g(x0)) ~ Df (glwa))hl] < 1]
for ||h|| < Cd. Choose ||h|| < 6, so that ||g(xo + h) — g(x0)|| < C4. It follows that
[1f(g(zo + 1)) = f(g(w0)) = Df(g(x0))lg(xo +h) —g(zo)lll < %Hg(ﬂ?o +h) = g(zo)l|
< €lhll.

It follows that

o 00+ ) = £ (glav)) = DY (glao))lgwo + h) = glav)]
i Tl

h#£0

= 0.

Let h # 0, and note that
1/ (g(zo + h)) — f(g(x0)) — Df(g(x0))Dg(wo)h|]

[[h]]
f(g(xzo +h)) — flg(x0)) — Df(g(x0))lg(xo + h) — g(x0)]
< TAl (32
. I|D f(g(x0))[g(z0 + h) — £|J|(]f|(|))] — D f(g(z0))Dg(zo)hl| (3.3)

As we have seen, the term in (3.2) tends to zero as h — 0. For the term in (3.3), note
that

1D f(g(x0))lg(x0 + 1) — g(x0)] — D f(g(x0))Dg(x0)hl|

[IA]
< IDf gl lg(zo + h) — g|]|(23|(|)) — Dyg(xo)h||
—0
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as h — 0. Hence,

i 1 (@0 + 1)) — f(g(z0)) — Df(g(z0))Dg(zo)hl| _
5%, 172

h#£0

0

holds, which proves the claim. O

Definition 3.4.5. Let @ # D C RY, let 2y € int D, and let v € RY be a unit vector,

i.e. with |[v|| = 1. The directional derivative of f: D — RM at zq in the direction of v is
defined as h

iy £ (%0 + hv) — f(2o)

h—0 h

h#0

and denoted by D, f(z0).

Theorem 3.4.6. Let @ # D C RN, and let f: D — R be totally differentiable at
xg € int D. Then D, f(xq) exists for each v € RN with ||[v|| = 1, and we have

D, f(x0) = Vf () - v.

Proof. Define
g:R—)IRN, t— xo + to.

Choose € > 0 such small that g((—e,€)) C int D. Let h := f o g. The chain rule yields
that h is differentiable at 0 with

R'(0) = Dh(0)
(

Jj=1 i ﬁ/—/
=v;
N
= > gy
=1 %
= Vf(zo)-v
Since L
h/(o) — hlLI(l) f(xo + ’l;l) B f(xo) — va(x0)7
h#0
this proves the claim. O

Theorem 3.4.6 allows for a geometric interpretation of the gradient: The gradient
points in the direction in which the slope of the tangent line to the graph of f is maximal.
Existence of directional derivatives is stronger than partial differentiability, but weaker
than total differentiability. We shall now see that — as for partial differentiability — the

existence of directional derivatives need not imply continuity:
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Ezample. Let
zy?
f:R? 5 R, (,y) — aZ+yT (w,y) #0 .
0, otherwise.

Let v = (v1,v2) € R? such that ||[v]| = 1, i.e. v} +v3 = 1. For h # 0, we then have:

fO+hv)—f0) 1 h3v0}
h ~ hh20? + htd
N ?)11)%

Hence, we obtain

U2 .
= otherwise.

h—0 h

Duf(0) = lim L0 = 1(0) :{ 0, v =0,

In particular, D, f(0) exists for each v € R? with |[v|| = 1. Nevertheless, f fails to be

continuous at 0 because

3.5 Taylor’s theorem

We begin witha review of Taylor’s theorem in one variable:

Theorem 3.5.1 (Taylor’s theorem in one variable). Let I C R be an interval, let n € Ny,
and let f: I — R be n+1 times differentiable. Then, for any x,xy € I, there is £ between

x and xqg such that

n k) (g (n+1)

Proof. Let z,z¢ € I such that z # xy. Choose y € R such that

) (g
fla) =3 I o g Yo gy,

— k! (n+1)!
Define "
P = 1) - Y e -0t - e
k=0

so that F(xzg) = F(z) = 0. By Rolle’s theorem, there is £ strictly between x and z( such
that F(£) = 0. Note that

n (k+1) (k)
PO = —10-3 (fk—,“)(:c —0)" - H(w - t>k—1> o)
= _7f(n:!)(t) (x—1)" + %(x —t)",
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so that

(n+1)
T g L gy

and thus y = f(*+1(¢). O

0=

For n = 0, Taylor’s theorem is just the mean value theorem.
Taylor’s theorem can be used to derive the so-called second derivative test for local

extrema:

Corollary 3.5.2 (second derivative test). Let I C R be an open interval, let f: I — R
be twice continuously differentiable, and let xg € I such that f'(xo) = 0 and f"(x¢) < 0

[f"(x0) > 0]. Then f has a local mazimum [minimum]| at xg.

Proof. Since f” is continuous, there is € > 0 such that f”(z) < 0 for all z € (g —¢,x9+€).
Fix z € (xg — €, 29 + €). By Taylor’s theorem, there is £ between = and z( such that

<0 >0
PN
Fla) = Flao) + o)z — a0) + T E 2T )
=0 —,_SO
which proves the claim. O

This proof of the second derivative test has a slight drawback compared with the usual
one: we require f not only to be twice differentiable, but twice continuously differentiable.
It’s advantage is that it generalizes to the several variable situation.

To extend Taylor’s theorem to several variables, we introduce new notation.

A multiinder is an element o = (a,...,ay) € NY. We define
la| == a1+ +an and ol i=aq!- - ay!l.

If f is || times continuously partially differentiable, we let

_ovf ok

= av
ox® Ox{™t -+ 0xly

D%f:

Finally, for z = (21,...,2n) € RN, we let 2% := (2, ..., 23").
We shall prove Taylor’s theorem in several variables through reduction to the one

variable situation:

Lemma 3.5.3. Let @ # U C RY be open, let f: U — R be n times continuously partially
differentiable, and let x € U and ¢ € RN be such that {x +t£:t € [0,1]} C U. Then

g:[0,1] = R, t+— f(x+1tg)

18 n times continuously differentiable such that

d" !
—(t) = ; =D + )€,
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Proof. We prove by induction on n that

d"g

N
() = > Dy Dy fw 1), &

jlv"'?jnzl
For n = 0, this is trivially true.
For the induction step from n — 1 to n note that
N
d"g d
W(t) = Z Djnfl "'Djlf($+t£)£j1 ...gjnfl

dt
Jiseensdn—1=1

N N
= > 0| Y DD+t & | &
j=1 J1s-eJn—1=1
by the chain rule,

N
= Y Dj, - Dy fla+t), -
J1seein=1

Since f is n times partially continuosly differentiable, we may change the order of differ-

entiations, and with a little combinatorics, we obtain

N
d"g
W(t) = Z Dj, -+ Dj f(x + 1), -+ &,
G1reenin=1
n' a1 anN a1 aN
- Z le DY f(r + )6 - &N
|a|=1
n! o
= Y SDf(z+tE)E.
| a!
|a)=n
as claimed. O

Theorem 3.5.4 (Taylor’s theorem). Let @ # U C RN be open, let f: U — R be
n + 1 times continuously partially differentiable, and let x € U and € € RN be such that
{x+t£:t€0,1]} CU. Then there is 6 € [0,1] such that
10%f 1 04f
- —ZJ o - @, 4
fe+§ =3 —o2@E+ Y, —o2(r+08¢ (34)
|| <n |a|=n+1
Proof. Define
g:[0,1] = R, ¢ f(x+tE).

By Taylor’s theorem in one variable, there is 6 € [0, 1] such that

= gM0)  g"he)
9(1)_;_0 R o YT
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By Lemma 3.5.3, we have for k =0,...,n that

Q(k)(o) _ Z 1Lo*f

BT 2 aigee
as well as (n1)
g"m0) 1o%f o
TNl = 2 alge OO
|a|=n+1
Consequently, we obtain
B B 10%f o 10%f o
fle+8) =g(1) = % o (@€ - —Z+1 o (@ OE

as claimed.

We shall now examine the terms of (3.4) up to order two:

e Clearly, ,
1 o
> 5%(@5‘“ = f(x)
lal=0
holds.
e We have N
10%f o of - |
%15@( IS P %(iﬂ)@ = (grad f)(z)- ¢

e Finally, we obtain

10%F, 192 o2 f
ZJ@(@S = 2587?(95)532+Zkﬁ(33)§j5k

loo|=2 j=1 i< a:](‘)a;
N
1 82 1 62]0
= 32 52 WE 3 (£)€i6k
2;89:3 T2 0wy,
N
1 0> f
= 5 (2)&;8k
2 j;l 0z 0z, J
*f 22 f
1 a_x%(x)v R m(:ﬂ) 51
- 2 82f: T a2f: :
Oz10T N (:E)7 teey m(!ﬂ) TN
= S (Hess f)(z)¢ ¢,
where i 2
g_l‘/%(:n)’ ’ 893\75501( )
(Hess f)(x) = ;
2 2
890?8{(:1\,( )7 ; %(l‘)

&1

TN



This yields the following, reformulation of Taylor’s theorem:

Corollary 3.5.5. Let @ # U C RY be open, let f: U — R be twice continuously partially
differentiable, and let x € U and & € RN be such that {x +t&:t €[0,1]} C U. Then there
is 6 € [0,1] such that

flo+€) = F(@) + (grad f)(@) &+ 5 (Hess )z -+ 06 €

3.6 Classification of stationary points

In this section, we put Taylor’s theorem to work to determine the local extrema of a
function in several variables or rather, more generally, classify its so called stationary

points.

Definition 3.6.1. Let @ # U C RY be open, and let f: U — R be partially differentiable.
A point xg € U is called stationary for f if Vf(xg) = 0.

As we have seen in Theorem 3.2.4, all points where f attains a local extremum are

stationary for f.

Definition 3.6.2. Let @ # U C RY be open, and let f: U — R be partially differentiable.

A stationary point x¢g € U where f does not attain a local extremum is called a saddle

(for f).

Lemma 3.6.3. Let @ # U C RY be open, let f: U — R be twice continuously partially
differentiable, and suppose that (Hess f)(xo) is positive definite with xo € U. There there
is € > 0 such that Be(xg) C U and such that (Hess f)(z) is positive definite for all
x € Be(xg).

Proof. Since (Hess f)(xz¢) is positive definite,

0? 0?

%%(:EQ), R W(;EO)
det . >0
92 92
Ox10x), (:EO)v EER) 6_951%(:170)

holds for kK = 1,..., N by Theorem A.3.8. Since all second partial derivatives of f are

continuous, there is, for each k =1,..., N, an element ¢ > 0 such that B, (x¢9) C U and
92 9?2
8_50%(%)’ ey —8xk8x1 (a:)
det : : >0
92 fod
—8x18xk (Z'), ey %g(flf)
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for all x € B, (z9). Let € := min{ey,...,en}. It follows that
92 9?
3—9@(117), cee m(fﬂ)
det : : >0
92 9?
axlamk (x)7 MR} a_xz(l;)

forall k =1,...,k and for all x € B.(z¢) C U. By Theorem A.3.8 again, this means that
(Hess f)(x) is positive definite for all = € Be(xo). O

As for one variable, we can now formulate a second derivative test in several variables:

Theorem 3.6.4. Let @ # U C RY be open, let f: U — R be twice continuously partially
differentiable, and let xog € U be a stationary point for f. Then:

(i) If (Hess f)(xq) is positive definite, then f has a local minimum at xg.
(ii) If (Hess f)(xzo) is negative definite, then f has a local mazimum at x.
(iii) If (Hess f)(xo) is indefinite, then f has a saddle at xg.

Proof. (i): By Lemma 3.6.3, there is € > 0 such that B.(zg) C U and that (Hess f)(x) is
positive definite for all z € B.(zo). Let £ € RY be such that ||¢|| < e. By Corollary 3.5.5,
there is 0 € [0, 1] such that

Flao+€) = flxo) + (grad f)(z0) & +5 (Hess f)(wo + 69 € > f(zo).

=0 >0

Hence, f has a local minimum at xg.

(ii) is proved similarly.

(iii): Suppose that (Hess f)(zo) is indefinite. Then there are A;, A2 € R with A\; <
0 < A2 and non-zero &1,& € RY such that

(Hess f)(z0)&; = As&;

for j = 1,2. Let e > 0. Making ||¢;|| for j = 1,2 smaller if necessary, we can suppose
without loss of generality that {zg +t&; : t € [0,1]} C Be(zg) for j = 1,2. Since

<0, j=1,

(Hess f)(x0)&5 - & = AjlI&11° { S0, j=2.

the continuity of the second partial derivatives yields ¢ € (0, 1] such that

(Hess f)(xo +t&1)&1 &1 <0 and (Hess f)(xo +t&2)&2 - &2 > 0
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for all ¢t € R with [t| < . From Corollary 3.5.5, we obtain € € [0, 1] such that

52 . Jj=1,
(o +8;) = F(zo) + - (Hess f)(zo -+ 606))¢; - & { R,
Consequently, for any € > 0, we find x1,x2 € Bc(z0) such that f(x1) < f(zg) < f(z2).

Hence, f must have a saddle at xq. O

Example. Let

fRP SR, (x,y,2) — 22+ 9% + 2% + 2zy2,
so that

Vi(x,y,z) = 2z + 2yz,2y + 2zx, 2z + 2zy).

It is not hard to see that

Vf(z,y,z) =0
< (z,y,2) € {(0,0,0),(—1,1,1),(1,-1,1),(1,1,—1),(—1,—-1,—1)}.

Hence, (0,0,0), (—1,1,1), (1,—1,1), (1,1,—1), and (—1,—1,—1), are the only stationary
points of f.

Since
2 2z 2y

(Hess f)(z,y,2) = | 22 2 2z |,
2y 2z 2

it follows that
2 0

(Hess f)(0,0,0) = | 0 2
0 0 2

o O

is positive definite, so that f attains a local minimum at (0,0, 0).
To classify the other stationary points, first note that (Hess f)(x,y, z) cannot be neg-
ative definite at any point because 2 > 0. Since

2 2
det Tl =442
2z 2

is zero whenever 22 = 1, it follows that (Hess f)(x,y,2) is not positive definite for all

non-zero stationary points of f. Finally, we have

2 2z 2y
2 2z 2z 2z 2z 2
det | 2z 2 2z = 2det — 2zdet + 2y
20 2 2y 2 2y 2z
2y 2z 2

= 2(4 —42?) — 22(4z — dzy) + 2y(4za — 4y)
= 88— 822 — 822 + 8uwzy + Sayz — 8y
= 8(1 — 2% —y? — 22 4 2xy2).
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This determinant is negative whenever |z| = |y| = |z|] = 1 and xyz = —1. Consequently,

(Hess f)(z,vy, z) is indefinite for all non-zero stationary points of f, so that f has a saddle
at those points.

Corollary 3.6.5. Let @ # U C R? be open, let f: U — R be twice continuously partially
differentiable, and let (xo,yo) € U be such that

%(ﬂ?o,yo) = g—g(xo,yo) =0.

Then the following hold:

. 82 82 82 82 2
(i) If a—mé(azo,yo) > 0 and a—m{(azo,yo)a—ﬁ(:ﬂo,yo) — (am—gy(mo,yo)) > 0, then f has a
local minimum at (g, yo).

B 2 2 2 2 2
(i) If %(wo,yo) < 0 and %(wo,yo)g—?ﬁc(:ﬂo,yo) — (aam—gy(mo,yo)) > 0, then f has a
local maximum at (o, yo).

2

o 2 2 2
(i) If %(wo,yo)g—?ﬁc(:ﬂo,yo) — <§x—£(azo,yo)> < 0, then f has a saddle at (g, yo).
Example. Let
D:={(z,y) eR?*:0< z,y,z+y <7},
and let
f:D—R, (x,y)+— (sinz)(siny)sin(z + y).
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(0,m

(0,0) (m,0) Y

Figure 3.3: The domain D

It follows that f|sp = 0 and that f(x) > 0 for (z,y) € int D.
Hence f has the global minimum 0, which is attained at each point of 0D.
In the interior of D, we have

af

%(az, y) = (cosx)(siny) sin(x + y) + (sinz)(siny) cos(xz + y)
and iy
a—]yt(x, y) = (sinz)(cosy) sin(z + y) + (sinz)(siny) cos(z + y).

It follows that %(m, y) = g—g(x, y) = 0 implies that
(cos z)sin(x 4+ y) = —(sinz) cos(x + y)

and
(cosy)sin(z + y) = —(siny) cos(z + y).

Division yields
cos T sinx

cosy  siny
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and thus tan x = tany. It follows that x = y. Since %(JE, x) = 0 implies

0 = (cosz)sin(2z) + (sinx) cos(2x) = sin(3x),

which — for  + 2 € [0,7] — is true only for x = %, it follows that (%, %) is the only
stationary point of f.
It can be shown that o
T
o2 (5:5) =~ VB0
and )
2 2 2
ﬂ(:ﬁ) 0_f<z,z) (2 (Z.5) =%>o0
0x2 \373/ 0y \3’ 3 Oxdy \3 3 4

w

Hence, f has a local (and thus global) maximum at (%, %), namely f (%, %) = 38 .
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Chapter 4

Integration in RN

4.1 Content in RY

What is the volume of a subset of RV?
Let
1= [al,bl] X oo X [CLN,bN] C RN

be a compact N-dimensional interval. Then we define its (Jordan) content u(I) to be

N
p(1) =T — a).
j=1

For N = 1,2, 3, the jordan content of a compact interval is then just its intuitive lenght /-
area/volume.
To be able to meaningfully speak of the content of more general set, we first define

what it means for a set to have content zero.

Definition 4.1.1. A set S C R has content zero [u(S) = 0] if, for each ¢ > 0, there are
compact intervals I1,...,I, C RY with

S C CJ I; and Zu(Ij) < e.
j=1

Examples. 1. Let © = (21,...,2x) € RY, and let € > 0. For § > 0, let
I5 := [w1—5,x1+(5] ><~~~><[xN—5,xN+5].

It follows that = € I5 and u(I5) = 2V6V. Choose § > 0 so small that 2V§" < ¢ and
thus p(Is) < e. It follows that {x} has content zero.
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2. Let Si,...,Sm C RY all have content zero. Let € > 0. Then, for j = 1,...,m, there
are compact intervals I f] ), . ,I,(L]j) C RY such that

nj 5
. o
S; C kL_Jl 1Y and ];u(l,g’)) <

It follows that

m Ny
Siu--USLc U
j=1k=1
and _
NS )
Z u(ly”) < m =
Jj=1k=1

Hence, S1U---US,, has content zero. In view of the previous examples, this means

in particular that all finite subsets of RY have content zero.

3. Let f:[0,1] — R be continuous. We claim that {(z, f(z)) : € [0,1]} has content

zero in R2.

Let € > 0. Since f is uniformly continuous. there is ¢ € (0,1) such that |f(z) —
f(y)] < § for all z,y € [0,1] with [z —y| < é. Choose n € N such that nd < 1 and
(n+1)0>1. For k=0,...,n, let

I, = [k6, (k + 1)3] x [f(ka) - i,f(ké) + i .

Let = € [0,1]; then there is k € {0,...,n} such that = € [kd, (k + 1)d] N [0,1], so
that |x — kd| < d. From the choice of 0, it follows that |f(x) — f(kd)| < %, and thus
f(x) € [f(kd) — <, f(kS) + §]. It follows that (z, f(z)) € Ij.

€
47
Since z € [0, 1] was arbitrary, we obtain as a consequence that

{@.f @)z e} ¢ | I

k=0
Moreover, we have
> Iy < 05 =+ 1)i5 <(1+0); <e
k=0 k=1

This proves the claim.

4. Let 7 > 0. We claim that {(x,y) € R?: 22 + 32 = r2} has content zero.

Let
Sy = {(z,y) e R*: 22 +¢? =12, y > 0}.

83



Let

fil=rr] =R, xw—\12—22
The f is continous, and S1 = {(z, f(z)) : © € [—r,r]}. By the previous example,
1(S1) = 0 holds. Similarly,

Sy = {(x,y) € R® : 2® +* =17, y < 0}
has content zero. Hence, S = S7 U Sy has content zero.

For an application later one, we require the following lemma:

Lemma 4.1.2. A set S € RY does not have content zero if and only if, there is eg > 0
such, for any compact intervals I, ..., I, C RN with S C U?:l I;, we have

n

j{: 1(L;) > eo.

Jj=1
int I,NS#&

J
Proof. Suppose that S does not have content zero. Then there is €y > 0 such that, for
any compact intervals Ip,..., I, C RN with S C U?:l I;, we have Z?:l w(I;) > €.
Set €y = %0, and let I1,...,I, € RN a collection of compact intervals such that

SchU---UI,. We may suppose that there is m € {1,...,m} such that

int Ij ns 75 167)
for j =1,...,m and that
[j ns c 8Ij
for j =m+1,...,n. Since boundaries of compact intervals always have content zero,
n n
U nnsc |J oy
j=m+1 Jj=m+1
has content zero. Hence, there are compact intervals Ji, ..., J; C RY such that
n k n ¢
NS : )< 2
U j C UJ] and Z,u(JJ)< 5
j=m-+1 J=1 J=1
Since
Schu---Ul,UJiU---U.Jg,
we have
m k
o <> I+ > (),
j=1 j=1
——
<
which is possible only if
m ~
0
> () > 5 =0
j=1
This completes the proof. O
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4.2 The Riemann integral in RY

Let
I:= [al,bl] Xoee [(IN,bN].

For j=1,...,N, let
aj =tjo <tj1 <. <tjn; = b;

and
Pj = {tj,k k=0,... ,’I’Lj}.

Then P :="P; x --- Py is called a partition of I.

Each partition of I generates a subdivision of I into subintervals of the form

(1 kst k1) X [E2,k0s t2 ko 1] X =+ X [EN k> EN k4105

these intervals only overlap at their boundaries (if at all).
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Figure 4.1: Subdivision generated by a partition

There are nj - - - ny such subintervals generated by P.

Definition 4.2.1. Let 7 € RY be a compact interval, let f: I — RM be a function, and
let P be a partition of I that generates a subdivision (1,,),. For each v, choose z, € I,.
Then

S(f,P) = flx,)u(l,)

is called a Riemann sum of f corresponding to P.

Note that a Riemann sum is dependent not only on the partition, but also on the
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particular choice of (x,),.
Let P and Q be partitions of the compact interval I € RY. Then Q called a refinement
of Pif P, C Qjforall j=1,...,N.

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

P refinement of P
Figure 4.2: Subdivisions corresponding to a partition and to a refinement

If P; and Py are any two partitions of I, there is always a common refinement Q of
Py and Ps.
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,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

common refinement of

ffffffffffffffffff P, and 7,

Figure 4.3: Subdivision corresponding to a common refinement

Definition 4.2.2. Let I ¢ RY be a compact interval, let f: I — RM be a function,
and suppose that there is y € RM with the following property: For each € > 0, there is a
partition P, of I such that, for each refinement P of P, and for any Riemann sum S(f,P)
corresponding to P, we have ||S(f,P) —y|| < e. Then f is said to be Riemann integrable

on I, and y is called the Riemann integral of f over I.

In the situation of Definition 4.2.2, we write

y::/If::/Ifd,u::/If(azl,...,:L"N)du(ajl,...,a:N).

The proof of the following is an easy exercise:

Proposition 4.2.3. Let I C RY be a compact interval, and let f: I — RM be Riemann
integrable. Then flf s unique.

Theorem 4.2.4 (Cauchy criterion for Riemann integrability). Let I C RN be a compact
interval, and let f: I — RM be a function. Then the following are equivalent:

(i) f is Riemann integrable.
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(ii) For each € > 0, there is a partition Pe of I such that, for all refinements P and
Q of Pe and for all Riemann sums S(f,P) and S(f, Q) corresponding to P and Q,
respectively, we have ||S(f, P) — S(f, Q)|| < e.

Proof. (i) = (ii): Let y := f[ f, and let € > 0. Then there is a partition P, of I such
that

IS(£.P) —yll < 5
for all refinements P of P, and for all corresponding Riemann sums S(f,P). Let P and Q
be any two refinements of P, and let S(f,P) and S(f, Q) be the corresponding Riemann
sums. Then we have
€

2

:67

IS(£.P) = S(£, QI < IS(£,P) = yll +IS(£, Q) —yll < 5 +

which proves (ii).
(ii) = (i): For each n € N, there is a partition P,, of I such that

IS(P) ~ S(7, Q) < 5

for all refinements P and Q of P, and for all Riemann sums S(f,P) and S(f, Q) cor-
responding to P and O, respectively. Without loss of generality suppose thatP,, 1 is a
refinement of P,. For each n € N, fix a particular Riemann sum S,, := S(f,P,). For
n > m, we then have

n—1 n—1

1
||Sn _SmH < Z ||Sk+1 —SkH < Z ok
k=m k=m
so that (S,)52, is a Cauchy sequence in RM. Let y := limy_00S,. We claim that

Y= fy g
Let € > 0, and choose ng so large that 517 < § and [|Sp, — y|| < 5. Let P be a
refinement of P, and let S(f,P) be a Riemann sum corresponding to P. Then we have:
IS P) = yll < IS(f, P) = Snoll + [|9ne — yl| <

1 €
<315 <3 <

[l

This proves (i). O

The Cauchy criterion for Riemann integrability has a somewhat surprising — and
very useful — corollary. For its proof, we require the following lemma whose proof is

elementary, but unpleasant (and thus omitted):

Lemma 4.2.5. Let I C RN be a compact interval, and let P be a partiation of I subdi-

viding it into (I,),. Then we have

p(l) = Z p(ly).
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Corollary 4.2.6. Let I C RN be a compact interval, and let f: I — RM be a function.

Then the following are equivalent:
(i) f is Riemann integrable.

(ii) For each € > 0, there is a partition P. of I such that ||S1(f,Pe) — So(f,Pe)|| < € for
any two Riemann sums S1(f,Pe) and Sa(f,Pe) corresponding to P..

Proof. (i) = (ii) is clear in the light of Theorem 4.2.4.

(i) = (i): Without loss of generality, suppose that M = 1.

Let (I,), be the subdivions of I corresponding to P.. Let P and Q be refinements of
P. with subdivision (J,,), and (Ky)y of I, respectively. Note that

S(£P)=S(£,Q) = > Fla)ul) =Y Fu)u(Ky)
m A

=y ( PBRICANCAEES f(yA)M(KA))’

v JuCly KyCl,

For any index v, choose 2}, 2, € I, such that

f(zli) = max{f(xu), f(y)\) : JM?'K)\ C [I/}

and
f(ZV*) = min{f(xu), f(y)\) : J/MK)\ - [I/}

For v, we obtain

(f () = F(23))al1)
= flzs) Y w(Jy) = f(z5) Y w(Ky), by Lemma 4.2.5,

Ju.Cl, KyCI,
< D fapp() = Y0 Flyn(Ky)
Ju.CI, KyCI,
< Fz) Y mle) = flaw) Y w(Ky)
JuCl, Ky\CI,

= (f(z) = f(z))(ly),
so that

S Flau(T) = Y0 Flunp(EN)| < (F(z5) = fz))u(ly).

JuCly KyCl,
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It follows that

1S(f,P) = 5(f, Q)

IN
F,ﬂ
~
—
N
<%
S~—
~
—
N

<
*
N—
S~—
=
—
t)\(
N—

which completes the proof. O

Theorem 4.2.7. Let I C RN be a compact interval, and let f: I — RM be continuous.

Then f is Riemann integrable.

Proof. Since I is compact, f is uniformly continuous.
Let € > 0. Then there is 6 > 0 such that ||f(z) — f(y)|| < on for x,y € I with
|z — yl| < 0.

Choose a partition P of I with the following property: If (1,,), is the subdivision of I
generated by P, then, for each

1= 0 x - x (a0,

we have

max |a(-y) - bg-y)| < i

j=1,sN 7 VN

Let S1(f,P) and Sa(f,P) be any two Riemann sums of f corresponding to P, namely
Si(f;P) = flw)u(l,) and  So(f,P) = fly,)u(l)

with x,,y, € I,,. Hence,

N N 52
|2y =yl = Z(ﬂfu,j —Yuj)? < Z =0
- j=1

Jj=1

2|

holds, so that

151(£,P) = So(£, P < DI () = Fu)|(T)
< mzyz#(]u)

= €.

This completes the proof. [l
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Our next theorem improves Theorem 4.2.8 and has a similar, albeit technically more

involved proof:

Theorem 4.2.8. Let I C RN be a compact interval, and let f: I — RM be bounded
such that S := {x € I : f is discontinous at x} has content zero. Then f is Riemann

integrable.

Proof. Let C' > 0 be such that ||f(z)|| < C for z € I, and let € > 0.

Choose a partition P of I such that

€
I, —
>, nly) < 4(C+1)

I,NS#o

holds for the corresponding subdivision (I,,), of I, and let

I,NS=2
— ; —
P | oo
| “\\ I [N I I
| “\\ I [N I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
o | ho
7777777777 T":"FTT”””’””f”””\T”’T”””””T””””
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
o | L
——————————— T R R 1 T EEbtt EEE LR
| “\\ I I I
| “\\ I I I
AN 3 S 3
RN : : :
: ::\\ | | | I
[~~~ "~~~ "1 A \ P T ””””
’*******””:”:’:’ i B — L S T =---
77777777777 1 \77777777777\7777777\ 777\7777777777\77777777
********** FR | A i
4 K | A |
S — i “F ::::::::::::::::::::I‘:::::::::::::::‘I::::::::
I [ I [ I I
[ I [ I I
[ I [ I I
vl | A
vl | o
,,,,,,,,,,, v _______
I | oo
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
| “\\ I [ I I
R | o

Figure 4.4: The idea of the proof of Theorem 4.2.8

Then K is compact, and f|x is continous; hence, f|x is uniformly continous.
Choose 0 > 0 such that || f(z) — f(y)|| < s for 2,y € K with [|lz —y|| < . Choose
a partition Q refining P such that, for each interval Jy in the corresponding subdivision
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(Jx)x of I with
Tyi=[apV b - x a0,

we have

max \a(-A) — b(»)‘)\ < i

j=1,..N 7 J VN

Let S1(f, Q) and Sa(f, Q) be any two Riemann sums of f corresponding to Q, namely

Q)= flau() and  Sy(f,Q)=> Flyau()
X X

It follows that

151(f, Q) = Sa(f, Q)| < Zuf (22) = F)l ()

= ZHM PO + S (@) = Fll p()

INCK <2C JNCK (
€
< 20 ) p(N)+ 5 > ully)
Tk 2u(I) ;
A \CK
<3
D>
IL,NS#o
—_—
<acFn
- € . €
2 2
= 67
which proves the claim. O

Let D C RY be bounded, and let f: D — RM be a function. Let I € RN be a
compact interval such that D C I. Define

f(z), ze€D,

0, x¢D. (1)

f:I—RM, :1:»—>{

We say that f is Riemann integrable on D of f is Riemann integrable on I. We define

bl

It is easy to see that this definition is independent of the choice of I.

Theorem 4.2.9. Let @ # D C RN be bounded with ;1(0D) = 0, and let f: D — RM be

bounded and continuous. Then f is Riemann integrable on D.
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Proof. Define f as in (4.1). Then f is continuous at each point of int D as well as at each

point of int(I \ D). Consequently,
{z € I: fis discontinuous at =} C dD

has content zero. The claim then follows from Theorem 4.2.8. O

Definition 4.2.10. Let D C RY be bounded. We say that D has content if 1 is Riemann
integrable on D. We write
u(D) = / 1.
D

Sometimes, if we want to emphasize the dimension N, we write uy (D).

For any set S C RY, let its indicator function be

1, x€S8,

RY SR, 22—
s {O, x ¢ S.

If D ¢ RY is bounded, and I C R¥ is a compact interval with D C I, then Definition

4.2.10 becomes
WD) = /1 XD-

It is important not to confuse the statements “D does not have content” and “D has
content zero”: a set with content zero always has content.
The following theorem characterizes the sets that have content in terms of their bound-

aries:

Theorem 4.2.11. The following are equivalent for a bounded set D C R :
(i) D has content.
(ii) 0D has content zero.

Proof. (ii) = (i) is clear by Theorem 4.2.9.
(i) = (ii): Assume towards a contradiction that D has content, but that 0D does

not have content zero. By Lemma 4.1.2, this means that there is ¢y > 0 such that, for any

compact intervals I1,...,I, C RY with 0D C U;LZI I, we have
> Iy = u(I) > e.
j=1 j=1

(int I;)NoD#2

Let I ¢ RY be a compact interval such that D C I. Choose a partition P of I such that

S(xp.P) — u(D)| < 3
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for any Riemann sum of yp corresponding to P. Let (I,,), be the subdivision of I corre-
sponding to P. Choose support points x,, € I,, with x,, € D whenever int I, N 9D # &.
Let

S1 (XD; P) = Z XD(xV):u([V)'

Choose support points vy, € I, such that y, = x, if int I, N0D = @ and y, € D¢ if
int I, NOD # @, and let

S2(XD7 P) = Z XD(yV)lu([V)'

It follows that
Si(xp,P) = Salxp,P) = Y, () > .

v
(int I,)NOD#Z

On the other hand, however, we have

1S1(xp,P) — S2(xp,P)| < [S1(xD,P) — u(D)| + [S2(xp,P) — u(D)| < eo,
which is a contradiction. O

Before go ahead and actually compute Riemann integrals, we sum up (and prove) a

few properties of the Riemann integral:
Proposition 4.2.12 (properties of the Riemann integral). The following are true:

(i) Let D C R be bounded, let f,g: D — RM be Riemann integrable on D, and let
A€ R, Then Mf + pg is Riemann integrable on D such that

Jossug=rf .

(i) Let D C RN be bounded, and let f: D — R be non-negative and Riemann integrable
on D. Then fD f is non-negative.

(iii) If f is Riemann integrable on D, then so is ||f|| with

V[ ali< [

(iv) Let Dy, Dy C RN be bounded such that u(Dy N Do) =0, and let f: D1 U Dy — RM
be Riemann integrable on D1 and Ds. Then f is Riemann integrable on D1 U Do

such that
[ a=f ]
D1UDo D Do
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(v) Let D C RN have content, let f: D — R be Riemann integrable, and let m, M € R
be such that
m< f(x) <M
forx € D. Then
mu(D) < [ < 2u(D)
holds.

(vi) Let D C RM be compact, connected, and have content, and let f : D — R be

continuous. Then there is xo € D such that
| £ =t
D

Proof. (i) is routine.

(ii): Without loss of generality, suppose that I is a compact interval. Assume that
f[ f <0. Let € := — f[ f < 0, and choose a partition P of I such that for all Riemann
sums S(f,P) corresponding to P, the inequality

5P - [1] <5

holds. It follows that
S(fvp) < _% <07

whereas, on the other hand,
S(f,P)=>_ fle)ul,) >0,

where (1), is the subdivision of I corresponding to P.

(iii): Again, suppose that D is a compact interval I.

Let € > 0, and let fi,..., far denote the components of f. By Corollary 4.2.6, there
is a partition P, of I such that

€

1S1(fj, Pe) — Sa(fj, Pe)| < i

for j =1,..., M and for all Riemann sums S1(f;, Pe) and Sa(f;, Pe) corresponding to P-.
Let (I,), be the subdivision of I induced by P.. Choose support points x,,y, € I,. Fix
je{l,...,M}. Let 2}, zyx € {z,,y,} be such that

fi(zp) = max{fj(x,), fi(y)}  and  fj(z) = max{fj(z,), fj(y.)}
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We then have that
Z i) = fil)luL) = D (Fi(2) = filz)u(l)
= ij(ZZ)M(L/) - ij(zu*):u(l )
M

It follows that

SIS Ch) = S )| £ 3150 - ()
< ZZ|fj (z,) — f; (o) (1)

ll]l

< ZZ|fj ) = f; (o) (1)

j=1 v
M—
< VT

g 6’

so that || f|| is Riemann integrable by the Cauchy criterion.
Let € > 0 and choose a partition P of I with corresponding subdivision (I,,), of I and

support points x, € I, such that

‘|§ij<:cy>u<fy>—/lf‘ <3

fllett) = [ 171
oAl

and

<_

It follows that

€

"Zf(l’u)ﬂ(f ) + 5
S @)l + 5

< [in+e

Since € > 0 was arbitrary, this means that || [, f|| < [, ||f]].
(iv): Choose a compact interval I C RY such that Dy, Dy C I, and note that

/Djf - /IfxDj - /DM fxp,
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for 7 = 1,2. In particular, fxp, and fxp, are Riemann integrable on D; U Dy. Since
w(D1 N Dy) =0, the function fxp,np, is automatically Riemann integrable, so that

f=Ffxp, + fxp, — [XD:inD,

is Riemann integrable. It follows from (i) that

S = It~ o
5

(v): Since M — f(z) > 0 holds for all x € D, we have by (ii) that

OS/D(M—f)ZM/Dl—/DfZMu /f

Similarly, one proves that m (D) < [, f
(vi): Without loss of generality, suppose that pu(D) > 0. Let

=inf{f(z):z € D} and M :=sup{f(z):z € D},

so that

f < M.

wD) ~
Let x1,29 € D be such that f(x1) = m and f(z2) = M. By the intermediate value
theorem, there is zy € D such that f(zg) = %. O

4.3 Evaluation of integrals in one variable

In this section, we review the basic techniques for evaluating Riemann integrals of func-

tions of one variable:

Theorem 4.3.1. Let f: [a,b] — R be continous, and let F: [a,b] — R be defined as

:[f(t)dt

for x € [a,b]. Then F is an antiderivative of f, i.e. F is differentiable such that F' = f.

Proof. Let x € [a,b], and let h # 0 such that = + h € [a,b]. By the mean value theorem

of integration, we obtain that

x+h
F(z+h) - F(z) = / F(t)dt = f(En)h

for some &, between = + h and x. It follows that

F(x+h)— F(x) h=0
=D rg) "3 ()

because f is continuous. ]
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Proposition 4.3.2. Let Fy and F» be antiderivatives of a function f: [a,b] — R. Then

Fy — F5 1s constant.

Proof. This is clear because (Fy — F») = f— f =0. O

Theorem 4.3.3 (fundamental theorem of calculus). Let f: [a,b] — R be continuous, and
let F: [a,b] — R be any antiderivative of f. Then

b b
/ f(z)dx = F(b) — F(a) =: F(x)
holds.
Proof. By Theorem 4.3.1 and by Proposition 4.3.2, there is C' € R such that

/axf(t)dt:F(a:)—C
—C:/aaf(t)dt:

b
/ F(t)dt = F(b) — F(a).

This proves the claim. O

for all = € [a,b]. Since

we have C' = F'(a) and thus

Ezample. Since % sinz = cos x, it follows that

™

s
sinxdx = cosx| = 2.
0 0

Corollary 4.3.4 (change of variable). Let ¢: [a,b] — R be continuously differentiable, let
file,d] = R be continuous, and suppose that ¢([a,b]) C [c,d]. Then

/(::b d:n—/f

Proof. Let F be an antiderivative of f. The chain rule yields that

(Fog) =(fod)d,
so that F o ¢ is an antiderivative of (f o ¢)¢'. By the fundamental theorem of calculus,

holds.

we thus have

=/f D& (1) d

as claimed. O
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Ezamples. 1. We have:

VT VT
/ z sin(z?) dz = / 2z sin(z?) dz
0 0

2. We have:
1 jus
/ V1—a22dx = /2 V1 —sin?t costdt
0 0
= /2 Vcos2t costdt
0

2
= / cos® t dt.
0

Corollary 4.3.5 (integration by parts). Let f,g: [a,b] — R be continuously differentiable.
Then

b b
/ f()g' (x) dx = f(b)g(b) — f(a)g(a) —/ f(x)g(x) dx
holds.

Proof. By the product rule, we have
@) = F(@)g @) ~ ' (@)g(a)
for z € [a,b], and the fundamental theorem of calculus yields
F000) - S@o0) = [ L p@ote) e
= [U@@ - regw) e

ab b
= f@)g (z)de— [ f'(x)g(x)dx

a

as claimed. O
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Ezamples. 1. Note that

[SIE]

/ cos?zdr = —sin(0)cos(0) + sin (z) Cos <E> + /2 cos® x dx
0 2 0

2
= / cos® x dx
0
= / 1—s1n:17 dx

= z—/ sin xdm
2 Jo

2 T
cos’zdr = ~.
0 4

Combining this, we the second example on change of variables, we also obtain that

/\/1—t2dt / coS xdm-%.

SIE]

[e=]

SIE]

so that

2. We have:
/lntdt = /1lntdt
1 1
T T 1
= tlint —/ t—dt
1t
= zlhhz—(x-1).
Hence,

(0,00) >R, z+—zlnzx—=

is an antiderivative of the natural logarithm.

4.4 Fubini’s theorem

Fubini’s theorem is the first major tool for the actual computation of Riemann integrals in
several dimensions (the other one is change of variables). It asserts that multi-dimensional

Riemann integrals can be computed through iteration of one-dimensional ones:

Theorem 4.4.1 (Fubini’s theorem). Let I C RY and J C RM be compact intervals, and
let f: I x J — RX be Riemann integrable such that, for each x € I, the integral

= / f(z,y) dun(y)
J

exists. Then F: I — RE is Riemann integrable such that

/ I><J
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Proof. Let ¢ > 0.
Choose a partition P, of I x J such that

isp - [ fi<g

for any Riemann sum S(f,P) of f corresponding to a partition P of I x J finer than P,.

Let Pc, and P, , be the partitions of I and J, respectively, such that P, := P ; X P .
Set Q¢ := Pc,, and let Q be a refinement of Q. with corresponding subdivision (I,), of
I; pick z,, € I,,. For each v, there is a partition R, of J such that, for each refinement

R of R, ¢ with corresponding subdivision (Jy), we have

€

2un (1) (42

| <

1> F@wyn)ar () = Flxy)
B

for any choice of yy € Jy. Let R. be a common refinement of (R.,), and P, with
corresponding subdivision (Jy)) of J. Consequently, Q x R, is a refinement of P, with
corresponding subdivision (I, x Jy)x, of I x J. Picking y) € Jy, we thus have

IxJ

€
|2 S (s - | <3 (43)
We therefore obtain:

|3 Flan)un (L) - /I Xjf‘ |

< D F@)un (L) =Y f@w,yn)un (L) () ||

|79\

+ |;f<xy,w>m<n>m<m— /I |l

)

A

> Fa (L) = 3 o ypanLpa ()| [+5. by (43),

(79N

< S IF@) = 3 Fawy ()| luw(L) + 5
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Since this holds for each refinement Q of Q, and for any choice of x,, € I, we obtain

that F'is Riemann integrable such that

/F= /.
I IxJ

as claimed. O

Ezamples. 1. Let
fo00,1] < [0,1] = R, (z,y) — zy.

We obtain:
1 1
foan? = ([ mtr) s
0,1]x[0,1] 0o \Jo
1 1
= /:L'</ ydy> dx
0 0
1 21
= /a: v dx
0 2
1 /!
= 5/0 x dx
B 1
= 7
2. Let

Fi00,1] x [0,1] = R, (z,y) — yPe?’.

Then Fubini’s theorem yields

1 1
/ = / </ y?’emy2 dy> dx =7.
[0,1]%[0,1] 0 0

Changing the order of integration, however, we obtain:

1 1
fo? = [ (7)o
[0,1]x[0,1] 0 0

1 51
= /yewy‘ dy
0 0

— ley2_y_2
2 2|,
1 1 1
_ le_=-_ 12
2 2 2
= 2@



The following corollary is a straightforward specialization of Fubini’s theorem applied

twice (in each variable).

Corollary 4.4.2. Let I = [a,b] X [c,d], let f: I — R be Riemann integrable, and suppose
that

(a) for each x € [a,b], the integral fcdf(:n,y) dy exists, and

(b) for each y € [c,d], the integral ff f(x,y) dx exists.

/ab </Cdf(:n,y)dy> dx:/lfz/cd (/abf(x,y)d;U) dy

Similarly straightforward is the next corollary:

Then

holds.

Corollary 4.4.3. Let I = [a,b] x [c,d], and let f: I — R be bounded such that the set Dy
of its discontinuity points has content zero and satisfies u1({y € [c,d] : (z,y) € Do}) =0
for each x € [a,b]. Then f is Riemann integrable such that

[r=[ ([ rna)a.

Another, less straightforwarded consequence is:

Corollary 4.4.4. Let ¢, [a,b] — R be continuous, let

D :={(z,y) ER*: z € [a,b], p(z) <y < Y(y)},

and let f: D — R be bounded such that the set Dy of its discontinuity points has content
zero and satisfies p1({y € [c,d] : (z,y) € Do}) =0 for each x € [a,b]. Then f is Riemann

integrable such that
b ¥ (x)
/fz/ / flz,y)dy | d.
D a o(x)
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b X

m i

Figure 4.5: The domain D in Corollary 4.4.4

Proof. Choose ¢,d € R such that ¢([0, 1]),([0,1]) C [¢,d] and extend f as f to [a, b] x[c, d]
by setting it equal to zero outside D. It is not difficult to see that the set of discontinuity
points of f is contained in Dy U AD and thus has content zero. Hence, Fubini’s theorem

is applicable and yields

L= L= L ([ rerw)aem [ ([ sen)

This completes the proof. O
Examples. 1. Let
D::{(x,y)eR2:1§:p§3, m2§y§:p2—|—1}.

It follows that
3 2241 3
,u(D):/lz/ / ldy dw:/ldw:Z
D 1 2 1

2. Let

and let )
ez, x#0

:D—>R, (z,y)+—
f (@) { 0, otherwise.
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We obtain:

(e —1).

Corollary 4.4.5 (Cavalieri’s principle). Let S,T C RN have content. For each z € R,
let

Sy = {((L’l,... ,(L’N_l) e RNV ((L’,(L’l,... ,(L’N_l) € S}

and
Ty = {(x1,...,an_1) e RV (2, ,an_1) € T}

Suppose that S, and T, have content with pun_1(Sy) = un—1(Ty) for each © € R. Then
un(S) = pun(T) holds.

Proof. Let I € R and J € RV~! be compact intervals such that S,7 C I x J, and note
that

_ /I</]X5(x,x1,...,xN_l)d,uNl(xl,...,xN_l)> da
WAED
= /IMN—l(S:c)
= /IMN—l(Tx)
- )
= /I</JXT(Q:,331,...,xN_l)duNl(xl,...,xN_1)> dx

= un(D).
This completes the proof. O

Example. Let
D= {(z,y,2) eR*: x>0, 2> +y* + 2> <7},
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where r > 0. For each = € R, we then have

ol eR 22 <222 welo)
v , otherwise.

It follows that us(D,) = m(r? — x2?). By the proof of Cavalieri’s principle, we have:
ps3(D) = / p2(Dy) dx
0

= 7T/ (7‘2—:132)61:13
0

T
= 7TT’3—7T/ 2% dz
0

3 3|

As a consequence, the volume of a ball in R? with radius r is 47”7*3.

4.5 Integration in polar, spherical, and cylindrical coordi-

nates

The second main tool for the calculation of multi-dimensional integrals is the multi-

dimensional change of variables formula:

Theorem 4.5.1 (change of variables). Let @ # U C RY be open, let & # K C U be
compact with content, let ¢: U — RY be continuously partially differentiable, and suppose
that there is a set Z C K with content zero such that QS\K\Z is injective and det Jy(x) # 0
forallz € K\ Z. Then ¢(K) has content and

A(K)f:A(fo¢)!detJ¢\

holds for all continuous functions f: ¢(U) — RM,
Proof. Postponed, but not skipped! O

Ezamples. 1. Let a,b,c > 0 and let
22 2 22
E = {(x,y,z)ER?’:g—l—b—Q—i-c—le}.

What is the content of E?
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Let
: _rTT 3
<;5.[0,oo)><[ 2,2]X[0,27T] — R7,
(r,0,0) +— (ar cos@ coso,br cosf sino,cr sinf)

and let

K :=1[0,1] x [—gg] x [0, 27,

so that £ = ¢(K). Note that

a cosf coso, —ar sinf coso, —ar cosf sino
Jp(r,0,0) = | bcosf sino, —brsinfsino, brcosf coso |,
¢ sin @, cr cosf, 0
and thus
cosf coso, —rsinf coso, —r cosf sino
det J4(r,0,0) = abcdet | cosf sing, —rsinf sino, r cosf coso
sin 6, r cosf, 0

. —r sinf coso, —r cosf sino
= abc | sinf ) )
—r sinf sino, r cosf coso

cosf coso, —r cosf sino
— rcosf

cosf sino, r cosf coso

= —aber? (sin® ((sin®)(cos 6)(cos? o) + (sin A)(cos #)(sin? 0))
+ cos 0 ((cos® ) (cos® o) + (cos? 0)(sin® 7))

= —abcr? cos6 ((sin® 0)(cos® o) + (sin® 0)(sin® o) + cos® 0))

= —abcr? (Sim2 6 + cos® 0)

= —abcr? cosd.
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It follows that

ue) = [
= /Kl]detJ¢\

1 27
= abc/ / </ r? cos@da) do | dr
0 -z \Jo

uy

1 s
= 27TCLbC/ r? (/2 cos@d@) dr
0 -3

1 s
= Zwabc/ r2sin9EEdr
0

2

(VB

1
= 47Tabc/ r2 dr
0
31
= 47Tabcr—
0
4
= %abc.
2. Let 1
‘RZ SR _——.
f , (z,y) PR
Find fBl[O} f-

Use polar coordinates, i.e. let

$:[0,00) x [0,27] = R?,  (r,0) — (r cosf,r sinfh).
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Figure 4.6: Polar coordinates

It follows that B;[0] = ¢(K), where K = [0, 1] x [0,27]. We have

cosf, —r sinf ]

sinf, r cosf

Jp(r,0) = [

and thus
det Jy(r,0) = r.
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From the change of variables theorem, we obtain:

.
! = Jom
1 21
- /0</0 ﬁd&)dr
— Zw/olrzildr
= W/Ol%dr

2
1
:W/—ds
1 S

= 7 lnsﬁ

= 7 In2.

3. Let
fRS SR, (x,y,2) = Va2 +y2 + 22,
and let R > 0.
Find fBR[O} I
Use spherical coordinates, i.e. let
¢: [0,00) x [—g g} x  [0,27] — R?,

(r,0,0) +— (r cosf coso,r cosf sino,r sinf),

so that
det Jy(r,0,0) = —r? cos 0.
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Figure 4.7: Spherical coordinates

Note that Bp[0] = ¢(K), where K = [0, R] x [-%,%] x [0,27]. By the change of
variables theorem, we thus have:

/ F = /7’30089
Bg|[0] K
R 27
:/ / (/ r30059d0>d0 dr
0 -z \Jo
R I3
= 271/ 7‘3/ cos@df | dr
0 3

MIE]

4. Let
D :={(z,y,2) eR®:x,y>0, 1§z§w2+y2§ez},
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and let

f:D—-R, (x,y,2)+—

(22 +y?)z

Compute fD f.

Use cylindrical coordinates, i.e. let

$:[0,00) x [0,27] x R = R3,  (r,0,2) — (r cosf,r sinb, z),

so that
cos, —rsinf, 0
Jy(r,0,2) = | sinh, rcosf, 0
0, 0, 1
and

det J4(r,0,2) = 1.

Figure 4.8: Cylindrical coordinates

It follows that D = ¢(K), where

K = {(r,@,z):re

e, 0 ¢ [0, g] ze [1,7»2]}.
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We obtain:
r
L= )=
(& 7"2 1
= / / / —dz | dO | dr
1 0 1 T2
(& 7"2
= E/ (1/ lalz) dr
2 1 T 1 z
€21
= z/ Ogrdr
2 1 T

1
= ﬂ/sds
0

™
B .

VB

5. Let R > 0, and let
C:={(z,y,2) e R®: 2% +y* < R?}

and
B:={(z,y,2) ER®:2” +y* + 2* <AR?}.

Find p(C N B).

N
N
\
/y
\
<
\
\
\
v
\
\
—— \
'

] R2R

Figure 4.9: Intersection of ball and cylicer
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Note that
(€N B) =2(u(Dr) + p(D2)),

where
D, = {(x,y,z) ER®: 2 + 47 + 22 <AR®, 2> /3(a? +y2)}

and
Dy = {(m,y,z) eER3: 22+’ <R 0<z< \/3(:132+y2)}.

Use spherical coordinates to compute p(Dy).

Note that Dy = ¢(K7), where
Ky = [0,2R] x [%g] % [0, 27].
We obtain:

u(Dy) = / 2 cos 6
K1

jus

2R n 21
= / / </ r? cos@da) do | dr
0 T 0
2R T
= 27r/ 7‘2/ cos0do | dr
0 jus

3
2R
= 27T/0 7 (sin <g) — sin (g)) dr
= 27 <1 — ?) /027r7‘2dr
- %sz (2-v3).
Use cylindrical coordinates to compute pu(D3), and note that Dy = ¢(K3), where
Ky = {(r,@,z) :r €[0,R], 0 €[0,2n], z € [0,\/57"}}.

‘We obtain:
u(o2) = [ s
Ko

- /OR (/0% (/O@sz> d@)dr

R

= 271\/§/ r2 dr
0

2

%WR?).
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All in all, we have:
u(BNC) = 2(u(Dy)+ u(D2))
— 9 (%mw (2-v3) - %gmi”)

_ o (16—
- 2g3 <16 8x/§+2\/§)>

- %w (32— 12\/§)
- 4—]; (8—3\/5).
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Chapter 5

The implicit function theorem and

applications

5.1 Local properties of C!-functions

In this section, we study “local” properties of certain functions, i.e. properties that hold
if the function is restricted to certain subsets of its domain, but not necessarily for the
function on its whole domain.

We start this section with introducing some “shorthand” notation:

Definition 5.1.1. Let @ # U C RY be open. We say that f: U — RM is of class C! —
in symbols: f € CY(U,RM) — if f is continuously partially differentiable, i.e. all partial

derivatives of f exist on U and are continuous.
Our first local property is the following:

Definition 5.1.2. Let @ # D ¢ R, and let f: D — RM. Then f is locally injective at
g € D if there is a neighborhood U of x( such that f is injective on UN D. If f is locally

injective each point of U, we simply call f locally injective on D.
Trivially, every injective function is locally injective. But what about the converse?

Lemma 5.1.3. Let @ # U C RY be open, and let f € C*(U,RY) be such that det J¢(zg) #
0 for some xg € U. Then f is locally injective at xg.

Proof. Choose € > 0 such that B.(xg) C U and

o (), .., (W)
det z z #0
o (V)| L, AN (5(V)
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for all z(, ... z(N) € B.(z).
Choose z,y € B.(zp) such that f(z) = f(y), and let { := y — x. By Taylor’s theorem,
there is, for each j =1,..., N, a number 6; € [0,1] such that

afj
T+ )+ (x40, ().
filw+¢) = Z €€ = f(@)
=y
It follows that N
Z: 8—f (x + 0;6)&;
for j=1,...,N. Let
S (w +018), ... 2L (a: +6:8)
A= : . : ,
bl (!17 +ONE), ., S (24 0N0)
so that A = 0. On the other hand, det A # 0 holds, so that £ =0, i.e. z = y. O

Theorem 5.1.4. Let @ # U C RN be open, let M > N, and let f € CH(U,RM) be such
that rank J¢(x) = N for all x € U. Then f is locally injective on U.

Proof. Let xg € U. Without loss of generality suppose that

0 0
S (o), oy 3(xo)
rank : : = N.
0 0
G (20), ..., G ()

Let f := (f1,-.., fn). It follows that

0 0
i@, ... F(2)
Ji(z) = : : :
0 0
@), ... §E@)

for x € U and, in particular, det Jf(azo) £ 0.
By Lemma 5.1.3, f — and hence f — is therefore locally injective at x. U

Ezample. The function
f:R—=R? z+— (cosz,sinx)

satisfies the hypothesis of Theorem 5.1.4 and thus is locally injective. Nevertheless,
flz+2m) = f(2)
holds for all z € R, so that f is not injective.
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Next, we turn to an application of local injectivity:

Lemma 5.1.5. Let @ # U C RY be open, and let f € C1(U,RY) be such that det Jy(z) #
0 for x € U. Then f(U) is open.

Proof. Fix yg € f(U), and let xg € U be such that f(xg) = yo.
Choose d > 0 such that

Bslzo] :={x e RN : ||z —x0]| <6} C U

and such that f is injective on Bs[zg] (the latter is possible by Lemma 5.1.3). Since

f(0Bs[xo]) is compact and does not contain yg, we have that
1.
€:= glnf{Hyo — f(@)|| : © € OBs[zo]} > 0.

We claim that Be(yo) C f(U).
Fix y € Be(yo), and define

9: Bslro] = R, @ || f(2) — yll*.

Then g is continuous, and thus attains its minimum at some & € Bs[xo]. Assume towards
a contradiction that & € dBj[x¢]. It then follows that

1F (@) = yli
|1f () = wol| = [lyo — vl
—_— Y—

9(Z)

v

>3¢ <e

2¢

€

I1f(z0) — ¥l
g(o),

vV VvV IV

and thus g(z) > g(xo), which is a contradiction. It follows that € Bs(xo).
Consequently, Vg(z) = 0 holds. Since

N
= Z(fj (2)
j=1
for x € Bs|xg], it follows that
afj
8xk Z 8xk y])
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holds for k =1,...,N and x € Bs(z¢). In particular, we have

S

0=
= E?xk

@)(f;(@) = y;)
for k=1,...,N, and therefore
Jr(@)f(2) = J§(2)y,
so that f(z) =y. It follows that y = f(Z) € f(Bs(zo)) C f(U). O

Theorem 5.1.6. Let @ # U C RN be open, let M < N, and let f € C*(U,RM) with
rank J¢(z) = M forx € U. Then f(U) is open.

Proof. Let xy = (z0,1,...,z0n) € U. We need to show that f(U) is a neighborhood of
f(xg). Without loss of generality suppose that

0, 0
5 (o), o 3 (wo)
det : : #0
0 0,
Bt (o), ooy BB (ao)

and — making U smaller if necessary — even that

of af
8—wi($), ey amlt{ (IE)
det : : # 0
0 0
(@), ..., ShL(a)
for x € U. Define
f:ﬁ—)RM, :El—>f(l‘l,...,$M,$07M+1,...,$07N),
where
U:={(x1,...,x0) €RM : (z1, ... 20, 200041, Ton) €U C RM.

Then U is open in RM| f is of class C! on U, and det Jf(x) # 0 holds on U. By Lemma
5.1.5, f(U) is open in RM. Consequently, f(U) D f(U) is a neighborhood of f(x). O
5.2 The implicit function theorem

The function we have encountered so far were “explicitly” given, i.e. they were describe by
some sort of algebraic expression. Many functions occurring “in nature”, howere, are not

that easily accessible. For instance, a R-valued function of two variables can be thought
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of as a surface in three-dimensional space. The level curves can often — at least locally
— be parametrized as functions — even though they are impossible to describe explicitly:

y

f(x,y)

domain of f

Figure 5.1: Level curves

In the figure above, the curves corresponding to the levels ¢; and c3 can locally be
parametrized, whereas the curve corresponding to ¢y allows no such parametrization close

to f (.’L’O, yO)
More generally (and more rigorously), given equations

fj(wlv"'vaaylv"'ayN):O (]Zlva)v

can yi,...,yn be uniquely expressed as functions y; = ¢j(x1,...,2m)7

Examples. 1. “Yes” if f(z,y) = 2% — y: choose ¢(z) = 2.

2. “No” if f(x,y) = y* — x: both ¢(x) = /z and ¥(x) = —/z solve the equation.

The implicit function theorem will provides necessary conditions for a positive answer.

Lemma 5.2.1. Let @ # K C RY be compact, and let f: K — RM be injective and

continuous. Then the inverse map
LK) = K, fa) e

s also continuous.
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Proof. Let x € K, and let (z,,)72; be a sequence in K such that lim,_,o f(z,) = f(z).
We need to show that lim,,_,, x,, = . Assume that this is not true. Then there is ¢y > 0
and a subsequence (x,, )7, of (z,)52; such that ||x,, —z|| > ¢ for all k € N. Since K is
compact, we may suppose that (xnk),;";l converges to some 2’ € K. Since f is continuous,
this means that limy_,o f(z,,) = f(2'). Since lim,_, f(z,) = f(x), this implies that
f(z) = f(2'), and the injectivity of f yields z = a’, so that limj_,o, z,, = x. This,
however, contradicts that ||z,, — z|| > € for all k € N, O

Proposition 5.2.2 (baby inverse function theorem). Let I C R be an open interval, let
f € CHI,R), and let z9 € I be such that f'(x¢) # 0. Then there is an open interval
J C I with xg € J such that f restricted to J is injective. Moreover, f~': f(J) = R is a

C'-function such that

df =t 1

d—y(f(x)) D) (z € J). (5.1)
Proof. Without loss of generality, let f’(xg) > 0. Since I is open, and since f’ is continu-
ous, there is € > 0 with [xg—€, 29 +¢€| C I such that f'(z) > 0 for all z € [xg—¢,z0+€]. Tt
follows that f is strictly increasing on [zg — €, g + €] and therefore injective. From Lemma
5.2.1, it follows that f=1: f([xo — €, 70 + €]) — R is continuous. Let J := (zg — €, 79 + €),
so that f(.J) is an open interval and f~': f(J) — R is continuous.

Let y,y € f(J) such that y # §. Let z,& € J be such that y = f(x) and § = f(2).

Since f~! is continuous, we obtain that

) i) St S
7=y y—y e f(z) — f(2)  f(z)
whiche proves (5.1). From (5.1), it is also clear that % is continuous on f(J). O

Lemma 5.2.3. Let @ # U C RY be open, let f € CY(U,RY), and let 29 € U be such that
det Jy(xg) # 0. Then there is a neighborhood V- C U of xo and C' > 0 such that

1 () = fzo)l| = Cll — o]
forallz € V.
Proof. Since det J;(z0) # 0, the matrix J¢(z¢) is invertible. For all z € RY, we have
[l = (15 (x0) ™" Ty (wo)al| < [11T5(x0) " [[[[] 4 (x0)z]]

and therefore )

115 (o) ]

1
M7, o)1 » SO that

[l < |5 (o).
1
Let C := 3

2C[x = wol| < ||J¢(x0)(x — o)
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holds for all # € RY. Choose € > 0 such that B.(zg) C U and

1 (2) = f(zo) = Jp(wo)(x = xo)|| < Oz — x|

for all x € Be(xg) =: V. Then we have for z € V:

Cllz —zoll = |If(z) = f(wo) = Jy(wo)(z — zo)l
15 (o) (& — zo)|| = ||.f () = f (o)l
2C |z = wol| = [If (=) — f(zo)ll-

v

v

This proves the claim. O

Lemma 5.2.4. Let @ # U C RN be open, let f € CH(U,RN) be injective such that
det Jp(z) # 0 for all x € U. Then f(U) is open, and f~' is a C'-function such that
Jr-1(f(2) = Jy(z)~! forallz €U.

Proof. The openness of f(U) follows immediately from Theorem 5.1.6.
Fix g € U, and define

J(@)=f(z0)=Jy(x0)(x—120)
Mz—zol| , T 75 xo,

0, T = Tg.

g: U —= RV, am—){

Then g is continuous and satisfies

||z — @ol| T (w0) " tg(z) = Jp(zo)  (f(x) — f(20)) — (z — z0)

for z € U. With C' > 0 as in Lemma 5.2.3, we obtain for yo = f(x¢) and y = f(x) for =
in a neighborhood of xg that

%Ilf(fv) = F@o)lll 5 (o)~ g ()|
[leo = [1|.7y (x0) " g()]|
177 (o) = (f () — f(20)) — (z — z0)].

1 _
clly = wollll Ty (o) Lo ()]

v

Since f~! is continuous at yo by Lemma 5.2.1, we obtain that

1" (w) = f (yo) = Jp(zo) " (y — wo)l
1y — ol

1 _
< & llJs(@o) Yg(x)l] >0

as y — yo. Consequently, f~1 is totally differentiable at yo with Jr-1(yo) = Jf(:no)_l.
Since yo € f(U) was arbitrary, we have that f~! is totally differentiable at each
point of y € f(U) with Jy-1(y) = Jy(x)~!, where 2 = f~'(y). By Cramer’s rule, the
entries of J;-1(y) = Jy(x)~! are rational functions of the entries of J¢(z). It follows that
f el (f(U),RY). 0
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Theorem 5.2.5 (inverse function theorem). Let @ # U C RY be open, let f € CL(U,RY),
and let xg € U be such that det J¢(xo) # 0. Then there is an open neighborhood V- C U
of xo such that f is injective on V, f(V) is open, and f=': f(V) — RY is a C'-function
such that Jy—1 = Jf_l.

Proof. By Theorem 5.1.4, there is an open neighborhood V' C U of xg with det J¢(z) # 0
for x € V and such that f restricted to V is injective. The remaining claims then follow

immediately from Lemma 5.2.4. O

For the implicit function theorem, we consider the following situation: Let @ # U C
RM+N he open, and let

f: U—)RN, (a:l,...,a:M,yl,...,yN) r—)f(a:l,...,xM,yl,...,yN)

=z =y

be such that g—gj and g—m]; existson U for j=1,...,N and k=1,..., M. We define

2] 0

8_;{;1(3373/)7 R 6xf]\1/1(x7y)
of : .
%(‘Tay) = : :

a 0

8];7(:177y)7 cety 8£A1\:[(x’y)

and

R S (,9)

oY1 ' Y)s U Oyn Y
of : .
8_y(x’y) = : :

0 0

827(3373/)7 R 85%(3373/)

Theorem 5.2.6 (implicit function theorem). Let @ # U C RM*N be open, let f ¢
CYH(U,RYN), and let (xg,y0) € U be such that f(zg,y0) = 0 and det g—g(azo,yo) # 0. Then
there are neighborhoods V.C RM of zq and W C RN of yg with V x W C U and a unique
¢ € CH(V,RY) such that

(1) ¢(xo) = yo and

(ii) f(z,y) =0 if and only if p(x) =y for all (x,y) € V x W.

_ (T of
w=-(5) o

Moreover, we have
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Figure 5.2: The implicit function theorem

Proof. Define
F: U — RM+N, (:L‘;y) = (‘/L‘af(l‘ay))a

so that F € C1(U,RM+N) with

JF(xay) =
Y@y | L.y)

EM‘OI.

It follows that

0
det JF(l'o,yo) = det a—i(anyO) # 0.

By the inverse function theorem, there are therefore open neighborhoods V- RM of x
and W C RV of yy with V x W C U such that:

e [ restricted to V' x W is injective;
e F(V x W) is open (and therefore a neighborhood of (z¢,0) = F(z¢,%0));
o F~1 e CYF(V x W), RM+N),

Let
o RMEN RN (z,y) — .
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Then we have for (z,y) € F(V x W) that
(z,y) = FE (z,y))
= F(z,n(F ! (z,y)))
= (o, f(z,m(F (z,9)))
and thus
Yy = f($,7T(F_1(l‘,y))).
Since {(x,0) : 2 € V} C F7Y(V x W), we can define

¢:V =Rz w(FY(z,0)).

It follows that ¢ € C'(V,RY) with ¢(x9) = yo and f(x,¢(x)) = 0 for all x € V. If
(z,y) € V x W is such that f(z,y) =0 = f(x,¢(x)), the injectivity of F' — and hence of
f — yields y = ¢(z). This also proves the uniqueness of ¢.
Let
V: V= RN g (2, 9(x)),

so that ¢ € C1(V,RM+N) with

Ey
Jo ()

for z € V. Since f o1 = 0, the chain rule yields for z € V:

Jy(x) =

0 = Jr(v(@))Jy(@)

E
= | Zww) | ZLwe) | o
0 0
— @0t + 5 @0t Js(o)
and therefore L
0 0
Jola) == (§tw.0e) - G w0t
This completes the proof. O
Ezample. The system
2?4yt 222 = 0,
2422 22 = 4

of equations has the solutions x¢g = 0, yo = \/é ,and zg = \/g . Define
f:R3 - R?, (x,y,2) — (m2 + 9% — 222 2t + 22 + 2% — 4),
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so that f(xo,yo,20) = 0. Note that

Dz .Z',y,Z) 4y7 2z
Hence,
9 (g oh
O ,y,Z), 0 (!E,y,Z) _
det[ 8_}/2(% ) 3—1”22(3; ) =4dyz 4+ 16yz # 0
ay 'Y, ) Oz 'Y,

¢ € C'((—¢,¢€),R?) such that

a0 =2 wo=y1  wmd fea@ e =0

for € (—e¢,€). Moroever, we have

whenever y # 0 # z. By the implicit function theorem, there is ¢ > 0 and a unique

%2 (@)
Jg(2) i
&2 (2)
-1
2y, —4z 2z
B 4y, 2z 2z
1 2z, 4z 2x
20y? | —4y, 2y 2x
[ 122z ]
20yz
—Adyx
20yz
[ ézl
S5y
1z
5z
and thus 5
T
¢i(x) = —¢

, 1 =z
5 61(2) and Pa () 5 b (2)

5.3 Local extrema with constraints

Ezample. Let

f:B1[(0,0)] = R, (x,y) — 422 — 3xy.

Since B1[(0,0)] is compact, and f is continuous, there are (z1,y1), (x2,y2) € B1[(0,0)]
such that

flx,y1) = sup f(z,y) and f(x2,y2) = inf
(z,y)€B1[(0,0)]

z,Y).
(z,y)€B1[(0,0)] fa)
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The problem is to find (x1,y1) and (z2,y2). If (z1,y1) and (z2,y2) are in By((0,0)), then

f has local extrema at (z1,y1) and (z2,¥2), and we know how to determine them.

Since 3 5
8—£(az,y) =8z — 3y and a—ch(a:,y) = —3uz,
the only stationary point for f in B1((0,0)) is (0,0). Furthermore, we have
o*f o*f o*f
W(xvy) - 87 a—yz(x7y) - 07 and axay ($7y) - _37

so that

(Hess f)(z,y) = [ o ] .

Since det(Hess f)(0,0) = —9, it follows that f has a saddle at (0,0).
Hence, (x1,y1) and (z2,y2) must lie in 0B41[(0,0)]. ..

To tackle the problem that occurred in the example, we first introduce a definition:

Definition 5.3.1. Let @ # U C RY, and let f,¢: U — R. We say that f has a local
maximum [minimum] at xo € U under the constraint ¢(x) = 0 if ¢(z9) = 0 and if there

is a neighborhood V' C U of x such that f(x) < f(xo) [f(z) > f(zo)] for all z € V with
o) = 0.

Theorem 5.3.2 (Lagrange multiplier theorem). Let @ # U C RN be open, let f,¢ €
CYU,R), and let g € U be such that f has a local extremum, i.e. a minimum or a
maximum, at xo under the constraint ¢(x) = 0 and such that Vé(xg) # 0. Then there is
A € R, a Lagrange multiplier, such that

Vf(xo) = AVo(x0).

Proof. Without loss of generality suppose that a‘%’v(azo) # 0. Let. By the implicit function
theorem, there are an open neighborhood V' of g := (xg1,...,70n-1) and ¥ € C}(V,R)
such that

Y(Zo) = xo,N and Oz, p(x)) =0 forallzeV.
It follows that

0o 0o oY

0= %j(x,w(az)) + %(%ﬂ)(fﬂ))%j(@

forall j=1,...,N —1 and x € V. In particular,

09 09
= 87]_(5170) + %(xo)

o

0
E?xj

(Zo) (5.2)

holds for all j =1,...,N — 1.
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The function

g: V= R7 (xlw” 7‘TN—1) = f(xlu"' 7‘TN—17w(‘T17--- ,.Z'N_l))

has a local extremum at Zg, so that Vg(Zy) = 0 and thus

_0g
0= G,
_of of oy

forj=1,...,N — 1. Let

i 2 () <@<xo>)_l,

- 8%1\[ ox N
so that %(:po) =\ %(:po) holds trivially. From (5.2) and (5.3), it also follows that

of ., 09
Z?Tj(xo) =A 87]_(350)

holds as well for j =1,..., N — 1. O

Ezample. Consider again
f:Bi[(0,0)] = R, (z,y) — 42® — 3zy.

Since f has no local extrema on By ((0,0)), it must attain its minimum and maximum
on 0B1[(0,0)].
Let
¢:R? >R, (z,y)—a?+y2—1,

so that
9B1[(0,0)] = {(z,y) € R*: ¢(,y) = 0}.

Hence, the mimimum and maximum of f on B1[(0,0)] are local extrema under the con-
straint ¢(x,y) = 0. Since Vo(z,y) = (2x,2y) for z,y € R, V¢ never vanishes on
9B4[(0,0)].

Suppose that f has a local extremum at (z¢,yo) under the constraint ¢(z,y) = 0. By
the lagrange multiplier theorem, there is thus A € R such that V f(zo,y0) = A Vo (zo, y0),

i.e.

83)0—33/0 = 2)\2170,
—3:170 = 2)\y0.
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For notational simplicity, we write (x,y) instead of (zg,y0). Solve the equations:

8x —3y = 2\z; (5.4)
=3z = 2\y; (5.5)
2?4y = L (5.6)

From (5.5), it follows that x = —%)\y. Plugging this expression into (5.4), we obtain
16 4
— Xy — 3y =—=-\y. 5.7
TN =3y =3y (5.7)

Case 1: y = 0. Then (5.5) implies x = 0, which contradicts (5.6). Hence, this case
cannot occur.
Case 2: y # 0. Dividing (5.7) by % yields

AN —16A—9=0

and thus 0
M —4x—-Z =0
4
Completing the square, we obtain (A —2)% = % and thus the solutions A = % and \ = —%.
Case 2.1: X\ = —%. The (5.5) yields —3z = —y and thus y = 3z. Plugging into (5.6),
we get 1022 = 1, so that = = iﬁ. Hence, (\/%, \/%> and (—\/%, —%) are possible

candidates for extrema to be attained at.

Case 2.2: A = %. The (5.5) yields —3z = 9y and thus x = —3y. Plugging into (5.6),
we get 10y = 1, so that y = :l:\/%—o. Hence, (\/il_o’ _\/Ll_o) and (_\/Ll_o’ V%) are possible
candidates for extrema to be attained at.

Evaluating f at those points, we obtain:

1 3 1
d < 10’ 10> 2
1 3 1
/ <——107——10> = 75
3 1 9
f <—107 _—10> - 57
TEENER.
V10" V10 2
Allin all, f has on B;[(0,0)] the maximum  — attained at (%, —\/%) and (—\/%, ﬁ)
o . 1 . . . 1 3 1 3
— and the minimum —3, which is attained at (\/—1—0, \/—1—0) and (_ﬁ’ —\/—1—0)

Given a bounded, open set @ # U C RY an open set U € V C RY and a C'-function
f:V — R which is of class C! on U, the following is a strategy to determine the minimum

and maximum (as well as those points in U where they are attained) of f on U:
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e Determine all stationary points of f on U.

e If possible (with a reasonable amount of work), classify those stationary points and

evaluate f there in the case of a local extremum.

e If classifying the stationary points isn’t possible (or simply too much work), simply

evaluate f at all of its stationary points.

e Describe OU in terms of a constraint ¢(z) = 0 for some ¢ € C'(V,R) and check if

the Lagrange multiplier theorem is applicable.

e If so, determine all x € V with ¢(z) =0 and V f(z) = AV¢(x) for some A € R, and

evaluate f at those points.

e Compare all the values of f you have obtain in the process and pick the largest and

the smallest one.

This is not a fail safe algorithm, but rather a strategy that may have to be modified

depending on the cirucmstances (or that may not even work at all...).
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Chapter 6

Change of variables and the
integral theorems by Green, Gaul3,
and Stokes

6.1 Change of variables

In this section, we shall actually prove the change of variables formula stated earlier:

Theorem 6.1.1 (change of variables). Let @ # U C RY be open, let @ # K C U be
compact with content, let ¢ € CY(U,RY), and suppose that there is a set Z C K with
content zero such that ¢|\ z is injective and det Jy(x) # 0 for all x € K\ Z. Then ¢(K)

has content and
/ f= / fog)|det Jyl
(K)

holds for all continuous functions f: ¢(U) — RM,

The reason why we didn’t proof the theorem when we first encountered it were twofold:
first of all, there simply wasn’t enough time to both prove the theorem and cover ap-
plications, but secondly, the proof also requires some knowledge of local properties of
C'-functions, which wasn’t available to us then.

Before we delve into the proof, we give an example:

Example. Let
D:={(z,y) eR?:1<a? +¢y*> <4}

/ 1
pr2+y?

6: R? = R?, (r,0) — (rcosf,rsinf),

and determine

Use polar coordinates:
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so that det Jy(r,8) = r. Let K = [1,2] x [0,27], so that ¢(K) = D. It follows that
/ 1 B r
pr2+y?>  Jrr?
_ / 1
= |
2 2w 1
(e
1 o T
= 2mlog?2.
To prove Theorem 6.1.1, we proceed through a series of steps.

Given a compact subset K of RY and a (sufficiently nice) C!'-function ¢ on a neigh-
borhood of K, we first establish that ¢(K) does indeed have content.

Lemma 6.1.2. Let @ # U C RY be open, let ¢ € CLH(U,RY), and let K C U be compact

with content zero. Then ¢(K) is compact with content zero.

Proof. Clearly, ¢(K) is compact.
Choose an open set V C RN with K C V, and such that V C U is compact. Choose
C > 0 such that

|6 (2)E]| < CIE]] (6.1)

for ¢ € RY and x € V (this is possible because ¢ is a C'-function).
Let € > 0, and choose compact intervals I1,..., I, C V with

n n €
K C 1; and w(l;) < ————.
]EJl J JZ:; (]) (QCW)N
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Figure 6.1: K, U, V,and Iy,...,I,

Without loss of generality, suppose that each I; is a cube, i.e.
Ij = [zj0 = rjywjn sl o X o n =g, 258 + 75

with (zj1,...,25N) € RY and rj > 0: this can be done by first making sure that each I;

is of the form

Ij = [al,bl] Xoeee [aN,bN]

with aq,b1,...,a,,by € Q, so that the ratios between the lengths of the different sides of

I; are rational, and then splitting it into sufficiently many cubes.

Figure 6.2: Splitting a 2-dimensional interval into cubes
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Let j € {1,...,n}, and let x,y € I;. Then we have for k =1,...,N:

60() — ) < o) — o(w)]
1

_ 11/ Jola 4+ tly — 2))(y — 2) di] |
0

1
< /0\1J¢<x+t<y—x>><y—xmdt

1

< [Cllo-ylar by,
0

= Clle -yl

= C ($u - yu)2
N

< C\ 2(273’)2

v=1

= C\/N2Tj
= CVN (1)

2=

Fix 29 € I;, and R; := Cv/N u(I;)¥, and define
Jj = [¢1(w0) — Rj, ¢1(wo) + Rj] x -+ x [¢n(20) — Rj, dn(20) + Rj).
It follows that ¢(/;) C J; and that
w(Jj) = 2R)N = CVN)N u(1;)

All in all we obtain, that
oK) JJ;  and D> () =QRCVN)NY ) <e.
j=1 j=1 j=1

Hence, ¢(K) has content zero. O

Lemma 6.1.3. Let @ # U C RY be open, let ¢ € CL(U,RY) be such that det Jy(x) # 0
for allx € U, and let K C U be compact. Then we have

{r e K:¢(x) € 0¢(K)} C OK.
In particular, 0¢(K) C ¢(0K) holds.

Proof. First note, that 0¢(K) C ¢(K) because ¢(K) is compact and thus closed. Let
x € K be such that ¢(z) € d¢(K), and let V' C U be a neighborhood x, which we
can suppose to be open. By Lemma 5.1.5, ¢(V) is a neighborhood of ¢(z), and since
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#(x) € 0¢(K), it follows that ¢(V) N (RN \ ¢(K)) # @. Assume that V C K. Then
#(V) C ¢(K) holds, which contradicts ¢(V) N (RN \ ¢(K)) # @. Consequently, we have
VN RNV \ K) # 3. Since trivially V N K # @, we conclude that = € K.

Since ¢(K) is compact and thus closed, we have 0¢(K) C ¢(K) and thus d¢(K) C
»(OK). O

Proposition 6.1.4. Let @ # U C RY be open, let ¢ € CH(U,RY) be such that det J,(x) #
0 for all x € U, and let K C U be compact with content. Then ¢(K) is compact with

content.

Proof. Since K has content, 0K has content zero. From Lemma 6.1.2, we conclude that
w(p(0K)) = 0. Since dp(K) C ¢p(0K) by Lemma 6.1.3, it follows that p(0¢(K)) = 0. By
Theorem 4.2.11, this means that ¢(K) has content. O

Next, we investigate how applying a C'-function to a set with content affects that

content.

Lemma 6.1.5. Let D C RY have content. Then
n
p(D) = inf > pu(I;) (6.2)
j=1
holds, where the infimum is taken over all n € N and all compact intervals such that
Dchiu---Ul,.
Proof. Exercise! O

Proposition 6.1.6. Let @ # K C RN be compact with content, and let T: RY — RN be
linear. Then T(K) has content such that

p(T(K)) = [det T|u(K).

Proof. We first prove three separate cases of the claim:
Case 1:

T(x1,...,2N) = (T1,...,ATj,...TN)

with A € R for x1,...,xny € R.
Suppose first that K is an interval, say K = [a1,b1] X -+ X [an, by], so that

T(K) = [al,bl] X e X [)\aj,)\bj] X e X [CLN,bN]

if A >0 and
T(K) = [a1,b1] x -+ x [Abj, Aaj] x -+ x [an, bN]

if A < 0. Since detT" = ), this settles the claim in this particular case.
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Suppose that K is now arbitrary and A # 0. Then T is invertible, so that T(K)
has content by Proposition 6.1.4. For any closed intervals Ip,...,I, ¢ RY with K C
I U...UlI,, we then obtain

WT(K)) <> u(T(1;) = [det T p(I;)
j=1 Jj=1

and thus u(T(K)) < |det T|u(K) by Lemma 6.1.5. Since 7! is of the same form, we get
also get u(K) = p(T~YT(K))) < |det T|~ (T (K)) and thus p(T(K)) > |det T|u(K).
For arbitrary K and A = 0. Let I C RY be a compact interval with K C I. Then
T'(I) has content zero, and so has T'(K) C T'(I).
Case 2:

T(z1,..., %, Ty, &N) = (T150 oo Thy oo oy Ty o, TN)

with j < k for x1,...,xxy € R. Again, T is invertible, so that T'(K) has content by
Proposition 6.1.4. Since detT" = —1, the claim is trivially true if K is an interval and for
general K by Lemma 6.1.5 in a way similar to Case 1.

Case 3:

T(x1,...,Tj, o Ty N) = (T1,. ., Xy, T+ T, .., TN)

with j < k for x1,...,xx € R. It is clear that then T is invertible, so that T'(K) has
content by Proposition 6.1.4. Suppose first that K = [a1,b1] X -+ X [an,by]. With the

help of Fubini’s theorem and change of variables in one variable, we obtain:

n(T(K))

b1 bk—l—bj bn

= / / / XT(K)($17“‘7':Uk‘7“‘7$N)de“'d$k"'dxl
a1 ap+a; an
b1 bN bk-i-bj

= / / / XT(K)(azl,...,a:k,...,a:N)dxk~~~da;N---dx1
ai an ai+a;
b1 bk—l—bj bn

= / / / XK(Z1, .. Tk — Tj, ..., TN) deg - dey -+ - day
a1 ap+a; an
b1 bN bk-i-bj

= / / / XK(xl,...,a:k,...,xN)dxk~~~da;N---dx1
al an ai+a;
by bn

_ / / 1
al an

= p(K).

Since det T' = 1, this settles the claim in this case.
Now, let K be arbitrary. Invoking Lemma 6.1.5 as in Case 1, we obtain u(T(K)) <
u(K). Obtaining the reversed inequality is a little bit harder than in Cases 1 and 2 because
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T~ is not of the form covered by Case 3 (in fact, it isn’t covered by any of Case 1, 2, 3).
Let S: RN — R be defined by

S(x1,...,xj,...,en) = (21,...,—Zj,...,ZN).

It follows that T-' = S oT o S, so that — in view of Case 1 —

All in all, u(T(K)) = p(K) holds.
Suppose now that T is arbitrary. Then there are linear maps Ti,...,T),: RY — RV
such that T'=Tj o--- 0T, and each Tj is of one of the forms discussed in Cases 1, 2, and

3. We therefore obtain eventually:

w(T(K)) = w(Ti(--Tu(K)---))
|det T1|p(To (- Th(K) - -+ )

|det T3 -+ | det Ty ()
= |detT|u(K).

This completes the proof. O

Next, we move from linear maps to C'-maps:

Lemma 6.1.7. Let U C RN be open, let r > 0 be such that K := [—r,7]N C U, and
let ¢ € CLU,R)N be such that det Jy(x) # 0 for all x € K. Furthermore, suppose that
a € <0, LN> is such that ||¢(x) — z|| < af|x|| for x € K. Then

n(¢(K))
(1—0[\/N)N < W < (1+a\/N)N

holds.

Proof. Let x € K. Then
lp(x) — || < allz|| < aV'Nr

holds and, consequently,
|65(@)] < |zj] + ||¢(2) — 2| < (1+aVN)r
for j =1,...,N. This means that

O(K) C [~(1+aVN)r, (1 +avVN)rV. (6.3)
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Let x = (z1,...,2n) € 0K, so that |z;| = r for some j € {1,..., N}. Consequently,

r= oyl < llal] < VR

holds and thus
|65(2)| > |2 — |lz — ¢(@)|| = (1 — vV N)r.
Since 0¢(K) C ¢(0K) by Lemma 6.1.3, this means that
Op(K) C p(0K) C RV \ (=(1 — aV/N)r, (1 — avV/'N)r)N
and thus
(—(1 = aVN)r, (1 —aVN)r)N c RV \ 9¢(K).

Let U := int ¢(K) and V := int (RY \ ¢(K)). Then U and V are open, non-empty,
and satisfy
UUV =RY\ 9¢(K).

Since (—(1 — av/N)r, (1 — an/N)r)N is connected, this means that it is contained either

in U or in V. Since
16(0)]] = [|¢(0) = 0[] < af|0]| =0,
it follows that 0 € (—(1 — av/N)r, (1 — av/N)r)N N U and thus

(-1 = aVN)r,(1 —aVN)r )N c U c ¢(K). (6.4)
From (6.3) and (6.4), we conclude that

(1 —aVN)V(2r)Y < u(@(K)) < (1+aVN)¥(2r)".

Division by u(K) = (2r)Y yields the claim. O
For z = (z1,...,zy) € RY and r > 0, we denote by
Klz,r] == [z1 —ra +7r] X - X [zy —1,2N + 7]

the cube with center x and side length 2r.

Proposition 6.1.8. Let @ # U C RY be open, and let ¢ € C*(U,RN) be such that
Jy(x) # 0 for all x € U. Then, for each compact set @ # K C U and for each € € (0, 1),
there is r. > 0 such that

(oK, r]))

| det Jg(2)|(1 — ) < w(K[z,r])

< |det Jo(a)] (1 + €)™

for all x € K and for all v € (0,7¢).
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Proof. Let C' > 0 be such that

15 () €]l < Clle]]

for all x € K and £ € RY, and choose 7. > 0 such that

€

CVN

¢z + &) — d(z) — Jo(z)€]] < 141

for all z € K and ¢ € K[0,r]. Fix z € K, and define
D(€) = Jo(2) " (d(x + &) — d(2)).
For r € (0,7¢), we thus have
19(€) =€l = 15 (2) ™ (¢(a+€) —d(2) — s (2)€)]] < Clld(x+E) —p(w) — Ty (2)&]| < ﬁlléll
for ¢ € K[0,7]. From Lemma 6.1.7 (with o = —=), we conclude that

VN

Wb (K0, 7]))
(-9 <= ko.M

< (1+e)N. (6.5)

Since
(K0, 7]) = Jy(2) " d(Klx,r]) — Jy(2) " (),
Proposition 6.1.6 yields that
p((K10,7])) = p(Js(@) " o(K [z, 7)) = |det Jy(2) (K [z, 7).
Since pu(K[0,7]) = p(K[z,r]), multiplying (6.5) with | det Jy(z)| we obtain

p(o(Klz,r]))
(K [z, r])

as claimed. O

| det Jy(2)|(1 — ) < < [ det Jo(x)|(1+ )Y,

We can now prove:

Theorem 6.1.9. Let @ # U C RY be open, let @ # K C U be compact with content, let
¢ € CHU,RYN) be injective on K and such that det Jy(x) # 0 for all z € K. Then ¢(K)

has content and
| i=[ esydesy (6.6)
H(K) K

holds for all continuous functions f: ¢(U) — RM,
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Proof. Let f: ¢(K) — RM be continuous. By Proposition 6.1.4, ¢(kK ) has content. Hence,
both integrals in (6.6) exist, and we are left with showing that they are equal.
Suppose without loss of generality that M = 1. Since

1 1
f =50+ - 501- £,

>0 >0

we can also suppose that f > 0.
For each x € K, choose U, C U open with det Jy(y) # 0 for all y € U,. Since
{U, : © € K} is an open cover of K, there are x1,...,2; € K with

K CUy,U---UU,,.

Replacing U by Uy, U---UU,,,, we can thus suppose that det J,(z) # 0 for all z € U.

Let € € (0,1), and choose compact intervals Iy, ..., I, with the following properties:

(a) for j # k, the intervals I; and I} have only boundary points in common, and we
have K C Uj_, I; C U;

(b) if m <n is such that I;NOK # @ if and only if j € {1,...,m}, then > 77", pu(I;) <e
holds (this is possible because u(90K) = 0);

(¢’) for any choice of &j,m; € I; for j =1,...,n we have

n

I/K(f o ¢)|det Js| — Y _(f 0 9)(&)] det Jo(my) u(Ly)| < e.

j=1
Arguing as in the proof of Lemma 6.1.2, we can suppose that I1, ..., I, are actually cubes
with centers x1,...,x,, respectively. From (c’), we then obtain

()

n

/K (f o d)ldet g — 3 (F 0 &)(&) | det Joa) (L) < .

J=1

for any choice of §; € I for j =1,...,n.
Making our cubes even smaller, we can also suppose that

(@
et (o) - < MO < et a1+ "

forj=1,...,n.

141



Let V C U be open and bounded such that

Uncvecver,
j=1
and let C := sup{|det Js(z)| : © € V}. Together, (b) and (d) yield that

m

> ule(r;) < 2NCe.

j=1

Let j € {m+1,...,n}, so that I; NOK = @, but I; N K # @. As in the proof of Lemma
6.1.7, the connectedness of I; yields that I; C K. Note that, thanks to the injectivity of

¢ on K, we have

oK)\ | ¢<I»¢<K\ U Ij).

Let C := sup{|f(¢(x))| : € V}, and note that

Lo 2
oK) 23 Jey)

;/ij) !

L S L
(K) j;—l ¢(1j)
< / f+2NCCe
¢(K\U§L:m+1 Ij)
< / f+2NCCe
(U7 1)
< 2NFIOCe. (6.7)

Let j € {1,...,n}. Since the set ¢(I;) is connected, there is y; € ¢(I;) such that
ffb(lj) f = fly;)n(o(1;)); choose & € I; such that y; = ¢(&;). It follows that

3 / F=3" Funne) = 3 FeENu@(L). (6.8)
j=170;) j=1 j=1
Since f > 0, we obtain:
D F(6(&))] det Ty () | (1) (1 — )N (6.9)
j=1

< Y F@ENSI), by (@),
j=1

n

- . by (6.8), 6.10
; ¢(1j>f y (6.8) (6.10)

< ) (@) det Ty () (T (1 + )N (6.11)
j=1

142



As e — 0, both (6.9) and (6.11) converge to the right hand side of (6.6) by (c), whereas
(6.10) converges to the left hand side of (6.6) by (6.7). O

Even though Theorem 6.1.1 almost looks like the change of variables theorem, it is

still not general enough to cover polar, spherical, or cylindrical coordinates.

of Theorem 6.1.1. We leaving showing that ¢(K) has content as an exercise.
Let € > 0, and let C' > 0 be such that

C = sup{|f(¢(x)) det Jy(2)], | f(¢(2))| : © € K}

Choose compact intervals I1,...,I, C U and Ji,...,J, C RY such that o(1;) C Jj for
7=1,...,N,

Let Ky := K\ U?:l int I;. Then Ky is compact, ¢|k, is injective and det Jy(x) # 0 for
x € Ky. From Theorem 6.1.9, we conclude that

[ s= ] redensy
¢(Ko) Ko

From the choice of the intervals I;, it follows that

[ Gooaensi- [ roonde <,

Ko

and since ¢(K) \ ¢(Kp) C Jy U---U Jy, the choice of Jy, ..., J, yields

/¢>(K) - /¢>(Ko) d

'/d)(K)f—/K(fw)\deth

Since € > 0 is arbitrary, this completes the proof. O

<€
5

We thus conclude that

< €.

Example. For R > 0, let D C R? be the upper hemisphere of the ball centered at 0 with
radius R intersected with the cylinder standing on the xy-plane, whose hull interesect that

plane in the circle given by the equation
2 2 _
z°— Rx+y” =0. (6.12)

What is the volume of D?
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First note that

R R? R?
xz—Rw+y2:O <~ x2—2—w+—+y2=—

2 4 4

R\* , R?

Hence, (6.12) describes a circle centered at (%, 0) with radius %. It follows that

R\? R?
D = {(:E,y,z)6R3:x2—|—y2+z2§R2,z20, (m—;) —|—y2gz}

= {(z,y,2) eR®: 22 + > + 22 < R% 2 >0, 2° + y* < Rz}.

Figure 6.3: Intersection of a ball with a cylinder

Use cylindrical coordinates:
¢:R> =R (1,0,2) — (rcosf, rsinb, z).
Since

> +9y? <Rr <<=  12=1r%(cosf)? +r?(sinf)* < Rrcosf

— r < Rcos®,
it follows that D = ¢(K) with
K =

{(r,@,z) €10,00) X [-m, 7] xR: 0 € [—g,g],re [0, Rcosb], z € [0, R2—7‘2}}.
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The change of variables formula then yields:

nw(D) = /Dl

(1o (b)‘ det J¢’

Rcos 6 VR2—r2
/ / rdz | dr | df
0 0

(
( Rcoser\/mdr> o
/

“ant e

R2
/ N du> do
R2(sin 0)2

u=R?

We perform an auxiliary calculation. First note that

2 2
/ |sin|® df = 2/ (sin §)3 d6.
- 0

n
2
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Since
jus

(sinf)3do = /memmmwe
0

uy

o\.,
MIE]

= /2 (sin#)(1 — (cos 0)?) df

0

= /2 sin9d9+/2(—sin9)(0089)2d9
0 0

0
= 1+/ u? du
1

1
= 1—/ u? du
0

)

Wil N

it follows that

™

2 4
nfPPdo = —.
/_ | sin 6| 3

s
2

All in all, we obtain that

6.2 Curves in RY

What is the circumference of a circle of radius r > 07 Of course, we “know” the ansers:
27r. But how can this be proven? More generally, what is the length of a curve in the
plane, in space, or in general N-dimensional Euclidean space?

We first need a rigorous definition of a curve:

Definition 6.2.1. A curve in RY is a continuous map 7: [a,b] — RY. The set {7} :=

v([a, b]) is called the trace or line element of ~.

Examples. 1. For r > 0, let
v:[0,27] = R%, ¢+ (rcost,rsint).
Then {7} is a circle centered at (0,0) with radius r.
2. Let ¢,v € RY with v # 0, and let
v:[a,b] = RY, ts c+to.

Then {~} is the line segment from ¢ + av to ¢ 4 bv. Slightly abusing terminology,

we will also call v a line segment.
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3. Let v: [a,b] — RY be a curve, and suppose that there is a partition a =ty < t; <
-+ < tp = b such that 7|[tj,1,tj] is a line segment for j = 1,...,n. Then ~ is called

a polygonal path: one can think of it as a concatenation of line segments.

4. For r > 0 and s # 0, let
v:[0,6m] = R®, t s (rcost,rsint, st).

Then {v} is a spiral.

Figure 6.4: Spiral

If v: [a,b] — RY is a line segment, it makes sense to define its length as ||y(b) —vy(a)||.
It is equally intuitive how to define the length of a polygonal path: sum up the lengths of
all the line sements it is made up of.

For more general curves, one tries to successively approximate them with polygonal

paths:
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Figure 6.5: Successive approximation of a curve with polygonal paths

This motivates the following definition:

Definition 6.2.2. A curve v: [a,b] — RY is called rectifiable if
D lvti—) =yt ineN, a=ty <ty < <t,=b (6.13)
j=1

is bounded. The supremum of (6.13) is called the length of .

Even though this definition for the lenght of a curve is intuitive, it does not provide

any effective means to calculate the length of a curve (except for polygonal paths).

Lemma 6.2.3. Let v: [a,b] — RY be a C'-curve. Then, for each ¢ > 0, there is § > 0

such that
yv(t) —(s)

-~ <
P V()| <e

for all s,t € [a,b] such that 0 < |s —t| < 0.

Proof. Let € > 0, and suppose first that N = 1. Since ' is uniformly continuous on [a, b],
there is 6 > 0 such that

7 (s) = () <€
for s,t € [a,b] with |s —t| < 0. Fix s,t € [a,b] with 0 < |s — t| < §. By the mean value
theorem, there is £ between s and ¢ such that

Y(t) —(s)
t—s

=7'(&).
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It follows that

t—s

2020 =i -0l <

Suppose now that IV is arbitrary. By the case N = 1, there are d1,...,dy > 0 such
that, for j =1,..., N, we have

%) —v(s) €
% - Wj(t)' < N

for s,t € [a,b] such that 0 < |s — ¢| < §. Since

"’Y(t) —(s)

t—s

v () =5 (s)

_,Y/(t)'\gx/ﬁj:max P

1,...N

—7;(t)
for s,t € [a,b], s # t, this yields the claim with § := min;—; _n ;. O

Theorem 6.2.4. Let v: [a,b] — RY be a C'-curve. Then v is rectifiable, and its length

is calculated as ,
| e

Proof. Let € > 0.
There is ; > 0 such that

b n
/ W@l =S W ENIE —t1)| <
a j=1

|

for each partition a = tg < t; < --- < t, =b and & € [tj_1,t;] such that t; —t;_; < &y
for j =1,...,n. Moreover, by Lemma 6.2.3, there is do > 0 such that

“v(t) —7(s)

2(b—a)

/

-7 ()| <
=10
for s,t € [a,b] such that 0 < |s — t| < ds.

Let § := min{dy,d2}, and let a =ty < t; < --- < t, = b such that max;—; _,(t; —
tj—1) < 6. First, note that
€ tj - tj—l

ll96e) = ¥(t5-0ll = 1Y s = ti-1)] < 52—
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for j =1,...,n. It follows that

n b
S 1) — A1l - / ()] dt
=1 a

< IS = -0l = ST IR @I — 1)
j=1 i=1
n b
S I NI — ) - / ()] dt
j=1 a
< Dolhtts) ==l = IV @I = 0] +5
=1 tj—tj—1
< €. ’ h

This yields the claim.

Let now a = sg < s1 < --+ < s, = b be any partition, and choose a partition a = tg <
t1 < --- <ty = bsuch that maxj—i _ n(t; —tj—1) < d and {so,...,sm} C {to,...,tn}. By
the foregoing, we then obtain that

m n b
> I =)l £ 3 It =3l < [ I @llde +e
j=1 j=1 @

and, since € > 0 is arbitrary,

m b
S hss-1) = (sl < / 7 ()] dt.
j=1 a

Hence, f: [|7/(¢)|| dt is an upper bound of the set (6.13), so that ~ is rectifiable. Since, for
any € > 0, we can find a =tg < t; < --- < t, = b with

n b
S () — A0l - / Y@t < e
j=1 a

it is clear that ff [|7/(t)|| dt is even the supremum of (6.13). O
Ezamples. 1. A circle of radius r is described through the curve
v:[0,27] = R%,  t s (rcost,rsint).
Clearly, v is a C'-curve with
v (t) = (—rsint,rcost),

so that ||/ (¢)|| = r for ¢ € [0,27]. Hence, the length of v is

27
/ rdt = 27r.
0
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2. A cycloid is the curve on which a point on the boundary of a circle travels while the

circle is rolled along the z-axis:

Figure 6.6: Cycloid

In mathematical terms, it is described as follows:
v:[0,27] — R?, t > (t—sint,1— cost).

Consequently,
v (t) = (1 — cost,sint)

holds and thus

Y ®OIF = (1 —cost)?+ (sint)?
= 1—2cost+ (cost)? + (sint)?
= 2—2cost

~ ()
BReND}
(e =(0)
-l

for ¢ € [0,27]. Therefore, v has the length

27 ™
/ 2 [sin <£>' dt:4/ sinudu = 8.
0 2 0

3. The first example is a very natural, but not the only way to describe a circle. Here

N+ DN o+

= 2—2cos8

is another one:
v:[0,vV2r] = R?, > (rcos(t?), rsin(t?)).
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Then
v (t) = (—2rtsin(t?), 2tr cos(t?)),

so that

|7/ (t)]| = +/4r2t2 (sin(t2)2 + cos(2)2) = 2rt
holds for ¢ € [0,+/27]. Hence, we obtain as length:

Var V2m 2 t=V2mr
/ 4/ ()] dt :/ ortdt— wl| = omn
0 0 2 t=0

which is the same as in the first example.

Theorem 6.2.5. Let v: [a,b] — RY be a C-curve, and let ¢: [a, ] — [a,b] be a bijective

C'-function. Then v o ¢ is a C'-curve with the same length as 7.

Proof. First, consider the case where ¢ is increasing, i.e. ¢’ > 0. It follows that

B
/rwo Dlldt = /H(»/o¢><t>¢'<t>udt

- /||70¢ )l (1) dt

- / "I (s)]1 s
$(c)=a

Suppose now that ¢ is decreasing, meaning that ¢’ < 0. We obtain:

B8
/ 6y 0 6)' (1) dt

B
/ 10+ 0 6)(0) (1) dit
- /Ilvocb )1 (8) dt

S I
- /Ilv ) ds.

This completes the proof. O

The theorem and its proof extend easily to piecewise C!'-curves.

Next, we turn to defining (and computing) the angle between two curves:

Definition 6.2.6. Let v: [a,b] — RY be a C'-curve. The vector +/(t) is called the tangent
vector to vy at t. If 7/(t) # 0, v is called regular at t and singular at t otherwise. If 7/(t) # 0
for all ¢t € [a,b], we simply call v regular.

Definition 6.2.7. Let 71 : [a1,b1] — RY and 7»: [ag, ba] — RY be two C'-curves, and let
t1 € [a1,b1] and t9 € [ag, bo] be such that:
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(a) 7 is regular at t¢q;

(b) 72 is regular at to;

(c) m(t1) = 2(t2).

Then the angle between 1 and 2 at v1(t1) = v2(t2) is the unique 6 € [0, 7] such that

Y1 (t1) - v5(t2)
v @) )]

Loosely speaking, the angle between two curves is the angle between the corresponding

cosf =

tangent vectors:

2)

v

Figure 6.7: Angle between two curves

Ezample. Let
y1:[0,27] — R?, ¢+ (cost,sint)

and
Yo: [=1,2] = R%, e (t,1 —1t).

We wish to find the angle between v and 5 at all points where the two curves intersect.
Since
@) =22 -2t +1= (2t —2)t +1
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for all t € [—1,2], it follows that ||y2(¢)|| > 1 for all t € [—1,2] with ¢ > 1 or ¢t < 0 and
[|v2(t)]| < 1 for all ¢t € (0,1), whereas (0) = (0,1) and ~2(1,0) = (1,0) both have norm

one and thus lie on {v;}. Consequently, we have

T
{2} = {(0,1) =22(0) = 7 (5) +(1,0) = 72(1) = 3 (0) } .
Let 6 and o denote the angle between 1 and 9 at (0,1) and (1,0), respectively. Since
71 (t) = (—sint, cost) and Y5(t) = (1,-1)

for all ¢ in the respective parameter intervals, we conclude that

osg— (B)BO) (10 (1-1 1
1 (3) [ 11130)]] V2 V2
and
o RO )1
17 O[3 (D] V2 V2’
sothat@zaz%’r.
Y1

Figure 6.8: Angles between a circle and a line

How is the angle between two curves affected if we choose a different parametrization?

To answer this question, we introduce another definition:
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Definition 6.2.8. A bijective map ¢ : [a,b] — [a, 3] is called a C'-parameter transfor-
mation if both ¢ and ¢~ are continuously differentiable. If ¢ is increasing, we call it

orientation preserving; if ¢ is decreasing, we call it orientation reversing.

Definition 6.2.9. Two curves v : [a1,b1] — RY and 7o : [ag,bs] — RY are called

equivalent if there is a C'-parameter transformation ¢: [a1,b1] — [ag, bo] such that o =
Y10 ¢.
By Theorem 6.2.5, equivalent C'-curves have the same length.

Proposition 6.2.10. Let v, : [a1,b1] — RY and o : [ag,bs] — RY be two reqular C'-
curves, and let § be the angle between 1 and y2 at x € RN. Moreover, let ¢1: [a1, B1] —
[a1,b1] and ¢o: oz, Ba] — [az, ba] be two Ct-parameter transformations. Then 1 o ¢1 and

Y2 0 ¢ are reqular C-curves, and the angle between v1 o ¢y and Yo © o at  is:
(i) 0 if ¢1 and ¢ are both orientation preserving or both orientation reversing;

(ii) ™ — 0 if of of ¢1 and ¢y is orientation preserving and the other one is orientation

TEVersing.

Proof. 1t is easy to see — from the chain rule — that v, o ¢1 and 9 o ¢9 are regular.
We only prove (ii).
For j = 1,2, let t; € [aj, B;] such that v1(¢1(t1)) = Y2(¢2(t2)) = x. Suppose that ¢,
preserves orientation and that ¢o reverses it. We obtain

(1o¢)(t) - (2o )’ (t2)  _  7(P1(t1))d1(t) - Ya(Pa(ta)) P (L)
[[(v1 0 @1) (t)[[[[ (72 © B2) (22)]] 171 (01(t1)) 8 (E)[[[ |72 (P2 (t2)) B4 (t2) ]|
P1(t1)gs(t2)  vi(@1(t1)) - V5 (2(t2))
=1 (t1) @5 (t2) 17y (@1 (t0))| 17 (P2(t2)) ]|
~ n@i(t)) - s(da(t2))
|71 (@1t 72 (P2 (t2))]|

= —cosf

= cos(m—0),

which proves the claim. O

6.3 Curve integrals

Let v: R? — R? be a force field, i.e. at each point = € R3, the force v(z) is exerted. This
force field moves a particle along a curve v: [a,b] — R3. We would like to know the work
done in the process.

If ~ is just a line segment and v is constant, this is easy:
work = v - (y(b) — v(a)).
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For general v and v, choose points (t;) and (t;—1) on v so close that v is “almost” a
line segment and that v is “almost” constant between those points. The work done by v
to move the particle from ~(t;_1) to (t;) is then approximately v(n;) - (v(t;) — v(tj-1)),
for any n; on v “between” ~(t;—1) and ~(¢;). For the the total amount of work, we thus

obtain

work & Y " w(n;) - (v(t;) — y(t;-1)).
j=1

The finer we choose the partition a =ty < t; < --- < t,, = b, the better this approximation
of the work done should become.

These considerations, motivate the following definition:

Definition 6.3.1. Let 7: [a,b] — RY be a curve, and let f: {y} — R be a function.
Then f is said to be integrable along =, if there is I € R such that, for each € > 0, there is
d > 0 such that, for each partition a = tg <ty <--- <t, =bwith maxj—__,(t;—tj—1) <

0, we have
T=Y " f(v(&) - (v(ty) = (tj1))| < e
j=1
for each choice §; € [tj—1,t;] for j = 1,...,n. The number I is called the (curve) integral

of f along v and denoted by
/f-dx or /fldx1+"'+dexN.
gl v

Theorem 6.3.2. Let v : [a,b] — RY be a rectifiable curve, and let f: {v} — RN be

continuous. Then fvf -dx exists.
We will not prove this theorem.
Proposition 6.3.3. The following properties of curve integrals hold:

(i) Letv:[a,b] — RN and f,g: {y} — RY be such that f,yf-d:n and fﬁ/g'dzn both exist,
and let o, 3 € R. Then fv(af + B g) - dx exists such that

/y(aerﬁg)'diﬂza/yf'dswrﬁ/yg-dx.

(i) Let v1 : [a,b] — RN, vo: [b,c] — RY and f: {m} U {yw} — RY be such that
v1(b) = v2(b) and that f,yl f-dx and fw f - dx both exist. Then f,ﬂ@w f - dx exists

such that
/ f-dx:/f-dx—i—/f-da;.
Y172 71 72
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(iii) Let 7: [a,b] — RN be rectifiable, and let f: {v} — RY be bounded such that f,y f-dx

exists. Then
/ f - de| < sup{||F(Y@)]] : € [a,b]} - length of 4
Y

holds.

Proof. (Only of (iii)).
Let € > 0, and choose are partition a =ty < t; < --- < t,, = b such that

[~ jzi:lf(v(tj)) (2(t) =2l < e
It follows that
L fodo| < (1) — 1(tj-)| + e
< ZHf () =250l + e
< sup{llFG)I 1 € fa, b} Z\w (10l + e

< sup{|[f(v(@))[| : t € [a, 0]} - 1ength of v +e.
Since € > 0 was arbitrary, this yields (iii). O

Theorem 6.3.4. Let v: [a,b] — RY be a C'-curve, and let f: {v} — RN be continuous.

Then b
~dr = "(t)d
R RCORIOL,

Proof. Let € > 0, and choose 1 > 0 such that, for each partitiona =tg <t; < --- <t, =b

holds.

with max;—1,_,(t; —tj—1) < 61 and for any choice &; € [t;_1,t;] for j =1,...,n, we have
- €
")dt = > F(1(E) A ()t — )| < 3
j=1

Let C' > 0 be such that C' > sup{||f(y(¢))|| : t € [a,b]}, and choose d2 > 0 such that
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for s,t € [a,b] with 0 < |s — | < 3. Since ~/ is uniformly continuous, we may choose da

so small that
/ t) — / < 4
1Y/ () = '(s)] 00 —a)
for s,t € [a,b] with |s—t| < d2. Consequently, we obtain for s, ¢, € [a,b] with 0 < t—s < do
and for £ € [s,t]:

,’y(t) —(s)
t—s

IN

—7(s)

—ve|l = [

YO+ 11 (@) = ()]

< 4C(b — a) * 4C(b — a)
= 56—a (6.14)

Let § := min{d1,d2}, and choose a partition a = ¢ty < t; < .-+ < t, = b with
maxj—1,..n(t; —tj—1) < J. From (6.14), we obtain:
€ t t —1

107(t) = 7(t3-1)) = V)t — 1) | < 5

(6.15)

for any choice of & € [tj_1,t;] for j =1,...,n. Moreover, we have:

(t)dt = F((E) - (1) = A(t5-1)
j=1

IN

b n
/ FO®) A @ dt =S FOEDN) A €5t — i)
a j=1

n

(&)t —tia) = > F(r(&)) - (v(t5) —v(tj-1))

=1

< % + Z [F(V(€)) - (Y (&)t = ti—1) = (v(t) = 7(t-1))]

< —+ZHf ENNN ()5 = ti-1) = (v(E5) = v(Ei-1)]]

€ tj—tj1

et by (615),

A
[\]

+
M- 1

Q

M ol
NN e)

By the definition of a curve integral, this yields the claim. O

Of course, this theorem has an obvious extension to piecewise C'-curves.
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Ezample. Let
v:[0,47] = R3, s (cost,sint,t),

and let
f:R® S R3  (z,y,2) — (1,cos z,zy).

It follows that
/f cd(x,y,z) = /1dm +coszdy + xydz
g g
4m
= / (1,cost,cost sint) - (—sint,cost,1)dt
0

4
= / (—sint + (cost)? + (cost)(sint)) dt
0
4m
= / (cost)? dt
0
= 2.
We next turn to how a change of parameters affects curve integrals:

Proposition 6.3.5. Let v: [a,b] — RY be a piecewise C'-curve, let f: {y} — RY be

continuous, and let ¢ : |a, ] — [a,b] be a C'-parameter trasnformation. Then, if ¢ is

[/Od)f-dznz/ff'da:

cdr = — -d
'y<>¢f ’ /yf !

orientation preserving,

holds, and

if ¢ is orientation reversing.

Proof. Without loss of generality, suppose that v is a C'-curve.

We only prove the assertion for orientation reversing ¢.

We have:
B
[ g = [Crown - oo @ a
Yo «
B
= (o)) - v(o())d (t) dt
= [ 1) )i
b
= — [ f(y(s) -/ (s)ds
= — [ f-dz.
.
This proves the claim. O
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Theorem 6.3.6. Let U C RY be open, let F € CY(U,R), and let v : [a,b] — U be a

piecewise C'-curve. Then
[ vE-ds = FOw®) - Fo@)
gl

holds.

Proof. Choosea =ty <t; < --- <t, =bsuch that ’Y‘[tj,l,tj} is continuously differentiable.
We then obtain

LVF-dx = Z_:/t Z::aa—i(v(t))vé(t)dt

= Y [0 Grema
i=17t

ti—1

as claimed. O

Ezample. Let
f:R3_>R37 (.’L’,y,Z) = (21’2,—1,1’2)7

and let v: [a,b] — R3 be any curve with vy(a) = (—4,6,1) and v(b) = (3,0,1). Since f is
the gradient of
F:R® =R, (z,y,2)— 2%z —vy,

Theorem 6.3.6 yields that
/f-d:z: = F(3,0,1) — F(—4,6,1) =10 — 9 = 1.
¥

Theorem 6.3.6 greatly simplifies the calculation of curve integrals of gradient fields.

Not every vector field, however, is a gradient field:

Example. Let
f:R2_>R27 (‘Tay) H(_yax)y

and let v be the counterclockwise oriented unit circle, i.e.
~(t) = (cost,sint)

for ¢t € [0,27]. We obtain:

2m
-dr = sint)? cost)?
/ﬁd | (it + cost?)ar

2w
- / 1dt
0

= 2.
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Assume that f is the gradient of a C'-function, say F. Then we would have
[ £de = Fr(2m) = Fo(0)) =0
gl

by Theorem 6.3.6 because 7(0) = (27). Hence, f cannot be the gradient of any C'-

function.

More generally, we have:

Corollary 6.3.7. Let U C RY be open, and let ' € C'(U,R), and let f = VF. Then

/f-dx:O
g

for piecewise C'-curve «: [a,b] — U with v(b) = v(a).
To make formulations easier, we define:

Definition 6.3.8. A curve v: [a,b] — RY is called closed if v(a) = y(b).
Under certain circumstances, a converse of Corollary 6.3.7 is true:

Theorem 6.3.9. Let @ # U C RY be open and convex, and let f: U — RN be continuous.

The the following are equivalent:
(i) there is F € C*(U,R) such that f = VF;
(i) fﬁ/ f-dx =0 for each closed, piecewise C'-curve v in U.

Proof. (i) = (ii) is Corollary 6.3.7.
(ii) = (i): For any x,y € U, define

[z,y] =={x+ty—=):t€[0,1]}.

Since U is convex, we have [z,y] C U. Clearly, [z, y] can be parametrized as a C'-curve:
0,1] = RY, ts z+t(y—x).

Fix xg € U, and define

F:U—-R, x+— f-dax.

[mo ,:E}
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Let z € U, and let € > 0 be such that B.(z) C U. Let h # 0 be such that ||h|| < e.
We obtain:

Flx+h)—F(z) = / f-d:n—/ f-dx
[xo,z+h] [zo,x]
= / f-d:n—/ f-d:n—l—/ f-da:—/ f-dx
[xo,x+h] [z,x+h] [z,x+h] [zo,x]
- / f-d:n+/ f-d:n+/ f-da:+/ f-de
[xo,z+h] [x+h,x] [x,x0] [z, x+h]

- / fodet / f-dz
[x0,x+h]®[z+h,z]D[x,x0] [z, x+h]

Figure 6.9: Integration curves in the proof of Theorem 6.3.9

It follows that

L P+ h)— Fz) - f(2) b = ——

/ f-dac—/ f(z) - dx
[z, x+h] [z, x+h]

||| |||
1
= [ () de
AL S 40
< sup{[|f(y) = f(@)[| : y € [w,x+ R]}.  (6.16)
Since f is continuous at x, the right hand side of (6.16) tends to zero as h — 0. O

This theorem remains true for general open, connected sets: the given proof can be

adapted to this more general situation.
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6.4 Green’s theorem

Definition 6.4.1. A normal domain in R? with respect to the x-axis is a set of the form

{(Z’,y) € R2 HE S [CL, b]? (bl(w) < Yy < (;52(1')}7

where a < b, and ¢1, ¢2: [a,b] — R are piecewise C!-functions such that ¢; < ¢o.

T T X
a b
Figure 6.10: A normal domain with respect to the z-axis
Ezamples. 1. A rectangle [a,b] X [c,b] is a normal domain with respect to the z-axis:

Define
o1(x)=c and ¢o(x) =d
for x € [a, b].
2. A disc (centered at (0,0)) with radius r > 0 is a normal domain with respect to the
z-axis. Let
d(x) =—vr2—22 and  ¢do(x) = V12 —a?
for z € [—r,7].

Let K C R? be any normal domain with respect to the 2-axis. Then there is a natural
parametrization of 0K:
OK =71 @7 ®73 D
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with

() = (t,é1(1)) for t € [a, b],
Ya(t) = (b,¢1(b) +t(pa2(b) — (b))  fort e [0,1],
v3(t) = (a+b—t,da(a+b—1)) for t € [a, b],

and
Y4(t) := (a, P2(a) + t(d1(a) — ¢a2(a)) for t € [0, 1].

Y3
Yo

Ya

Y1

x

Figure 6.11: Natural parametrization of 0K

We then say that 0K is positively oriented.

Lemma 6.4.2. Let @ # U C R? be open, let K C U be a normal domain with respect to

the x-axis, and let P: U — R be continuous such that %—I; exists and is continuous. Then
orP

—_— = — Pdx (+0d
K Oy /(’)K ( 2

holds.

Proof. First note that

b P2(x)
or = / / a—P(x, y)dy | dx, by Fubini’s theorem,
K Oy a \Jo(x) 9y

b
- / (P(x, 6 () — P(x, 61 (x))) da,

by the fundamental theorem of calculus.
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Moreover, we have
b b
[ Peani = [ ey
b
_ / (P(31(1)),0) -9 (t) dt

a

= / Pdx
7

and similarly

b

b
/P(az,qﬁg(x))dx = /P(a+b—x,¢2(a+b—x))da;
b
— [ Peat)ai
b
=~ [ (POa@).0) (1)

= —/ Pdx.
V3
8—P:—</ Pdm+/Pd:1:>.
K Oy " V3

/dez/dezO,
72 Y4
orP

- _/ Pdr = — Pdx
K 0y Y1DY2DV3PV4 0K

as claimed. O

It follows that

Since

we eventually obtain

As for the z-axis, we can define normal domains with respect to the y-axis:

Definition 6.4.3. A normal domain in R? with respect to the y-azis is a set of the form

{(z,y) eR*:y € [c,d], Y1(y) <z <1ha(y)},

where ¢ < d, and ¢1, ¢2: [a,b] — R are piecewise C!-functions such that ¢y < 1)s.
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Figure 6.12: A normal domain with respect to the y-axis

Ezample. Rectangles and discs are normal domains with respect to the y-axis as well.

As for normal domains with respect to the xz-axis, there is a canonical parametrization
for the boundary of every normal domain in R? with respect to the z-axis. We then also
call the boundary positively oriented.

With an almost identical proof as for Lemma 6.4.2, we obtain:

Lemma 6.4.4. Let @ # U C R? be open, let K C U be a normal domain with respect to

the y-axis, and let Q: U — R be continuous such that %—}; exists and is continuous. Then
0Q /
— = (0dz+) Q dy
/K or  Jox

Proof. As for Lemma 6.4.2. O

holds.

Definition 6.4.5. A set K C R? is called a normal domain if it is a normal domain with

respect to both the z- and the y-axis.

Theorem 6.4.6 (Green’s theorem). Let @ # U C R? be open, let K C U be a normal
domain, and let P,Q € C*(U,R). Then

/<8—Q—8—P>: Pdxr+ Qdy
kK \Or 0Oy oK
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holds.
Proof. Add the identities in Lemmas 6.4.2 and 6.4.4. O

Green’s theorem is often useful to compute curve integrals:

Ezamples. 1. Let K =10,2] x [1,3]. Then we obtain:
2/ 3
/ :Eyd:n+(:n2—|—y2)dy:/2:n—:n:/ </ xdy>d$:4.
oK K 0o \J1
2. Let K = B41[(0,0)]. We have:

/ xy? dx + (arctan(logy + 3)) — z) dy
oK

= /—1—2xy
K
= —/ 2zy +1
K
21 1
= —/ </ 2T200398in9+1)rdr>d0
0 0
o 1 1
= —</ (cos@)(sin@)d@) (2/ 7‘3d7‘>—27{'/ rdr
0 0 0

=0

= -
Another nice consequence of Green’s theorem is:

Corollary 6.4.7. Let K C R? be a normal domain. Then we have:

1
w(K) = —/ xdy —ydx.
2 Jox
Proof. Apply Green’s theorem with P(z,y) = —y and Q(x,y) = x. O

6.5 Surfaces in R?

What is the area of the surface of the Earth or — more generally — what is the surface
area of a sphere of radius r7
Before we can answer this question, we need, of course, make precise what we mean

by a surface

Definition 6.5.1. Let U C R? be open, and let @ # K C U be compact and with content.
A surface with parameter domain K is the restriction of a C'-function ®: U — R3 to K.
The set K is called the parameter domain of ®, and {®} := ®(K) is called the trace or

the surface element of ®.
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Ezamples. 1. Let r > 0, and let
®:RZ =R, (s,t)+ (r(coss)(cost),r(sins)(cost),rsint)
with parameter domain o
K :=10,27] x [—5, 5] .
Then {®} is a sphere of radius r centered at (0, 0,0).

2. Let a,b € R3, and let
d:R? - R®,  (s,t) — sa+tb

with parameter domain K := [0,1]?. Then {®} is the paralellogram spanned by a
and b.

To motivate our definition of surface area below, we first discuss (and review) the

surface are of a parallelogram P C R? spanned by a,b € R3. In linear algebra, one defines
area of P := ||a x bl|,

where a x b € R? is the cross product of a and b.

A

axb

N

a_
b
Figure 6.13: Cross product of two vectors in R?

The vector a x b is computed as follows: Let a = (aj, as,a3) and b = (by, be, b3), then

axb = (agbz —asby,biaz — aibs,aiby — bias)
N a2 as ay; as ay; ag
B by by |7 | by by |l by by |)]
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Letting i := (1,0,0), j := (0,1,0), and k := (0,0, 1), it is often convenient to think of a x b

as a formal determinant:

i j k
axb=|a ay ag
by by b3

We need to stress, hoever, that this determinant is not “really” a determinant (even
though it conveniently very much behaves like one).

The verification of the following is elementary:

Proposition 6.5.2. The following hold for a,b,c € R? and X\ € R:
(i) a
(i)
)
)

b=-bxa;

X a

S|

(iii) AMa xb) =Aa xb=a x \b;
(iv) ax (b+c)=axb+axc;
(v) (a+b)xc=axc+bxec.

Moreover, we have:

Ccl1 C2 cC3
c-(axb)=|a ay a3
by by b3

Corollary 6.5.3. For a,b € R3, we have
a-(axb)=>b-(axb)=0.

In geometric terms, this result means that a x b stands perpendicularly on the plane

spanned by a and b.

Definition 6.5.4. Let ® be a surface with parameter domain K, and let (s,¢) € K. Then
the normal vector to ® in ®(s,t) is defined as

0P 0P
N(s,t) := a(s,t) X E(S’t)

Example. Let a,b € R3, and let
P:R2 R, (s,t) — sa+th
with parameter domain K := [0,1]2. It follows that
N(s,t) =a x b,
so that

surface area of ® = ||a X b|| :/ [|N(s,t)]|.
K
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Thinking of approximating a more general surface by braking it up in small pieces

reasonably close to parallelograms, we define:

Definition 6.5.5. Let ® be a surface with parameter domain K. Then the surface area

of ® is defined as . .
Jowso = [ 1520 < Giso| |

Ezample. Let r > 0, and let
d:R? 5 R3,  (s,t) — (r(coss)(cost), r(sins)(cost), rsint)

with parameter domain

It follows that

aa—f(s,t) = (—r(sins)(cost),r(cos s)(cost),0)
and 50
E(S’t) = (—r(cos s)(sint), —r(sin s)(sint), r cost)
and thus
N(s,t)
= g—f(s,t) X %—f(s,t)
_ <‘ r(cos s)(cost) 0| | —r(sins)(cost) 0
—r(sins)(sint) rcost —r(cos s)(sint) rcost
' —r(sins)(cost)  r(coss)(cost) )
r(coss)(sint) —r(sins)(sint)
= (r%*(cos s)(cost)?,72(sin s)(cos t)?, r*(sin 5)*(cos t)(sin t) 4+ 72(cos s)?(cos t)(sin t))
= (r*(cos s)(cost)?,72(sin s)(cos t)?, % (cos t)(sin t))
= rcost®(s,t).
Consequently,

N(s,t)|| = ||[rcost ®(s,t)|| = rcost||®(s,t)|| =r?cost
I[N (s, )] = || : ,

holds for (s,t) € K. The surface area of ® is therefore computed as
o L 2 [? 2
/ HNstH—/ / recostdt | ds = 2mr / costdt = 4mre.
-3 -3
For r = 6366 (radius of the Earth in kilometers), this yields a surface are of approximately

509,264,183 (square kilometers).
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As for the length of a curve, we will now check what happens to the area of a surface

if the parametrization is changed:

Definition 6.5.6. Let @ # U,V C R? be open. A Cl-map ¢ : U — V is called an

admissible parameter transformation if
(a) it is injective, and
(b) det Jy(x) # 0 for all x € U and does not change signs.

Let ® be a surface with parameter domain K. Let V' C R? be open such that K C V
and such that ®: V — R3 is a C'-map. Let ¢»: U — V be an admissible parameter
transformation with ¥(U) D K. Then ¥ := ® o is a surface with parameter domain
¥~ 1(K). We then say that U is obtained from ® by means of admissible parameter

transformation.

Proposition 6.5.7. Let ® and ¥V be surfaces such that V is obtained from ® by means

of admissible parameter transformation. Then ® and ¥ have the same surface area.

Proof. Let 1 denote the admissible parameter transformation in question. The chain rule

gv ovy _ (00 o0y
ds’ Ot — \ouw ov )Y

- @, P,

yields:

ou’  dv o1 O
_ Do Do Js ? ot
- du’ Qv Oba  Oib2
P3 D3 ds ? ot
L Ou’ Ov

SRR SR Y T SN
ou Os ov Os’ Ou Ot ov Ot
— ﬁ%+¢2% @%4_‘1’2%

ou 0Os Ov Js > Ou Ot v Ot
4001 | aOly Dy 01 4 By O
L Ou Os ov 0s ' Ou Ot ov Ot
Consequently, we obtain:
ov " ov
0s ot
Dy P S ™ P P
_ ou’ O du’ 9 ou’ O
= det CLZ 213’ Jy |, —det é; 213’ Jy | »det CLZ CLZ Jy
ou’ Ov ou’ v ou’ Ov

o 0P
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Change of variables finally yields:

surface area of ® =

"&I) 0®

0P
= w—l ‘|—o¢x—ow‘||deth|

B / 8\1/ a\y‘
GUE

= surface area of W.

This was the claim. O

6.6 Surface integrals and Stokes’ theorem

After having defined surfaces in R? along with their areas, we now turn to defining — and

computing — integrals of (R-valued) functions and vector fields over them:

Definition 6.6.1. Let ® be a surface with parameter domain K, and let f: {®} — R be

continuous. Then the surface integral of f over ® is defined as

A fdo = /K F(®(s, )I[N (s, 1)

It is immediate that there surface area of ¢ is just the integral [ o 1do. Like the surface
area, th value of such an integral is invariant under admissible parameter transformations

(the proof of Proposition 6.5.7 carries over verbatim).

Definition 6.6.2. Let ® be a surface with parameter domain K, and let P,Q, R: {®} — R
be continuous. Then the surface integral of f = (P,Q, R) over ® is defined as

/ PdyNdz+ QdzNdx+ Rdx N dy := / f(®(s,t)) - N(s,t).
> K
Ezample. Let K :=[0,1] x [0,27], and let

O(s,t) := (s cost,s sint,t).

It follows that
0P 0P

E(S’t) := (cost,sint,0) and a(s,t) := (—s sint, scost, 1),
so that
N(s,1) sint 0 cost 0O cost sint
s = —
’ scost 1 —ssint 1 —ssint scost

= (sint,—cost,s).
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We therefore obtain that

(s sint,—s cost,0) - (sint, — cost, s)

/ydy/\dz—xdz/\da; =
? 1]%[0,27]

—

s(sint)? + s(cost)?

Il
—

[0,1]x[0,27]

S

Il
—

[0,1]x[0,27]

I
A

Proposition 6.6.3. Let V and ¢ be surfaces such that V is obtained from ® by and
admissible parameter transformation v, and let P,Q, R: {®} — R be continuous. Then

/de/\dz—l—de/\dx—i—Rda:/\dy:i/de/\dz—i—de/\da:—i—Rdx/\dy
v P

holds with “+7 if det Jy, > 0 and “=7 if det Jy, < 0.
We skip the proof, which is very similar to that of Proposition 6.5.7.

Definition 6.6.4. Let ® be a surface with parameter domain K. The normal unit vector
n(s,t) to ® in ®(s,t) is defined as

N(st) s B
n(s,t) =4 NG if N(s,t) =0,
0, otherwise.

Let ® be a surface (with parameter domain K), and let f = (P,Q, R): {®} — R3 be

continuous. Then we obtain:
/de/\dz—l—de/\dm—l—Rdm/\dy = /f(fb(s,t))'N(s,t)
o K

- / F(®(s,8) - n(s. )N (s, )]
K

= Lf-nda.

Theorem 6.6.5 (Stokes’ theorem). Suppose that the following hypotheses are given:

(a) ® is a C?-surface whose parameter domain K is a normal domain (with respect to

both azes).

(b) The positively oriented boundary OK of K is parametrized by a piecewise C'-curve

v: [a,b] — R2.

(c) P, Q, and R are C'-functions defined on an open set containing {®}.
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Then

Pdx+Qdy+ Rdz
Doy

- /(8_R_8—Q>dyAdz+<a—P—a—R>d A dx +<6Q a—P>d:13/\dy
(]

oy 0z 0z 0

= A(curl f) - ndo
holds, where f = (P,Q, R).
Proof. Let ® = (X,Y, Z), and
p(s,t) == P(X(s,1),Y (s,1), Z(s,1)).

or Oy

We obtain:
_ [ d(X o)
par = [T

b
= [ o0 (G e + G ) ar
0X 0X
= [{ 8— ds + P E dt.

By Green’s theorem we have

/3_de+a_th/ﬁ 0X\ 0 ( 0X
Pras T as \Por ) e \Pas ) )

We now transform the integral on the right hand side of (6.17). First note that
0 < 8X> 0 ( 8X> Op 0X 0?’X  OpoX 0°X

s\Par) " a\Pas) T asar "Pasar ot os  oios
_ OpoX  9poX
T 0s Ot ot Os

Furthermore, the chain rule yields that
Op _OPOX  OPOY  0POZ
ds Oz Os Oy 0s 0z Os

and
dp O0POX OPOIY 8P VA

o oz ot oy ot 0z ot
Combining all this, we obtain that

opOx _ 0poX

Os Ot ot Os
<8P8X OP 0Y 8P82> 8_X_ <8P8X OP 0Y Z?PE?Z>

9z 0s "oy os Toz0s) ot \ozar Taygor T o: ot

_ 0P (0YOX _0VOX) 0P (020X 020X
Oy \ Os Ot ot Os 0z \ 0s Ot ot Os
| % 0z | 55 Gt
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and therefore

9 (,0X) 2 (09X OP | 5 | 0P|
as\"ot ) "ot \"os ) T oy | o or | T pa| ax ox

In view of (6.17), we thus have:

Pdx /p—ds+p—dt
Poy ¥ ds
o0X 090X 9z  9Z
K b5 of 0z | 55 G
P P
A—g—ydx/\dy—kg—dz/\dw (6.18)
In a similar vein, we obtain:
Qdy:/—@d Adz —|—@d$/\dy (6.19)
Doy P 0 ox
and OR OR
Rdz= | ———dzNdx+ —dy Ndz. (6.20)
Poy [l Ox ay
Adding (6.18), (6.19), and (6.20) completes the proof. O

Example. Let v be a counterclockwise parametrization of the circle {(z,y,2) € R3 :
2?24+ 22 =1, y = 0}, and let

flx,y,2) = (2% + Va3 + 22 + 2, 2y 2y, +V 23 + 22 + 2).
~—
=P =Q =R

We want to compute

/Pd:E—I—Qdy+Rdz.

2l

Let ® be a surface with surface element {(x,y,2) € R®: 22 +22 <1, y =0}, e.g.
O (s,t) := (s cost,O0,s sint)

for s € [0,1] and ¢ € [0, 27x]. It follows that

0P 0d

s —(s,t) = (cost,0,sint) and E(s,t) = (—s sint,0, s cost)

and thus
N(s,t) = (0,—s,0).

for (s,t) € K :=[0,1] x [0,27], so that
n(s,t) = (0,—1,0)
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for s € (0,1] and ¢ € [0, 27]. It follows that
(curl £)(®(s,t))-n(s,t) = —s*(cost)?

for s € (0,1] and t € [0, 27]. From Stokes’ theorem, we obtain

/Pdm—l—Qdy+Rdz = /(curl f)-ndo
2l @

= / —s%(cost)?s
K

= — </01 33d3> </027r(cost)2dt>

6.7 Gauf}’ theorem

Suppose that a fluid is flowing through a certain part of three dimensional space. At each
point (x,y, z) in that part of space, suppose that a particle in that fluid has the velocity
v(z,y,2) € R (independent of time; this is called a stationary flow). At time t, suppose
that the fluid has the density p(z,y, 2,t) at the point (z,y, z). The vector

f(z,y,2,t) = p(x,y,2,t)v(z,y,2)

is the density of the flow at (z,y, z) at time ¢.
Let S be a surface placed in the flow, and suppose that N # 0 throughout on S. Then

the mass per second passing through .S in the direction of n is computed as

/Sf -ndo. (6.21)

Fix a point (zg,yo, 20), and suppose for the sake of simplicity that p — and hence f

— is independent of time. Let
f=Pi+Qj+ Rk

Let (z0, 40, 20) be the lower left corner of a box with sidenlengths Az, Ay, and Az.
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(X0:Y0:20)

Figure 6.14: Fluid streaming through a box

The mass passing through the two sides of the box parallel to the yz-plane is approx-
imately given by

P(xo,90,20) Ay Az and P(xo+ Az, yo, 20) Ay Az.

We therefore obtain the following approximation for the mass flowing out of the box in
the direction of the positive z-axis:

(P(xo + Az, y0,20) — P(z0,Y0,20)) Ay Az = Pleo Aﬂ%ymz); =t ) Ay Az
oP
~ E(xo,yo,zo) Ax Ay Az.

Similar considerations can be made fot the y- and the z-axis. We thus have:

P
mass flowing out of the box the box = (8— + 8_@ + 8—R> Ax Ay Az
= div fAz Ay Az.
If V' is a three-dimensional shape in the flow, we thus have
mass flowing out of V' = / div f. (6.22)
\%4

If V has the surface S, (6.21) and (6.22), yield Gaufi’s theorem:

/f nda_/dwf
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Of course, this is a far cry from a mathematically acceptable argument. To prove
GauB’ theorem rigorously, we first have to define the domains in R3 over which we shall

be integrating;:

Definition 6.7.1. Let Uy, Us C R? be open, and let ®; € C'(Uy,R?) and ®3 € C' (U, R?)

be surfaces with parameter domains K7 and Ks, respectively, and write
D, (s,t) = Xu(s,t)i+Y(s,t)j+ Zu(s,t) k (v=1,2, (s,t) € U,).
Suppose that the following hold:
(a) The functions
g U, » R (s,t) = X, (s,)i+ Y, (s,8)] (v=1,2)

are injective and satisfy det.J, < 0 and detJ,, > 0 on K; and Kj, respectively

(except on a set of content zero).
(b) gl(Kl) == gg(Kg) = K.
(c) The boundary of K is parametrized by a piecewise C!-curve.

(d) There are continuous functions ¢, ¢pa: K — R with ¢; < ¢9 such that

Zu(Svt) = (JSV(XV(S,t),Y,,(S,t)) (V =12, (Svt) € KI/)‘

Then
Vi={(z,y,2) €R®: (z,y) € K, ¢1(2,y) < z < ¢o(z,y)}

is called a normal domain with respect to the zy-plane. The surfaces ®; and ®, are called
the generating surfaces of V; Sy := {®1} is called the lower lid, and Sy := {®2} the upper
lid of V.
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X
Figure 6.15: A normal domain with respect to the xy-plane
Ezamples. 1. Let V := [a1,a2] X [b1,b2] X [c1,¢2]. Then V is a normal domain with
respect to the xy-plane: Let Kj := [by, bo] X [a1,a2] and Ks := [a1,as] X [b1, b2, and

define
Dy (s,t) = (t,s,c1) and Dy(s,t) = (s,t,c2)
for (s,t) € R%. For v = 1,2, let ¢, = c,.
2. Let V be the closed ball in R? centered at (0,0,0) with radius » > 0. Let K :=
[0,27] x [-%,0] and Kj := [0,27] x [0,%], and define
Dy (s,t) := Po(s,t) = (r coss cost,r sins cost,r sint)
for (s,t) € R2. Tt follows that K is the closed disc centered at (0,0) with radius 7.
Letting
Sy = VTP and  alwy) = Vi a g

for (z,y) € K, we see that V is a normal domain with respect to the zy-axis.
Lemma 6.7.2. Let U C R? be open, let V. .C U be a normal domain with respect to the
xy-plane, and let R € CY(U,R). Then

/8_R: Rdw/\dy+/ Rdx N dy
v 0z by By
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holds.

Proof. First note that

OR »2(zy) gR
1% 9z /K </¢1(%y) 0z dz)
_ /K (R(z,y, da(2,y)) — R(x,y, 1 (x,9))).

Furthermore, we have:

/ Riz.y, o)) = / Rz, ba(2. 1))
K 92(K2)

R(g2(87 t)7 ¢2 (92(87 t))) det ng (87 t)

2

0Xo (S,t) 0X2 (S,t)

R(®a(s, 1)) | 5 o
2 %(S,t) %(S,t)

(07 07R((I>2(37t))) : N(Svt)

2

Rdx A dy.

2

I I
— 55—

In a similar vein, we obtain
K d;
All in all,
OR
L= [ By inte) - Reporte) = [ Raendy+
v 9% K Dy (o2

holds as claimed.

Let V C R? be a normal domain with respect to the zy-plane, and let 7: [a,b] — R?

be a piecewise C'-curve that parametrizes 0K . Let

Ks:={(s,t) € R? 1 s € [0, 8], ¢1(7(s)) St < d2(7(s))}

and
D3(s,t) :=y1(s)i+12(s)j+tk =: X3(s,t)i+ Ya(s,t)j+ Z3(s,t) k

for (s,t) € K. Then ®3 is a “generalized surface” whose surface element S := {®3} is

the vertical boundary of V.

Except for the points (s,t) € K3 such that v is not C' at s — which is a set of content

zero — we have

Belst) G0 | | mls) 0 _y
Bas.t) B(s,) | | ls) O




It therefore makes sense to define

Rdx Ndy = 0.
®3

Letting S := 57 U Sy U S35 = 9V, we define

3
/Rdm/\dy::Z/ Rdax A dy.
S v=1 v

In view of Lemma 6.7.2, we obtain:

Corollary 6.7.3. Let U C R3 be open, let V C U be a normal domain with respect to the

xy-plance with boundary S, and let R € CY(U,R). Then

/8—R:/Rdx/\dy
v oz Js

holds.

Normal domains in R? can, of course, be defined with respect to all coordiate planes.

If a subset of R? is a normal domain with respect to all coordinate planes, we simply

speak of a normal domain.

Theorem 6.7.4 (Gauf’ theorem). Let U C R3 be open, let V.C U be a normal domain

with boundary S, and let f € CY(U,R3). Then

/Sf'nda:/vdivf

holds.

Proof. Let f=Pi+ Qj+ Rk. By Corollary 6.7.3, we have

OR

Rdx Ndy = —_—
/S \Va 82

Analogous considerations yield

/de/\da:: @
s v 0y

opr

and

Pdyndz = —
/5 Va!l?

Adding (6.23), (6.24), and (6.25), we obtain

/f-nda = /de/\dz+de/\dx+Rd:1:/\dy
S S

o 0Q  oR
v Oxr Oy 0z

- /Vdivf.
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Ezamples. 1. Let
49
V= {(x,y,z) ER3: 242 +22< —e},
T
and let
. 1
flz,y,2) = <arctan(yz) + ¥ log(2 + cos(zz)), 1520 x2y2> .

Then Gauf3’ theorem yields that

/Sf-nda:/vdivf:/VO:O.

2. Let S be the closed unit sphere in R?. Then
/ 2xydy Adz —y?dz Ade + 23 da A dy = /(2a:y, —y2,23) - n(x,y,2)do
S S

is difficult — if not impossible — to compute just using the definition of a surface

integral. With Gauf3’ theorem, however, the task becomes relatively easy. Let

flz,y,2) = (2zy, —y*,2%)  ((z,y,2) € RY),

so that
(div f)(z,y, 2) = 2y — 2y + 32% = 322

By Gauf}’ theorem, we have

/f-ndcr:/divv:3/z2,
s 1% 1%

where V is the closed unit ball in R3. Passing to spherical coordinates and applying

Fubini’s theorem, we obtain
/ 22 = / r(sin o)?(cos )
1% [0,1]x[0,27]x [~ Z,Z ]
1
= 271/ <7‘4/ (sin o) (cos o) da) dr
o\ J-3
1 1
= 271/ </ u2dy>dr
0 -1
1
2
= 271/ —rtdr
0 3

ar
15°

4
/f-ndaz/divf=3/z2:_7r_
S v % 5
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Chapter 7

Infinite series and improper

integrals

7.1 Infinite series

Consider

> A=+ -1)+-- = 0,
2 (1) _{ I+ (—1+ D)+ (=1+1)+- = 1.

n=0

Which value is correct?

Definition 7.1.1. Let (a,)22; be a sequence in R. Then the sequence (s,)72; with
Sp = Y p_q ak for n € Nis called an (infinite) series and denoted by "7 | a,; the terms
sy, of that sequence are called the partial sums of Y > | a,,. We say that the series Y ° | a,

converges if lim,, o, S;, exists; this limit is then also denoted by 220:1 an,-

Hence, the symbol Y >° | a,, stands both for the sequence (s,)22; as well as — if that
sequence converges — for its limit.
Since infinite series are nothing but particular sequences, all we know about sequences

can be applied to series. For example:

Proposition 7.1.2. Let Y 7, a, and > .2 by, be convergent series, and let o, B € R.
Then Yo7 | (aan + Bby,) converges and satsifies

Z(aan + ﬁbn) = azan + 5an
n=1 n=1

n=1
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Proof. The limit laws yield:
[e.e] [e.e] n n
ad ant B b = alim} atplim ) b
n=1 n=1 k=1 k=1
n

= nll_)llolo Z(aak + Bby)
k=1

[e.e]

= Z(aan + an)

n=1

This proves the claim. O

Here are a few examples:

Ezamples. 1. Harmonic series. For n € N, let a,, := %, so that

oo

Hence, (s,,)2, is not a Cauchy sequence, so that > >, % diverges.

2. Geometric series. Let 0 # 1, and let a,, := 0" for n € Nyg. We obtain for n € Ny

that
n n
Sn—0s, = > 0= ok
k=0 k=0
n n+1
- S-S
k=0 k=1
- 1- en—i-l’
i.e.

(1—0)s, =1—6""

and therefore
1— 9n+1

1-4
Hence, >0 0" diverges if |0 > 1, whereas > 00, 0" = 15 if [0] < 1.

Sp =

Proposition 7.1.3. Let (a,)52, be a sequence of non-negative reals. Then Yy 7 | ap

converges if and only if (s,)52 is a bounded sequence.

Proof. Since a,, > 0 for n € N, we have s,41 = S, + any1 > Sp. It follows that (s,)02 is

an increasing sequence, which is convergent if and only if it is bounded. O

o0

If (an)pe; is a sequence of non-negative reals, we write > >, a, < oo if the series

converges and > > | a, = oo otherwise.
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Ezamples. 1. As we have just seen, > 2, % = 00 holds.

2. We claim that )7, # < 00. To see this, let a, := m for n € N, so that

1 1
ap = — —
" n n+1
It follows that
" & <1 1 > 1 o
an = - = =1-—==1,
— — k k+1 +1
so that Y 7 | a, < co. Since
n 1 n 1 n 1 n—1
— =1 — <1 — =1
Zk2 T2 @St k(k —1) +Zak’
k=1 k=2 k=2 k=1

this means that 5 | 25 < occ.

The following is an immediate consequence of the Cauchy criterion for convergent

sequences:

Theorem 7.1.4 (Cauchy criterion). The infinite series Y .- | a, converges if, for each

€ > 0, there is n. € N such that, for all n,m € N with n > m > n., we have

n

DL @

k=m+1

< €.

Corollary 7.1.5. Suppose that the infinite series y -, a, converges. Then lim,, oo an =
0 holds.

Proof. Let € > 0, and let n. € N be as in the Cauchy criterion. It follows that

n+1

> a

k=n+1

|lant1| = <€

for all n > n.. O
Ezamples. 1. The series Y 2 (—1)™ diverges.

2. The series > 2, % also diverges even though lim,, o % = 0.
Definition 7.1.6. A series > 7 | ay is said to be absolutely convergent if > | |a,| < oc.
Ezample. For § € (—1,1), the geometric series ) >~ ;0" converges absolutely.

Proposition 7.1.7. Let Y ", a, be an absolutely convergent series. Then Y >, a, con-

verges.
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Proof. Let € > 0. The Cauchy criterion for >~ >° , |a,| yields ne € N such that

n

Z lag| < €

k=m-+1

for n > m > n,. Since
n

>

k=m+1

n

< ) Jml<e

k=m+1

for n > m > n,, the convergence of >, a, follows from the Cauchy criterion (this time
applied to > 7 an). O

Proposition 7.1.8. Let Y >°  a, and Y .2 b, be absolutely convergent series, and let

a,B € R. Then > > (aan + Bby) is also absolutely convergent.

Proof. Since both "> | a, and Y .7 | by, converge absolutely, we have for n € N that

n

S laar + Bl < lal > lawl + 1813 1bel < lal Y farl + 18] [bx]-
k=1 k=1 k=1 k=1

k=1
Hence, the increasing sequence (3)_; |oag + Bby]),~; is bounded and thus convergent.
O

Is the converse also true?

Theorem 7.1.9 (alternating series test). Let (a,)52; be a decreasing sequence of non-

negative reals such that lim, ., a, = 0. Then Zzozl(—l)"_lan converges.

Proof. For n € N, let

It follows that
Son42 — Sop = —Q2p42 + aopy1 >0

for n € N, i.e. the sequence (s2,,)02; increases. In a similar way, we obtain that the

sequence (sg,—1)5 ; decreases. Since
Son = S2p—1 — G2n < S2p—1

for n € N, we see that the sequences (s2,,)72; and (s2,-1)52; both converge.
Let s := lim,,_ o0 S2n—1. We will show that s = fo:l(—l)"_lan.
Let € > 0. Then there is n1 € N such that

2n—1

Z (-1 ap —s

k=1

<e
2
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for all n > ny. Since lim,, o a, = 0, there is ng € N such that |a,| < § for all n > ny.

Let n. := max{2n1,ns}, and let n > n..

Case 1: nis odd, i.e. n = 2m — 1 with m € N. Since n > 2n;, it follows that m > nq,
so that

lsn — 8| = [sam—1 — 8| < % < e.

Case 2: n is even, i.e. n = 2m with m € N, so that necessarily m > nq. We obtain:

[sn —s| = [s2m—1 — an — $|
< |32m—1 _S|+ |an|
—_— —~~

< <

Nm
Nm

AN
™

This completes the proof. O

Ezample. The alternating harmonic series E;’O:l(—l)"_li is convergent by the alternat-

ing series test, but it is not absolutely convergent.

Theorem 7.1.10 (comparison test). Let (a,,)2 and (b,)52, be sequences in R such that
b, >0 for all mn € N.

(i) Suppose that Y7 | by, < 0o and that there is ng € N such that |a,| < b, for n > ny.
Then > > | an converges absolutely.

(i) Suppose that > 2 | by, = oo and that there is ng € N such that a, > b, for n > ny.
Then Yo7 | ay, diverges.

Proof. (i): Let n > ng, and note that

n no—1 n
Slarl = D larl + Y lax]
k=1 k=1 k=no

no—1
< Z la| + Z by,
k=ng
no—1
< Yl +Zbk~
k=1 k=1

Hence, the sequence (3°;_; |ax|);—, is bounded, i.e. Y77 a, converges absolutely.
(ii): Let n > ng, and note that

no—1 no—1

Zak—Zak+Zak>O>Zak+Zbk

k=no k=ng

Since Y 7 b, = 00, it follows that that (>°;_; ax),—, is unbounded and thus divergent.
O
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Ezamples. 1. Let p € R. Then

i 1 diverges if p < 1,
= n” | converges if p > 2.

2. Since

12005 1

sin( -
~ 3n?

4n2? + cos(en'?)

n2003)

_1 5 —13. converges
n=1 4n24cos(en'?) &

for n € N, and since Y. | =L, < oo, it follows that 300, 5ot

3n2

absolutely.

Corollary 7.1.11 (limit comparison test). Let (a,)2 and (b,)52; be sequences in R such
that b, > 0 for alln € N.

(i) Suppose that Y > b, < oo and that limn_wo% exists (and is finite). Then
YonZ an converges absolutely.

(i) Suppose that 3777 | by = oo and that limy, o § exists and is strictly positive (pos-
sibly infinite). Then Yy 7| a, diverges.

Proof. (i): There is C' > 0 such that % < C for all n € N, ie. |ay| < Cby,. The claim
then follows from the comparison test.
(ii): Let ng € N and 6 > 0 be such that g—: > ¢ for n > nyg, i.e. a, > db,. The claim

follows again from the comparison test. O

Ezamples. 1. Let
o dn+1
n = 62 +Tn
for n € N. Since
an An? +n o 2
b, 6n2+Tn "3

and since Y02 | & = o0, it follows that Y 7 | 8+ diverges.

> 0,

2. Let
17n cos(n) 1

= d bp = —
nt 4+49n2 — 16n + 7 an "

ap :
for n € N. Since
lan| 17n3| cos(n)| N
by —nt4+49n2—16n+7

and since > 7, # < 00, it follows that >~ 7, #gﬂ%—% converges absolutely.

Theorem 7.1.12 (ratio test). Let (an)22, be a sequence in R.

(i) Suppose that there are ng € N and 6 € (0,1) such that a, # 0 and % < @ for

n > ng. Then Y .7 a, converges absolutely.
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(ii) Suppose that there are ng € N and 6 > 1 such that a,, # 0 and M‘T”—“‘ > 0 forn > ny.

an|

Then Y 07 | an diverges.
Proof. (i): Since |an11| < |an|0 for n > ng, it follows by induction that
|an| < 677" an,|

for those n. Since 6 € (0,1), the series >

yields the convergence of 3 |a,| and thus of >77° | |ay|.

meng |@no |07 converges. The comparison test

(ii): Since |ap+1| > 0la,|0 for n > ng, it follows by induction that
|an| = 0" an, |

for those n. Consequently, (a,)02; is unbounded (and thus does not converge to zero), so
that > > | a, diverges. O

Corollary 7.1.13 (limit ratio test). Let (an)22 be a sequence in R such that a,, # 0 for
all but finitely many n € N.

(i) Then > .2, an converges absolutely if lim, o % < 1.

|an

(ii) Then > )" an diverges if limy, o \a—n+|1‘ > 1.

Ezample. Let z € R\ {0}, and let a,, := Z; for n € N. It follows that

+1 |
Api1 z" n! T
ntl — =2 0.

a, (n+1)!ﬁ n

Consequently, > % converges for all x € R.

lant1] —

If lim,,— oo T

1, nothing can be said about the convergence of >~ | a,:

o Ifa, ::%fornGN, then

Gntt M, 1,
an n+1
and >°0° | L diverges.
o Ifa, := # for n € N, then
2
Ap+41 n
= 1,
G (n+1)2

and Y 7, Elg converges.
Theorem 7.1.14 (root test). Let (a,)52; be a sequence in R.

(i) Suppose that there are ng € N and 0 € (0,1) such that {/|a,| < 0 for n > ng. Then

YonZ an converges absolutely.
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(ii) Suppose that there are ng € N and 0 > 1 such that {/|a,| > 0 for n > ny. Then

S22 | ap diverges
n=1""n ges.

Proof. (i): This follows immediately from the comparison test because |a,| < 6" for
n > ng.
(ii): This is also clear because |a,| > 6™ for n > ng, so that a, # 0. O

Corollary 7.1.15 (limit root test). Let (a,)52; be a sequence in R.
(i) Then > 2, a, converges absolutely if limy, oo V/|an| < 1.

(i) Then Y07, ay, diverges if limy, oo ¥/]an| > 1.

Ezample. For n € N, let

_ 2+ (=D”
QAp ‘= W
It follows that
any1 24+ (=)t oonmt 12— (- [ 1 if nis even,
an on 24 (=)n 22+ (=1 | 3, ifnisodd.

Hence, the ratio test is inconclusive. However, we have

nl2(2 4 (=1)"
o EC i

_)

5
=
(@)}
N =

Hence, there is ng € N such that /a, < % for n > ng. Hence, > o7, stl%ll)n converges
absolutely by the root test.

Theorem 7.1.16. Let Y 7, a, be absolutely convergent. Then Y oo, Ag(n) cOMUETgES
absolutely for each bijective o: N — N such that Y )7 | an = Y07 | Ay(n)

Proof. Let e > 0, and choose ng € N such that >°7°  “la,| < §. Set x := 3% a,. It

follows that
€
< —.
= 5 |an| < D)

n=ng

no—1
Tr — E Qp,
n=1

Let 0: N — N be bijective. Choose n. € N large enough, so that {1,...,ng — 1} C
{o(1),...,0(n.)}. We then have for m > n.:

[e.e]

an,

n=ng

m m no—1 no—1
Do = S D Gom = D an|+| Y a7
n=1 n=1 n=1 n=1
> €
n=ng
< €.

Consequently, >~ Ag(n) converges to x as well. The same argument, applied to the

series Y% | |an|, yields the absolute convergence of Y " | ay(n)- O
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Theorem 7.1.17. Let Y ° , a, be convergent, but not absolutely convergent, and let

z € R. Then there is a bijective map o: N — N such that 37, Ag(n) = T.

Proof. Without loss of generality, let a,, # 0 for n € N. We denote by by, bo, ... the

positive terms of (a,)22, and by c¢1, cg, . . . its negative terms. It follows that lim,, 0 by, =
lim,, o0 ¢, = 0 and
o0 o
5 b= Yomen)
n=1 n=1
Choose m1 € N minimal such that
mi
Z by, > x
n=1

Then, choose mo € N minimal such that
mi mo
Z by + Z cp < .
n=1 n=1
Now, choose m3 € N minimal such that
mi mo ms
Dbt et > bu>u,
n=1 n=1 n=mi+1
and then my4 € N minimal such that
mi mo ms ma
an—l-ch—l— Z by + Z cp, < T.
n=1 n=1 n=mi+1 n=mo+1

Continuing in this fashion, we obtain a rearrangement of Y 7 | ay.

Let m € N. Then the m-th partial sum s,, of the rearranged series is either

ibn+icn+'~+ > ba (7.1)
n=1 n=1

n=mg+1

or

ibn+icn+-'~+ > e (7.2)
n=1 n=1

n=my+1
for some k. Suppose that k is odd, i.e. s, is of the form (7.1). If m = my_y9, the minimality

of myyo yields

mi mi m
\x—sm]:a:—an—Fch—i-"'—F Z bn| < by
n=1 n=1 n=my+1
if m < mygyo, we obtain

mi mi m
|z — spm| = x—an+ch+---+ Z bn| < —Cmyys -
n=1 n=1

n=myg+1

191



In a similar vein, we treat the case where k is even, i.e. if s, is of the form (7.2). No

matter which of the two cases (7.1) or (7.2) is given, we obtain the estimate
|z — 8m| < max{ka+2= “Crmyy1) T Cmygos bmk+1}'
Since limy, o0 by, = lim,, oo ¢, = 0, this implies that = = lim,, oo Sm- Ol

Theorem 7.1.18 (Cauchy product). Suppose that > > ;a, and > .~ b, converge abso-
lutely. Then Y 27 o> 1o arbp—i converges absolutely such that

n=0 k=0

Proof. For notational simplicity, let

Cp = En:akbn_k and C, = ch
k=0

for n € Ny; moreover, define

A= iak and B := ibk.
k=0 k=0

We first claim that lim,, ., C,, = AB. To see this, define for n € Ny,

e (£4) ()

so that lim, o D, = AB. It is therefore sufficient to show that lim,,_,. (D, — C},) = 0.
First note that, for n € Ny,

n k
Cp = ajbr—j = Y ab;
k=0 j=0 0<4,l
jHi<n
and
[Ll: E: (u@y
0<5,l<n
so that
Dn—Cn= > abj
0<j,i<n
JHl>n

For n € Ny, let
P, := <Z|ak|> <Z|bk|> -
k=0 k=0
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The absolute convergence of > >° ja, and ) 7 by, yields the convergence of (P,)>%.
Let € > 0, and choose n,. € N such that |P, — P, | < € for n > n.. Let n > 2n,; it follows
that

|D, — Cy,| < E En
0<j,l<n
jt+i>n

> Jaib]

0<j,l<n
JHI>2ne

S Jaibyl

0<j,l<n
Jj>mneorl>mne

- Pn_})n6

< €.

IN

IN

Hence, we obtain lim,,_, (D, — C},) = 0.

To show that Y o7 |e,| < oo, let &, := Y 1 (lakby—k|. An argument analogous to
the first part of the proof yields the convergence of » °  ¢&,. The absolute convergence
of >>>° ¢, then follows from the comparison test. O
Ezxample. For x € R, define

[e.e]
x’ﬂ

exp(x) = o

n=0
we know that exp(x) converges absolutely for all z € R. Let z,y € R. From the previous

theorem, we obtain:

exp(z)exp(y) = Z %h

This identity has interesting consequence.

For instance, since

1 =exp(0) = exp(z — ) = exp(z) exp(—x)
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for all z € R, it follows that exp(z) # 0 for all x € R with exp(z)~! = exp(—z). Moreover,

we have

exp(x) = exp (g + g) = exp (g)z >0

for all z € R. Induction on n shows that

exp(n) = exp(1)"
for all n € Ny. It follows that

exp(q) = exp(1)?
for all ¢ € Q.

7.2 Improper integrals

What is
[
—dx?
0 VT

Since %2\/5 = %, it is tempting to argue that

1 1 1
— =2 = 2.
/0 \/de \/E‘O

However:

° % is not defined at 0.
. % is unbounded on (0, 1] and thus cannot be extended to [0,1] as a Riemann-

integrable function.

Hence, the fundamental theorem of calculus is not applicable.

What can be done?
1

Let € > 0. Since 7 is continuous on [e, 1], the fundamental theorem yields (correctly)
that
1 1 1
/5 ﬁdx = 2| =2(1 — ).

It therefore makes sense to define

| !
—dz = lim/ —dx = 2.
/0 \/E el Je \/E
Definition 7.2.1. (a) Let a € R, let b € RU {00} such that a < b, and suppose that

f:]a,b) — R is Riemann integrable on [a,c| for each ¢ € [a,b). Then the improper

integral of f over [a,b] is defined as

/abf(az) o i~ lig /acf(az) dx

if the limit exists.
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(b) Let a € RU {—00}, let b € R such that a < b, and suppose that f: (a,b] — R is
Riemann integrable on [c, b] for each ¢ € (a,b]. Then the improper integral of f over
[a,b] is defined as

b b
/ flx)dx = lifn/ f(x)dx
if the limit exists.

(c) Let a € RU{—o0}, let b € RU {o0} such that a < b, and suppose that f: (a,b) - R
is Riemann integrable on [c,d] for each ¢,d € (a,b) with ¢ < d. Then the improper

integral of f over [a,b] is defined as

/ab Fo)da = /:f(x) dz + /be(:n) da (7.3)

with ¢ € (a,b) if the integrals on the right hand side of (7.3) both exists in the sense
of (a) and (b).

‘We note:

1. Suppose that f: [a,b] — R is Riemann integrable. Then the original meaning of
f; f(z) dx and the one from Definition 7.2.1 coincide.

2. The definition of f: f(z)dz in Definition 7.2.1(c) is independent of the choice of
c € (a,b).

3. Since ffR sin(z)dz = 0 for all R > 0, the limit limp_,~ f_RR sin(z) dz exists (and
equals zero). However, since the limit of

R
/0 sin(z) de = — cos(x)|é% = —cos(R)+1

does not exist for R — oo, the improper integral ffooo sin(z) dz does not exist.

In the sequel, we will focus on the case covered by Definition 7.2.1(a): The other cases
can be treated analoguously.

As for infinite series, there is a Cauchy criterion for improper integrals:

Theorem 7.2.2 (Cauchy criterion). Let a € R, let b € RU {oo} such that a < b, and
suppose that f : [a,b) — R is Riemann integrable on [a,c| for each ¢ € [a,b). Then
fff(:n) dx ezists if and only if, for each € > 0, there is cc € |a,b) such that

/:/ f(z)dx

<€

for all ¢ < ¢ withce <c < <b.
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And, as for infinite series, there is a notion of absolute convergence:

Definition 7.2.3. Let a € R, let b € R U {oo} such that a < b, and suppose that
f:]a,b) — R is Riemann integrable on [a, c| for each ¢ € [a,b). Then ff f(x) dzx is said to
be absolutely convergent if ff |f(x)| dx exists.

Theorem 7.2.4. Let a € R, let b € RU {0} such that a < b, and suppose that f :
[a,b) — R is Riemann integrable on |a,c| for each ¢ € [a,b). Then f;’ f(z)dx exists if it

1s absolutely convergent.

Proof. Let € > 0. By the Cauchy criterion, there is ¢, € [a,b) such that

/

| i@l <

for all ¢ < ¢ with ¢, < ¢ < ¢ < b. For any such ¢ and ¢/, we thus have

/CC/ f(x)dx

Hence, f; f(x) dx exists by the Cauchy criterion. O

<e§/C |f(z)|dz <e.

The following are also proven as the corresponding statements about infinite series:
Proposition 7.2.5. Let a € R, let b € RU{oo} such that a < b, and let f: [a,b) — [0, 00)

be Riemann integrable on [a,c| for each c € [a,b). Then f:f(a:) dx exists if and only if

08 > 0.0, e [ f@)ds
1s bounded.

Theorem 7.2.6 (comparison test). Let a € R, let b € RU {oo} such that a < b, and
suppose that f,g: [a,b) — R are Riemann integrable on [a,c] for each ¢ € [a,b).

(i) Suppose that |f(x)| < g(x) for x € [a,b) and that f;g(az) dx exists. Then f;’ f(z)dx

converges absolutely.

(i1) Suppose that 0 < g(x) < f(z) for x € [a,b) and that fab g(z) dz does not exist. Then
ff f(x)dx doex not exist.

Example. We want to find out if fooo % dx exists or even converges absolutely.

Fix ¢ > 0, and let R > c. Integration by parts yields
R _; R R
sin x cos cos
/ dr = + / 5 dx.
c T x c c x
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Clearly,
/R iy 11 Rogo 1
—dr = —— —_ _ _
. @2 T R ¢ c

holds, so that fcoo mlz dx exists. Since ‘C‘g’c#‘ < m% for all z > 0, the comparison test shows

that fcoo 25+ dx exists. Since

[

COS T

c R C C ’

R cosR cosC Reoo COSC
— % —

X

it follows that fcoo % dx exists. Define

f:00,c] =R, z+— z r7
1, x=0.

sinx
T

that |f(x)] < C for z € [0,¢]. Let € € (0,¢), and note that

/: Sil;wda;—/ocf(a;)dx

ie. foc Sigx dx exists. All in all, the improper integral fooo

Since lim o

= 1, the function f is continuous. Consequently, there is C > 0 such

< / f(2)]dz < Ce 0,
0

sinx
T

dx exists.

sinx

However, fooo dx does not converge absolutely. To see this, let n € N, and note

that

n

/nﬂ |Singj| dr — Z/kw |SiH3§‘| "
0 T (k—D)mx T

k=1

n 1 km
> — |sinz| dz
kZ:l km /(k)—l)T(
21
(it k

Since the harmonic series diverges, it follows that the improper integral fooo %ﬂ dx does

not exist.

The many parallels between infinite series and improper integrals must not be used to

jump to (false) conclusions: there are, functions, for which [ f(z) da exists, even though
T—00

flx) # 0

Ezxample. For n € N, define

n, x€ [n—l,(n—l)—i—;lg),

fai[n—1,n) >R, x+— )
0, otherwise,

T—r00

and define f: R — R by letting f(z) := fu(z) if z € [n — 1,n). Clearly, f(z) 4 O.
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Let R > 0, and choose n € N such that n > R. It follows that

R n
/0 J@de < [ f@)de

IN

Hence, [)° f(x)dx exists.

The parallels between infinite series and improper integrals are put to use in the

following convergence test:

Theorem 7.2.7 (integral comparison test). Let f : [1,00) — [0,00) be a decreasing
function such that f is Riemann-integrable on [1, R] for each R > 1. Then the following

are equivalent:

(i) 2on2y f(n) < oo;
(i) [° f(x)dx exists.

Proof. (i) = (ii): Let R > 0 and choose n € N such that n > R. We obtain that

R n
/1 flx)de < f(x)dx

VAN
3
o
w\
>
+
-
=
=z
SN
IS

Since Y52, f(k) < oo, it follows that [~ f(z) dx exists.
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(ii) = (i): Let n € N, and note that

n n k
dfk) = FO+> [ fk)de
k=1 k=2 k-1
n k
< M+ f(x)dz
=2 k—1
— 1)+ [ fo)da

< f+ [ fla)de.

Hence, > 72, f(k) converges.

Examples. 1. Let p> 0 and R > 1, so that

/R 1 { log R, p=1
—dx = 1 L
b 5 (mr—1), p#L

1

It follows that fl 5 L dx exists if and only if p > 1. Consequently, Y ome 75 converges

if and only if p > 1.

2. Let R > 2. Then change of variables yields that

R 1 logR 4 o
/2 :Elogxdx:/l ) ;du—logulliz log(log R) — log(log 2).
0og

dx does not exist, and > °° diverges.

Consequently, [, xlogx n= 2nlogn

1
3. Does the series ) 2 | & converge?

Let

1
f:[l,00) >R, z+— Ofx.
It follows that ol
fla)= 222108

x4

for # > 3. Hence, f is decreasing on [3,00): this is sufficient for the integral

comparison test to be applicable. Let R > 1, and note that

R log z |# R q
/ Og:pdx: _o8s + / —2dx — 1.
1 1 1 X

22 x
R:)moo _ ’RRaool

o0
Hence, [ l(;gx dx exists, and > o bn%" converges.
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4. For which 6 > 0 does >°°° (/6 — 1) converge?
Let
f:[l,00) = R, z s 0 — 1.
First consider the case where 8 > 1. Since

_log9 1 <0,

fi(x) =

X

and f(x) > 0 for x > 1, the integral comparison test is applicable. For any x > 1,
there is & € (0, %) such that

1

0z —1
T = 6% log 6 > log 6,
so that lo 0
gr —1> 28
x

for x > 1. Since floo % dx does not exist, the comparison test yields that floo f(x)dx
does not exist either unless § = 1. Consequently, if & > 1, the series >0 (V0 — 1)

converges only if § = 1.

Consider now the case where # < 1, the same argument with — f instead of f shows
that >.°° (/0 — 1) converges only if 6 = 1.

All in all, for 6 > 0, the infinite series > °° (/0 — 1) converges if and only if § = 1.

200



Chapter 8

Sequences and series of functions

8.1 Uniform convergence

Definition 8.1.1. Let @ # D C RY, and let f, f1, fa,... be R-valued functions on D.

o0

o, is said to converge pointwise to f on D if

Then the sequence (f;,)

lim f,(z) = f(x)

n—oo

holds for each x € D.

Ezample. For n € N| let

so that
. 0, z=€]0,1),
lim f,(z) =
Let
0 0,1
f:00,1] — R, a:»—>{ 1’ x_[l’ )

It follows that f,, — f pointwise on [0, 1].

The example shows one problem with the notion of pointwise convergence: All the f,s
are continuous whereas f clearly isn’t. To find a better notion of convergence, let us first

rephrase the definition of pointwise convergence.

(fn)o2, converges pointwise to f if, for each € D and each € > 0, there is
nge € N such that |f,(z) — f(x)] < € for all n > ng .

The index n, . depends both on € D and on € > 0.
The key to a better notion of convergence to functions is to remove the dependence of

the index n, . on x:
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Definition 8.1.2. Let @ # D C RY, and let f, f1, fa,... be R-valued functions on D.
Then the sequence (f,,)o; is said to converge uniformly to f on D if, for each ¢ > 0,
there is ne € N such that |f,(xz) — f(z)| < € for all n > n, and for all z € D.

Ezample. For n € N| let
sin(nrz
fn R—= R, xn—>7(n )

Since ]

sin(nmx) 1
-~ 7 S —
n n

for all z € R and n € N, it follows that f,, — 0 uniformly on R.

Theorem 8.1.3. Let @ # D C RY, and let f, fi, fo,... be functions on D such that

fn — f uniformly on D and such that f1, fa,... are continuous. Then f is continuous.

Proof. Let € > 0, and let zg € D. Choose n. € N such that

falw) ~ F(@)] < §

for all n > n. and for all x € D. Since f,, is continuous, there is § > 0 such that
| fne(x) — fno(wo)| < § for all z € D with ||z — xo|| < d. Fox any such 2 we obtain:

[f (@) = f(xo)| < |f(2) = fuc(@)| + | fnc (@) = fnc(x0)| + | fnc(x0) — flwo)| <e.

€
<% <

<

wlm
wlm

Hence, f is continuous at xg. Since z¢g € D was arbitrary, f is continuos on all of D. [

Corollary 8.1.4. Let & # D C RY have content, and let (f,)S; be a sequence of

continuous functions on D that converges uniformly on D to f: D — R. Then f is

/sznlgn;O/Dfn.

Proof. Let € > 0. Choose n. € N such that

(@) = f2)] <

continuous, and we have

u(D) +1

for all x € D and n > n.. For any n > n., we thus obtain:

[o-[1 < [in-n
/D n(D) +1
__eu(D)
 u(D)+1
< €.
This proves the claim. O
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Unlike integration, differentiation does not switch with uniform limits:

Ezample. For n € N let

n

Fai[0,1] 5 R, @ —
n

so that f, — 0 uniformly on [0, 1]. Nevertheless, since

for z € [0,1] and n € N, it follows that f], /4 0 (not even pointwise).
Theorem 8.1.5. Let (f,,)%%; be a sequence in C'([a,b]) such that
(a) (fn(zo))oy converges for some xo € [a,b] and

(b) (f1)52 is uniformly convergent.

Then there is f € C([a,b]) such that f, — f and f., — f" uniformly on [a,b].

Proof. Let g: [a,b] — R be such that lim,_,~ f; = ¢ uniformly on [a,b], and let yo :=
lim,, o0 fn(z0). Define

xT

f:la,b] = R, xr—>y0+/ g(t)dt.

0

It follows that f’ = g, so that f; — f’ uniformly on [a, b].
Let € > 0, and choose n > 0 such that |f)(z) — g(z)| < 5 spay forall z € [a,b] and
n > n, and that | f,,(z0) — yo| < §. For any n > n. and z € [a, b] we then obtain:

)= @) = |z + [ wrat—o— [ ot
< |fa(x0) — ol + / fh(t dt—/ g(t)dt'
< 5+ | [ 1w - otas
< 5+€|x—$o|
- 2 2(b-a)
< £.°
- 2 2
= e

This proves that f,, — f uniformly on [a, b]. O

Definition 8.1.6. Let @ # D C RY. A sequence (f,)>%; of R-valued functions on D
is called a uniform Cauchy sequence on D if, for each € > 0, there is n. € N such that
|frn(z) — fm(2)] < € for all x € D and all n,m > n,.
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Theorem 8.1.7. Let @ # D C RY, and let (fn)se, be a sequence of R-valued functions

on D. Then the following are equivalent:
(i) There is a function f: D — R such that f, — f uniformly on D.
(ii) (fn)p2y ts a uniform Cauchy sequence on D.

Proof. (i) = (ii): Let € > 0 and choose n. € N such that

[Fal@) = f@)] <

for all x € D and n > n.. For x € D and n,m > n., we thus obtain:
€

226.

Fa(@) = Fl@)] < |ful2) = F@)] + [ £(2) = fula)] < 5 +

This proves (ii).
(i) = (i): For each x € D, the sequence (f,(x))22, in R is a Cauchy sequence and

therefore convergent. Define

f:D—>R, =z~ lim f,(z).

n—o0

Let € > 0 and choose n, € N such that

[fn(@) = fml@)] < 5

for all x € D and all n,m > n.. Fix x € D and n > n.. We obtain that

. €
Hence, (f,)5; converges to f not only pointwise, but uniformly. O

Theorem 8.1.8 (Weierstral M-test). Let @ # D C RY, let (£,)5%; be a sequence of
R-valued functions on D, and suppose that, for each n € N, there is M, > 0 such that
|fn(x)| < M, forx € D and such that Y2 | M,, < oco. Theny .~ fn converges uniformly
and absolutely on D.

Proof. Let € > 0 and choose n, > 0 such that

for all n > m > n.. For all such n and m and for all x € D, we obtain that

n n

ST @) = fr@)] < D @< D My <e
k=1

k=1 k=m+1 k=m+1

Hence, the sequence (3 p_; fi) -, is uniformly Cauchy on D and thus uniformly conver-

gent. It is easy to see that the convergence is even absolute. O
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Example. Let R > 0, and note that

n

T R"
<

- nl

n!

for all n € N and » € [~R, R]. Since 02, & < oo, it follows from the M-test that
S fL—T converges uniformly on [—R, R]. From Theorem 8.1.3, we conclude that exp
is continuous on [—R, R]. Since R > 0 was arbitrary, we obtain the continuity of exp
on all of R. Let € R be arbitrary. Then there is a sequence (g,); in Q such that
x = limy, o ¢n. Since exp(q) = e? for all ¢ € Q, and since both exp and the exponential
function are continuous, we obtain

exp(z) = nh_)llolo exp(qn) = nh_}ngo ef" =e”.

Theorem 8.1.9 (Dini’s theorem). Let @ # K C RN be compact and let (f,)5; a
sequence of continuous functions on K that decreases pointwise to a continuous function
f: K — R. Then (f,)52, converges to f uniformly on K.

Proof. Let € > 0. For each n € N, let
Vi i={x e K: fo(x) — f(x) < €}

Since each f, — f is continuous, there is an open set U, C RY such that U, N K = V,,.
Let z € K. Since lim,, o fn(x) = f(x), there is ng € N such that f,,(z) — f(x) <€, i.e.
x € V. It follows that

K = lenc C_len'

Since K is compact, there are ni,...,n; € N such that K C U,, U---UU,, and hence
K =V, U---UV,,. Let nc := max{ny,...,ni}. Since (f,)52; is a decreasing sequence,

the sequence (V},)°, is an increasing sequence of sets. Hence, we have for n > n. that

n=1

Vin D Vo, D Vi,

for j =1,...,k, and thus V,, = K. For n > n. and = € K, we thus have x € V,, and

therefore
|fn(2) = f(@)] = fulz) — flz) <e

Hence, we have uniform convergence. O

8.2 Power series

Power series can be thought of as “polynomials of infinite degree”:
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Definition 8.2.1. Let zg € R, and let ag, a1, as, ... € R. The power series about zy with

coefficients ag, a1, az, ... is the infinite series of functions > 7 an(x — xo)".

This definitions makes no assertion whatsoever about convergence of the series. Whe-
ther or not Y a,(z—x)" converges depends, of course, on z, and the natural question

that comes up immediately is: Which are the € R for which >">7 j ay(x—x0)™ converges?
Ezamples. 1. Trivially, each power series Y > a,(z — x¢)" converges for z = .

2. The power series Y fl—T converges for each = € R.

3. The series Y o2 n™(x — m)" converges only for z = 7.

4. The series Y 2 x™ converges if and only if z € (—1,1).

Theorem 8.2.2. Let zg € R, let ag,a1,as3,... € R, and let R > 0 be such that the

sequence (a, R™) is bounded. Then the power series

[e.9] o
Z an(x — zo)" and Z nay, (z — o)
n=0 n=1

converge uniformly and absolutely on [xg — r,xo + 7| for each r € (0, R).

Proof. Let C > 0 such that |a,|R™ < C for all n € Nyg. Let r € (0,R), and let x €
[xg — 7,20 + r]. It follows that

nlap||z — zo|"™t < nlap|r" !
B r\?—1 a,R"
- ”(E) R
C /sryn-1
- (&
Since # € (0,1), the series > ° | n (%)n_l converges. By the Weierstra3 M-test, the

n—1

power series Y o2 nan(x — xo) converges uniformly and absolutely on [xg — r,zo + 7].

The corresponding claim for > >° ; a,(x — x¢)" is proven analogously. O

Definition 8.2.3. Let ) 7 jan(x — )" be a power series. The radius of convergence of
Y ome o an(x — o)™ is defined as

R:=sup{r >0: (a,r");y—p is bounded},
where possibly R = oo (in case Y 2, a,r" converges for all r > 0).

If >0 jan(z — xp)" has radius of convergence R, then it converges uniformly on
[xg — 7,20 + 7] for each r € [0, R), but diverges for each x € R with |x — 29| > R: this
is an immediate consequence of Theorem 8.2.2 and the fact that (a,r™)72, converges to
zero — and thus is bounded — whenever "> ; a,7" converges.

And more is true:
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Corollary 8.2.4. Let > 7  an(x — x9)" be a power series with radius of convergence
R > 0. Then Y 02 an(x — xo)" converges, for each r € (0, R), uniformly and absolutely
on [xo — 1,20+ 7] to a Ct-function f: (xo — R,z0+ R) — R whose first derivative is given
by

f(x) = Z nay, (x — o))"
n=1

for x € (xg — R,x0 + R). Moreover, F: (xg — R,x0 + R) — R given by

[e.e]
a
F(z) =) - +" T = 20)"
n=0

for x € (xg — R,xo + R) is an antiderivative of f.

Proof. Just combine Theorems 8.2.2 and 8.1.5. O

In short, Corollary 8.2.4 asserts that power series can be differentiated and integrated

term by term.

Ezamples. 1. For x € (—1,1), we have:

o0
E nx" = xi na" !
n=1

n=1
n
d
= w)y g
n=0
d n
= T Zaz", by Corollary 8.2.4,
n=0
d 1
= Xr—
del—zx
B x
T -ap
2. For x € (—1,1), we have
1 1 -
— — —1)" 2n‘
22+1  1-—(—2?) Z( J'e
n=0

Corollary 8.2.4 yields C' € R such that

x2n+1

[ee]
t C= 1"
arctan x + nz::o( ) o T 1

for all z € (—1,1). Letting = = 0, we see that C' = 0, so that

o0 2+l
tanz = Y (—1)"
arctan x ;_:0( ) o 1

for x € (—1,1).
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3. For x € (0,2), we have

1 1 > n N n
P DUt SRR

By Corollary 8.2.4, there is C' € R such that

©  \n X qyn—1
logz 4+ C = ;%@ — 1)t = 2%@: —1)"

for z € (0,2). Letting = = 1, we obtain that C' = 0, so that
[o.¢]
(-1
1 = - 1"
ogx Z - (x—1)
n=1
for x € (0,2).
Proposition 8.2.5 (Cauchy-Hadamard formula). The radius of convergence R of the
power series y oo an(z — o)™ is given by
1

 limsup, o, V/an]

where the convention applies that % =00 and é =0.

R

Proof. Let
1

B lim sup,,_, \"/|an|.

Let x € R\ {x0} be such that |z — x¢| < R/, so that

limsup V/|a,| < T —al

1
n—+00 ’x — 2o

R :

Let 0 € (lim SUp, oo Vlan|, m) From the definition of limsup, we obtain ng € N

such that
Vlan| <0

for n > ng and therefore

Vlan||lz — zo|™ < Ol — 20| < 1

for n > ng. Hence, by the root test, > >7 jan(x — x)"™ converges, so that R’ < R.
Let x € R\ {x0} such that |[x — x| > R/, i.e.

limsup {/|an| > ———.
n—oo |

1
[z — 2o
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By Proposition C.1.5, there is a subsequence (an, )72, of (a,)s2, such that we have
limsup,, o V/|an| = limy_o00 "%/|an,|. Without loss of generality, we may suppose that

" an | > —

a —_—
Tt |z — x|
”ﬁ'/ lan, ||z — zo|™ > 1

for k € N. Consequently, (a,(z—x¢)")52, does not converge to zero, so that » > a, (z—

for all £ € N and thus

x)™ has to diverge. It follows that R < R'. O
Examples. 1. Consider the power series,
00 n2
;::1 <1 — %) x",
so that )
(-2

for n € N. It follows from the Cauchy—Hadamard formula that

\" 1
lim a, = lim <1——> = -,

n—oo n—oo n e

so that e is the radius of convergence of the power series.

2. We will now use the Cauchy-Hadamard formula to prove that lim, . ¥/n = 1.

Since Y o7 na™ converges for |z| < 1 and diverges for |z| > 1, the radius of conver-

gence R of that series must equal 1. By the Cauchy—Hadamard formula, this means

oo
n=1"

that limsup,,_,., ¥/n = 1. Hence, 1 is the largest accumulation point of ({/n)
Since, trivially, {/n > 1 for all n € N, all accumulation points of the sequence must
be greater or equal to 1. Hence, ({/n)>2 has only one accumulation point, namely

1, and therefore converges to 1.

Definition 8.2.6. We say that a function f has a power series expansion about xy € R
if f(z) = > 2 gan(x — x0)" for some power series Y ° ;a,(z — x9)" and all = in some

open interval centered at xg.
From Corollary 8.2.4, we obtain immediately:

Corollary 8.2.7. Let f be a function with a power series expansion Y o an(x — zo)"
about xog € R. Then f is infinitely often differentiable on an open interval about g, i.e. a

C*®-function, such that

0, = I(%0) " (o)
n!

holds for all n € Ny. In particular, the power series expansion of f about xq is unique.
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Let f be a function that is infinitely often differentiable on some neighborhood of

(n)
o0 7’[ n(,xo)(:n—xo)".

Corollary 8.2.7 asserts that, whenever f has a power series expansion about g, then the

xzo € R. Then the Taylor series of f at x( is the power series >~

corresponding power series must be the function’s Taylor series. We thus may also speak
of the Taylor expansion of f about x.

Does every C>°-function have a Taylor expansion?

Ezxample. Let F be the collection of all functions f: R — R of the following form: There

is a polynomial p such that

1y e
f(x)z{p(ﬁ(f 7o 1)

for all € R. Tt is clear that each f € F is continuous on R\ {0}, and from de I'Hospital’s
rule, it follows that each f € F is also continuous at x = 0.

We claim that each f € F is differentiable such that f’ € F.

Let f € F be as in (8.1). It is easy to see that f is differentiable at each x # 0 with

o= B ()
(-2 0)

so that

for such z, where
a(y) == —v*p'(y) — 2¢°p(y)

for all y € R. Let r(y) := yp(y) for y € R, so that r is a polynomial. Since functions in

JF are continuous at x = 0, we see that

lim M = lim — ! <l> e_h% = limr <l> e_;%? =0.

h—0 h h—0 h h h—0 h
h#£0 h#£0 h#£0
This proves the claim.
Consider
-1 20
o2
ffR—=R, z— - ’
0, x =0,

so that f € F. By the claim just proven, it follows that f is a C*°-function with f e F
for all n € N. In particular, f(™(0) = 0 holds for all n € N. The Taylor series of f thus

converges (to 0) on all of R, but f does not have a Taylor expansion about 0.
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Theorem 8.2.8. Let xg € R, let R > 0, and let f € C*°([xg — R, zo + R]) such that the
set
{If™(@)| : « € [wo — R,x0 + R], n € Ny} (8.2)

1s bounded. Then

n

0 £(n) (g
flay =3 T e
n=0
holds for all x € [x9 — R, xo + R] with uniform convergence on [ry — R,z + R]

Proof. Let C > 0 be an upper bound for (8.2), and let x € [zg — R,z + R]. For each
n € N, Taylor’s theorem yields £ € [xg — R, z¢ + R] such that

)y (n+1)
f(x):Zf k(' 0)($—£0)k+ f (é)(x—xo)"ﬂ,
k=0

(n+1)!
so that
— f®) (o) (SO nt1 R
J@) = 2 T e wol = ey |l el = Oty
Since lim,, o % = 0, this completes the proof. O
Ezample. For all x € R,
) © . $2n+1 © . $2n
sinx = ,;)(_1) 2n 1) and cosx = ;(—1) @)

holds.

Let Y02 an(z — z0)™ be a power series with radius of convergence R. What happens
ifz =x9+ R?

In general, nothing can be said.

Theorem 8.2.9 (Abel’s theorem). Suppose that the series Y~ an converges. Then the

power series y 2 apx’ converges pointwise on (—1,1] to a continuous function.
Proof. For z € (—1,1], define
[e.e]
f(z) = Z anx”.
n=0

Since Y 7 | apa™ converges uniformly on all compact subsets of (—1,1), it is clear that

f is continuous on (—1,1). What remains to be shown is that f is continuous at 1, i.e.

limgyy f(z) = f(1).
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Forn € Zwithn > —1, definer, := 372 | ag. It follows that r_y = f(1), rp,—rp_1 =

—ay, for all n € Ny, and lim,,_,o0 7, = 0. Since (r,)2°

and "7 jr,—12™ converge for x € (-1

(1—x) i Tz’
n=0

ie.

f) =

n=-—1

00 00
L S S
n=0 n=0
0o 0o
= Zrnx"—ZTn_lx +r_
n=0 n=0
00
= Z(Tn_rn 1)3j +7r_q
n=0
o
= = ap" (1),
n=1
——
=f(x)

o
=(1-=x) Z T’
n=0

is bounded, the series 7 rpz"
,1). We obtain for x € (—1,1) that

Let € > 0 and let C' > 0 be such that |r,| < C for n > —1. Choose n. € N such that

lrn| < § for n > ne, and set § :=

that

[f(1) = f(2)]

IN

IN

€
2Cne+1-

(1—x) Z |7 2"

ne—l
(1—2x) Z|rn|x +(1—2) Z|rn|x
n=ne
(I1—2)Cne+ (1 —2)= Z:p
nn6
e
(1—x)=
xz
W—/
zlix
€€
2 2

o

so that f is indeed continuous at 1.

Ezamples. 1. For z € (—1,

1), the identity

o
log(z+1) = Z

n=1
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holds. By Abel’s theorem, the right hand side of (8.3) defines a continuous function
on all of (—1,1]. Since the left hand side of (8.3) is also continuous on (—1,1], it
follows that (8.3) holds for all € (—1,1]. Letting x = 1, we obtain that

iw = log 2.

n=1 "
2. Since
0 p2n+1
t = -1)"
arctan x ;::0( ) o T 1

holds for all € (—1,1), a similar argument as in the previous example yields that

this identity holds for all € (—1, 1]. In particular, letting x = 1 yields

[ee]
™ (="
— =arctanl = .
7 = arctan nEZO 1

8.3 Fourier series

The theory of Fourier series is about approximating periodic functions through terms

involving sine and cosine.

Definition 8.3.1. Let w > 0, and let PC,(R) denote the collection of all functions
f: R — R with the following properties:

(a) f(z+w) = f(z) for x € R.

(b) There is a partition ty < --- < t, of [—%, %] such that f is continuous on (t;_1,t;)
for j =1,...,n and such that limy; f(t) exists for j = 1,...,n and lim;; f(t) exists
for j=0,...,n—1.

Ezample. The functions sin and cos belong to PCar(R).
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NIE

Figure 8.1: A function in PC,(R)

How can we approximate arbitrary f € PCar(R) by linear combinations of sin and

cos?
Definition 8.3.2. For f € PCor(R), the Fourier coefficients ag,ay,az,...,by,ba,... of f
are defined as
1 ™
ap = — f(t) cos(nt) dt
m —T
for n € Ny and
1 ™
by == — f(t) sin(nt) dt
T )

for n € N. The infinite series % 4+ > > 1(an cos(nx) + by sin(nz)) is called the Fourier

series of f. We write:

(an, cos(nx) + by, sin(nz)).

NE

J)~ 5+

I
—_

n

The fact that
~ 2 Z (ay cos(nz) + by, sin(nx))

does not mean that we have convergence — not even pointwise.
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Ezample. Let

f:(=m 7] =R, a:|—>{

_1’
L,

x € (—m,0),
x € [0,m].

Extend f to a function in PCor(x) (using Definition 8.3.2(a)). For n € Ny, we obtain:

Qn

For n € N, we have:

bn

It follows that

fla)~ 230
s 2n+1
The Fourier series, however,
In general, it is too much to expect pointwise convergence. Suppose that f € PCor(R)
has a Fourier series that converges pointwise to f. Let g: R — R be another function in

PCyr(R) obtained from f by altering f at finitely many points in (—7,7]. Then f and g

have the same Fourier series, but at those points where f differs from g, the series cannot

converge to g.

f(t)cos(nt) dt

o

S T

cos(nt) dt + /07r cos(nt) dt)

cos(nt) dt + /07r cos(nt) dt)

7 N N

SRl= A= 3=

f(t)sin(nt) dt

0

A= A= A=
S

sin(nt) dt +/ sin(nt) dt>
0
sin(t) dt + —

/_ (jm L /0 ™ sin(®) dt)

n
<cos t|” . — cos t|6m>

/\/lx
D
3

-3-

(1 — cos(mn) — cos(nm) + 1)

2 — 2cos(mn)

{

™
0,

™’

n even,

n odd.

sin((2n + 1)z).
n=0

does not converge to f for x = —m,0, 7.

We need a different type of convergence:

Definition 8.3.3. For f € PCa,(R), define

)P dt) .

Isike= ([
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Proposition 8.3.4. Let f,g € PCar(R),
(i) [Ifll2 = 0;

(i) [IAfll2 = Al f]]2;

(i) [1f + gll2 < [[£]l2 + [lgll2-

Proof. (i) and (ii) are obvious.
For (iii), we first claim that

r

Let € > 0, and choose a partition —7 = tg

s

[f()g®)]dt <||f]l2llgll2

and let N € R. Then we have:

(8.4)

< .-+ <ty = 7and support points &; € (tj—1,t;)

for j =1,...,n such that
/_ F(B)g \dt—ersJ VNt — )| <
(/ i Pdt) (Zf P — t- >) <
and .
</_7r ’ ’2 dt) (Z ’9 é.] — )) < €.
We therefore obtain:
[ rwswiar < Z|f ENIEN(t) —tj1) + e
= Z|f (&It — tj-1)Z|g(E)I(t) — tj—1)% + e
<

(Z ’f(fj)’z(tj
j=1

1)) (Zg(fj)z(tatj1)> + 6
j=1

by the Cauchy—Schwarz inequality,

< ([

Since € > 0 is arbitrary, this yields (8.4).

If(t)Ith>% +e> ((/

™

lg(t)|? dt) L e) + e

™
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Since

1+ gl = Kﬁﬁ@?+2ﬂﬂmw+g®%dt
= [wwrase [ sagwas [ lgopa
grv%+2[_umaamw~m@
< AR+ 2 lllglls + llgl3, by (8.4),
— (112 + gl
this proves (iii). O

One cannot improve Proposition 8.3.4(i) to ||f||2 > 0 for non-zero f: Any function f

that is different from zero only in finitely many points provides a counterexample.

Definition 8.3.5. Let ag, a1, ..., an, 51, .., 0, € R. A function of the form

@ + Z(ak COS(k-Z') + /Bk sm(k:a:)) (85)

k=1

for z € R is called a trigonometric polynomial of degree n.
Is is obvious that trigonometric polynomials belong to PCar(R).

Lemma 8.3.6. Let f € PCor(R) have the Fourier coefficients ag,a1,as ...,b1,ba, ..., and

let T,, be a trigonometric polynomial of degree n € N as in (8.5). Then we have:
If = Tall3
2 aj o o 1 2, % 2 2
= [fllz=m{ 5+ _(ak + i) | +7{ 5(a0—ao) + ) (o — ap)® + (B — bi)? | -
k=1
Proof. First note that

\U—R%z/wﬂﬁﬁ—2ﬂf@%@ﬁ+/wﬂwmt

—T —T

—_—
=II£113

Then, observe that
fOTn(t) dt

_ / f(t)dt + Zak f ) cos(kt) dt + Zﬂk f(t)sin(kt) dt

= 7 (%ao + Z(akak + 5kbk)> ;

k=1
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and, moreover, that

/ﬂ T, ()% dt

—T

= az % ( / cos(kt) dt +5k/ sin(kt) dt>
k=1 l T

=0 =0

™

+ Z (ozkozj/ cos(kt) cos(jt) dt+20zkﬁ]/ cos(kt) sin(jt) dt

k,j=1 o

+ BrB; /7r sin(kt) sin(jt) dt>

™

a

—I— (ozk cos(kt)? dt +5k/
=1 —Tr

2 -7
(% +> (af + 52)) -

k=

sin(kt)? dt>

o

s
s

[y

We thus obtain:

If = Tall3
SIS G SOPRTARS S wERR)

k=1 k=1

1 n
1f15 +m <§(ag — 2apag) + Z(ai — 200y, + B} — 25/#%))

HfHQJrW(l @ — ao) +Z o — ax)? (ﬁk—bk)z)—%ag—Z(aieri))

k=1
This proves the claim. O

Proposition 8.3.7. For f € PCar(R) with the Fourier coefficients ag,ai,as ..., b1,ba,. ..
and n € N, let S,(f) € PCar(R) be given by

Sn(f)(x) = % + Z(ak cos(kx) + by sin(kx))
k=1

for x € R. Then S,(f) is the unique trigonometric polynomial T,, of degree n for which

[|f = Sn(f)||l2 becomes minimal. In fact, we have

2 n
= SN = 1~ (4 4 3t ).
k=1

Corollary 8.3.8 (Bessel’s inequality). Let f € PCar(R) have the Fourier coefficients

ag,a1,as ...,b1,ba,.... Then we have the inequality

+Z 2402) < —Hsz
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In particular, lim,_, o a, = lim,,_,o b, = 0 holds.

Definition 8.3.9. Let n € Ny. The n-th Dirichlet kernel is defined on [—7, 7] by letting
sin((n—l—%)t)
{ T2sin(3) 0<|t| <,

D, (t) := X

Lemma 8.3.10. Let f € PCor(R). Then

s

Suf)@) = = [ S+ D dr

—Tr

for alln € Ny and x € [—m, 7.

Proof. Let n € Ny and let = € [—m, 7]. We have:
Sn(f)(z) = 2i f(t)dt+ — / (cos(kx) cos(kt) + sin(kz) sin(kt)) dt
™
1

™

_ %/_w F(®) <§—|—Zcos(k‘(3:—t))> dt
= %/WH flx+s) < +Zcos k:s)
— % flx+s) < +Zcos/<;s>

We now claim that

= —/_ f(t) (1 + Z cos(kx) cos(—kt) — sin(kx) sin(— k:t))) dt

1 n
s) = 3 + ;COS(/CS)

holds for all x € [—m, 7|. First note that, for any s € R and k € Z, the identity

2 cos(ks) sin (%) _ sin <<k + %) s> _ sin <<k - %) s> |

Hence, we obtain for s € [—m, 7| and n € Ny that

(i) et = $ (1)) ()
(o)) ()

" B sin ((n+3)s) —sin (1s) B 1
Zcos(k‘s) = 2:in () 2 Dy, (s) — 5

and thus, for s # 0,

For s = 0, the left and the right hand side of the previous equation also coincide. O
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Lemma 8.3.11 (Riemann—Lebesgue lemma). For f € PCor(R), we have that

nli_)ngo/w f(t)sin <<n+ %) t> dt = 0.

Proof. Note that, for n € N

[ stsn((n+3) )
_ /” ) <cos< >sm (nt) + sin <;t> cos(nt)> dt

—Tr

T (estres (1)) s
+%/_ﬂ <7Tf( ) sin <2 >> cos(nt) dt.

Since 2 [ (7 f(t)cos (3t)) sin(nt) dt and L [T (7 f(t)sin (1t)) cos(nt) dt are Fourier co-

efficients, it follows from Bessel’s inequality that

[T 1 . .17 1
nll_}n;o%/_ﬂ <7Tf( ) cos <2 )) sin(nt) dt = 1111_)11[010;/_7r <7rf( ) sin <2 >> cos(nt) dt = 0.
This proves the claim. O

Definition 8.3.12. Let f: R — R, and let = € R.

(a) We say that f has a right hand derivative at x if
(et
T h) — fa)

h—0 h
h>0

exists, where f(z™) :=limao f(z + h) is supposed to exist.
h>0

(b) We say that f has a left hand derivative at x if
Lt h) -~ f)

h—0 h
h<0

exists, where f(z7) :=lima—o f(z 4+ h) is supposed to exist.
h<0

Theorem 8.3.13. Let f € PCar(R) and suppose that f has left and right hand derivatives
at x € R. Then

70 i (ay, cos(nx) + by, sin(nz)) = ;(f(er) + f(z7))
holds.
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Proof. In the proof of Lemma 8.3.10, we saw that

+ En: cos(kt) = Dy (t)
k=1

holds for all ¢ € [—m, 7] and n € N, so that

L L
S RCRLACESTEREDY

DO =

Q=
o\:‘
=
S
+
S~—
o
o
N
o
~
S~—
o9
I
|
kﬁ
—
]
+
S~—

and similarly

1 0
L[ emipawa= L)
for n € N. It follows that
Su(1)(@) ~ (@) + f@))
_ % _:f(:n—i—t £ dt — _/ Fla)Da(t) dt — % _if(:n‘)Dn(t) dt

S >sm<<n+s> )

"I x;an )sin<<n+%> t> dt

holds for n € N. Define g: (—m, 7] — R by letting

0, t € (—m,0),
flatt)—f(zt)
W, t e (O,ﬂ'].
Since
_ + _ + _ +
B € T (oo DU G s IR NG (CR ) B { e
e 2sin(3t) 0 t 2sin (3t) 2y t

exists, it follows that g € PCar(R). From the Riemann-Lebesgue lemma, it follows that

T flx+t)— flzh) | 1 L N : 1 B
n_mo Jein | sin | (n+ 3 t dt—nh_{rolo _Wg(t)sm n+g t)dt=0

and, analogously,
lim fa:—i—t ( )Sin<<n—|—l>t>dt:0.
n—00 2 SlIl 2

This completes the proof. O
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Ezample. Let

-1 —m,0
fi(—m7n] =R, z— , @ €(=m0),
1, ze€][0,7].
It follows that
A 1
f(z) = = ;::0 1 sin((2n + 1)z)

for all z € [—m, 7]\ {—m,0,7}.

Corollary 8.3.14. Let f € PCar(R) be continuous and piecewise differentiable. Then

2.+ S o) s - 16

n=1
holds for all x € R.
Theorem 8.3.15. Let f € PCar(R) be continuous and piecewise continuously differen-
tiable. Then -
ao .
5 Z(an cos(nx) + by sin(nz)) = f(x) (8.6)

n=1
holds for all x € R with uniform convergence on R.
Proof. Let —m = tg < -+ < t,,, = 7™ be such that f is continuously differentiable on
[tj—1,t;] for j = 1,...,m. Then f'(t) exists for ¢t € [—m, 7] — except possibly for ¢ €
{to,...,tn} — and thus gives rise to a function in PCs,(R), which we shall denote by f’
for the sake of simplicity.

Let af, a},ab, ..., b}, b, ... be the Fourier coefficients of f’. For n € N, we obtain that
1 ™
a, = — f'(t) cos(nt) dt

™ —T
1 o= [

= — Z/ f'(t) cos(nt) dt
™ = ti—1
1 & ¢ tj )

= - Z f(t)cos(nt)[{_, + n/t 1 f(t)sin(nt) dt

i=1 i

and, in a similar vein,

/
b, = —nay,.

From Bessel’s inequality, we know that >"°°, (b},)> < oo, and from the Cauchy-Schwarz

inequality , we conclude that

S lanl = 3" 21t < (Z %) (ZW) < o0
n=1 n

=1 n=1



analogously, we see that )7, |b,| < 0o as well.
Since
|ay, cos(nx) + by, sin(nz)| < |an| + byl

for all € R, the Weierstrafl M-test yields that the Fourier series % 4>, (a,, cos(nx) +
by, sin(nx)) converges uniformly on R. Since the identity (8.6) holds pointwise by Corollary

8.3.14, the uniform limit of the Fourier series must be f. O

Ezample. Let f € PCar(R) be given by f(z) := 22 for z € (—m, 7). It is easy to see that
b, = 0 for all n € N.

AT

)T

We have - X
aozl/ tht:l<t—
g - T\ 3

For n € N, we compute

1
a, = —/ t% cos(nt) dt
™ T
1 [t 2 (7
= = <— sin(nt) ——/ t sin(nt) dt>
T\ n nJ_.
2
= —— tsin(nt) dt
™
2 t 1 ["
— ——< — cos(nt) —I——/ cos(nt)dt>
™ n nJ_.
= os(mn)

Hence, we have the identity

[ee]
f(z :% Z: —cosna;)

with uniform convergence on all of R.

Letting = = 0, we obtain

o
B 2
= —,
3 n:l n
so that
n=1
Letting x = 7 yields
2 0 2 0
9 0T n 4 n T 4
= — "= (-1)" = — —



7T2

and thus
1
5 = —_—.
—n 6
Theorem 8.3.16. Let f € PCar(R) be arbitrary. Then lim, || f — Sn(f)|]2 — 0 holds.

Proof. Let € > 0, and choose a partition —m = tg < --- < t,,, = 7 such that f is continuous
on (tj_1,t;) for j =1,...,m. Let C > 0 be such that |f(z)] < C for € R, and choose

6 > 0 so small that the intervals
tm — 0, 7] (8.7)

[—m, to + 0], [t1 — 0,81 + 0, [ta — O, t2 +0],..., [tm

are pairwise disjoint. Define g: [—7, 7] — R as follows:

f(¢t) for all ¢ in the complement of the union of the intervals (8.7);

e g(t) =
e ¢ linearly connects its values at the endpoints of the intervals (8.7) on those intervals

Figure 8.2: The functions f and ¢

It follows that g is continuous such that |g(z)| < C for x € [—7, 7] and extends to a

continuous function in PCa,(R), which is likewise denoted by g.
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We have:

1f = gll3

s

- / () — g(t) dt

—Tr

to+6 ) m—1 ;46 ) ™ )
o NGORG] sy [ 0 st as [ 50wk a

—r ~
<4C?

<4C? <4C?
< 84C? + (m —1)68C? + 54C?
= md8C2.

Making § > 0 small enough, we can thus suppose that ||f — g|[2 < £.
Since ¢ is continuous on [—m, 7] and thus uniformly continuous, we can find a piecewise

linear function h: [—7, 7] — R such that
€
o) — h(a)| < &

for x € [—m, 7] and h(—m) = g(—n) = g(7) = h(n).

~|[m

Figure 8.3: The functions g and h

By Theorem 8.3.15, there is ne € N such that

€

[h(x) = Su(h)(2)] < =
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for n > n. and z € R. We thus obtain for n > n.:

[1f = Sn(h)ll2

IN

I1f = gll2 +lg = hll2 + [|h — Sn(R)]]2
< ; +V2r sup{lg(t) — h(t)| : t € [-7, 7]}

+ V27 sup{|h(t) — Sp(h)(#)| : t € [-7, 7]}
< ; + 3; + 3;

= €.

Since S, (h) is a trigonometric polynomial of degree n, we obtain from Proposition 8.3.7
that

Hf - Sn(f)”2 < Hf - Sn(h)H2 <e€

for n > n,. O

Corollary 8.3.17 (Parselval’s identity). Let f € PCar(R) have the Fourier coefficients
ag,a1,as ...,b1,ba,.... Then the identity

Z a2 +b2) ——||f||%

M|ow

holds.
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Appendix A

Linear algebra

A.1 Linear maps and matrices

Definition A.1.1. A map 7: RY — RM is called linear if
T(Az + py) = AT'(x) + pT (y)

holds for all z,37 € RY and A, u € R.

Ezample. Let A be an M x N-matrix, i.e.

ail, ---5, Q1N

apm1;, ---y QMN

Then we obtain a linear map T4 : RY — RM by letting T4 (z) = Ax for € RY, i.e., for

x = (r1,...,xN), we have

a1,1%1 + -+ A NTN
Ta(z) = Az =

apri + -+ apy NTN
Theorem A.1.2. The following are equivalent for a map T: RN — RM:
(i) T is linear.
(ii) There is a (necessarily unique) M x N-matriz A such that T = Tjy.

Proof. (i) = (ii) is clear in view of the example.
(ii) = (i): For j =1,..., N let e; be the j-th canonical basis vector of RV, i.e.

e; == (0,...,0,1,0,...,0),
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where the 1 stands in the j-th coordinate. For j = 1,..., N, there are a1 ;,...,an; € R
such that

ai
T(e;) =
an,j
Let
a, .-, GIN
A= :
am, ---» GMN
In order to see that Ty =T, let © = (z1,...,2n) € RY. Then we obtain:
T(z) = T(rie1+---zNyen)
= x1T(e1)+ - +anT(en)
a1 ai,N
= 1 : +--Fan
am,1 amp,N
a1,1x1+ -+ A NTN
ap1ry+ -+ apy NTN
= Aux.
This completes the proof. O

Corollary A.1.3. Let T: RN — RM be linear. Then T is continuous.

We will henceforth not strictly distinguish anymore between linear maps and their

matrix representations.

Lemma A.1.4. Let A: RN — RM be a linear map. Then {||Az|| : 2 € RN, ||z|| < 1} is
bounded.

Proof. Assume otherwise. Then, for each n € N, there is x,, € RY such that ||z,|| < 1
such that ||Az,|| > n. Let y, := 2=, so that y, — 0. However,

1 1
| Ayn|| = —[|Azn|| = —n =1
n n
holds for all n € N, so that Ay, /4 0. This contradicts the continuity of A. O

Definition A.1.5. Let A: RY — RM be a linear map. Then the operator norm of A is
defined as
1]l := sup{||Az|| : = € RY, ||z[| < 1}.

228



Theorem A.1.6. Let A, B: RN — RM and C: RM — RX be linear maps, and let X € R.

Then the following are true:
() Al =0 < A=o0.
(i) [IAANl = AL
(iif) [[lA+ Bl < [[[A[ll + lIIBIl]-
(iv) [ICA[IL < [ICTIALI-
(v) [||A]]] is the smallest number v > 0 such that |||Az||| < 7||z|| for all x € RN.

Proof. (i) and (ii) are straightforward.
(iii): Let = € RN such that ||z|| < 1. Then we have

I(A+ B)z|| < [[Az[| + ||Bz|| < [[[Alll + (|| Bl
and consequently
114+ Bll| = sup{||(A + B)a|| : = € RY, ||z[| < 1} < ||| Alll + ||| B]I]

We prove (v) before (iv): Let z € RV \ {0}. Then

I (ot )1 < i

holds, so that ||Ax|| < [||A]||||z]|. On the other and let v > 0, be any number such that
||| Az||| < 7l|z|| for all x € RN, Tt then is immediate that

I1Alll = sup{||Az[| : = € RY, ||z]] < 1} < sup{y|lz|| : 2 € RY, ||z|| < 1} = .

This completes the proof.
(iv): Let 2 € RV, then applying (v) twice yields

|CAz|| < lIC][[ [[Az]] < [[[CI LA 1],

so that [[[CA[[| < [[[C[[[|A]l], by (v) again. O
Corollary A.1.7. Let A: RN — RM be q linear map. Then A is uniformly continuous.

Proof. Let € > 0, and let 2,y € RV, Then we have
|Az — Ay|| = [[A(z — )| < [|[A[l[l|lz — yl]-

—— €
Let 6§ := AT O
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A.2 Determinants

There is some interdependence between this section and the following one (on eigenvalues).
For N € N, let Gy denote the permutations of {1,..., N}, i.e. the bijective maps from
{1,..., N} into itself. There are N! such permutations. The sign sgno of a permutation

o € Sy is —1 to the number of times o reverses the order in {1,..., N}, i.e.

o(k)—o(j
[ 20w

sgno = -

1<j<k<n

Definition A.2.1. The determinant of an N x N-matrix

al, ..., Q1N
A=| o (A1)
anNi, ---, QNN
with entries from C is defined as
det A := Z (sgn o)ay o(1) - - AN o(N)- (A.2)
ceGn
Example.
det [ @ = ad — be.
c

To compute the determinant of larger matrices, the formula (A.2) is of little use. The
determinant has the following properties: (A) If we multiply one column of a matrix A

with a scalar A, then the determinant of that new matrix is Adet A, i.e.

a1, .-, )\(J,l,j, ceey Q1N arl, ..., Qa14, ..., Q1N
det | i e p=Adet | b

CLN71, vy )\aN,j, vy aN,N CLN71, ey CLNJ, vy aN,N

(B) the determinant respects addition in a fixed column, i.e.

A115  vees a17j+b17j, ceey Q1N
det :
an,i, ---, anj+bnj, ..., ann
a171, ey a17j, vy CL17N a171, vy b17j7 ey al,N
= det : : : + det : P : ;
aN1, .-y QaNj, .-y QGNN anji, ---5 bnj, ..., annN
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(C) switching two columns of a matrix changes the sign of the determinant, i.e. for j < k,

a171, ey a17j, vy CLL]C, ey CL17N
det
anNi, ---, OGNgj, .-y ANE ..., OANN
CL171, ey CLL]C, vy a17j, vy CL17N
= —det | i . r b
CLN71, ey CLNJC, vy CLNJ vy CLN7N
(D) det Eny = 1.

These properties have several consequences:
e If a matrix has two identical columns, its determinant is zero (by (C)).

e More generaly, if the columns of a matrix are linearly dependent, the matrix’s de-
terminant is zero (by (A), (B), and (C)).

e Adding one column to another one, does not change the valume of the determinant
(by (B) and (D).

More importantly, properties (A), (B), (C), and (D), characterize the determinant:

Theorem A.2.2. The determinant is the only map from My (C) to C such that (A), (B),
(C), and (D) hold.

Given a square matrix as in (A.1), its transpose is defined as

a1, ---, OGN
Al =

ai,N, ..., QNN
We have:

Corollary A.2.3. Let A be an N x N-matriz. Then det A = det A* holds.

Proof. The map
My(C) - C, A det A

satisfies (A), (B), (C), and (D). O

Remark. In particular, all operations on columns of a matrix can be performed on the

rows as well and affect the determinant in the same way.

Given A € My(C) and j,k € {1,...,N}, the (N — 1) x (N — 1)-matrix AUF) is
obtained from A by deleting the j-th row and the k-th column.
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Theorem A.2.4. For any N x N-matriz A, we have
N
det A = Z(—l)”kaj’k det AU
k=1
forallj=1,...,N as well as
N
det A = (—1)""a; det AUP
j=1

forallk=1,...,N.

Proof. The right hand sides of both equations satisfy (A), (B), (C), and (D). O
Ezample.
3 =2 (1 3 -2
det | 2 4 8 = 2det | 1 2 4
5 1 0 -5 1 |
(1 3 —2]
= 2det | 0 -1 6
0 -5 1 |
1
= 2det 0
-5 1
= 2[-1+30]
= 98.

Corollary A.2.5. Let T = [t; ] k=1,..n be a triangular N x N-matriz. Then

N
detT = H th'
7j=1

holds.

Proof. By induction on N: The claim is clear for N = 1. Let N > 1, and suppose the
claim has been proven for N — 1. Since TV is again a triangular matrix, we conclude
from Theorem A.2.4 that

detT" = tydet 7D
N
= tin H ti g, by induction hypothesis,
j=2

N
— .Htj’j'

Jj=1

This proves the claim. O
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Lemma A.2.6. Let A, B € My(C). Then det(AB) = (det A)(det B) holds

Theorem A.2.7. Let A be an N x N-matrixz with eigenvalues A1, ..., AN (counted with
multiplicities). Then

N
det A =[]
7=1
holds.

Proof. By the Jordan normal form theorem, there are a triangular matrix 7" with ¢; ; = A;
for j = 1,...,N and an invertible matrix S such that A = STS~!. With Lemma A.2.6
and Corollary A.2.5, it follows that

det A = det(STS™)
= (det S)(detT)(det S71)
= (detSS™Y)detT
= detT

N
= [
j=1

Ths completes the proof. O

A.3 Eigenvalues

Definition A.3.1. Let A € Mx(C). Then A € C is called an eigenvalue of A if there is
x € CV\ {0} such that Az = Az; the vector x is called an eigenvector of A.

Definition A.3.2. Let A € My(C). Then the characteristic polynomial xa of A is
defined as x4(\) := det(AExy — A).

Theorem A.3.3. The following are equivalent for A € My(C) and A € C:
(i) A is an eigenvalue of A.
(i) xa(A) =0.

Proof. We have:

A is an eigenvalue of A —  thereis z € CV\ {0} such that Az = \z
< thereis z € CV\ {0} such that A\x — Az =0
—= AEN — A has rank strictly less than N
= det(AExy — A) = 0.
This proves (i) <= (ii). O
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Ezamples. 1. Let

3 7T —4

A=10 1 2

0o -1 -2

It follows that
A—3 -7 4
XA(/\) = det 0 N—1 -2
0 1 A+2
A—1 -2
= (A—3)det

1 A+2

= A=3)(V+1-2+2)
= AA+D(A—3).

Hence, 0, —1, and 3 are the eigenvalues of A.

A:[ 0 1]7
1 0

so that xy4(\) = A2 4 1. Hence, i and —i are the eigenvalues of A.

2. Let

This last examples shows that a real matrix, need not have real eigenvalues in general.
Theorem A.3.4. Let A € My(R) be symmetric, i.e. A= A'. Then:
(i) All eigenvalues of A are real.

(ii) There is an orthonormal basis of RY consisting of eigenvectors of A, i.e. there are
&1, &N € R such that

(i) &1,...,&N are eigenvectors of A,
(i) ||&]| =1 forj=1,...,N, and
(it}) & - & = 0 for j # k.
Definition A.3.5. Let A € My(R) be symmetric. Then:
(a) A is called positive definite if all eigenvalues of A are positive.
(b) A is called negativ definite if all eigenvalues of A are positive.
(¢) A is called indefinite if A has both positive and negative eigenvalues.

Remark. Note that

A is positive definite <= —A is negative definite.
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Theorem A.3.6. The following are equivalent for a symmetric matriz A € My (R):
(i) A is positive definite.
(ii) Az -z >0 for all x € RN\ {0}.

Proof. (i) = (ii): Let A € R be an eigenvalue of A, and let x € RY be a corresponding

eigenvector. It follows that

0< Az -z =Xz -z =)z,

so that A > 0.
(ii) = (i): Let z € RN\ {0}. By Theorem A.3.4, RY has an orthonormal basis
&1, ..., &N of eigenvectors of A. Hence, there are t1,...,t5y € R — not all of them zero

— such that x = €& + -+ +tny&y. For j = 1,...,N, let \; denote the eigenvalue

corresponding to the eigenvector §;. Hence, we have:

Ax -z = Z tjtkAfj . fk

gk

= ) tteN(& &)

j.k
= f: N
j=1
> 0,
which proves (i). O
Corollary A.3.7. The following are equivalent for a symmetric matric A € My(R):
(i) A is negative definite.
(ii) Az -z <0 for all x € RN \ {0}.
We will not prove the following theorem:

Theorem A.3.8. A symmetric matriz A € My(R) as in (A.1) is positive definite if and
only if
ain, ..., Qg
det | @ .. | >0
ag1, ---, Qkk
forallk=1,... N.
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Corollary A.3.9. A symmetric matric A € My (R) is negative definite if and only if
aril, -.., a1k
(D" 'det | = o0 2| <0
ag1, .-+, Qkk
forallk=1,...,N.

Example. Let
A=

a b
c d

e A is positive definite if and only if a > 0 and ad — b > 0.

be symmetric, i.e. b = ¢. Then we have:

e A is negative definite if and only if a < 0 and ad — b* > 0.

e A is indefinite if and only if ad — b < 0.
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Appendix B

Stokes’ theorem for differential

forms

In this appendix, we briefly formulate Stoke’s theorem for differential forms and then see

how the integral theorem by Green, Stokes, and Gaufl can be derived from it.

B.1 Alternating multilinear forms

Definition B.1.1. Let 7 € N. A map w: (RY)" — R is called an r-linear form if, for

each j =1,...,r,and all x1,...,2;_1,%j41,...,2, € R the map
RY 5 R, =~ w(z,... L1, Ty Ljqdy - ey L)
is linear.
Example. Let wy,...,wy: RY — R be linear. Then
RV SR, (z1,...,2,) = wi(z1) - we(x)

is an r-linear form.
Definition B.1.2. Let r € N. An r-linear form w: (RY)" — R is called alternating if
WXLy Ty Thy oo Bp) = —W(T1, 0o Ty oo Ty, Ty
holds for all z1,...,z, € RN and j # k.
We note the following:
1. If w is an alternating, r-linear form, we have
W(To(1),- -5 To(ry) = (sgno)w(zy, ..., )

for all z1,...,2z, € RY and all permutations o of {1,...,7}.
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2. If we identify My with (RV)?, then det is an alternating, N-linear form.
3. If r = 1, then every linear map from RY to R is alternating.
4. If r > N, then zero is the only alternating, r-linear form.

Example. Let wy,...,wy: RY — R be linear. Then

WA Awp: RN SR, (21,...,2,) — Z (sgnm)w1 (o)) - wWr(To(r))
o€,

is an an alternating r-form, where &,. is the group of all permutations of the set {1,...

Definition B.1.3. For r € Ny, let A"(RY) := R if r = 0, and
A"(RY) := {w: (RY)" — R : w is an alternating, r-linear form}
if r > 1.
It is immediate that A"(R") is a vector space for all 7 € Nj.
Theorem B.1.4. For j=1,...,N, let
e RY & R, (1,...,2N) — 5.

Then, for r € N,
{eil/\---/\eir:1§i1<-~<iT§N}

is a basis for A"(RN).

Corollary B.1.5. For all r € Ny, we have dim A"(RY) = (N)

T

B.2 Integration of differential forms

Let @ # U C RY be open, and let 7,p € Ng. By Corollary B.1.5, we can canonically

N
T

identify the vector spaces AT(RN ) and }R( ) Hence, it makes sense to speak of p-times

continuously partially differentiable maps from U to A" (RY).

Definition B.2.1. Let @ # U C RY be open, and let 7,p € No. A differential r-form
(or short: r-form) of class CP on U is a CP-function from U to A”"(RY). The space of all

r-forms of class C? is denoted by A"(CP(U)).

‘We note:
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1. Each w € A"(CP(U)) can uniquely be written as

W= Z Jiryin€iy Ao N e, (B.1)
1<ii << <N
It is customary, for j =1,..., N, to use the symbol dz; instead of e;. Hence, (B.1)
becomes:

w = Z fi17,,,7i7,d1'i1 FANEIRRIVAN d.Z'iT. (B2)
1<i1 << <N

2. A zero-form of class CP is simply a CP-function with values in R.

Definition B.2.2. Let U C R" be open, and let @ # K C U be compact and with
content. An r-surface ® of class CP in RN with parameter domain K is the restriction of
a CP-function ®: U — RY to K. The set K is called the parameter domain of ®, and
{®} := ®(K) is called the trace or the surface element of ®.

Definition B.2.3. Let ® be an r-surface of class C! with parameter domain K, and let
w be an r-form of class CY on a neighborhood of {®} with a unique representation as in
(B.2). Then the integral of w over ® is defined as

0P, 0P,
Jz1 0 0 Oz

/ W= E / filw-vir' o
2 1<iy<-<ip<N 7K 9D, oD,
dz1 0 0 Oz

Ezamples. 1. Let N be arbitrary, and let » = 1. Then w is of the form
w= fidrxy + -+ fndzy,
® is a C'-curve 7, and the meaning of the symbol

/f1d331+"'+deﬂjN
~

according to Definition B.2.3 coincides with the usual one by Theorem 6.3.4.

2. Let N =3, and let » = 2, i.e. ® is a surface in the sense of Definition 6.5.1. Then w
has the form

w=Pdyndz—QdxNdz+ Rdr Ndy =Pdy Ndz+ Qdz ANdx + Rdx A dy,

and the meanings assigned to the symbol
/de/\dz+de/\d:E+Rdx/\dy
P
by Definitions B.2.3 and 6.6.2 are identical.
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B.3 Stokes’ theorem

In this section, we shall formulate Stokes’ theorem for differential forms. We shall be
deliberately vague with the precise hypothesis, but we shall indicate how the classical
integral theorems by Green, Stokes, and Gauf} follow from Stokes’ theorem for differential
forms.

For sufficiently nice surfaces ®, the oriented boundary 0® can be defined. It need no
longer be a surface, but can be thought of as a formal linear combinations of surfaces with

integer coefficients:

Ezamples. 1. For 0 <r < R, let
K :={(z,y) e R?: r* < 2? + 4> < R%*}.
Then 0K can be parametrized as 0K = y1 © 2 with
y1:[0,27] = R?, ¢t~ (Rcost, Rsint)

and
v2:[0,27] = R2, ¢ (rcost,rsint),

so that
/ Pdm—i—Qdy:/ Pda:+Qdy—/ Pdx + Qdy.
0K Y1

72
Geometrically, this means that the outer circle is parametrized in counterclockwise

and the inner circle in clockwise direction:
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Figure B.1: The oriented boundary of an annulus

2. If K = [a,b], then 0K = {b} © {a}, so that

f=1®)=f(a)

oK

for every zero form, i.e. function, f.

Definition B.3.1. Let @ # U € RY be open, let r € Ny, let p € N, and let w € A"(CP(U))
be of the form (B.2). Then dw € A™(CP~L(U)) is defined as

N fi
dw:Z Z %dw]—/\dmh/\---/\dmr.
J=11<i1 < <ip <N
We can now formulate Stokes’ theorem (deliberately vague):

Theorem B.3.2 (Stokes’ theorem for differential forms). For sufficiently nice r-forms w

and r + 1-surfaces ® in RN, we have:

/dw:/ w.
o 9P
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We now look at Stoke’s theorem for particular values of N and r:

Examples. 1. Let N =3 and r = 1, so that
w=Pdr+Qdy+ Rdz.

It follows that

/ Pdr+Qdy+ Rdz
oD

= /OJ
oD

= /dw
(0]

[ (om or _on 0Q _or
= A(ay 8z>dy/\dz+<8z 8x>dZ/\dx+<8x 8y>dm/\dy,

i.e. we obtain Stokes’ classical theorem.
2. Let N =2 and r =1, so that
w=Pdxr+Qdy

and suppose that ® has parameter domain K. We obtain:

/Pdm—l—Qdy = /<@—8—P>dx/\dy
0 o \ 0z Oy

oQ oP
/;((gO@—a—yO@)deth)

/ <6—Q - 8_P> , by change of variables.

We therefore get Green’s theorem (we have supposed for convenience that the change

of variables formula was applicable and that det ® was positive throughout).
3. Let N=3 and r =2, i.e.
w=PdyNdz+ QdzNdy + Rdx N dy

and oP 90 OR
dw = <%+8—y+5>dx/\dy/\dz.

Letting f = Pi+ Qj+ Rk, we have:

f-ndo = / PdyNndz+ QdzNdy + Rdx Ndy
oP

B oP 0Q OR
= /1)<8$ + ay + aZ>daz/\aly/\dz

= / div f.
{o}
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4. Let N be arbitrary and let » = 0, i.e. ® is a curve y: [a,b] — RY. For any sufficiently

smooth funtion F', we we thus obtain

OF oF
/VF-dx:/—d:n1+---+—de: F = F((b)) — F(y(a)).
, o 011 oxrn 0P

We have thus recovered Theorem 6.3.6.

5. Let N =1and r =0, i.e. ® = [a,b]. We obtain for sufficiently smooth f: [a,b] — R
that

b
/ f() de = / Fayde= [ f=70) - fla).
a P 0D

This is the fundamental theorem of calculus.
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Appendix C

Limit superior and limit inferior

C.1 The limit superior

Definition C.1.1. A number a € R is called an accumulation point of a sequence (a, )72,
if there is a subsequence (ay, )52 ; of (a,)22, such that limy_, apn, = a.

[
n=1

Clearly, (ay) is convergent with limit a, then a is the only accumulation point of

(an)o,. It is possible that (ay)22; has only one accumulation point, but nevertheless

does not converge: for n € N| let

0, n even.

{ n, n odd,
Qp =

[e o]

Then 0 is the only accumulation point of (a,)22 4,

even though the sequence is unbounded

and thus not convergent. On the other hand, we have:

Proposition C.1.2. Let (a,)5% be a bounded sequence in R which only one accumulation

point, say a. Then (a,)22 is convergent with limit a.

Proof. Assume otherwise. Then there is ¢y > 0 and a subsequence (an, )32 of (an)pe;

with |an, — a| > €. Since (an, )72, is bounded, it has — by the Bolzano—Weierstraf
[ee]

theorem — a convergent subsequence ( a, with limit o’. Since |a —a’| > €, we have
J j:l
o0
a’ # a. On the other hand, <ank,) is also a subsequence of (a,)5%, so that a’ is also
i) j=
an accumulation point of (a,)22 ;. Since a’ # a, this is a contradiction. O

Proposition C.1.3. Let (a,)2, be a bounded sequence in R. Then the set of accumula-

tion points of (an)22 is non-empty and bounded.

Proof. By the Bolzano—Weierstrafl theorem, (a,):° ; has at least one accumulation point.

Let a be any accumulation point of (a,)>2, and let C' > 0 be such that |a,| < C for
n € N. Let (ank)z"zl be a subsequence of (a,)s2; such that a = limy_, ap, . It follows
that |a| = limg_oo |an, | < C. O
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Definition C.1.4. Let (a,)52; be bounded below. If (a,)22  is bounded, define the limit
superior lim sup,,_, . an, of (a,)52 by letting
lim sup a,, := sup{a € R : a is an accumulation point of (a,)p—1};
n—oo

otherwise, let limsup,, .., a := o0.
Of course, if (a,)22, converges, we have limsup,,_, . @, = lim, o0 ay.

Proposition C.1.5. Let (a,)22, be bounded below. Then there is a subsequence (an, )5,

of (an)s2, such that imsup,,_, . a, = limg_o0 ay, .

Proof. If limsup,,_,,, a, = 00, the claim is clear (since (a,)s2; is not bounded above,
there has to be a subsequence converging to co)

Suppose that a := limsup,,_,. a, < co. There is an accumulation point p; of (a,)>2,
such that |a — p1| < % From the definition of an accumulation point, we can find n; € N

such that [p1 — an,| < 3, so that
@ —an, | < la —pi| + p1 —an, | < 1.

Suppose now that n; < --- < ny have already been found such that

1
la — an,] <3

for j = 1,...,k. Let pgy1 be an accumulation point of (a,)52; such that |a — pryi1| <

m. By the definition of an accumulation point, there is nxy1 > ny such that |pgiq —
1

ank+1| < &+1)° so that

1
la = an, | < la—pesa| + [Pra1 — any | < k1l
Inductively, we thus obtain a subsequence (an, )72 of (a,);2; such that a = limy_o Gy, -

O

Ezample. It is easy to see that

1 n
limsupn(l+ (—1)") =0 and limsup(—1)" <1 + E) =e.

n—oo n— o0

The following is easily checked:
Proposition C.1.6. Let (a,)02, and (by)7%; be bounded below, and let A\, pn > 0. Then

lim sup(Aa,, + pby,) < Alimsup a,, + plimsup b,

n—oo n—oo n—oo

holds.

The scalars in this proposition have to be non-negative, and in general, we cannot

expect equality:

0 = limsup ((—1)" + (=1)""") < 2 = limsup(—1)" + limsup(—1)""".

n—oo n—oo n—o0
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C.2 The limit inferior

Paralell to the limit superior, there is a limit inferior:

Definition C.2.1. Let (a,)52; be bounded above. If (a,)>2 is bounded, define the limit
inferior iminf,,_, a, of (a,)22, by letting

liminf a,, := inf{a € R: a is an accumulation point of (a,)p>};
n—o0

otherwise, let lim inf,, o a, := —o0.

As for the limit superior, we have that, if (a,)22; converges, we have liminf,_, a, =
limy,— oo A,

Also, as for the limit superior, we have:

Proposition C.2.2. Let (a,)32, be bounded above. Then there is a subsequence (an, )7,

of (an)s2, such that iminf, . a, = limg_,o0 ap, .

If (ap)S°

o, is bounded, then limsup,,_,,, a, and liminf, . a, both exist. Then, by

definition,

lim inf a,, < limsup a,
n—00 n—00

holds with equality if and only if (a,)52, converges.

Furthermore, if (a,)52; is bounded below, then

liminf(—a,) = —limsupa,
n—00 n—o00

holds, as is straightforwardly verified. (An analoguous statement holds for (a, ) ; boun-
ded above.)
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