Math 117: Honours Calculus I
Fall, 2012 List of Theorems

Theorem 1.1 (Binomial Theorem): For all n € N,

(a+b)" = Zn: (Z) a™hok.

k=0
Theorem 2.1 (Convergent = Bounded): A convergent sequence is bounded.

Theorem 2.2 (Properties of Limits): Let {a,} and {b,} be convergent sequences.
Let L = lim a,, and M = lim b,,. Then

n—o0 n—oo
(a) lim (a, +0b,) =L+ M;
n—oo
(b) lim a,b, = LM;
n—oo
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Corollary 2.2.1 (Case L # 0, M = 0): Let {a,} and {b,} be convergent sequences.

If lim a, # 0 and lim b, = 0, then lim n does not exist.
n—oo n—roo
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Theorem 2.3 (Monotone Sequences: Convergent <= Bounded): Let {a,} be a
monotone sequence. Then {a,} is convergent <= {a,} is bounded.

Theorem 2.4 (Convergent <= All Subsequences Convergent): A sequence {a,}5°,
is convergent with limit L <= each subsequence {an, }7>, of {an}r>y is conver-
gent with limit L.

Theorem 2.5 (Bolzano—Weierstrass Theorem): A bounded sequence has a convergent
subsequence.

Theorem 2.6 (Cauchy Criterion): {a,} is convergent <= {a,} is a Cauchy se-
quence.

Theorem 3.1 (Equivalence of Function and Sequence Limits): lim f(z) = L <= f
Tr—a

is defined near a and every sequence of points {x,} in the domain of f, with x, # a
but lim xz, = a, satisfies lim f(z,) = L.
n—oo n—roo

Corollary 3.1.1 (Properties of Function Limits): Suppose L = lim f(z) and M =

rT—ra

lim g(x). Then
Tr—a
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Corollary 3.1.2 (Cauchy Criterion for Functions): lim f(x) exists <= for every
Tr—a
€ > 0, 30 > 0 such that whenever

O<|r—al|<é and 0<|y—al<é

then |f(z) = f(y)] <e.

Corollary 3.1.3 (Squeeze Principle for Functions): Suppose f(z) < h(x) < g(x)
when 0 < |z — a| < r for some positive real number r. Then

lim f(z) = lim g(x) = L = lim h(z) = L.

T—a rT—a r—a

Corollary 3.1.4 (Properties of Continuous Functions): Suppose f and ¢ are contin-
uous at a. Then f + g and fg are continuous at a and f/g is continuous at a if

g(a) # 0.

Corollary 3.1.5 (Continuity of Rational Functions): A rational function is continu-
ous at all points of its domain.

Corollary 3.1.6 (Continuous Functions of Sequences): f is continuous at an interior
point a of the domain of f <= each sequence {z,} in the domain of f with

lim x, = a satisfies lim f(z,) = f(a).
n—00 n—00

Corollary 3.1.7 (Composition of Continuous Functions): Suppose g is continuous
at a and f is continuous at g(a). Then f o g is continuous at a.

Theorem 3.2 (Intermediate Value Theorem [IVT]): Suppose
(i) f is continuous on [a,b],

(ii) f(a) <0< f(b).
Then there ezists a number ¢ € (a,b) such that f(c) = 0.

Corollary 3.2.1 (Generalized Intermediate Value Theorem): Suppose



(i) f is continuous on [a,b],
(ii) f(a) <y < f(b).
Then there exists a number ¢ € (a, b) such that f(c) =y.

Theorem 3.3 (Boundedness of Continuous Functions on Closed Intervals): If f is
continuous on |a,b] then f is bounded on |a,b.

Theorem 3.4 (Weierstrass Max/Min Theorem): If f is continuous on |a,b] then it
achieves both a mazimum and minimum value on |a, b|.

Corollary 3.4.1 (Image of a Continuous Function on a Closed Interval): If f is
continuous on [a, b] then f([a,b]) is either a closed interval or a point.

Theorem 4.1 (Differentiable = Continuous): If f is differentiable at a then f is
continuous at a.

Theorem 4.2 (Properties of Differentiation): If f and g are both differentiable at a,
then

(@) (f +9)(a) = f(a) +g'(a),
(b) (f9)'(a) = f'(a)g(a) + f(a)g'(a),

N\ fa)gla) = fla)g'(a)
@ (5) 0=
Theorem 4.3 (Chain Rule): Suppose h = f o g. Let a be an interior point of the

domain of h and defineb = g(a). If f'(b) and ¢'(a) both exist, then h is differentiable
at a and

if g(a) # 0.

h'(a) = f'(b)g'(a).
Theorem 4.4 (Interior Local Extrema): Suppose

(1) f has an interior local extremum (mazimum or minimum) at c,
(i) f'(c) emists.

Then f'(c) = 0.

Corollary 4.4.1 (Rolle’s Theorem): Suppose

(i) f is continuous on [a, b],

(i) f’ exists on (a,b),

(i) f(a) = £(0).

Then there exists a number ¢ € (a,b) for which f’(¢) = 0.



Corollary 4.4.2 (Mean Value Theorem [MVT]): Suppose
(i) f is continuous on [a, b],
(ii) f’ exists on (a,b).

Then there exists a number ¢ € (a, b) for which

LUE(C]

Corollary 4.4.3 (Zero Derivative on an Interval): Suppose f’'(z) = 0 for every z in
an interval I (of nonzero length). Then f is constant on 1.

Corollary 4.4.4 (Equal Derivatives): Suppose f'(z) = ¢/(x) for every z in an interval
I (of nonzero length). Then f(z) = g(x) + k for all x € I, where k is a constant.

Corollary 4.4.5 (Monotonic Functions): Suppose f is differentiable on an interval [.
Then

(i) fisincreasing on I <= f'(z) > 0 on I;

(i) f is decreasing on I <= f’(z) <0 on I.
Corollary 4.4.6 (Horse-Race Theorem): Suppose
(i) f and g are continuous on [a, b],

(ii) f’ and ¢ exist on (a,b),

(iii) f(a) = g(a),

(iv) f'(x) =2 ¢'(z) Ve (a,b).

Then f(z) > g(xz) Vz € [a,b].

Corollary 4.4.7 (First Derivative Test): Suppose f is differentiable near a critical
point ¢ (except possibly at ¢, provided f is continuous at ¢). If there exists a § > 0
such that

N g <0 Vze(c—0d,¢) (fdecreasing), . _
1) f(x) { >0 Voc(cctd) (f increasing), then f has a local minimum at ¢;

ey >0 Vze(c—46d,c) (f increasing),
(if) f'(x) { <0 Vxe(c,c+0) (f decreasing),

(iii) f'(x) >0on (¢c—d,¢c)U(c,c+9)or f'(x) <0on (c—b,¢)U(c,c+6),
then f does not have a local extremum at c.

then f has a local maximum at c;

Corollary 4.4.8 (Second Derivative Test): Suppose f is twice differentiable at a
critical point ¢ (this implies f'(¢) = 0). If
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(i) f"(c) > 0, then f has a local minimum at ¢;

(ii) f"(c) <0, then f has a local maximum at c.
Corollary 4.4.9 (Cauchy Mean Value Theorem): Suppose

(i) f and g are continuous on |a, b],

(ii) f" and ¢ exist on (a,b).

Then there exists a number ¢ € (a, b) for which

Corollary 4.4.10 (L’Hopital’s Rule for 3): Suppose f and g are differentiable on
(a,b), ¢'(x) # 0 for all x € (a,b), hm f(z) =0, and lim g(z) = 0. Then

T—b—
/
lim f'(z) =L = lim M:L.
r—b— g/(.il]) T—b— g(l‘)
This result also holds if

(i) hnba is replaced by lim ;

x—>a+

(ii) 1irg1 is replaced by lim and b is replaced by oo;
r—0" T—r00

(iii) han is replaced by lim and a is replaced by —ooc.
— r—r—00

o0

Corollary 4.4.11 (L’Hopital’s Rule for 22): Suppose f and g are differentiable on
(a,b), ¢'(x) # 0 for all = € (a,b), and liIIEl f(x) = o0, and lian g(z) = 0o. Then
T—0— T—0—

TG R T GO

z—b— ¢'(2) z—b— g(x) B

This result also holds if

(i) lim is replaced by lim ;

z—b— x—>a+

(ii) hrlr)l is replaced by lim and b is replaced by oo;

T—00

(iii) lngl is replaced by lim and a is replaced by —oc.
— T—r—00



Corollary 4.4.12 (Taylor’s Theorem): Let n € N. Suppose

(i) f™=Y exists and is continuous on [a, b],

(ii) f™ exists on (a,b).

Then there exists a number ¢ € (a,b) such that
nzl (b—a) f(k (a) + Mf(n)(c)_
k=0

Theorem 4.5 (First Convexity Criterion): Suppose f is differentiable on an interval
I. Then

(1) f is conver <= ' is increasing on I;

(ii) f is concave <= [’ is decreasing on I.

Corollary 4.5.1 (Second Convexity Criterion): Suppose f is twice differentiable on
an interval /. Then

(i) fisconvex on I <= f"(x)>0 Vzel;

(ii) fis concave on I <= f"(x) <0 Vzx € l.

Corollary 4.5.2 (Tangent to a Convex Function): If f is convex and differentiable
on an interval I, the graph of f lies above the tangent line to the graph of f at
every point of I.

Corollary 4.5.3 (Global Second Derivative Test): Suppose f is twice differentiable
on I and f’(c) =0 at some ¢ € [. If

(i) f"(z) >0 Vx €I, then f has a global minimum at ¢;

(ii) f"(z) <0 VeI, then f has a global maximum at c.

Theorem 4.6 (Continuous Invertible Functions): Suppose f is continuous on I.
Then f is one-to-one on I <= f is strictly monotonic on I.

Corollary 4.6.1 (Continuity of Inverse Functions): Suppose f is continuous and
one-to-one on an interval I. Then its inverse function f~! is continuous on f(I) =
{f(z):z € I}.

Corollary 4.6.2 (Differentiability of Inverse Functions): Suppose f is continuous

and one-to-one on an interval I and differentiable at @ € I. Let b = f(a) and
denote the inverse function of f on I by g. If

(i) f'(a) =0, then g is not differentiable at b;

(i) f'(a) # 0, then g is differentiable at b and ¢'(b) =

f'(a)



