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Abstract. Absolutely continuous invariant measures (acims) for general in-
duced transformations are shown to be related, in a natural way, to popular
tower constructions regardless of any particulars of the latter. When combined
with (an appropriate generalization of) the known integrability criterion for
the existence of such acims, this leads to necessary and sufficient conditions
under which acims can be lifted to, or projected from, nonsingular extensions.

1. Introduction. One basic idea in ergodic theory, of great importance both for
abstract considerations and for the analysis of specific examples, is to study a dy-
namical system S acting on a space X by means of some closely related auxiliary
system. A classical example [9] in this regard is the system SY obtained by passing
to the first return (or induced) map on a suitable subset Y of X. In this case, the
new system faithfully reflects many relevant properties of S, and hence establishing
these properties for SY often is equivalent to, yet simpler than proving them for S
directly — see subsequent sections for precise statements. A more flexible variant
of first return maps, a general induced system Sτ allows for an inducing time τ
more general than the first return time. General induced systems have become an
extensively used tool in measurable dynamics. While they also act on appropriate
subsets Y of X, a different, equally fundamental type of auxiliary construction en-
larges rather than reduces the space X, resulting in an extension S∗ of S that acts
on a different set X∗ but projects onto X.

The present article focuses on questions regarding absolutely continuous invariant
measures (acims) for nonsingular systems. While (under mild assumptions) there is
a one-to-one correspondence between the σ-finite acims for S and those for SY , the
situation is more complicated for general induced systems and extensions, that is,
for Sτ and S∗. In either case, a σ-finite acim of the auxiliary system automatically
yields an acim for S, but one needs to check separately whether that acim is σ-finite.
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Conversely, given a σ-finite acim for S, it is a nontrivial task to decide whether this
acim can be obtained via general inducing or extension.

The resemblance between the constructions of Sτ and S∗, to be recalled in
detail in Section 2 below, is not a coincidence: Very often general induced systems
Sτ correspond to first return systems S∗

Y ∗ in extensions. This basic correspondence
principle, to be made precise in the next section also, has been observed and used
by many authors (see, in particular, [3, 4]). However, the principle has rarely
been made explicit, and even when it has, this has so far been done solely in the
context of fairly specific (tower) constructions. It seems worthwhile to isolate the
essence of this correspondence, and to provide results that are general enough to
apply directly to a wide variety of concrete constructions. The purpose of the
present paper, therefore, is to fully capture this correspondence principle within the
abstract framework of nonsingular ergodic theory.

Motivated by [3] and [4] the first main result, Theorem 3.1 below, clarifies the nat-
ural relation between the acims of Sτ and the acims of S∗. Several generalizations
of classical facts about induced maps which are of independent interest are required
for the proof of Theorem 3.1. Aided by this theorem, it is possible to improve a
key result of [18] about general induced systems. This in turn leads to the note’s
second main result, Theorem 3.3 below. The latter can be utilized in the context of
many different types of extensions and yields, for instance, criteria for the liftability
of acims to towers (Corollary 3.5) and for projections of acims from towers to be
σ-finite (Corollary 3.8). Importantly, these criteria do not depend on any further
particulars of the tower construction.

2. Induced maps and towers. With regard to the statements, explanations and
proofs of the main results in subsequent sections, this preparatory section briefly
reviews all the relevant aspects of (general) inducing and extensions.

Nonsingular and measure preserving systems. Recurrence. The appro-
priate basic notion for this article is that of a nonsingular transformation T on
a measure space (X,A, λ), meaning that T : X → X is a measurable map (not
necessarily invertible) for which the image measure Tλ := λ ◦ T−1 is absolutely
continuous w.r.t. λ, in symbols Tλ � λ. While many interesting dynamical sys-
tems first present themselves in the form of a nonsingular system S = (X,A, λ, T ),
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one usually aims at equipping them with an invariant measure which is absolutely
continuous w.r.t. λ, i.e., one aims at finding µ � λ such that Tµ = µ. In this
situation, both T and the (special nonsingular) system (X,A, µ, T ) are referred to
as measure preserving (mp, for short).

Given S = (X,A, λ, T ) and any set Y ∈ A+ := {A ∈ A : λ(A) > 0}, the
first entrance time ϕY (x) := inf{n ≥ 1 : Tnx ∈ Y } of Y defines a measurable
function ϕY : X → N := {1, 2, . . . ,∞}, with the usual convention that inf ∅ := ∞.
When restricted to Y , the function ϕY is referred to as the first return time of
Y . If ϕY < ∞ λ-a.e. on Y , that is, if Y ⊆

⋃
n≥1 T

−nY mod λ, then Y is a
recurrent set ; it is a sweep-out set if

⋃
n≥0 T

−nY = X mod λ. Call S conservative
if every A ∈ A+ is recurrent, and ergodic if λ(A) = 0 or λ(Ac) = 0 holds whenever
A ∈ A is T -invariant, i.e., whenever T−1A = A mod λ. For each recurrent Y , the
smallest invariant set containing Y mod λ is Y∞ :=

⋂
n≥0

⋃
j≥n T

−jY ; note that
Y∞ =

⋃
n≥0 T

−nY mod λ.

First return maps. Every recurrent set Y comes with a first return (or induced)
map TY : Y → Y , defined as TY x := TϕY (x)x whenever ϕY (x) <∞, and TY x := x
otherwise, which is nonsingular on (Y,A∩Y, λ|Y ),1 thus defining a new system SY .
The great importance of this classical construction is due to the fact that the two
nonsingular systems SY and S|Y∞ := (Y∞,A ∩ Y∞, λ|Y∞ , T |Y∞) are intimately
related. (The following statements are all contained in [1, Sec.1.5].) For instance,

SY is ergodic ⇐⇒ S|Y∞ is ergodic. (1)

Moreover, there is a well-known correspondence between absolutely continuous in-
variant measures (abbreviated henceforth as acim) associated with SY and S|Y∞ ,
respectively:

If ν � λ|Y is TY -invariant, then ν = µ|Y for the T -invariant
measure µ� λ|Y∞ given by µ(A) :=

∑
n≥0 ν(Y ∩ {ϕY > n} ∩ T−nA); (2)

and a partial converse of (2) reads:

If µ� λ is T -invariant, and µ(Y ) <∞,
then ν := µ|Y � λ|Y is TY -invariant. (3)

This correspondence can be used in either direction to find acims. In the situation
of (3), µ is clearly σ-finite on Y∞. Notice also that

in (2) the measure µ is σ-finite iff ν is σ-finite. (4)

Indeed, ν is σ-finite whenever µ is, and for the converse assume that Y =
⋃

j≥1 Z
0
j

with ν(Z0
j ) <∞, note that µ(Y c

∞) = 0, and cover Y∞\Y mod λ by the sets Zn
j :=

(Y∞\Y ) ∩ {ϕY = n} ∩ T−nZ0
j which satisfy µ(Zn

j ) ≤ ν(Z0
j ) <∞ for all j, n ≥ 1.

General induced transformations. The concept of first return maps for a non-
singular system (X,A, λ, T ) has a far-reaching generalisation which allows for other
accelerated versions of T , and thus provides a very flexible method of constructing
convenient auxiliary transformations associated with T . As in [18], call a measur-
able function τ : X → N a (general) inducing time for T on Y ∈ A+ if it is finite

1For the sake of brevity, for any A ∈ A denote by λ|A the restriction of λ to A ∩ A; also say
that λ has some property on A if λ|A has that property. For example, λ = λ′ on A means that

λ|A = λ′|A, etc. Similarly, if A ⊂ T−1A then the system (X,A, λ, T ) is said to have a certain

property, e.g. ergodicity, on A whenever (A,A ∩A, λ|A , T |A) has that property.
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a.e. on Y , with T τx := T τ(x)x ∈ Y for a.e. x ∈ Y . (Note that Y necessarily is re-
current in this case.) The map T τ : Y → Y then is a nonsingular transformation on
(Y,A∩ Y, λ|Y ), referred to as the transformation which T and τ induce on Y . The
new system thus obtained will be denoted Sτ . With this, first return maps simply
constitute the special case τ = ϕY with any recurrent set Y , that is, SY = SϕY .

Section 5 below reviews basic features of general induced systems, and also
records several new observations which are of independent interest. As a rule,
S still inherits many important properties from Sτ , but the opposite direction is
more difficult than in the classical case of SY outlined earlier. For example, while
one implication of (1) generalizes (see [14, Sec.1]) to

Sτ is ergodic =⇒ S|Y∞ is ergodic ,

the converse implication breaks down for general τ . Similarly, an acim for Sτ always
yields an acim for S via the following canonical construction which generalizes that
of (2): Given any general inducing time τ on Y and any measure ν � λ|Y on
(Y,A ∩ Y ), define a new measure τ ×T ν on (X,A) according to

τ ×T ν(A) :=
∑

n≥0
ν
(
Y ∩ {τ > n} ∩ T−nA

)
, ∀A ∈ A .

Then, τ ×T ν � λ|Y∞ , and (again according to [14, Sec.1])

if ν is T τ -invariant, then µ := τ ×T ν is T -invariant, (5)

but µ need not be σ-finite even if ν is. In contrast to the converse (3) in the case of
first return maps, there is no simple, let alone canonical way of turning a T -invariant
µ into some T τ -invariant ν that satisfies τ ×T ν = µ. (For ergodic finite invariant
measures µ this matter has been discussed in [18], where necessary and sufficient
conditions for the existence of ν are given.)

Nonsingular extensions. Passing from S to an induced system Sτ means com-
bining several iterations of T into into a single iteration of a new map, and possibly
also passing to a smaller space. However, studying finer properties of S sometimes
is facilitated by going in the opposite direction and constructing a larger system
S∗ that provides enough space for the unfolding of complicated bits by keeping
orbits of different types separated. Specifically, a nonsingular extension of S is a
nonsingular system S∗ = (X∗,A∗, λ∗, T ∗) together with a nonsingular factor map
π : X∗ → X, that is, π is a measurable map with πλ∗ equivalent to λ, such that
π ◦ T ∗ = T ◦ π holds λ∗-a.e. on X∗. Again, such auxiliary systems S∗ are useful
because their ergodic properties are often passed on to S. For example, it is easily
seen that

S∗ is ergodic =⇒ S is ergodic.
The reverse implication, however, trivially fails. Regarding measures, since π is
nonsingular, one has πµ∗ � λ whenever µ∗ � λ∗. In this case, it is immediate that

if µ∗ is T ∗-invariant, then µ := πµ∗ is T -invariant, (6)

but µ need not be σ-finite even if µ∗ is. Again the converse presents difficulties, and
a frequently encountered question is whether or not a T -invariant measure µ � λ
on X can be lifted to an acim on X∗, that is, whether there is some T ∗-invariant
µ∗ � λ∗ for which πµ∗ = µ.

Relation between general induced maps and towers. The discussion of Sτ

and S∗ above highlights some analogies between these concepts that were mentioned
informally already in the introduction. Why would one want to more formally study
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the relation between the two concepts ? A most compelling reason may be seen in
the fact that quite often either concept is applied in situations of the following type:
Let S∗ be a nonsingular extension of S, and assume Y ∗ ∈ A∗ is such that, for some
Y ∈ A, the restricted factor map π|Y ∗ : Y ∗ → Y is invertible as a nonsingular map.
Then Y ∗ is a copy of Y embedded in X∗. The term tower over S is often used
for particular types of nonsingular extensions S∗ where X∗ is a countable union of
embedded subsets Y ∗ as above. Many specific constructions are of this type, for
example the canonical Markov extensions of [10, 11] and variants thereof, but also
the Young towers in [15, 16].

Now, the abstract considerations of this article apply to every extension S∗ with
a nontrivial embedded set Y ∗ that is recurrent. Fix any such Y ∗, and denote by
Y ∗∞ the smallest invariant set containing Y ∗. According to the discussion earlier in
this section, passing from S∗|Y ∗

∞
to the first return system S∗

Y ∗ preserves crucial
features of that part of the system S∗. Observe then that this first return system
in the extension is isomorphic as a nonsingular system to a general induced system
Sτ for S, that is, there is an invertible nonsingular factor map from one system
onto the other. Indeed, the function τ : Y → N given by τ := ϕ∗Y ∗ ◦ π|−1

Y ∗ , with ϕ∗Y ∗

denoting the first entrance time of Y ∗ under T ∗, is easily seen to be an inducing
time for T , and

T τ = π ◦ T ∗Y ∗ ◦ π|−1
Y ∗ λ-a.e. on Y .

Thus, first return systems S∗
Y ∗ on recurrent embedded sets Y ∗ in an extension S∗

always correspond to generalized induced systems Sτ for S. Conversely, as pointed
out in [18], every Sτ is isomorphic (as a nonsingular system) to a first return system
S∗

Y ∗ in a suitable extension S∗ of S. Any extension S∗ related in this way to a
given induced system Sτ will be called τ -trivialising, as it allows to represent the
general induced transformation T τ as a first return map. In view of the preceding
discussion, this definition is crucial for all that follows.

Definition 2.1. Let S∗ = (X∗,A∗, λ∗, T ∗) be a nonsingular extension of S =
(X,A, λ, T ) with factor map π : X∗ → X, and τ an inducing time for T on Y ∈ A+.
The extension S∗ is τ -trivialising, with τ -base Y ∗ ∈ A∗, provided that π|Y ∗ : Y ∗ →
Y is invertible (as a nonsingular map) and, with ϕ∗Y ∗ : X∗ → N denoting the first
entrance time of Y ∗ under T ∗,

τ ◦ π = ϕ∗Y ∗ λ∗-a.e. on Y ∗ . (7)

Remark 2.2. Implicit in this definition is the requirement that Y ∗ be a recurrent
set in the extension S∗.

The organisation of the remainder of this article is as follows. The main results
are stated in Section 3. For the reader’s convenience, Section 4 provides a worked-
out classical example illustrating the notion of τ -trivialising extension and also
contains further comments regarding this concept. Several auxiliary observations
are collected in Section 5, and complete proofs of all results are presented in the
concluding Section 6.

3. Main results: acims for induced maps and extensions. Given a nonsin-
gular system S = (X,A, λ, T ), consider the family of acims defined as M(S) :=
{µ � λ : Tµ = µ, T conservative w.r.t.µ} together with the subfamily Mσ(S) :=
{µ ∈ M(S) : µ σ-finite}. Also, let τ be an inducing time for T on Y ∈ A+, and S∗

a τ -trivialising extension with τ -base Y ∗. The following diagram informally depicts
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the main results of this article, to be stated fully in the present section; each arrow
indicates a well-defined map from one family of measures into another one.

In essence, Theorem 3.1 below asserts that this diagram does indeed commute. In
the lower left corner, the subscript σ has been omitted for a reason: As it turns out,
understanding the position of Mσ(S |Y∞) in this scheme is a main objective of the
subsequent results. Assuming ergodicity throughout for convenience, Theorem 3.3
characterizes Mσ(S |Y∞)∩ τ ×T

(
Mσ(Sτ )

)
. Via diagram chasing, this also yields a

characterization of Mσ(S |Y∞) ∩ πMσ(S∗|Y ∗
∞

), recorded in Corollary 3.5. Finally,

Theorem 3.7 and Corollary 3.8 describe Mσ(Sτ ) ∩
(
τ ×T (�)

)−1
Mσ(S |Y∞) and

Mσ(S∗|Y ∗
∞

) ∩ π−1Mσ(S |Y∞), respectively.
As indicated above, the key to exploiting the diagram is

Theorem 3.1 (Invariant measures for induced maps and extensions). Let
(X,A, λ, T ) be nonsingular, and τ an inducing time for T on Y ∈ A+. Also, let
(X∗,A∗, λ∗, T ∗) be a τ -trivialising extension with factor map π and τ -base Y ∗, and
Y ∗∞ :=

⋂
n≥0

⋃
j≥n(T ∗)−jY ∗.

(i) Assume that T τ preserves the σ-finite measure ν � λ|Y and is conservative
w.r.t. ν. Then T ∗ preserves a σ-finite measure µ∗ � λ∗|Y ∗

∞
that satisfies

π|Y ∗ (µ∗|Y ∗) = ν as well as πµ∗ = τ ×T ν =: µ. Moreover, T ∗ is conservative
w.r.t. µ∗, and µ is T -invariant.

(ii) Conversely, assume that T ∗ preserves the σ-finite measure µ∗ � λ∗|Y ∗
∞

, and
that T ∗ is conservative w.r.t. µ∗. Then T τ preserves the σ-finite measure
ν := π|Y ∗ (µ∗|Y ∗) � λ|Y , and is conservative w.r.t. ν. Moreover, ν satisfies
τ ×T ν = πµ∗ =: µ, and µ is T -invariant.

Remark 3.2. (i) In the situation of the theorem, T ∗ is conservative w.r.t. µ∗. This
immediately implies that T is conservative w.r.t. µ.

(ii) In part (i) of the theorem, conservativity of T τ is only required to ensure
conservativity of T ∗. All other assertions are valid without this assumption.

(iii) Since the assumptions in Theorem 3.1(i) do not stipulate any particular
further properties of T ∗, the conclusion shows that in principle one τ -trivialising
extension is as good as any other as far as the lifting of µ to such an extension is
concerned. Nevertheless, some extensions may be easier to work with than others.

(iv) The measure µ does not have to be σ-finite.
(v) It is clear that T ∗-invariant measures supported outside the invariant set Y ∗∞

cannot, in general, be understood in terms of T ∗Y ∗ or, equivalently, T τ .

Under the assumption that µ is a finite ergodic T -invariant measure, the main
result of [18] provides a necessary and sufficient condition for τ ×T ν = µ to have a
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solution ν. The following theorem sharpens this criterion, and also generalizes it to
σ-finite conservative situations. To formulate it, let (X,A, λ, T ) be a nonsingular
system, and τ an inducing time for T on Y . For Z ∈ A ∩ Y let ϕτ

Z(x) := inf{n ≥
1 : (T τ )nx ∈ Z} ∈ N, the first return time of Z under T τ , and (suppressing the
dependence on τ in the notation) θZ :=

∑ϕτ
Z−1

k=0 τ ◦ (T τ )k. If Z is a recurrent set
for T τ , then θZ is an inducing time for T on Z with (T τ )Z = T θZ (compare [18,
Thm.1.2]). Define

ϑZ :=
∑θZ−1

n=0
1Z ◦ Tn on Z. (8)

Provided that Z is recurrent for T τ , ϑZ is an inducing time for TZ on Z with
ϑZ ≤ θZ and (T τ )Z = (TZ)ϑZ .

Theorem 3.3 (Solving τ ×T ν = µ with conservative ergodic acim µ). Let T
be a conservative ergodic mp map on the σ-finite space (X,A, µ), and τ an inducing
time for T on Y ∈ A+. Then the following statements are equivalent:

(i) τ ×T ν = µ has a σ-finite solution ν � µ |Y for which T τ is mp and conser-
vative w.r.t. ν;

(ii) There exists a set Z ∈ A ∩ Y with the property that

0 <
∫

Z

ϑZ dµ <∞ ,

where ϑZ is given by (8).

Remark 3.4. (i) Observe that the relation (T τ )Z = (TZ)ϑZ uniquely determines
ϑZ(x) unless (T τ )Z x is a periodic point of TZ (and hence of T ). Consequently, if T
is aperiodic, i.e. λ({x : Tnx = x for some n}) = 0, then ϑZ is uniquely determined
mod λ by (T τ )Z = (TZ)ϑZ .

(ii) In statement (ii) of the theorem, since ϑZ ≥ 1, positivity of
∫

Z
ϑZ dµ is

equivalent to µ(Z) > 0, whereas finiteness of the integral guarantees that Z is a
recurrent set for T τ w.r.t. µ.

Together, Theorems 3.1 and 3.3 identify part (ii) of Theorem 3.3 as a sharp
integrability condition for a conservative ergodic σ-finite acim of S to lift to a
particular S∗.

Corollary 3.5 (Liftability via integrability). Let (X,A, λ, T ) be nonsingular
with a nonsingular extension (X∗,A∗, λ∗, T ∗), and Y ∗ ∈ A∗ a recurrent set for T ∗

such that π|Y ∗ : Y ∗ → Y ∈ A is invertible. Assume that µ � λ |Y∞ is a σ-finite
conservative ergodic acim for T . Then the following property is equivalent to both
(i) and (ii) in Theorem 3.3 with τ := ϕ∗Y ∗ ◦ π|−1

Y ∗ :

(iii) There exists a σ-finite measure µ∗ � λ∗|Y ∗
∞

with πµ∗ = µ such that T ∗ is mp
and conservative w.r.t. µ∗.

Remark 3.6. (i) Assume that µ is finite. Then integrability of τ w.r.t. the invariant
measure, i.e.

∫
Y
τ dµ < ∞, is sufficient for liftability. Indeed, take Z = Y in

statement (ii) of Theorem 3.3, then ϑZ is integrable since ϑZ ≤ τ . However, even
for finite µ this condition is not necessary, see [18, Ex.2.3].

(ii) For the case µ(X) = ∞ and µ(Y ) <∞, Kac’ formula shows that
∫

Y
ϕY dµ =

∞. A fortiori,
∫

Y
τ dµ = ∞ for every inducing time τ for T on Y . Nonetheless, the

relativised integrability criterion of Theorem 3.3 in terms of ϑZ remains meaningful
in this situation. For example, when applied to τ = ϕY and Z = Y , one obtains
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ϑZ = 1, which is integrable, so that the theorem simply asserts solvability of ϕY ×T

ν = µ, a fact already contained in (2) and (3).
(iii) While µ(X) = ∞ and µ(Y ) < ∞ together preclude µ-integrability of τ ,

severe restrictions on the degree of nonintegrability of τ , as captured by the asymp-
totic behaviour of its tail µ(Y ∩ {τ > n}), often have to be imposed in order for
µ to lift to a τ -trivialising extension of a specific type. For example, [4, Cor.2.7]
contains the following observation: Let S = (X,A, µ, T ) be ergodic and mp with
µ(X) = ∞. Assume that S∗

i = (X∗
i ,A∗i , µ∗i , T ∗i ), i ∈ {1, 2}, are two mp Young

towers over S with πiµ
∗
i = µ, so that, in particular, each S∗

i is a τi-trivialising
extension of S for a suitable inducing time τi : Yi → N on µ(Yi) <∞. Then regular
variation of µ(Y1 ∩ {τ1 > n}) with some index −α, where α ∈ (0, 1), implies that
µ(Y1 ∩ {τ1 > n}) ∼ const · µ(Y2 ∩ {τ2 > n}) as n → ∞. Thus µ can only be lifted
to a Young tower with a corresponding τ that has a very specific tail behaviour. It
may be worth noting that the latter observation also follows (via a Tauberian theo-
rem) from [19, Thm.1] which asserts that minimal wandering rates (i.e. equivalence
classes of the asymptotics of averaged tails, see [1] for authoritative definitions) are
invariant under mp factor maps.

The remaining two results address the question of σ-finiteness of µ, which is of
importance in infinite-measure situations such as those considered in [1, 4, 17], recall
also Remark 3.2.(iv). The first result offers an alternative representation of τ ×T ν
in terms of ν, which in turn leads to an integrability criterion intimately related to
that of Theorem 3.3.

Theorem 3.7 (Alternative representation and σ-finiteness of µ= τ ×T ν).
Let (X,A, λ, T ) be nonsingular, τ an inducing time for T on Y ∈ A+, and assume
that there is a σ-finite conservative ergodic invariant measure ν � λ |Y for T τ .
Then for every Z ∈ A ∩ Y the conservative ergodic T -invariant measure µ :=
τ ×T ν � λ satisfies

µ(Z) =
∫

Z

ϑZ dν ,

where ϑZ is given by (8). Hence, µ is σ-finite iff there exists Z ∈ A ∩ Y with the
property that

0 <
∫

Z

ϑZ dν <∞ .

By virtue of Theorem 3.1, there is a corresponding criterion for an ergodic σ-finite
acim µ∗ of an extension to project onto a σ-finite acim µ for the factor.

Corollary 3.8 (Projectability via integrability). Let (X,A, λ, T ) be nonsingu-
lar with a nonsingular extension (X∗,A∗, λ∗, T ∗), and Y ∗ ∈ A∗ a recurrent set
for T ∗ with π|Y ∗ : Y ∗ → Y ∈ A invertible. Assume that T ∗ preserves a σ-
finite measure µ∗ � λ∗|Y ∗

∞
, and that T ∗ is conservative ergodic w.r.t. µ∗. Let

τ := ϕ∗Y ∗ ◦ π|−1
Y ∗ , and define ν := π|Y ∗ (µ∗|Y ∗). Then the conservative ergodic in-

variant measure µ := πµ∗ � λ of T is σ-finite iff there exists a set Z ∈ A∩ Y with
0 <

∫
Z
ϑZ dν <∞.

Remark 3.9. (i) Viewing an induced map T τ through a τ -trivialising extension as
in this corollary, one finds that the formula for µ(Z) in Theorem 3.7 is the classical
Kac formula in disguise. Indeed, in the situation of the corollary one has

ϑZ ◦ π = ψ∗Z∗ a.e. on Z∗,
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where ψ∗Z∗(x
∗) := inf{n ≥ 1 : (T ∗π−1Z)nx∗ ∈ Z∗} denotes the first return time of

Z∗ := Y ∗ ∩ π−1Z for the µ∗ |π−1Z -preserving conservative ergodic map T ∗π−1Z on
π−1Z ⊆ X∗, so that

∫
Z
ϑZ dν =

∫
Z∗
ψ∗Z∗ dµ∗ = µ∗(π−1Z) = µ(Z) by Kac’ formula.

(ii) Corollary 3.8 was motivated by [4, Thm.2.1] which starts from somewhat
more restrictive assumptions. (Specifically, the extension is assumed to be a Young
tower.) Under these assumptions, (Y,A∩Y, λ|Y , T τ ) is ergodic and has a finite acim
ν for which log dν

dλ is bounded, hence
∫

Z
ϑZ dν is finite iff

∫
Z
ϑZ dλ is. Consequently,

[4, Thm.2.1], which states that µ is σ-finite iff
∫

Z
ϑZ dλ < ∞, is a special case of

Corollary 3.8.

4. A classical example: β-transformations. First steps towards the proofs
of the main results will not be taken until Section 5 below. Strictly speaking,
therefore, the present section is not essential for the development of this article. Its
sole purpose is to illustrate the natural relation between general induced maps and
extensions in the context of a truly classical example, namely the β-transformation.
For the reader’s convenience the discussion outlines, in this classical setup, the
following typical scenario for an application of either construction: Given S =
(X,A, λ, T ), try to find an induced system Sτ or an extension S∗ which is simpler
than S in that it is known to possess an acim with certain desirable properties.
Then use (5) or (6) to explicitly obtain a T -invariant measure which inherits some
of these properties.

Recall that S is piecewise invertible if it comes with a countable measurable
partition ζ (mod λ) of X such that the restriction T |Z : Z → TZ to each cylinder
Z ∈ ζ is invertible. The partition is (one-sided) Markov if each TZ is measurable
w.r.t. ζ. In that case, if ν � λ is either zero or equivalent to λ on each Z ∈ ζ, then
so is Tν. This property enables consistent and effective coarse-graining through ζ.

The classical examples herein are piecewise affine interval maps on X := [0, 1),
i.e. maps that are nonsingular w.r.t. Lebesgue measure λ and piecewise invertible
with every cylinder Z a non-degenerate interval, and each T |Z : Z → TZ affine. If,
for such a map T , every cylinder is full, meaning that TZ = X for every Z ∈ ζ (so
that, in particular, the partition is Markov), then T is easily seen to be λ-preserving
and ergodic. However, within the family of β-transformations, those whose natural
partition is Markov are exceptional, and one strives to regain the very convenient
Markov property by constructing a suitable auxiliary system. Inducing provides
one way of achieving this.

Example 4.1 (β-transformations induced). For every real β > 1, consider the
β-transformation Tβ : x 7→ βx− bβxc on X = [0, 1), with associated partition

ζ :=
{[

0,
1
β

)
,

[
1
β
,
2
β

)
, . . . ,

[
dβe − 2

β
,
dβe − 1

β

)
,

[
dβe − 1

β
, 1

)}
;

here bxc and dxe denote, respectively, the largest integer not larger and the smallest
integer not smaller than x ∈ R. For every n ≥ 0, let ζn be the family of maximal
monotonicity intervals of Tn

β ; thus ζ0 = {X}, ζ1 = ζ, etc. Also, for every x ∈ X and
n ∈ N, denote by ζn(x) the unique interval in ζn containing x. With this, define
τ(x) := inf{n ≥ 1 : ζn(x) is full }. For an equivalent definition of τ , let T j

β1 :=
limx↑1 T

j
βx ∈ (0, 1], j ≥ 0. Then τ(x) = n iff

∑n−1
j=1 εjβ

−j ≤ x <
∑n

j=1 εjβ
−j ,

where εj := bβT j−1
β 1c and, as usual, the empty sum is interpreted as zero. From∑∞

j=1 εjβ
−j ≥ 1, it follows that τ(x) < ∞ for every x ∈ X, and τ is an inducing
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time for Tβ on Y := X. Moreover, T τ
β is a piecewise affine map all of whose cylinders

are full and hence is λ-preserving and ergodic. According to (5), the measure

µ := τ ×Tβ
λ =

∑
n≥0

Tn
β (λ|{τ>n}) � λ

is Tβ-invariant (and easily seen to be finite), cf. also Lemma 5.6(i) below. Fur-
thermore, due to (1), Tβ is ergodic. For every n ≥ 0, the iterate Tn

β maps
{τ > n} =

[∑n
j=1 εjβ

−j , 1
)

affinely onto [0, Tn
β 1) with slope βn, provided that

{τ > n} is not empty. Hence with Nβ := inf
{
n ∈ N : {τ > n} = ∅

}
∈ N,

µ =
∑Nβ−1

n=0
β−n λ|[0,T n

β 1) , (9)

which is the Gelfond–Parry formula for the Tβ-invariant measure, see e.g. [5, 12].
Note that Tβλ = λ iff β is an integer, in which case µ = λ, or equivalently iff
Nβ = 1. Also, Nβ = ∞ holds for all but countably many β > 1.

Alternatively, an acim may be obtained via a tower construction. In fact, various
finer dynamical properties can be established this way, see e.g. [7, 8]. The following
is an example of a canonical Markov extension in the sense of [10, 11]. It separates
all different images of cylinder sets.

Example 4.2 (β-transformations extended). As in Example 4.1 let ζn be the
family of maximal monotonicity intervals of Tn

β , and for every n ≥ 0 consider the
family of images ηn := {Tn

β Z : Z ∈ ζn}. Clearly, {X} = η0 ⊂ η1 ⊂ η2 ⊂ · · · .
Since only the right-most cylinder in ζn can have an image under Tn

β that is not
already contained in ηj for some j < n, it follows that ηn+1 contains at most one
element more than ηn. Also, if ηn+1 = ηn for some n then ηj = ηn for all j ≥ n.
Consequently, define N∗

β := inf{n ∈ N : ηn = ηn−1} ∈ N, let X0 := X, and for
every 0 < n < N∗

β denote by Xn the unique interval in ηn\ηn−1. Using the notation
introduced in Example 4.1, it is not hard to see that N∗

β = Nβ , and Xn = [0, Tn
β 1)

for all 0 ≤ n < Nβ . With this, let X∗ :=
⋃Nβ−1

n=0 (Xn ×{n}) ⊂ [0, 1)×N0, equipped
with the obvious version λ∗ of Lebesgue measure, i.e. λ∗ := (λ×#)|X∗ where # is
the counting measure, and π : X∗ → X the projection onto the first factor, that is,
π(x, n) := x for all (x, n) ∈ X∗. The family ζ∗ :=

{
(Z ∩ Xn) × {n} : Z ∈ ζ, 0 ≤

n < Nβ

}
forms a partition of X∗. Moreover, define T ∗ : X∗ → X∗ according to

T ∗(x, n) :=

{
(Tβx, 0) if ζ(x) is full ,
(Tβx, n+ 1) otherwise .

Clearly, T ∗ is a nonsingular extension of Tβ and maps each element of ζ∗ affinely
onto a set of the form Xn × {n}. Thus (X∗, T ∗) is a Markov extension, and the
family of measures of the form

∑Nβ−1
n=0 cn λ

∗|Xn×{n} is closed under T ∗. It is readily
confirmed that every T ∗-invariant measure in this family is proportional to µ∗ :=∑Nβ−1

n=0 β−n λ∗|Xn×{n}. Projection onto X gives the Tβ-invariant measure πµ∗ =∑Nβ−1
n=0 β−n λ|Xn

� λ which again is the Gelfond–Parry formula (9).

By ergodicity, the finite invariant λ-a.c. measure for Tβ is unique up to a mul-
tiplicative constant. Therefore any method identifying an acim must lead to the
same result. However, the two natural constructions above are intimately related.

Example 4.3 (β-transformations, continued). The base Y ∗ := X × {0} of
the extension of Example 4.2 is an embedded copy of the recurrent set Y = X in
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Example 4.1, as π|Y ∗ : Y ∗ → Y trivially is invertible as a nonsingular map. The
iterates (T ∗)n map each point x∗ ∈ Y ∗ into copies of Tnζn(πx∗) which are kept
disjoint from Y ∗ until the first time they coincide with Y ∗, that is, until ζn(πx∗) is
a full cylinder. Hence (T ∗)nx∗ first returns to Y ∗ at time τ(πx∗) or, in other words,
ϕY ∗(x∗) = τ ◦ π(x∗) holds for every x∗ ∈ Y ∗. That is, the extension of Example
4.2 trivialises the induced map of Example 4.1.

Finally, two simple variations of the above examples are considered in

Example 4.4 (β-transformations, once again). As in Examples 4.1 and 4.2
let (X,A, λ) be the interval [0, 1) equipped with its Borel σ-algebra and Lebesgue
measure, and consider the β-transformation Tβ : X → X.

(i) Pick β = 1+
√

5
2 . For this particular value of β, where Tβ1 = β − 1 coincides

with the discontinuity point β−1, consider τ̃ : X → N with

τ̃(x) =

{
1 if 0 ≤ x < β−1 ,

3 otherwise .

Trivially, τ̃ is an inducing time for Tβ on Y = X. However, the nonsingular ex-
tension provided by Example 4.2 is not τ̃ -trivialising in this case, as τ̃ ◦ π(x, 0) =
3 6= 2 = ϕ∗X×{0}(x, 0) whenever β−1 ≤ x < 1. On the other hand, choosing

X̃ := X × {0, 2} ∪ [0, β−1)× {1} and

T̃ (x, n) =

{ (
Tβ(x), 0

)
if n = 0 and 0 ≤ x < β−1 ,(

Tβ(x), n+ 1− 3b 1
3 (n+ 1)c

)
otherwise ,

yields a τ̃ -trivialising extension of (X,A, λ, Tβ) that is also Markov.
(ii) Let β = 2 and (X∗,A∗, λ∗) = ⊗2

j=1(X,A, λ). With the so-called baker’s map
T ∗ : X∗ → X∗, defined as

T ∗(x, y) =

{ (
T2(x), 1

2y
)

if 0 ≤ x < β−1 ,(
T2(x), 1

2 (1 + y)
)

otherwise ,

(X∗,A∗, λ∗, T ∗) is a version of the natural extension of (X,A, λ, T2), see e.g. [13],
and clearly constitutes a nonsingular extension as well. By Fubini’s theorem, how-
ever, X∗ does not contain any embedded set Y ∗ of positive measure. In particular,
this extension is not τ -trivialising for any inducing time τ for T2.

5. Lemmas about induced systems, and a functorial property of ×T . In
preparation for the proofs of the main results in Section 6 below, this section collects
several basic facts for which no pertinent reference is known to the authors. These
facts may be of independent interest beyond their usage here.

More on first return maps. Let S = (X,A, λ, T ) be a nonsingular system,
Y ∈ A+ some recurrent set for T , and ν � λ|Y . For the first return time τ = ϕY ,
the measure τ ×T ν = ϕY ×T ν coincides with µ as defined in (2). Moreover,

(ϕY ×T ν)|Y = ν on Y , (10)

since Y ∩ {ϕY > n} ∩ T−nA = ∅ for all n ≥ 1 whenever A ∈ A ∩ Y . It is well
known that if µ(Y ) <∞ for an invariant measure µ, then µ |Y is TY -invariant, and
µ is determined (on Y∞) by µ |Y via the above construction, see (2) and (3). The
following is a more general version of this principle.
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Lemma 5.1 (Invariant measures and their restrictions). Let (X,A, µ, T ) be
measure preserving, and assume that Y ∈ A+ is recurrent. Then

µ ≥ ϕY ×T (µ|Y ) on X , (11)

and
µ = ϕY ×T (µ|Y ) on Y∞ ⇐⇒ µ |Y is TY -invariant. (12)

If µ|Y is σ-finite and T is conservative on Y∞, then µ |Y is TY -invariant, and hence
µ|Y∞ is uniquely determined by µ|Y .

Proof. An inductive argument based on the decomposition T−1(Y c ∩ {ϕY > n}) =
(Y ∩ {ϕY > n + 1}) ∪ (Y c ∩ {ϕY > n + 1}), n ≥ 0, shows that, for all A ∈ A and
N ≥ 0,

µ(A) =
∑N

n=0
µ(Y ∩ {ϕY > n} ∩ T−nA) + µ(Y c ∩ {ϕY > N} ∩ T−NA) .

Letting N →∞ gives µ ≥ ϕY ×T (µ|Y ).
To verify (12), assume first that µ = ϕY ×T (µ|Y ) on Y∞, and take A ∈ A ∩ Y .

Then

µ(A) = µ(T−1A) =
(
ϕY ×T (µ|Y )

)
(T−1A)

=
∑

n≥0
µ

(
Y ∩ {ϕY > n} ∩ T−(n+1)A

)
=

∑
n≥0

µ
(
Y ∩ {ϕY = n+ 1} ∩ T−(n+1)A

)
= µ(T−1

Y A) .

For the reverse implication, assume that µ |Y is TY -invariant. Then (2) shows that
µ̃ := ϕY ×T (µ|Y ) � λ|Y∞ is T -invariant with µ̃|Y = µ|Y . In view of (11), the
measure η := µ− µ̃� λ|Y∞ is T -invariant and vanishes on Y . Due to the definition
of Y∞, this implies η = 0, as claimed.

The statement about conservative maps is contained in [6, Satz 8].

Remark 5.2. (i) If T is not conservative on Y∞, then µ|Y may not be TY -invariant,
as is illustrated by the map T : x 7→ x+ 1 on X := Z with the σ-finite µ := #, and
Y := N (a recurrent set). For further information regarding acims of systems which
are not conservative see e.g. [2].

(ii) Conservativity is not always necessary for µ |Y to be TY -invariant: To see
this, let X := Z × {−1, 1}, µ := #, and T (x, y) := (x + 1,−y) which is clearly
not conservative. Nonetheless, the set Y := Z × {1} is recurrent, and µ|Y is TY -
invariant. In fact, the proof of the lemma shows that µ |Y is TY -invariant whenever
ϕY is bounded.

The following result shows that in σ-finite measure preserving situations, con-
servativity can be checked using first return maps. Maharam’s classical recurrence
theorem [1, Thm.1.1.7] states that if S = (X,A, µ, T ) is mp and Y ∈ A+ is a recur-
rent set with µ(Y ) <∞, then S|Y∞ is conservative. Since, under these assumptions,
SY is automatically conservative (being a finite-measure preserving system), the
next lemma is a generalization of the classical result.

Lemma 5.3 (Conservativity via first return maps). Let S = (X,A, µ, T ) be
measure preserving, and assume that µ is σ-finite on the recurrent set Y ∈ A+.
Then SY is conservative iff S|Y∞ is conservative.
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Proof. Assume that SY is conservative. To prove that T is conservative on Y∞
it suffices to show that Y∞ =

⋃
j≥1 Zj,∞ mod µ, where, for every j, Zj,∞ ∈ A is

T -invariant and T is conservative on Zj,∞. Now Y =
⋃

j≥1 Zj for suitable Zj ∈ A
satisfying 0 < µ(Zj) < ∞. As TY is conservative, each Zj is a recurrent set for
TY , and hence also for T . Therefore, each Zj,∞ :=

⋃
n≥0 T

−nZj is T -invariant, and
it is clear that Y∞ =

⋃
n≥0 T

−nY =
⋃

j≥1 Zj,∞ holds mod µ. Observe then that
Zj is a sweep-out set of finite measure for the µ|Zj,∞

-preserving map T |Zj,∞
. By

Maharam’s recurrence theorem, T is indeed conservative on each Zj,∞, as required.
The reverse implication is standard, see e.g. [1, Prop.1.5.1].

Remark 5.4. If T is only assumed to be nonsingular, rather than mp, then
conservativity of TY no longer implies conservativity of T , as is illustrated by
T : x 7→ max(1, x − 1) on X := N with σ-finite µ := #, and Y := {1}. A
similarly simple example shows that σ-finiteness of µ is essential here too. Indeed,
take X, Y and T as before, and let µ(A) := ∞ unless A = ∅. Then T preserves
µ, Y is recurrent, and TY is conservative, whereas clearly T is not conservative on
Y∞ = X.

More on general induced transformations. Let S = (X,A, λ, T ) be a nonsin-
gular system, and τ an inducing time for T on Y ∈ A+. Note that τ can always
be represented in terms of the successive return times ϕY,1 < ϕY,2 < ϕY,3 < . . .

of Y , given by ϕY,n :=
∑n−1

j=0 ϕY ◦ T j
Y , n ≥ 1. In fact, there exists a measurable

function ρ : Y → N, finite a.e., such that τ(x) = ϕY,ρ(x)(x) for a.e. x ∈ Y , and
hence T τ = (TY )ρ, see [18, Rem.4.2].

By straightforward calculation one obtains a generalised Kac formula for the
total mass of τ ×T ν since, for every measure ν � λ|Y on (Y,A ∩ Y ),

τ ×T ν(X) =
∑

n≥0
ν
(
Y ∩ {τ > n}

)
=

∫
Y

τ dν . (13)

A useful counterpart to (13) is contained in

Lemma 5.5 (Weight of Y under τ ×T ν). Let (X,A, λ, T ) be nonsingular, and
τ an inducing time for T on Y ∈ A+ with T τ = (TY )ρ. If ν is a measure on
(Y,A ∩ Y ) with ν � λ|Y , then

τ ×T ν(Y ) =
∫

Y

ρdν . (14)

Proof. Start from the definition of τ ×T ν, decompose Y according to the value of
ρ, and then according to the values of the successive return-times ϕY,1 < ϕY,2 <
. . . < ϕY,ρ. Observe that, given r ∈ N and natural numbers k1 < k2 < . . . < kr, the
set

Y ∩ {ρ = r} ∩ {ϕY,1 = k1} ∩ . . . ∩ {ϕY,r = kr} ∩ T−nY

can, for n < kr, only be non-empty if n ∈ {0, k1, . . . , kr−1}, in which case it equals
Y ∩ {ρ = r} ∩ {ϕY,1 = k1} ∩ . . . ∩ {ϕY,r = kr} and is contained in {τ = kr}.
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Consequently,

τ ×T ν(Y ) =
∑

n≥0
ν

(
Y ∩ {τ > n} ∩ T−nY

)
=

∑
r≥1

∑
k1<...<kr

kr−1∑
n=0

ν
(
Y ∩ {ρ = r} ∩

r⋂
j=1

{ϕY,j = kj} ∩ T−nY
)

=
∑
r≥1

∑
k1<...<kr

r · ν
(
Y ∩ {ρ = r} ∩

r⋂
j=1

{ϕY,j = kj}
)

=
∑

r≥1
r · ν (Y ∩ {ρ = r}) ,

which proves (14).

As far as absolutely continuous invariant measures are concerned, it is most
important that (2) and (3) extend, in a natural way, to general inducing times.

Lemma 5.6 (T τ -invariance of ν vs. T -invariance of τ ×T ν). Let (X,A, λ, T )
be nonsingular, τ an inducing time for T on Y ∈ A+, and ν � λ|Y any measure
on (Y,A ∩ Y ). Then the following implications hold with µ := τ ×T ν � λ|Y∞ :

(i) If ν is T τ -invariant, then µ is T -invariant;
(ii) If µ is T -invariant and σ-finite, then ν is T τ -invariant and σ-finite.

Proof. Assertion (i) is well-known, see e.g. [14, Eqn.(1.3)]; it follows immediately
from the fact that, for every A ∈ A,

(τ ×T ν)(T−1A) = ν
(
(T τ )−1(Y ∩A)

)
+

∑
n≥1

ν(Y ∩ {τ > n} ∩ T−nA) . (15)

To prove (ii), denote by η(A) the right-most sum in (15), and assume that τ×T ν
is T -invariant. In this case, for every A ∈ A,

(τ ×T ν)(A) = ν
(
(T τ )−1(Y ∩A)

)
+ η(A) = ν(Y ∩A) + η(A),

by the very definition of τ ×T ν. Since η ≤ (τ ×T ν), the equality

ν
(
(T τ )−1A

)
= ν(A) (16)

holds for all A ∈ A∩ Y with (τ ×T ν)(A) <∞. In case τ ×T ν is merely σ-finite on
A ∈ A ∩ Y , write A =

⋃
j≥1Aj , where the Aj are disjoint and (τ ×T ν)(Aj) < ∞

for every j. Since, for each j, (16) holds with A replaced by Aj , it also holds for A
itself. Thus ν is T τ -invariant, and σ-finiteness of ν is clear as ν ≤ µ.

Remark 5.7. Without σ-finiteness of τ ×T ν, Lemma 5.6(ii) is false in general. To
see this, consider for instance the map T : x 7→ 2 min(x, 1 − x) on X := [0, 1] with
Lebesgue measure λ, and choose any ν � λ such that log dν

dλ is bounded. For every
n ∈ N, let In := (2−n, 21−n], and define τ(x) := 2n for all x ∈ In. Trivially, τ is an
inducing time for T on Y := X, and it is readily confirmed that τ ×T ν(A) equals
∞ or 0 if, respectively, λ(A) > 0 or λ(A) = 0. Thus τ ×T ν is T -invariant but, as
T τ is ergodic w.r.t. λ, the measure ν is T τ -invariant only if dν

dλ is constant.2

Measure construction and towers. A natural functorial property of the measure
extending operation ×T provides the final crucial link between the two types of
auxiliary constructions studied in this article.

2Two corrections to [18]: The folklore fact (3) was misrepresented in [18] in that the con-
dition µ(Y ) < ∞ was left out. Similarly, Lemma 5.6(ii) was quoted incorrectly in [18, Prop.1.1],
with the assumption of σ-finiteness missing.
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Lemma 5.8 (Factor maps and ×T ). Let (X,A, λ, T ) be nonsingular, and τ an
inducing time for T on Y ∈ A+. Assume that (X∗,A∗, λ∗, T ∗) is a τ -trivialising
extension with factor map π and τ -base Y ∗. Then, for every measure η � λ|Y on
A ∩ Y ,

τ ×T η = π
(
(τ ◦ π)×T∗ (π|−1

Y ∗ η)
)
. (17)

Proof. By (7), τ ◦π is an inducing time for T ∗ on Y ∗, which implies that the right-
hand expression in (17) does make sense. Pick any A ∈ A, and use the definition
of ×T∗ as well as the factor property of π to see that indeed

π
(
(τ ◦ π)×T∗ (π|−1

Y ∗ η)
)
(A) =

∑
n≥0

π|−1
Y ∗ η

(
Y ∗ ∩ {τ ◦ π > n} ∩ (T ∗)−nπ−1A

)
=

∑
n≥0

π|−1
Y ∗ η

(
Y ∗ ∩ π−1({τ > n} ∩ T−nA)

)
=

∑
n≥0

η(Y ∩ {τ > n} ∩ T−nA)

= τ ×T η(A) .

6. Proofs of the main results. With the classical facts recalled in Section 2 and
the specific lemmas provided in Section 5, all the required ingredients have been
assembled for a

Proof of Theorem 3.1. To prove (i), assume that T τ preserves the σ-finite measure
ν � λ|Y . As π|Y ∗ is invertible, (7) implies that the first return map T ∗Y ∗ of T ∗ on
Y ∗ preserves the σ-finite measure π|−1

Y ∗ ν � λ∗|Y ∗ , since

T ∗Y ∗(π|−1
Y ∗ ν) = π|−1

Y ∗ (T τ ν) = π|−1
Y ∗ ν on Y ∗ .

According to (2), the T ∗Y ∗ -invariant measure π|−1
Y ∗ ν is the restriction to A∗ ∩Y ∗ of

the T ∗-invariant measure

µ∗ := ϕ∗Y ∗ ×T∗ (π|−1
Y ∗ ν) = (τ ◦ π)×T∗ (π|−1

Y ∗ ν) � λ∗|Y ∗
∞
.

But then πµ∗ = τ ×T ν is immediate from Lemma 5.8, applied to η = ν, and
π|Y ∗ µ∗ = ν is clear since µ∗|Y ∗ = π|−1

Y ∗ ν. Also, by (4), the measure µ∗ is σ-finite.
Finally, T τ is conservative w.r.t. ν iff T ∗Y ∗ is conservative w.r.t. π|−1

Y ∗ ν, and due to
Lemma 5.3 the latter implies that T ∗ is conservative w.r.t. µ∗.

To show (ii), assume that T ∗ preserves the conservative σ-finite measure µ∗ �
λ∗|Y ∗

∞
. According to Lemma 5.1 this implies that T ∗Y ∗ preserves µ∗|Y ∗ , and that

µ∗ = ϕ∗Y ∗ ×T∗ (µ∗|Y ∗). Define ν := π|Y ∗ (µ∗|Y ∗), the π-image of µ∗|Y ∗ on A ∩ Y ,
and observe that (7) implies that ν is T τ -invariant, as

T τ ν = T τ (π|Y ∗ µ
∗) = π|Y ∗ (T ∗Y ∗ µ∗|Y ∗) = π|Y ∗ µ

∗|Y ∗ = ν on Y .

By Lemma 5.8, µ∗ satisfies π ν∗ = τ ×T ν, with µ := πµ∗ � λ obviously being
T -invariant.

Combining several observations from [18] quite directly leads to a

Proof of Theorem 3.3. Assume first that (i) holds. By σ-finiteness of the two mea-
sures µ, ν, there exists Y ′ ∈ A ∩ Y such that µ(Y ′), ν(Y ′) ∈ (0,∞), and µ, ν are
equivalent on Y ′. By conservativity of T τ w.r.t. ν, the first return map (T τ )Y ′ is
defined a.e. on Y ′. Therefore there is a (unique) inducing time ϑY ′ for TY ′ on Y ′

for which (T τ )Y ′ = (TY ′)ϑY ′ a.e. on Y ′. Now [18, Prop.4.1] applies to show that
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ϑY ′×TY ′ ν
′ = µ |Y ′ has a solution ν′. On the other hand, (3) and (1) ensure that TY ′

is ergodic and mp for the finite measure µ |Y ′ . Consequently, [18, Thm.1.2] applies
to TY ′ and the inducing time ϑY ′ , proving that it is possible to choose Z ∈ A ∩ Y ′
with the property that 0 < µ(Z) < ∞ and

∫
Z
θZ dµ < ∞, where θZ is such that

(TY ′)θZ =
(
(TY ′)ϑY ′

)
Z

a.e. on Z. Now recall the definition of ϑY ′ to see that
(TY ′)θZ =

(
(T τ )Y ′

)
Z

= (T τ )Z . Therefore, (TY ′)θZ = (TZ)ϑZ a.e. on Z, and since
Z ⊆ Y ′, the latter implies that ϑZ ≤ θZ a.e. Hence,

∫
Z
ϑZ dµ ≤

∫
Z
θZ dµ < ∞,

establishing (ii).
Assume in turn that (ii) is satisfied. As µ is conservative, Z is a recurrent set

for T w.r.t. µ. Assumption (ii) means, in particular, that ϑZ < ∞ µ-a.e. on Z,
whence Z is a recurrent set for the nonsingular map T τ on (Y,A∩ Y, µ |Y ). By (3)
and (1), TZ is ergodic and mp on the finite measure space (Z,A ∩ Z, µ |Z). Now
ϑZ is an inducing time for TZ on Z with

∫
Z
θZ dµ < ∞. Hence, in view of [18,

Thm.1.1], ϑZ ×TZ
ν̃ = µ |Z has a solution ν̃, which is necessarily a finite absolutely

continuous measure since ν̃ ≤ µ |Z . Moreover, ν̃ is invariant under (TZ)ϑZ = (T τ )Z ,
see part (ii) of Lemma 5.6. Let ϕτ

Z(x) := inf{j ≥ 1 : (T τ )jx ∈ Z} and observe that
[18, Prop.4.1] applies to show that ν := ϕτ

Z ×T τ ν̃ solves µ = τ ×T ν. Use part
(ii) of Lemma 5.6 again to see that ν is indeed a σ-finite acim for T τ on Y . By
construction of ν, Y ⊆ Zτ

∞ :=
⋃

n≥1(T
τ )−nZ mod ν, and since ν(Z) = ν̃(Z) <∞,

Maharam’s recurrence theorem [1, Thm.1.1.7] now shows that T τ is conservative
w.r.t. its invariant measure ν. This proves (i).

As indicated earlier, a first corollary now follows immediately.

Proof of Corollary 3.5. Simply note that the nonsingular extension (X∗,A∗, λ∗, T ∗)
is τ -trivialising with base Y ∗. Theorem 3.1 thus shows that (iii) is equivalent to
statement (i) of Theorem 3.3. Equivalence to Theorem 3.3(ii) is immediate, as all
assumptions of Theorem 3.3 are met.

The question of σ-finiteness of µ = τ ×T ν is clarified by the

Proof of Theorem 3.7. In view of the preceding arguments, it only remains to verify
the formula for µ. Note first that for Z = Y , Lemma 5.5 gives µ(Y ) =

∫
Y
ϑY dν.

In general, given Z ∈ A ∩ Y with µ(Z) > 0, let σ, ϑZ : X → N be such that
T σ = (T τ )Z = (TZ)ϑZ holds λ-a.e. on Z. Applying Lemma 5.5 to T with inducing
time σ and set Z yields

σ ×T (ν|Z) (Z) =
∫

Z

ϑZ dν .

From the T τ -invariance of ν, it follows that ϕτ
Z ×T τ ν|Z = ν, where ϕτ

Z(x) :=
inf{n ≥ 1 : (T τ )nx ∈ Z} whenever x ∈ Z, and ϕτ

Z(x) := 0 otherwise; in particular,
therefore, T σ = (T τ )ϕτ

Z . Now apply the chain rule of [18, Lem.4.1] to obtain

σ ×T ν|Z (Z) = τ ×T (ϕτ
Z ×T τ ν|Z)(Z) = τ ×T ν(Z) = µ(Z) .

Finally, being conservative ergodic, µ is σ-finite iff Y contains some measurable Z
with 0 < µ(Z) <∞.

The article concludes by providing a

Proof of Corollary 3.8. By the factor property, the mp system (X,A, µ, T ) inherits
conservativity and ergodicity from (X∗,A∗, µ∗, T ∗).
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Due to (1) and Lemmas 5.1 and 5.3, T ∗Y ∗ preserves µ∗|Y ∗ � λ∗|Y ∗ , and is
conservative ergodic w.r.t. this σ-finite measure. Note also that the extension is τ -
trivialising with base Y ∗. By the second part of Theorem 3.1, T τ preserves ν � λ|Y ,
is conservative ergodic w.r.t. ν, and the measures satisfy µ = τ ×T ν. Therefore the
assertion follows from Theorem 3.7.
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