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Abstract

Complicated dynamical systems can be rigorously analysed by means of Conley index theory. Due to its partly numerical
nature such an analysis necessitates bounds on the truncation and the round-o� error. These are provided for explicit RK
methods in the form of iteration schemes ready-made for applications. The presentation is aimed to simplify error bounds
already available so that di�erent error sources can be clearly overlooked. As an immediate application, a computer-assisted
analysis elucidates the intricate dynamics of a simple mechanical system. c© 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many interesting features of complicated dynamical systems are nowadays studied by means of
computers. Despite all numerical evidence it is usually highly demanding to describe the observed
phenomena in a mathematically rigorous manner. Finding theoretical results that are accessible to the
computational power of modern computers is a major challenge of applied mathematics. Recently,
a couple of attempts in this direction have been carried out [6].
Since the famous paper of Mischaikow and Mrozek [5] on chaos in the Lorenz equations Conley

index theory has been taken notice of beyond a small number of specialists. Due to its topological
nature the Conley index can be used to develop elegant tools for analysing dynamical systems by
means of computers. (Although highly plausible, this statement is not at all trivial, cf. [5,6,8].)
Since the theory is intended to give completely rigorous statements about dynamics, all numerical
calculations have to be accompanied by rigorous error considerations. Without additional information
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on the problem under consideration such rigorous error treatment is known to be quite costly [6].
Many interesting systems from applications indicate however that errors occur at di�erent orders of
magnitude [1,6]. In double precision arithmetic round-o� errors are negligible in many cases when
compared with the error e�ects of discretization (i.e., obtaining �nite models of spaces and maps).
Even the truncation errors due to the usage of �nite algorithms can be seen to be of minor importance
if only reasonable stepsizes are used. Developing bounds for all error sources that are neither too
crude nor too complicated on one hand and completely rigorous on the other hand therefore is an
important task in applied Conley index theory.
Sections 2, 3 and 4, respectively, present rigorous bounds on the truncation, the round-o� and the

global error for the numerical integration of ordinary di�erential equations by means of explicit RK
methods. The results may even be suited for other purposes and partly simplify the calculations in
[6]. In order to demonstrate how the �ndings �t into the framework of Conley index theory, the
dynamics of a pendulum with oscillating support is investigated in the �nal section. With little e�ort,
the existence of periodic orbits and the factorization onto a chaotic system can be proved.

2. The truncation error

Let V denote a Cp-vector�eld on U ⊆Rd and consider the autonomous initial-value problem

ẋ = V (x); x(0) = x0: (1)

In order to get a numerical approximation for the solution of (1), we apply an s-stage explicit RK
method with stepsize h and real coe�cients aij and bi,

k1 :=V (x0);

ki :=V
(
x0 + h

i−1∑
j=1

aijkj

)
; i = 2; : : : ; s;

x1 := x0 + h
s∑

i=1

biki:

(2)

If this method is of order p, the inequality

‖x(h)− x1‖6hp+1

(
1

(p+ 1)!
max
t∈[0;1]

‖x(p+1)(th)‖+ 1
p!

s∑
i=1

|bi| max
t∈[0;1]

‖k (p)i (th)‖
)

(3)

constitutes a well-known rigorous bound for the local error [2]. For technical reasons ‖ · ‖ always
denote the max-norm on Rd; other norms are made recognizable by subscript.
The right-hand side of (3), although easily written down, is commonly regarded as being of no

practical importance because its evaluation turns out to be arduous even for simple non-linear vec-
tor�elds [2,6]. Other methods permit a more tractable and realistic view of the local error. However,
the usage of (3) becomes inevitable if de�nitely rigorous error considerations are essential.
Rather than following directly the approach in [6] which relies heavily on the availability of

symbolic computation software, we shall re�ne an idea from [3]. To this end the ith component
of V is denoted by V i while its partial derivative with respect to the ith coordinate is symbolized
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by V;i. Let K ⊆U be a compact set containing x0 and

Dr := max
�∈K

16i1 ;:::; ir6d

‖V;i1 :::ir(�)‖1 with 06r6p: (4)

The derivative x(p+1) of the solution of (1) can be easily bounded by means of the quantities Dr,
once a representation of x(p+1) in terms of V and its derivatives is given. This is most conveniently
achieved by means of trees which give rise to the concise expression

x(p+1) =
∑
t∈Tp+1

�(t)@tV: (5)

Here, Tp+1 denotes the set of trees of order p + 1, and �(t) is the number of di�erent monotonic
labellings of t ∈ Tp+1 (see [2] for details). In our notation one term of (5) typically takes the form

V;i1 :::ij0
V i1
; i( j0+1) :::i( j0+j1)

: : : V ip
; i( j0+···+jp−1+1) :::i( j0+···+jp)

with j0 + · · ·+ jp = p:

There is a one-to-one correspondence between the (p + 1)-tuples (j0; : : : ; jp) and the monotonic
labellings of t [2]. Using (4) we get

‖V;i1 :::ij0
V i1
; i( j0+1) :::i( j0+j1)

: : : V ip
; i( j0+···+jp−1+1) :::i( j0+···+jp)

‖6Dj0Dj1 : : : Djp ;

and denoting by (j0(t); : : : ; jp(t)) the (p+ 1)-tuple corresponding to a representative of t,

‖x(p+1)‖6
∑
t∈Tp+1

�(t)Dj0(t)Dj1(t) : : : Djp(t): (6)

With increasing order p the determination of �(t) becomes lengthy. Nevertheless, it is a purely
combinatorial task. We therefore regard (6) as a satisfactory bound for the �rst summand on the
right-hand side of (3). (In [2] one can �nd values of �(t) up to p= 4.)
We now turn our attention towards the evaluation of ‖k (p)i ‖. Obviously k (r)1 = 0 for 16r6p. If

i¿2 let for sake of brevity li :=
∑i−1

j=1 aijkj. Di�erentiation leads to the general expression

k (r)i =
r∑

m=1

∑
i1¿···¿im¿1
i1+···+im=r

�(r)m;i1 ;:::;imV; j1 :::jm(hli)
(i1); j1 : : : (hli)(im); jm : (7)

Counting identical derivatives, the positive integers �(r)m;i1 ;:::;im can be determined inductively. Via
di�erentiation �(r)m;i1 ;:::;im contributes to �(r+1)m+1;i1 ;:::;im;1 as well as to �(r+1)m;i1+1;:::;im ; : : : ; �

(r+1)
m;i1 ;:::;im+1 (where the

latter will have to be rearranged if the indices ij are not in the decreasing order). For example up
to r = 3 we �nd

�(1)1;1 = 1; �(2)1;2 = 1; �(2)2;1;1 = 1; �(3)1;3 = 1; �(3)2;2;1 = 3; �(3)3;1;1;1 = 1:

As a consequence of representation (7) we see that

‖k (r)i ‖6
r∑

m=1

∑
i1¿···¿im¿1
i1+···+im=r

�(r)m;i1 ;:::;imDm‖(hli)(i1)‖1 : : : ‖(hli)(im)‖1: (8)

Taking into account the obvious relations

‖(hli)(r)‖6r‖l(r−1)i ‖+ h‖l(r)i ‖ and ‖l(r)i ‖6
i−1∑
j=1

|aij|‖k (r)j ‖; (9)
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we can construct an iteration scheme to obtain the required bounds for ‖k (p)i ‖. To this end de�ne
two mappings �;	 : Rp → Rp by

�(x1; : : : ; xp) :=
(
�(1)1;1D1x1; �

(2)
1;2D1x2 + �(2)2;1;1D2x21 ; : : : ;

p∑
m=1

∑
i1¿···¿im¿1
i1+···+im=p

�(p)m;i1 ;:::;imDmxi1 : : : xim

)

and

	(x1; : : : ; xp) := (D0 + hx1; 2x1 + hx2; : : : ; pxp−1 + hxp);

corresponding to (8) and the �rst relation in (9), respectively. Assume that we have already con-
structed upper bounds Kr

i for ‖k (r)i ‖(16r6p) and let Ki := (K1
i ; : : : ; K

p
i ). It is easy now to show

that the di�erence scheme

Ki+1 :=�


 i∑

j=1

|ai+1; j|	(Kj)


 ; (10)

in fact, generates Ki+1 correctly. As initial value for (10) we have K1 := (0; : : : ; 0). Collecting our
results and de�ning

CK(h) :=
1

(p+ 1)!

∑
t∈Tp+1

�(t)Dj0(t) : : : Djp(t) +
1
p!

s∑
i=1

|bi|Kp
i ; (11)

we can replace (3) by the concise expression

‖x(h)− x1‖6hp+1CK(h):

Clearly, CK(h) is a polynomial in h with nonnegative coe�cients multinomial in the quantities Dr .
One should note that due to this fact CK(h) may be evaluated numerically by directed rounding
[6]. If the latter is not available, rigorous upper bounds for CK(h) will be provided by (a simpli�ed
version of) the round-o� treatment sketched in the next section.
An induction argument shows that

degCK(h) = (s− 2)p for s¿2: (12)

The subscript K displays the fact that the constructed error bound also depends on the compact set
K (via the quantities Dr). In applications one typically tries to de�ne this set as small as possible
and therefore has to check whether the solution x(t) of (1) remains in K for all 06t6h. If not so,
the set K will have to be enlarged.
The calculations leading to (11) clearly become more and more arduous for higher orders p. This

is mainly due to the nonlinearity sewed in the de�nition of � (note that 	 is just an a�ne map).
But also the cardinality of Tp increases rapidly, as can be seen from [2]. Nevertheless, it is not at
all di�cult to calculate CK(h) with the help of symbolic computation software. In case of higher
orders (p¿5) this approach turns out to be inevitable. However, it may be interesting to point out
that (contrary to [6]) all the necessary calculations in fact can be performed by hand if p¡ 5.
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3. The round-o� error

As was mentioned earlier we do not expect the round-o� error to play a dominant role in our
analysis of dynamical systems. We will therefore content ourselves with quite crude rigorous error
bounds, as long as they can be calculated e�ciently. An elegant method in this direction was
developed in [6]. We refer the reader to this article and to [1] for any details concerning the
following de�nitions and results.
Let M(2; p; emin; emax) denote a �xed system of machine numbers and de�ne the function M2 :R→

{2k |k ∈ Z} by

M2(x) :=
{
2emin−1=m0 if |x|62emin−1=m0;
min{2k | |x|62k} otherwise: (13)

Here m0 measures the accuracy of representing real numbers by elements in M. In case of optimal
rounding we have m0 = 2−(p+1), while in any other case m0 = 2−p.
For any arithmetic expression w(X1; : : : ; Xn) consisting of a �nite number of symbols and imple-

mented non-polynomial functions fi from M ∪ {+;−; ·; (; )} ∪ {(fi)mi=1} one de�nes recursively the
evaluation w(x1; : : : ; xn) and the machine evaluation 〈w〉(x1; : : : ; xn) of w at (x1; : : : ; xn). It is well
known from numerical analysis that di�erent arithmetic expressions having the same evaluation (i.e.,
being mathematically equivalent) can give rise to di�erent machine evaluations. In order to obtain
a rigorous bound for the absolute round-o� error |w − 〈w〉|, two functions Hw and �w are de�ned
recursively as

Hw(x1; : : : ; xn) :=




M2(m) if w = m ∈M;
M2(xi) if w = Xi;
2max{Hw1 ; Hw2} if w = w1 ± w2;
Hw1Hw2 if w = w1 · w2;
M2(‖fi‖) if w = fi

(14)

and

�w(x1; : : : ; xn) :=




0 if w = m ∈M;
|xi| if w = Xi;
m0 + max{�w1 ; �w2} if w = w1 ± w2
m0 + �w1 + �w2 if w = w1 · w2;
�fi if w = fi;

; (15)

where �fi denotes an upper bound for the relative evaluation error of 〈fi〉. In some sense �w mea-
sures the relative evaluation error of 〈w〉 while Hw represents a bound on the absolute value of w.
For sake of simplicity, de�nitions (13)–(15) have not been formulated in full generality here (cf.
[6]). However, if there is no exponential overow during our calculation, we have the fundamental
inequality

|w(x1; : : : ; xn)− 〈w〉(x1; : : : ; xn)|6�w(m0; : : : ; m0)Hw(M2(x1); : : : ; M2(xn)): (16)

Let 〈x1〉 denote the numerical result of one RK step (2) calculated in the �nite arithmetic of M.
We shall now turn to the estimation of the round-o� error ‖x1 − 〈x1〉‖. In order to maintain a
certain amount of lucidity we shall write Hw := (Hw1 ; : : : ; Hwd) (and analogously �w) for an arithmetic
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expression w having d components wi. The d-tuple (1; : : : ; 1) is denoted by 1. Expressions like M2(u)
and max{u; v} with real d-tuples u; v should be read coordinatewise.
Setting �i :=maxx∈K |xi| (16i6d) with the compact set K discussed in Section 3 and using sys-

tematically the notation just introduced, we can �nd

Hx1 (M2(�)) = 2max{M2(�); 2sM2(h)M2(b1)Hk1 (M2(�)); : : : ; 2M2(h)M2(bs)Hks(M2(�))};
�x1 (m01) = 6m01+max{(s− 1)m01+ �k1 ; : : : ; m01+ �ks−1 ; �ks}:

(17)

The quantities �i :=Hki(M2(�)) and �i := �ki(m01) can be determined by means of the iteration scheme

�i+1 :=HV (2max{M2(�); 2iM2(h)M2(ai+1;1)�1; : : : ; 2M2(h)M2(ai+1; i)�i});
�i+1 := �V (6m01+max{(i − 1)m0 + �1; : : : ; �i})

(18)

with initial values �1 = HV (M2(�)); �1 = �V (m01). Having calculated �i and �i from this scheme we
may de�ne

EK(h) :=
d
max
i=1

(Hi
x1 (M2(�))�ix1 (m01)): (19)

Again the dependence on K (via �) has been emphasized by subscript. Combining (16) and (19)
we �nally get

‖x1 − 〈x1〉‖6EK(h)

as the desired bound for the round-o� error. Observe that due to (17) EK(h) will not e�ectively
depend on the stepsize h, if the latter is su�ciently small.

4. The global error

It is now an easy task to combine the error bounds constructed in the previous sections. Conse-
quently, the one-step error of the RK method (2) admits the rigorous bound

‖x(h)− 〈x1〉‖6hp+1CK(h) + EK(h):

A numerical integration of (1) usually requires more than one RK step. Using a (local) Lipschitz
constant ehL for the (local) ow ’h generated by (1), the global error after N iterations of the RK
scheme (2) with stepsizes h1; : : : ; hN , respectively, obeys∥∥∥∥∥x

( N∑
n=1

hn

)
− 〈x1〉N

∥∥∥∥∥6ehN L

∥∥∥∥∥x
(N−1∑

n=1

hn

)
− 〈x1〉(N−1)

∥∥∥∥∥+ hp+1
N CK(hN ) + EK(hN ):

Setting FK(h) := hp+1CK(h) + EK(h) for sake of brevity this recursion immediately leads to∥∥∥∥∥x
( N∑

n=1

hn

)
− 〈x1〉N

∥∥∥∥∥6
N∑

n=1

FK(hn)e
L
∑N

m=n+1
hm= : GK(h1; : : : ; hN ): (20)
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In case of variable stepsize, clearly (20) cannot be evaluated until the integration process has come
to an end. Additionally, a rigorous stepsize documentation is indispensable. Although these aspects
will possibly cause no serious di�culties in many applications, one should notice that in case of
constant stepsize h (20) simply reads

‖x(Nh)− 〈x1〉N‖6e
hLN − 1
ehL − 1 FK(h) = GK(h; : : : ; h)= : �GK(h): (21)

Obviously (21) constitutes �GK(h) as a ready-made error bound, the evaluation of which can be
performed before the process of integration. In any case (20) and (21) provide rigorous error bounds
for the numerical integration of (1) by means of the RK method (2). It comes as no surprise that
due to our simple construction these error bounds are very crude. (In particular, the inuence of
rounding is usually considerably overestimated.) A re�ned analysis may thus focus for example
on specialised growth restrictions to the ow and on round-o� e�ects. In the general situation of
(1) such considerations tend to be intractable. The applications we bear in mind, however, demand
exible and e�ciently computable error bounds rather than very tight ones. We therefore consider
(20) and (21) as a compromise for practical reasons. After all, applications indicate that GK and �GK

do quite satisfyingly reect some important aspects of error analysis.

Example (Classical RK4 method). Let us sketch a few results of the outlined procedure in case of
the classical RK method of fourth order most conveniently represented by the tableau

where p= 4 and s= 4. In accordance to (12) CK(h) is a polynomial of degree 8,

CK(h) = c0 + c1h+ · · ·+ c8h8;

whose coe�cients are

c0 = 49
2880D

4
0D4 + 169

1440D
3
0D1D3 + 31

480D
3
0D

2
2 +

47
240D

2
0D

2
1D2 + 1

120D0D4
1;

c1 = 19
1151D

4
0D1D4 + 7

384D
4
0D2D3 + 31

288D
3
0D

2
1D3 + 5

48D
3
0D1D2

2 +
5
64D

2
0D

3
1D2;

c2 = 91
4608D

4
0D

2
1D4 + 31

768D
4
0D1D2D3 + 11

1536D
4
0D

3
2 +

1
12D

3
0D

3
1D3 + 11

128D
3
0D

2
1D

2
2 +

1
32D

2
0D

4
1D2;

c3 = 23
1536D

4
0D

3
1D4 + 163

4608D
4
0D

2
1D2D3 + 29

3072D
4
0D1D3

2 +
25
576D

3
0D

4
1D3 + 1

24D
3
0D

3
1D

2
2;

c4 = 157
18 432D

4
0D

4
1D4 + 191

9216D
4
0D

3
1D2D3 + 19

3072D
4
0D

2
1D

3
2 +

5
384D

3
0D

5
1D3 + 5

768D
3
0D

4
1D

2
2;

c5 = 43
12 288D

4
0D

5
1D4 + 17

2304D
4
0D

4
1D2D3 + 5

3072D
4
0D

3
1D

3
2 +

1
384D

3
0D

6
1D3;

c6 = 5
4608D

4
0D

6
1D4 + 1

576D
4
0D

5
1D2D3 + 1

12 288D
4
0D

4
1D

3
2;

c7 = 1
4608D

4
0D

7
1D4 + 1

6144D
4
0D

6
1D2D3;

c8 = 1
36 864D

4
0D

8
1D4:
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Fig. 1. The real error log ‖x(1)− 〈x1〉[1=h]‖ (full line) and the error bound log �GK (h) for the vector�eld (22).

Relations (17) and (18) can partly be simpli�ed to give

Hx1 (M2(�)) = max{2M2(�); M2(h)max{8Hk1 (M2(�)); 8Hk2 (M2(�)); 4Hk3 (M2(�)); Hk4 (M2(�))}};
�i+1 = HV (2max{M2(�); 2ai+1; iM2(h)�i}):

As a speci�c example we shall determine the quantities CK(h) and EK(h) for the simple vector�eld

V (x1; x2) := (x1 − x21 ;− 1
2x2 +

1
2x1x2): (22)

Setting x(0) := (2; 1) and expecting the solution of ẋ=V (x) not to diverge from this point too rapidly
we choose K := [1; 3]× [0; 2]. We then �nd

D0 = 8; D1 = 6; D2 = 2; Dr = 0 (r¿3)

and consequently

CK(h) = 16 816
15 + 3440 h+ 35 264

3 h2 + 20 288 h3 + 24 576 h4 + 11 520 h5 + 3456 h6:

If we restrict ourselves to the case M2(h)62−4 we get (after some tedious but straightforward
calculations)

EK(h) =

{
17× 214m0 if M2(h) = 2−4;

17× 213m0 max{2−7; M2(h)} if M2(h)62−5:

A Lipschitz constant of the (local) ow generated by (22) is most conveniently determined by means
of logarithmic norms [2]. For the system under consideration we have L=2. Using an IEEE arithmetic
M(2; 53;−1021; 1024) we apply the classical RK4 method with stepsizes hi := 2−i (46i620) in
order to get a numerical approximation of x(1) = (2=;

√
) with  = 2 − e−1. Despite its crude

character the rigorous error bound �GK provides a reasonable (upper) estimate for the optimal stepsize
(Fig. 1).

5. A view towards applications

The goal of this �nal section is to briey discuss the usage of the presented techniques in calculat-
ing an important algebraic-topological invariant from the theory of dynamical systems. This invariant,
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the so-called Conley index, may be thought of as an algebraic-topological quantity (roughly) de-
scribing some structural features of invariant sets, which for technical reasons are always assumed
to be compact and isolated, i.e., maximal invariant within an open neighbourhood. Having actually
calculated the Conley index, one can often gain some insight into the dynamics taking place on
the isolated invariant set under consideration. The analysis of such sets may be vital for globally
understanding complicated dynamical systems. Due to our focus on rigorous error considerations and
computational aspects we shall not give mathematical precision to these statements but encourage
the reader to look up the presentations [5,7]. For our purpose, it is su�cient to know that in order
to calculate the Conley index one has to �nd a so-called index pair, i.e., a pair of compact sets
satisfying some topological assumptions and thereby carrying a certain amount of information about
the underlying dynamics. Starting from this index pair an algebraic-topological procedure gives the
index.
In the sequel, we shall concentrate on the dynamical behaviour of a mathematical pendulum with

a support oscillating according to � cos!t (Fig. 2). Its equation of motion reads

�’+
�

ml2
’̇+

(
g
l
+

�!2

l
cos!t

)
sin’= 0; (23)

where only linear frictional e�ects have been considered via the parameter �. By introducing nondi-
mensional time and frequency, � := t

√
g=l and � :=!

√
l=g, (23) can be rewritten as

d
d�


 x1

x2
x3


=


 x2
−(1 + A cos x3)sin x1 − Bx2

�


 (24)

with the abbreviations A := �!2=g and B := �=ml
√
gl. Integration of (24) over [0; 2�=�] yields a

Poincar�e map 	A;B naturally acting on S1 × R. The resulting dynamical system exhibits a great
variety of di�erent phenomena and therefore has been studied repeatedly by theoretical as well as
numerical means [4].

Fig. 2. The pendulum with oscillating support (left) and the attractor for the Poincar�e map 	0:94;0:15 displayed via 7500
iterates of the (arbitrarily chosen) point (1,1).



22 A. Berger / Journal of Computational and Applied Mathematics 111 (1999) 13–24

To be more concrete we shall investigate the pendulum with oscillating support for parameter
values A=0:94 and B=0:15 only (see [1,4] for details and other parameter values); in addition we
make the usual choice � = �=2. In this special setting most trajectories of (24) show complicated
aperiodic behaviour. Simulations and experiments suggest the existence of a certain randomness
according to the observation of a strange looking attractor of 	0:94;0:15 in the Poincar�e section (Fig.
2, cf. [4]).
The analysis to be performed naturally consists of three steps:

• discretization of the (interesting region in) phase space yielding a �nite number of cells;
• numerical integration of (24) starting at one point (usually near the center) in each cell;
• construction of an index pair and interpretation of the resulting Conley index.
By means of the rigorous error bounds developed in the previous sections as well as growth con-
siderations for the ow generated by (24), one obtains from the �rst two steps a �nite model of the
Poincar�e section and the map 	A;B. This rigorous but �nite model turns the last step into a purely
combinatorial task [8]. Although one is inevitably faced by multivalued maps, the index theory for
multivalued dynamical systems successfully applied in [5] is not used throughout our analysis.
Despite the apparent simplicity of the outlined procedure some di�culties have to be overcome.

Care must be taken due to the fact that the phase space S1×R is cylindrical and has circumference
2� which can not be represented as a machine number. By means of the covering space R2 and some
rescaling these di�culties can be avoided [1]. A more serious problem arises from the exponential
divergence of trajectories of (24). With the relevant logarithmic norm [2]

�∞(DV (x1; x2; x3))6max{1; 1 + |A| − B}

and the parameter values under consideration a growth rate, i.e., the number of cells rigorously
containing the image of one cell under 	A;B, of about 4:1×105 is obtained. With only the availability
of standard workstations and PCs, this growth rate is de�nitely too large in order to �nd any non-
trivial index information. Following [5] we use intermediate sections, the composition of which
gives a much better approximation of the Poincar�e map. However, one should note that the concept
of intermediate sections will for example not be appropriate in the case of uniformly exponential
growth. (In the latter, of course, one does not expect any interesting recurrent dynamics.)
In accordance to the procedure sketched above the computations were actually performed using

the standard RK4 method (with stepsize h=2−10) and eight intermediate sections. The calculations in
double precision arithmetic on an IBM power PC 603=120MHz took about 57 min. (The interesting
region in phase space was covered by more than 25,000 cells.) Due to the considerable growth rate
numerical error bounds turn out to be negligible when compared with discretization e�ects. Such
an observation seems to be not accidental: many chaotic systems (including the well-known Lorenz
equations, cf. [1,6]) clearly exhibit errors on di�erent orders of magnitude. Carefully choosing and
discretizing an interesting region in phase space therefore is most important!
The main result is depicted in Fig. 3. The (weak) index pair (A1; A2) consists of seven disjoint

parts giving rise (in the terminology of [7]) to a seven-dimensional (cohomological) Conley index
CHk

	0:94; 0:15
at k = 1,

CH1	0:94; 0:15
((inv	0:94; 0:15A1\A2 ∩ Bi)i∈{1;:::;7};Q) = [(Q7; (pI ◦  )I ⊆{1;:::;7})]; (25)
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the indices at k 6= 1 are trivial. Here pI denotes the projection of Q7 onto ⊕i∈I [ei]. The mapping
 corresponding to the matrix representation (27) describes (on a cohomological level) the action
of 	0:94; 0:15 on its invariant part in A1\A2. (Notice how the symmetry in (24) is reected by A .)
From (25) we may �nally deduce some nontrivial insights concerning the Poincar�e map:

(i) For each p ∈ N there is a periodic point for 	0:94; 0:15 in A1\A2 with primitive period p. (This
observation is mainly based on the Lefschetz �xed point theorem; see [1,7,8].)

(ii) One can �nd a compact set K ⊆ inv	0:94; 0:15A1\A2 and a continuous surjection � : K → �7; A such
that the diagram

(26)

commutes. Here � denotes the shift operator on �7; A , i.e., the space of all seven-symbol se-
quences that satisfy an admissibility condition represented by the matrix A [1]. As a conse-
quence of (26) we obtain a positive lower bound for the topological entropy of the dynamical
system (K;	0:94; 0:15|K).

(27)

Fig. 3. The (weak) index pair (A1; A2) for 	0:94;0:15 consists of seven disjoint parts Bi. (Algorithmic investigations were
performed within the lightly shaded union of cells.).

Using the e�cient algebraic-topological tools of Conley index theory and the power of modern
computers (thereby heavily relying on the rigorous error bounds from above) we have established
several important dynamical features of a simple mechanical system. Due to (ii) we expect the
latter to behave in a more or less unpredictable manner. This is exactly what can be observed by
real-world experiments or numerical simulations [4].
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