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Abstract
New elementary, self-contained proofs are presented for the topological and the smooth
classification theorems of linear flows on finite-dimensional normed spaces. The arguments,
and the examples that accompany them, highlight the fundamental roles of linearity and
smoothness more clearly than does the existing literature.
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1 Introduction

Let X be a finite-dimensional normed space over R and ϕ a flow on X , i.e., ϕ : R× X → X
is continuous, with ϕ

(
t, ϕ(s, x)

) = ϕ(t + s, x) and ϕ(0, x) = x for all t, s ∈ R and x ∈ X .
A fundamental problem throughout dynamics is to decide precisely which flows are, in
some sense, essentially the same. Formally, call two smooth flows ϕ,ψ on X , Y respectively
C�-orbit equivalent, with � ∈ {0, 1, . . . ,∞}, if there exists a C�-diffeomorphism (or home-
omorphism, in case � = 0) h : X → Y and a function τ : R× X → R, with τ( ·, x) strictly
increasing for each x ∈ X , such that

h
(
ϕ(t, x)

) = ψ
(
τ(t, x), h(x)

) ∀(t, x) ∈ R× X . (1.1)

If τ in (1.1) can be chosen to be independent of x , and thus simply τ(t, x) = αt with some
α ∈ R

+, then ϕ,ψ are C�-flow equivalent; they are linearly (orbit or flow) equivalent if
h(x) = Hx with some linear isomorphism H : X → Y . Notice that these definitions are
tailor-made for the present article and differ somewhat from terminology in the literature
which, however, is itself not completely unified. Usage herein of terminology pertaining to
the equivalence of flows is informed by the magisterial text [21], as well as by [3,20]. Widely
used alternative terms are (topologically) conjugate (for flow equivalent, often understood
to include the additional requirement that α = 1) and (topologically) equivalent (for orbit
equivalent); see [5,6,12,16,18,22,23,30–34].
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C∞-flow equivalent C∞-orbit equivalent

C -flow equivalent C -orbit equivalent

C1-flow equivalent C1-orbit equivalent

C0-flow equivalent C0-orbit equivalent

Fig. 1 Notions of equivalence for flows on normed spaces over R; no conceivable implication not shown in
the diagram is valid in general

Clearly, linear equivalence implies C�-equivalence for any �, which in turn implies C0-
equivalence; also, flow equivalence implies orbit equivalence. Simple examples show that
none of these implications can be reversed in general, not even when dim X = 1, though the
latter case is somewhat special in that C0-orbit equivalence does imply C0-flow equivalence.
In any case, however, it turns out that all such examples must involve non-linear flows. In
fact, the main theme of this article is that for linear flows all the infinitely many different
notions of equivalence do coalesce, rather amazingly, into just two notions; see Figs. 1 and 2.

A flow ϕ on X is linear if each homeomorphism (or time-t-map) ϕ(t, · ) : X → X is
linear, or equivalently if ϕ(t, · ) = et A

ϕ
for every t ∈ R, with a (unique) linear operator

Aϕ : X → X , referred to as the generator of ϕ. Thus a linear flow simply encodes the
totality of all solutions of the linear differential equation ẋ = Aϕx on X , in that ϕ( ·, x0)
is the unique solution of that equation satisfying x(0) = x0. To emphasize the fundamental
role played by linearity in all that follows, linear flows are henceforth denoted exclusively
by upper-case Greek letters �,� etc.

For linear flows, the weakest form of equivalence,C0-orbit equivalence, implies the seem-
ingly much stronger C0-flow equivalence, and both properties can be characterized neatly in
terms of linear algebra. To state the following topological classification theorem, the main
topic of this article, recall that every linear flow � on X uniquely determines a �-invariant
decomposition X = X�

S ⊕ X�
C ⊕ X�

U into stable, central, and unstable subspaces, with a
corresponding unique decomposition � � �S ×�C ×�U ; see Sect. 5 for details.

Theorem 1.1 Let �,� be linear flows on X , Y , respectively. Then each of the following four
statements implies the other three:

(i) �,� are C0-orbit equivalent;
(ii) �,� are C0-flow equivalent;
(ii) �S×�U , �S×�U are C0-flow equivalent, and �C , �C are linearly flow equivalent;
(iv) dim X�

S = dim Y�
S , dim X�

U = dim Y�
U , and A�C , αA�C are similar for some α ∈ R

+,
i.e., H A�C = αA�C H with some linear isomorphism H : X�

C → Y�
C .
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“smooth”
(Theorem 1.2)

“topological”
(Theorem 1.1)
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C = X or dimX =1)

linearly orbit equivalent

C∞-flow equivalent C∞-orbit equivalent

C -flow equivalent C -orbit equivalent

C1-flow equivalent C1-orbit equivalent

C0-flow equivalent C0-orbit equivalent

Fig. 2 By Theorems 1.1 and 1.2, for real linear flows all notions of equivalence coalesce into only two different
notions, or even just one if X�

C = X or dim X = 1

In the presence of smoothness, i.e., for C�-equivalence with � ≥ 1, the counterpart of
Theorem 1.1 is the following smooth classification theorem which shows that in fact the
weakest notion (C1-orbit equivalence) implies the strongest (linear flow equivalence).

Theorem 1.2 Let �,� be linear flows. Then each of the following four statements implies
the other three:

(i) �,� are C1-orbit equivalent;
(ii) �,� are C1-flow equivalent;
(iii) �,� are linearly flow equivalent;
(iv) A�, αA� are similar for some α ∈ R

+.

Taken together, Theorems 1.1 and 1.2 reveal a remarkable rigidity of finite-dimensional
real linear flows: For such flows, there really are only two different notions of equivalence,
informally referred to as topological and smooth equivalence; for central or one-dimensional
flows, even these two notions coalesce. Moreover, the theorems characterize these equiva-
lences in terms of elementary properties of the associated generators.

As far as the authors have been able to ascertain, variants of Theorem 1.1 were first
proved, independently, in [24,26], though of course for hyperbolic linear flows the result
dates back much further (see, e.g., [3,4,20]; a detailed discussion of the pertinent literature
is deferred to Sect. 5 when all relevant technical terms will have been introduced). Given the
clear, definitive nature of Theorem 1.1 and the fundamental importance of linear differential
equations throughout science, it is striking that the details of [24,26] have not been dissem-
inated more widely in over four decades [18]. A main objective of this article, then, is to
provide an elementary, self-contained proof of Theorem 1.1 that hopefully will find its way
into future textbooks on differential equations. In the process, several inaccuracies and gaps
in the classical arguments are addressed as well. As presented here, Theorem 1.2 is a rather
straightforward consequence of Theorem 1.1. Although the result itself seems to have long
been part of dynamical systems folklore [3,4,6,12,30,34], the authors are not aware of any
reference that would establish it in its full strength, that is, without imposing additional (and,
as it turns out, unnecessary) assumptions on τ .
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To appreciate the difference between Theorems 1.1 and 1.2, first note that for dim X = 1,
trivially all notions of equivalence coincide, yielding exactly three equivalence classes of
real linear flows, represented by �(t, x) = etax with a ∈ {−1, 0, 1}. However, already for
dim X = 2 the huge difference between the theorems becomes apparent: On the one hand,
by Theorem 1.1, there are exactly eight topological (C0) equivalence classes, represented by
�(t, x) = et Ax with A being precisely one of

[
0 −1
1 0

]
,

[
0 0
0 0

]
,

[
0 1
0 0

]
, ±
[
0 0
0 1

]
,

[
1 0
0 −1

]
, ±
[
1 0
0 1

]
. (1.2)

By Theorem 1.2, on the other hand, all smooth (C1) equivalence classes are represented

uniquely by the five left-most matrices in (1.2), together with±
[
1 1
0 1

]
and the five infinite

families
[−1 0

0 a

]
, ±
[
1 0
0 a

]
, ±
[
1 −a
a 1

]
(a ∈ R

+).

This article is organized as follows. Section 2 briefly reviews the notions of equivalence
for flows, as well as a few basic dynamical concepts. It then introduces cores, a new family of
invariant objects. Although these objects may well be useful in more general contexts, their
properties are established here only as far as needed for the subsequent analysis of flows on
finite-dimensional normed spaces. Section 3 specifically identifies cores for real linear flows,
and shows how they can be iterated in a natural way. As it turns out, the proof of Theorem 1.1
also hinges on a careful analysis of bounded linear flows, and the latter is carried out in Sect. 4.
With all required tools finally assembled, proofs of Theorems 1.1 and 1.2 are presented in
Sect. 5, together with several comments on related results in the literature that prompted this
work. While, for reasons that will become apparent in Sect. 6, the article focuses mostly
on real spaces, the concluding section shows how the results carry over to complex spaces
in a natural way. To keep the exposition focussed squarely on the main arguments, several
elementary (and, presumably, known) facts of an auxiliary nature are stated without proof;
for details regarding these facts, as well as others that are mentioned in passing but for which
the authors were unable to identify a precise reference, the interested reader is referred to the
accompanying document [37].

Throughout, the familiar symbolsN, N0, Z, Q, R
+, R, andC denote the sets of all positive

integers, non-negative integers, integers, rational, positive real, real, and complex numbers,
respectively; for convenience, c + 	 = {c + ω : ω ∈ 	} and c	 = {cω : ω ∈ 	} for any
c ∈ C, 	 ⊂ C. Occasionally, for the purpose of coordinate-dependent arguments, elements
of Z

m , R
m , or C

m , with m ∈ N \ {1}, are interpreted as m × 1-column vectors.

2 Orbit Equivalence

Let X , Y be two finite-dimensional normed spaces overR, and let ϕ,ψ , respectively, be flows
on them; unless specified further, ‖ ·‖ denotes any norm on either space. Given two functions
h : X → Y and τ : R× X → R, say that ϕ is (h, τ )-related to ψ if h is a homeomorphism,
τ( ·, x) is strictly increasing for each x ∈ X , and

h
(
ϕ(t, x)

) = ψ
(
τ(t, x), h(x)

) ∀(t, x) ∈ R× X . (1.1)

In what follows, for each t ∈ R the homeomorphism ϕ(t, · ) : X → X usually is denoted
ϕt , and for each x ∈ R the strictly increasing map τ( ·, x) : R → R is denoted τx . With this,
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(1.1) succinctly reads

h ◦ ϕt (x) = ψτx (t) ◦ h(x) ∀(t, x) ∈ R× X .

Thus ϕ is (h, τ )-related to ψ precisely if the homeomorphism h maps each ϕ-orbit into
a ψ-orbit in an orientation-preserving way. Note that no assumption whatsoever is made
regarding the x-dependence of τx . Still, utilizing the flow axioms of ϕ,ψ , and the continuity
of h, h−1, it is readily deduced from (1.1) that the function τ can be assumed to have several
additional properties; cf. [5,6,31]. For convenience, these properties are understood to be part
of what it means for ϕ to be (h, τ )-related to ψ throughout the remainder of this article.

Proposition 2.1 Let ϕ,ψ be flows on X , Y , respectively, and assume that ϕ is (h, τ )-related
to ψ . Then ϕ is (h, τ̃ )-related to ψ where τ̃x : R → R is, for every x ∈ X, an (increasing)
continuous bijection with τ̃x (0) = 0.

Recall from the Introduction that two flows ϕ,ψ are (C0-)orbit equivalent if ϕ is (h, τ )-
related toψ for some h, τ ; they are flow equivalent if, with the appropriate constant α ∈ R

+,
the function τ can be chosen so that τx (t) = αt for all (t, x) ∈ R× X . This terminology is
justified.

Proposition 2.2 Orbit equivalence and flow equivalence are equivalence relations in the
class of all flows on finite-dimensional normed spaces.

A simple, classical example of orbit equivalence, presented in essence (though not always
in name) bymany textbooks, is as follows [32, Sec. 3.1]: Assume that two flowsϕ,ψ on X are
generated by the differential equations ẋ = V (x), ẋ = W (x), respectively, with C∞-vector
fields V ,W . If V = wW for some (measurable and locally bounded) function w : X → R

+
then ϕ is (idX , τ )-related to ψ , with τx (t) =

∫ t
0 w
(
ϕs(x)
)
ds for all (t, x) ∈ R× X .

For every x ∈ X , let T ϕ
x = inf{t ∈ R

+ : ϕt (x) = x}, with the usual convention that
inf ∅ = +∞. Note that whenever the set {t ∈ R

+ : ϕt (x) = x} is non-empty, it equals
either R

+ or {nT ϕ
x : n ∈ N}. In the former case, T ϕ

x = 0, and x is a fixed point of ϕ. In the
latter case, 0 < T ϕ

x < +∞, and x is T -periodic, i.e., ϕT (x) = x with T ∈ R
+, precisely

for T ∈ T ϕ
x N; in particular, T ϕ

x is the minimal ϕ-period of x . Denote by Fixϕ and PerTϕ

the sets of all fixed and T -periodic points respectively, and let Perϕ =⋃T∈R+ PerTϕ. Note
that T ϕ· is lower semi-continuous, with T ϕ

x = 0 and T ϕ
x < +∞ if and only if x ∈ Fixϕ and

x ∈ Perϕ, respectively.
The ϕ-orbit of any x ∈ X is ϕ(R, x) = {ϕt (x) : t ∈ R}. Recall thatC ⊂ X is ϕ-invariant

if ϕt (C) = C for all t ∈ R, or equivalently if ϕ(R, x) ⊂ C for every x ∈ C . Clearly, Fixϕ and
Perϕ are ϕ-invariant, and so is PerTϕ for every T ∈ R

+. Another example of a ϕ-invariant
set is Bndϕ := {x ∈ X : supt∈R ‖ϕt (x)‖ < +∞}, which simply is the union of all bounded
ϕ-orbits. Plainly,

Fixϕ ⊂ PerTϕ ⊂ Perϕ ⊂ Bndϕ ∀T ∈ R
+.

Proposition 2.3 Let ϕ,ψ be flows on X , Y , respectively, and assume that ϕ is (h, τ )-related
to ψ . Then C ⊂ X is ϕ-invariant if and only if h(C) ⊂ Y is ψ-invariant. Moreover,

h(Fixϕ) = Fixψ, h(Perϕ) = Perψ, h(Bndϕ) = Bndψ.

A simple observation with far-reaching consequences for the subsequent analysis is that,
under the assumptions of Proposition 2.3, and for any T ∈ R

+, the ψ-invariant set h(PerTϕ)
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may not be contained in PerSψ for any S ∈ R
+. A numerical invariant that can be used to

address this “scrambling” of Perϕ \ Fixϕ by h is the ϕ-height of x , defined as

〈x〉ϕ = lim supx̃∈Perϕ,̃x→x
T ϕ
x̃

T ϕ
x

∀x ∈ Perϕ \ Fixϕ.

Note that 〈x〉ϕ equals either a positive integer or +∞, and with 〈x〉ϕ := +∞ for every
x ∈ Fixϕ, the function 〈 · 〉ϕ is upper semi-continuous on Perϕ; cf. [26, Def. 5]. As is readily
confirmed, minimal periods and heights are well-behaved under orbit equivalence.

Proposition 2.4 Let ϕ,ψ be flows, and assume that ϕ is (h, τ )-related to ψ . Then, for every
x ∈ Perϕ:

(i) Tψ

h(x) = τx (T
ϕ
x );

(ii) 〈h(x)〉ψ = 〈x〉ϕ .
The subsequent analysis relies heavily on the properties of certain invariant sets associated

with the flows under consideration. Specifically, given a flow ϕ on X and any two points
x−, x+ ∈ X , define the (x−, x+)-core Cx−,x+(ϕ, X) as

Cx−,x+(ϕ, X) =
{
x ∈ X : There exist sequences(t±n ) and (x±n )with t±n →±∞

and x±n → x such thatϕt±n (x±n ) → x±
}
;

here and throughout, expressions containing ± (or ∓) are to be read as two separate
expressions containing only the upper and only the lower symbols, respectively. Note that
Cx−,x+(ϕ, X) is ϕ-invariant and closed, possibly empty. For linear flows, the (0, 0)-core
C0,0(ϕ, X), henceforth simply denoted C0(ϕ, X), is naturally of particular relevance, and so
is the core

C(ϕ, X) :=
⋃

x−,x+∈X Cx−,x+(ϕ, X) ⊃ C0(ϕ, X).

Clearly, C(ϕ, X) also is ϕ-invariant and contains Bndϕ as well as all non-wandering points
of ϕ. For instance, if X is one-dimensional then C(ϕ, X) simply is the convex hull of Fixϕ,
whereas C0(ϕ, X) = {0} ∩ Fixϕ. Most importantly, C(ϕ, X) and C0(ϕ, X) both are well-
behaved under orbit equivalence.

Lemma 2.5 Let ϕ,ψ be flows on X , Y , respectively, and assume that ϕ is (h, τ )-related to
ψ . Then

h
(
Cx−,x+(ϕ, X)

) = Ch(x−),h(x+)(ψ, Y ) ∀x−, x+ ∈ X . (2.1)

Thus h
(
C(ϕ, X)

) = C(ψ, Y ), and if h(0) = 0 then also h
(
C0(ϕ, X)

) = C0(ψ, Y ).

The proof of Lemma 2.5 is facilitated by an elementary observation [37].

Proposition 2.6 Let ϕ be a flow on X, and x ∈ X. Then the following are equivalent:

(i) For every ε > 0 there exists an x̃ ∈ X such that ‖ϕt (̃x)− x‖ < ε for all 0 ≤ t ≤ ε−1;
(ii) x ∈ Fixϕ.

Proof of Lemma 2.5 It suffices to prove (2.1), as all other assertions directly follow from it.
To do this, given x−, x+ ∈ X , denote Cx−,x+(ϕ, X) and Ch(x−),h(x+)(ψ, Y ) simply by C
and D, respectively. From reversing the roles of (ϕ, X) and (ψ, Y ), as well as h and h−1, it
is clear that all that needs to be shown is that h(C) ⊂ D.
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Pick any x ∈ C , together with sequences (t±n ) and (x±n ) with t±n → ±∞ and x±n → x
such that ϕt±n (x±n ) → x±; assume w.l.o.g. that t−n < 0 < t+n for all n. Letting s±n = τx±n (t±n ),
note that s−n < 0 < s+n , and

h(x±n )→ h(x), ψs±n
(
h(x±n )
)→ h(x±). (2.2)

By considering appropriate subsequences, assume that s−n → s− ∈ [−∞, 0] and s+n →
s+ ∈ [0,+∞]. Note that (2.2) immediately yields h(x) ∈ D if {s−, s+} = {−∞,+∞}, so
assume for instance that s+ < +∞. (The case of s− > −∞ is completely analogous.) Then
ψs+
(
h(x)
) = h(x+) by (2.2), and, as will be shown below, in fact

h(x) ∈ Perψ. (2.3)

Assuming (2.3), let T ∈ R
+ be any ψ-period of h(x), and y+n = h(x), r+n = s+ + nT

for every n ∈ N. With this clearly r+n → +∞, and ψr+n
(
h(x)
) = h(x+) for all n. Thus to

complete the proof it only remains to verify (2.3).
Assume first that s+ = 0, and hence x = x+. For each n ∈ N, define a non-negative

continuous function fn : R → R as fn(s) = ‖ϕst+n (x+n ) − x‖, and note that fn(0) =
‖x+n − x‖ → 0, but also fn(1) = ‖ϕt+n (x+n )− x‖ → 0. In fact, more is true:

limn→∞ fn(s) = 0 uniformly on [0, 1] . (2.4)

To prove (2.4), suppose by way of contradiction that

ε0 ≤ fnk (sk) = ‖ϕsk t
+
nk

(x+nk )− x‖ ∀k ∈ N, (2.5)

with appropriate ε0 > 0, sk ∈ [0, 1], and integers nk ≥ k. Since 0 ≤ rk := τx+nk
(sk t+nk ) ≤

τx+nk
(t+nk ) = s+nk → 0, clearly h

(
ϕsk t

+
nk

(x+nk )
) = ψrk

(
h(x+nk )

) → h(x), which, together with

(2.5), contradicts the continuity of h−1 at h(x), and hence establishes (2.4). Deduce that,
given any ε > 0, there exists an N ∈ N with maxs∈[0,1] fN (s) < ε as well as t+N > ε−1.
But then ‖ϕt (x

+
N ) − x‖ < ε for all 0 ≤ t ≤ ε−1, and Proposition 2.6 yields x ∈ Fixϕ. By

Proposition 2.3, h(x) ∈ Fixψ , which proves (2.3) when s+ = 0.
Finally, assume that s+ ∈ R

+, and let t+ = τ−1x (s+) > 0. Then h
(
ϕt+(x)

) =
ψs+
(
h(x)
) = h(x+), and consequently ϕt+(x) = x+, as well as

ψτ
x+n (t+n −t+)

(
h(x+n )
) = h ◦ ϕ−t+

(
ϕt+n (x+n )

) → h ◦ ϕ−t+(x+) = h(x).

Since 0 ≤ τx+n (t+n −t+) ≤ s+n for all large n, assumew.l.o.g. that τx+n (t+n −t+)→ r ∈ [0, s+],
and hence ψr

(
h(x)
) = h(x). On the one hand, if r ∈ R

+ then clearly h(x) ∈ Perψ . On
the other hand, if r = 0 then (2.4) holds with fn(s) = ‖ϕs(t+n −t+)(x

+
n ) − x‖, and the same

argument as above shows that x ∈ Fixϕ. Thus (2.3) also holds when s+ ∈ R
+. ��

A crucial step in the subsequent analysis is the decomposition of flows into simpler, well-
understood parts. To prepare for this, recall that two flowsϕ,ψ on X , Y , respectively, together
induce the product flow ϕ×ψ on X ×Y , by letting (ϕ×ψ)t = ϕt ×ψt for all t ∈ R. Endow
X × Y with any norm. It is readily seen that

C(x−,y−),(x+,y+)(ϕ × ψ, X × Y ) ⊂ Cx−,x+ (ϕ, X)× Cy−,y+ (ψ, Y ) ∀x−, x+ ∈ X , y−, y+ ∈ Y ,

and therefore also
C(ϕ × ψ, X × Y ) ⊂ C(ϕ, X)× C(ψ, Y ); (2.6)
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the same inclusion is valid withC0 instead ofC . Quite trivially, equality holds in (2.6) and its
analogue for C0 if one factor is at most one-dimensional. As the following example shows,
however, equality does not hold in general if min{dim X , dim Y } ≥ 2.

Example 2.7 Let X = R
2, and write X+ = (R+)2 and 1 =

[
1
1

]
for convenience. Consider

the flow ϕ on X generated by ẋ = V (x), with the C∞-vector field

V (x) =

⎧
⎪⎨

⎪⎩

1

s

[
f (s)x1 log x1 − s f (s)x1 log x2
s f (s)x2 log x1 + f (s)x2 log x2

]
if x ∈ X+ \ {1},

0 otherwise ,

where s = s(x) = √(log x1)2 + (log x2)2, and f (s) = e−s−1/s for all s ∈ R
+. Clearly,

(X\X+)∪{1} ⊂ Fixϕ. Introducing (exponential) polar coordinates x1 = er cos θ , x2 = er sin θ

in X+ transforms ẋ = V (x) into
ṙ = θ̇ = f (r). (2.7)

Deduce from (2.7) that limt→−∞ r(t) = 0, limt→+∞ r(t) = +∞, and r − θ is constant.
Consequently, limt→−∞ ϕt (x) = 1 for every x ∈ X+, but also, given any x ∈ X+ \ {1},
there exists a sequence (t+n ) with t+n → +∞ such that θ(t+n ) + 3

4π ∈ 2πZ for all n, and
hence limn→∞ ϕt+n (x) = 0. Thus x ∈ C1,0(ϕ, X) for every x ∈ X+ \{1}, and C(ϕ, X) = X ;
see also Fig. 3.

Next, note that f is decreasing on [1,+∞[, and hence any two solutions (r , θ), (̃r , θ̃ ) of
(2.7) with r(0), r̃(0) ≥ 1 satisfy
∣∣r(t)−r̃(t)

∣∣ ≤ ∣∣r(0)−r̃(0)
∣∣,
∣∣θ(t)− θ̃ (t)

∣∣ ≤ ∣∣r(0)−r̃(0)
∣∣+∣∣θ(0)− θ̃ (0)

∣∣ ∀t ≥ 0 ; (2.8)

moreover, θ − θ̃ is constant whenever r(0) = r̃(0). Pick any a ≥ e1/
√
2, and consider

u =
[

a
a−1
]

, ũ =
[
a−1
a

]
. (2.9)

Then r(t) = s
(
ϕt (u)
) = s
(
ϕt (̃u)
) = r̃(t) ≥ 1 and θ(t) − θ̃ (t) ∈ π + 2πZ for all t ≥ 0.

Also, let

U =
{
x ∈ X+ : x

√
3

2 > max{x1, x31 }−1
}
=
{
x ∈ X+ \ {1} : θ ∈

]
− 1

3π, 5
6π
[
+ 2πZ

}
.

For any ε > 0 sufficiently small, it is clear from (2.8) that for every t ≥ 0 at least one of the
two open sets ϕt

(
Bε(u)
)
and ϕt

(
Bε(̃u)
)
is entirely contained in U . Note that Bε(u)× Bε(̃u)

is a neighbourhood of (u, ũ) in X × X . Consequently,
(
(ϕ × ϕ)t+n (xn, x̃n)

)
is unbounded

whenever t+n → +∞ and (xn, x̃n) → (u, ũ). Thus, (u, ũ) /∈ C(ϕ × ϕ, X × X), whereas
clearly (u, ũ) ∈ C(ϕ, X)× C(ϕ, X), and so the inclusion (2.6) is strict in this example.

Good behaviour of certain invariant objects under products is indispensable for the analysis
in later sections. Negative examples such as Example 2.7 therefore suggest that the cores
C(ϕ, X) and C0(ϕ, X) be supplanted, or at least supplemented with similar objects that are
well-behaved under products. To this end, note that

C(ϕ, X) = {x ∈ X : There exist sequences (t±n ) and (x±n )with t±n →±∞
and x±n → x such that

(
ϕt±n (x±n )

)
both are bounded

}
.
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x1 x1

x2 x2

1

1 u

u un

ϕt(u)

ϕt(u)

u

U

u, u ∈ C(ϕ, X)

(u, u) ∈ C(ϕ × ϕ, X × X)

u ∈ C∗(ϕ, X), u ∈ C∗(ψ, X)

ϕ, ψ orbit equivalent, with h = idX

ψt(un)

ψt(u)

Fig. 3 In general, (non-uniform) cores are well-behaved under orbit equivalence but not under products (left;
see Example 2.7), whereas for uniform cores the situation is the exact opposite (right; see Example 2.9)

In light of this, define the uniform core C∗(ϕ, X) as

C∗(ϕ, X) = {x ∈ X : For every sequence (tn)with |tn | → +∞ there exists a sequence

(xn)with xn → x such that
(
ϕtn (xn)

)
is bounded

};
analogously, define the uniform (0, 0)-core C∗0 (ϕ, X) as

C∗0 (ϕ, X) = {x ∈ X : For every sequence (tn)with |tn | → +∞ there exists a sequence

(xn)with xn → x such thatϕtn (xn) → 0
} ⊂ C∗(ϕ, X).

Again, C∗(ϕ, X) and C∗0 (ϕ, X) are ϕ-invariant, and they obviously are contained in their
non-uniform counterparts, i.e.,

C∗(ϕ, X) ⊂ C(ϕ, X), C∗0 (ϕ, X) ⊂ C0(ϕ, X). (2.10)

Moreover,C∗(ϕ, X) ⊃ Bndϕ, just as for (non-uniform) cores. For the flow ϕ in Example 2.7,
it is clear that C∗(ϕ, X) = Fixϕ �= X = C(ϕ, X); see also Example 2.9 below. Thus the left
inclusion in (2.10) is strict in general, and so is the right inclusion.

As alluded to earlier, C∗(ϕ, X) and C∗0 (ϕ, X) are useful for the purpose of this article
because, unlike their non-uniform counterparts, they are well-behaved under products.

Lemma 2.8 Let ϕ,ψ be flows on X , Y , respectively. Then

C∗(ϕ × ψ, X × Y ) = C∗(ϕ, X)× C∗(ψ, Y )

as well as

C∗0 (ϕ × ψ, X × Y ) = C∗0 (ϕ, X)× C∗0 (ψ, Y ).

Proof The asserted equality forC∗ (respectively,C∗0 ) is an immediate consequence of the fact
that
(
(ϕ × ψ)tn (xn, yn)

)
is bounded (converges to 0) if and only if

(
ϕtn (xn)

)
and
(
ψtn (yn)

)

both are bounded (converge to 0). ��
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Regarding the behaviour of uniform cores under equivalence, it is readily checked that
if ϕ,ψ are flow equivalent then h

(
C∗(ϕ, X)

) = C∗(ψ, Y ); moreover, h
(
C∗0 (ϕ, X)

) =
C∗0 (ψ, Y ) if h(0) = 0. These equalities may fail under mere orbit equivalence, however,
so the analogue of Lemma 2.5 for uniform cores does not hold. The following example
demonstrates this.

Example 2.9 With the identical objects as in Example 2.7, first deduce from (2.8) that, given
any x ∈ X+ \ {1} and sufficiently small ε > 0, one may chose (tn) with tn → +∞ such
that ϕtn

(
Bε(x)
) ⊂ U for all n. But then clearly

(
ϕtn (xn)

)
is unbounded whenever xn → x ,

and hence x /∈ C∗(ϕ, X). Thus, C∗(ϕ, X) = (X \ X+) ∪ {1} = Fixϕ �= C(ϕ, X); see also
Fig. 3.

Next, fix a decreasing C∞-function g : R → R with g(s) = 1 for all s ≤ 1 and g(s) = 0
for all s ≥ 2. Let ψ be the flow on X generated by ẋ = v(x)V (x), where v : X → R is
given by

v(x) =
{
1+ e4πg

(
(s − log x1 cos s − log x2 sin s)s−1es−1/s

)
if x ∈ X+ \ {1},

1 otherwise ; (2.11)

note that the vector field vV is C∞. Similarly to Example 2.7, (X \ X+)∪ {1} = Fixψ , and
(exponential) polar coordinates in X+ transform ẋ = v(x)V (x) into

ṙ = θ̇ = f (r)+ e4π f (r)g
((
1− cos(θ − r)

)
er−1/r

)
. (2.12)

Note that r−θ again is constant for every solutionof (2.12). Specifically, given any0 ≤ a ≤ 1
2 ,

let (ra, θa) be the solution of (2.12)with r(0) = 2π(1+a) and θ(0) = 0. Then ra(t)−θa(t) =
2π(1 + a) and ra(t) − r0(t) ≤ 2πa for all t ≥ 0. Notice that limt→+∞ ra(t) = +∞.
Consequently, for every 0 < a ≤ 1

2 there exists a ta ∈ R
+ such that ṙa = f (ra) for all

t ≥ ta , but also e−1/r0(1+ e4π ) > 1 + e3π . Clearly, lima↓0 ta = +∞; assume w.l.o.g. that
a �→ ta is decreasing on ]0, 1

2 ]. It follows that ṙ0 ≥ e−r0(1 + e3π ) as well as ṙa ≤ e−ra on
[ta,+∞[, and therefore also, with t̃a := ta + e4π+r0(ta),

θ0(t)− θa(t) = r0(t)− ra(t)+ 2πa ≥ 2πa + log
er0(ta) + (t − ta)(1+ e3π )

era(ta) + t − ta
> 3π ∀t ≥ t̃a .

Deduce from this and the continuity of a �→ θa(t), that, given any integer j ≥ 2 and t ≥ t̃1/ j ,
there exists 0 < a j (t) ≤ j−1 such that θa j (t)(t)+ 3

4π ∈ 2πZ.

With these preparations, consider the point u =
[
e2π

1

]
/∈ C∗(ϕ, X), and let (tn) be any

sequence with |tn | → +∞. If tn → −∞ then
(
ψtn (u)

)
is bounded, in fact ψtn (u) → 1,

so it suffices to assume that (tn) is increasing, and t1 ≥ t̃1/2. Pick a sequence ( jn) with
t̃1/ jn ≤ tn < t̃1/ jn+1 for all n. Note that jn → ∞, and hence 0 < a jn (tn) < j−1n → 0.
Writing bn := a jn (tn) for convenience, consider

un =
[
e2π(1+bn)

1

]
∀n ∈ N.

With this, not only un → u, but also ψtn (un) = e−rbn (tn)/
√
21 → 0, showing that

(
ψtn (un)

)

is bounded. In other words, u ∈ C∗(ψ, X). Recall that ϕ and ψ are generated by ẋ = V (x)
and ẋ = v(x)V (x), respectively, with v given by (2.11), and 1 ≤ v ≤ 1 + e4π . As pointed
out right after Proposition 2.2, the flows ϕ,ψ are orbit equivalent with h = idX , and yet
h
(
C∗(ϕ, X)

) �= C∗(ψ, X).
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3 Cores of Linear Flows

In a linear flow, naturally an invariant set is of particular interest if it also is a (linear) sub-
space. For instance, Fix� and Bnd� (but not, in general, Per�) are �-invariant subspaces
for any linear flow �, and so are all uniform cores. As seen in the previous section, uniform
cores are well-behaved under products (Lemma 2.8) but not under orbit equivalence (Exam-
ple 2.9), whereas for (non-uniform) cores the situation is the exact opposite (Lemma 2.5 and
Example 2.7). This discrepancy is consistent with a lack of equality in (2.10) in general. One
main result of this section, Theorem 3.5 below, shows that both inclusions in (2.10) are in fact
equalities—provided that ϕ is linear. As an important consequence, all cores of linear flows
are invariant subspaces that are well-behaved under orbit equivalence and under products.
With regard to the last assertion in Lemma 2.5, the following additional property of orbit
equivalences is useful when dealing with linear flows; again, for convenience this property
is hereafter assumed to be part of what it means for � to be (h, τ )-related to �.

Proposition 3.1 Let �,� be linear flows, and assume that � is (h, τ )-related to �. Then �

is ( h̃, τ )-related to � where h̃(0) = 0.

In a first step towards Theorem 3.5, cores of irreducible linear flows are considered. Recall
that � is irreducible if X = Z ⊕ Z̃ , with �-invariant subspaces Z , Z̃ , implies that Z = {0}
or Z̃ = {0}. Plainly, � is irreducible if and only if, relative to the appropriate basis, A� is
a single real Jordan block. In particular, for irreducible � the spectrum σ(�) := σ(A�) is
either a real singleton or a non-real complex conjugate pair. In order to clarify the structure of
cores of irreducible linear flows, for every s ∈ R denote by �s� and �s� the smallest integer
≥ s and the largest integer ≤ s, respectively.

Lemma 3.2 Let � be an irreducible linear flow on X. Then C∗(�, X) = C(�, X), and

dimC∗(�, X) = dimC(�, X) =

⎧
⎪⎨

⎪⎩

0 if σ(�) ∩ ıR = ∅,

� 12 dim X� if σ(�) = {0},
2� 14 dim X� if σ(�) ⊂ ıR \ {0}.

Similarly, C∗0 (�, X) = C0(�, X), and

dimC∗0 (�, X) = dimC0(�, X) =

⎧
⎪⎨

⎪⎩

0 if σ(�) ∩ ıR = ∅,

� 12 dim X� if σ(�) = {0},
2� 14 dim X� if σ(�) ⊂ ıR \ {0}.

The proof of Lemma 3.2 utilizes explicit calculations involving several families of special
matrices. These matrices are reviewed beforehand for the reader’s convenience. First, given
any m ∈ N and ω ∈ C, consider the diagonal matrix

Dm(ω) = diag [1, ω, . . . , ωm−1] ∈ C
m×m,

for which Dm(ω) ∈ R
m×m whenever ω ∈ R, as well as the nilpotent Jordan block of sizem,

Jm =

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

0 1 0 · · · 0
...

. . .
. . .

...

. . . 0
...

. . . 1
0 · · · · · · 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

∈ R
m×m .
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Clearly, Dm(1) = idRm =: Im , and Dm(ω)−1 = Dm(ω−1) whenever ω �= 0, but also

Dm(ω)−1 and ω1−mDm(ω) are bounded (in fact, converge) as |ω| → +∞. (3.1)

Moreover, recall that Jmm = 0, and hence

et Jm = Im + t Jm + · · · + tm−1

(m − 1)! J
m−1
m ∀t ∈ R.

A simple lower bound for the size of et Jm x is as follows.

Proposition 3.3 For every m ∈ N and norm ‖ · ‖ on R
m there exists a ν ∈ R

+ such that
∥
∥
∥et Jm x

∥
∥
∥ ≥ ν‖x‖√

1+ t2m−2
∀t ∈ R, x ∈ R

m .

Next, recall that the function 1/�, the reciprocal of the Euler Gamma function, is entire
[1, Ch. 6]. In particular, given any m, n ∈ N and ω ∈ C, the Toeplitz-type matrix

�[ω]m,n :=

⎡

⎢⎢⎢
⎣

1/�(ω + 1) 1/�(ω + 2) · · · 1/�(ω + n)

1/�(ω) 1/�(ω + 1) · · · 1/�(ω − 1+ n)
...

...
...

1/�(ω − m + 2) 1/�(ω − m + 3) · · · 1/�(ω − m + n + 1)

⎤

⎥⎥⎥
⎦
∈ C

m×n

is well-defined, each of its entries depending analytically on ω. Note that �
[ω]
m,n ∈ R

m×n
whenever ω ∈ R, and �

[ω]
m,n is upper triangular (respectively, the zero matrix) if and only

if ω is an integer ≤ 0 (an integer ≤ −n). Also, in the case of a square matrix, the function
det�[ · ]m,m is entire and not constant, and hence �

[ω]
m,m is invertible for most ω.

Proposition 3.4 Let m ∈ N and ω ∈ C. Then

det�[ω]m,m =
∏m

j=1
�( j)

�(ω + j)
;

in particular, �[ω]m,m is invertible unless ω is a negative integer.

To appreciate the usefulness of the matrices Dm and �
[ω]
m,n in the study of linear flows,

note that

et Jm =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

1 t · · · tm−1

(m − 1)!
0

. . .
. . .

...

. . .

...
. . . t

0 · · · 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

= Dm(t)−1�[0]m,mDm(t) ∀t ∈ R \ {0} .

More generally, for any 1 ≤ j ≤ m and t �= 0, the m × m-matrix et Jm can be partitioned as

et Jm =
⎡

⎣
Dj (t)−1�[0]j,m− j Dm− j (t) tm− j D j (t)−1�[m− j]

j, j D j (t)

t− j Dm− j (t)−1�[− j]
m− j,m− j Dm− j (t) tm−2 j Dm− j (t)−1�[m−2 j]m− j, j D j (t)

⎤

⎦ . (3.2)
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Proof of Lemma 3.2 For simplicity, suppress the symbols (�, X) in all cores, i.e., write C
instead of C(�, X) etc. Note that if dim X ≤ 1 then C∗0 = C0 = {0}, whereas C∗ = C
equals {0} or X , depending on whether� �= 0 or� = 0. Thus the lemma holds if dim X ≤ 1.
Henceforth assume dim X ≥ 2, and let (b1, . . . , bdim X ) be an ordered basis of X relative to
which A� is a single real Jordan block. Throughout, no notational distinction ismade between
linear operators on (respectively, elements of) X on theonehand, and their coordinatematrices
(column vectors) relative to (b j ) on the other hand.

Assume for the time being that σ(�) = {a}with a ∈ R, and hence A� = aIdim X+ Jdim X .
In this case,

‖�t x‖ = ‖etaet Jdim X x‖ ≥ eta
ν‖x‖√

1+ t2 dim X−2 ∀t ∈ R, x ∈ X , (3.3)

by Proposition 3.3. Pick any x ∈ C . If a �= 0 and (�tn xn) is bounded for appropriate
sequences (tn) and (xn) with atn → +∞ and xn → x , then (3.3) implies that x = 0. Thus
C = {0} whenever a �= 0, and only the case of a = 0 has to be considered further.

Assume first that dim X is odd, say dim X = 2d + 1 with d ∈ N. Letting m = 2d + 1,
deduce from (3.2) with j = d + 1 that for all t �= 0,

�t =
⎡

⎣
Dd+1(t)−1�[0]d+1,d Dd(t) td Dd+1(t)−1�[d]d+1,d+1Dd+1(t)

0 t−1Dd(t)−1�[−1]d,d+1Dd+1(t)

⎤

⎦ , (3.4)

because �
[−d−1]
d,d = 0, whereas with j = d ,

�t =
⎡

⎣
Dd(t)−1�[0]d,d+1Dd+1(t) td+1Dd(t)−1�[d+1]d,d Dd(t)

t−d Dd+1(t)−1�[−d]d+1,d+1Dd+1(t) t Dd+1(t)−1�[1]d+1,d Dd(t)

⎤

⎦ . (3.5)

Let V = span {b1, . . . , bd}, pick any x =
[

v

0

]

∈ V with v ∈ R
d , and consider

xt :=
[

v

−t−d Dd+1(t)−1
(
�
[d]
d+1,d+1

)−1
�
[0]
d+1,d Dd(t)v

]

∀t ∈ R \ {0} .

(Recall that �
[d]
d+1,d+1 is invertible by Proposition 3.4.) From (3.1), it is clear that

lim|t |→+∞ xt = x , and together with the expression for �t in (3.4) also

�t xt =
[

0

−t−(d+1)Dd(t)−1�[−1]d,d+1
(
�
[d]
d+1,d+1

)−1
�
[0]
d+1,d Dd(t)v

]
|t |→+∞−→ 0.

Thus x ∈ C∗0 . Since x ∈ V was arbitrary, V ⊂ C∗0 . Conversely, given any x =
[

v

w

]

∈ C0,

with v ∈ R
d , w ∈ R

d+1, there exist sequences (tn), (vn), and (wn) with tn →+∞, vn → v,
and wn → w such that

�tn

[
vn

wn

]
=
[
Dd+1(tn)−1

(
�
[0]
d+1,d Dd(tn)vn + tdn �

[d]
d+1,d+1Dd+1(tn)wn

)

. . .

]
→ 0. (3.6)
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Recall from (3.1) that
(
t−dn Dd+1(tn)

)
converges, and apply these matrices to the first com-

ponent of (3.6) to obtain

t−dn �
[0]
d+1,d Dd(tn)vn +�

[d]
d+1,d+1Dd+1(tn)wn → 0.

With (3.1) also t−dn �
[0]
d+1,d Dd(tn)vn → 0, and hence �

[d]
d+1,d+1Dd+1(tn)wn → 0. Since

�
[d]
d+1,d+1 is invertible and

(
Dd+1(tn)−1

)
converges, wn → 0 = w, i.e., x ∈ V . As x ∈ C0

was arbitrary, C0 ⊂ V , and hence C∗0 = C0 = V ; note that dim V = d = � 12 dim X�.
Next, given any x =

[
w

0

]

∈ V ⊕ span {bd+1}, with w ∈ R
d+1, consider

xt :=
[

w

−t−(d+1)Dd(t)−1
(
�
[d+1]
d,d

)−1
�
[0]
d,d+1Dd+1(t)w

]

∀t ∈ R \ {0},

which again iswell-defined as�[d+1]d,d is invertible.Asbefore, (3.1) implies lim|t |→+∞ xt = x ,
and together with the expression for �t in (3.5) also shows that

�t xt =
[

0

t−d Dd+1(t)−1
(
�
[−d]
d+1,d+1 −�

[1]
d+1,d
(
�
[d+1]
d,d

)−1
�
[0]
d,d+1
)
Dd+1(t)w

]

converges as |t | → +∞, and hence x ∈ C∗. Thus V ⊕ span {bd+1} ⊂ C∗. Conversely, given

any x =
[

w

v

]

∈ C , there exist sequences (tn), (wn), and (vn) with tn → +∞, wn → w,

and vn → v such that

�tn

[
wn

vn

]

=
[
Dd(tn)−1

(
�
[0]
d,d+1Dd+1(tn)wn + td+1n �

[d+1]
d,d Dd(tn)vn

)

. . .

]

(3.7)

is bounded as n → ∞. Since t−(d+1)
n Dd(tn) → 0, applying these matrices to the first

component of (3.7) yields

t−(d+1)
n �

[0]
d,d+1Dd+1(tn)wn +�

[d+1]
d,d Dd(tn)vn → 0.

As before, also �
[d+1]
d,d Dd(tn)vn → 0, and hence vn → 0 = v, i.e., x ∈ V ⊕ span {bd+1}.

In summary, C∗ = C = V ⊕ span {bd+1}. This establishes the lemma when σ(�) ⊂ R and
dim X is odd, as dim V ⊕ span {bd+1} = d + 1 = � 12 dim X�.

The case of dim X even, say dim X = 2d , is similar but simpler: In this case, (3.2) with
m = 2d , j = d yields

�t =
⎡

⎣
Dd(t)−1�[0]d,d Dd(t) td Dd(t)−1�[d]d,d Dd(t)

0 Dd(t)−1�[0]d,d Dd(t)

⎤

⎦ ∀t ∈ R \ {0}.

On the one hand, if x =
[

v

0

]

∈ V with v ∈ R
d , then

xt :=
[

v

−t−d Dd(t)−1
(
�
[d]
d,d

)−1
�
[0]
d,d Dd(t)v

]
|t |→+∞−→ x,
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by (3.1), but also

�t xt =
[

0

−t−d Dd(t)−1�[0]d,d

(
�
[d]
d,d

)−1
�
[0]
d,d Dd(t)v

]
|t |→+∞−→ 0,

showing that V ⊂ C∗0 . On the other hand, if x =
[
u

v

]

∈ C with u, v ∈ R
d , then there exist

sequences (tn), (un), and (vn) with tn →+∞, un → u, and vn → v, such that

�tn

[
un

vn

]

=
[
Dd(tn)−1

(
�
[0]
d,d Dd(tn)un + tdn �

[d]
d,d Dd(tn)vn

)

. . .

]

is bounded as n →∞. Applying t−dn Dd(tn) → 0 to the first component yields vn → 0 = v,
as before, and hence x ∈ V . In summary, C∗0 = C∗ = C0 = C = V . Noting that dim V =
d = 1

2 dim X establishes the lemma when σ(�) ⊂ R and dim X is even.
Finally, it remains to consider the case of σ(�) = {a ± ıb} with a ∈ R, b ∈ R

+. Since

dim X is even in this case, let m = 1
2 dim X . Then A� = aI2m +

[
Jm −bIm

bIm Jm

]
, which in

turn yields

�t = eta
[
cos(bt)Im − sin(bt)Im

sin(bt)Im cos(bt)Im

][
et Jm 0

0 et Jm

]

∀t ∈ R. (3.8)

From (3.8) and Proposition 3.3, it is clear that, with an appropriate ν̃ ∈ R
+,

‖�t x‖ ≥ eta
ν̃‖x‖√

1+ t2m−2
∀t ∈ R, x ∈ X .

As before, it follows that C = {0} unless a = 0, so only that case has to be analyzed further.
This analysis is virtually identical to the one above, simply because the left matrix on the
right-hand side of (3.8) does not in any way affect boundedness or convergence to 0 of �t x :
On the one hand, if m = 2d + 1 then, with W = span {b1, . . . , bd , bm+1, . . . , bm+d},

C∗0 = C0 = W , C∗ = C = W ⊕ span {bd+1, bm+d+1}.
On the other hand, if m = 2d then C∗0 = C0 = C∗ = C = W . In either case, dimW =
2d = 2� 14 dim X� and dimW ⊕ span {bd+1, bm+d+1} = 2d + 2 = 2� 14 dim X�. ��

Given any�-invariant subspace Z of X , denote by�Z the linear flow induced by� on Z ,
that is, �Z (t, x) = �t x for all (t, x) ∈ R× Z . Note that if X =⊕�

j=1 Z j with �-invariant

subspaces Z1, . . . , Z�, then � is flow equivalent to the linear flow �
�
j=1 �Z j on �

�
j=1 Z j , via

the linear isomorphism h(x) = (P1x, . . . , P�x) and τx = idR for all x ∈ X ; here Pj denotes
the linear projection of X onto Z j along

⊕
k �= j Zk . With this, an immediate consequence of

Lemma 3.2 announced earlier is

Theorem 3.5 Let � be a linear flow on X. Then C∗(�, X) = C(�, X), C∗0 (�, X) =
C0(�, X), and both sets are �-invariant subspaces of X�

C .

Proof Let X =⊕�
j=1 Z j be such that each flow �Z j is irreducible. With h as above,

C(�, X) = h−1C
(
�

�
j=1 �Z j , �

�
j=1 Z j

)
⊂ h−1

(
�

�
j=1 C(�Z j , Z j )

)

= h−1
(
�

�
j=1 C∗(�Z j , Z j )

)
= h−1C∗

(
�

�
j=1 �Z j , �

�
j=1 Z j

)
= C∗(�, X),

123



Journal of Dynamics and Differential Equations

where, from left to right, the equalities are due to Lemmas 2.5, 3.2, and 2.8, and the fact
that � and �

�
j=1 �Z j are flow equivalent via h, respectively, whereas the inclusion is the

�-factor analogue of (2.6). With (2.10), therefore, C∗(�, X) = C(�, X), and recalling that
h(0) = 0, also C∗0 (�, X) = C0(�, X). Let J = {1 ≤ j ≤ � : σ(�Z j ) ⊂ ıR}. By Lemma
3.2, C(�Z j , Z j ) = {0} whenever j /∈ J , and consequently

C(�, X) = h−1
(
�

�
j=1 C(�Z j , Z j )

)
=
⊕

j∈JC(�Z j , Z j ) ⊂
⊕

j∈JZ j = X�
C .

��
In light of Theorem 3.5, when dealing with linear flows only the symbols C and C0 are

used henceforth. Note that if Z is a �-invariant subspace of X then one may also consider
cores of the flow�Z , and this idea of restriction can be iterated. To do so in a systematic way,
given any binary sequence ε = (εk)k∈N0 , that is, εk ∈ {0, 1} for all k, let Cε,−1(�, X) = X
and, for every k ∈ N0, let

Cε,k(�, X) =
{

C
(
�Cε,k−1(�,X),C

ε,k−1(�, X)
)

if εk = 0,

C0
(
�Cε,k−1(�,X),C

ε,k−1(�, X)
)

if εk = 1.

Clearly X ⊃ Cε,0(�, X) ⊃ Cε,1(�, X) ⊃ · · · , and hence the iterated core

Cε(�, X) := limk→∞ Cε,k(�, X) =
⋂

k∈N0
Cε,k(�, X)

is a �-invariant subspace naturally inheriting basic properties from C(�, X) and C0(�, X).

Lemma 3.6 Let �,� be linear flows on X , Y , respectively, and ε a binary sequence.

(i) If � is (h, τ )-related to � then h
(
Cε(�, X)

) = Cε(�, Y ).
(ii) Cε(�×�, X × Y ) = Cε(�, X)× Cε(�, Y ).

Proof With Lemma 2.5 and Proposition 3.1, h
(
Cε,0(�, X)

) = Cε,0(�, Y ). By induction,
for every k ≥ 1, �Cε,k−1(�,X) is (hk, τk)-related to �Cε,k−1(�,Y ), with hk and τk denoting
the restrictions of h and τ to Cε,k−1(�, X) and R × Cε,k−1(�, X) respectively. Hence
h
(
Cε,k(�, X)

) = Cε,k(�, Y ), which proves (i). Similarly, with Lemma 2.8 and Theorem 3.5,
induction yields Cε,k(�× �, X × Y ) = Cε,k(�, X)× Cε,k(�, Y ) for every k ≥ 1, which
establishes (ii). ��

It is not hard to see that Cε(�, X) = {0} whenever εk = 1 for infinitely many k. In
what follows, therefore, only terminating binary sequences (i.e., εk = 0 for all large k) are
of interest. Any such sequence (uniquely) represents a non-negative integer. More precisely,
given any n ∈ N0, let ε(n) be the binary sequence of base-2 digits of n in reversed (i.e.,
ascending) order, that is,

n =
∑∞

k=0 2
kε(n)k ∀n ∈ N0 ;

thus, for instance, ε(4) = (0, 0, 1, 0, 0, . . .) and ε(13) = (1, 0, 1, 1, 0, 0, . . .). To understand
the structure of Cε(n)(�, X), first consider the case of an irreducible flow.

Lemma 3.7 Let � be an irreducible linear flow on X.

(i) If σ(�) ∩ ıR = ∅ then Cε(n)(�, X) = {0} for all n ∈ N0.

(ii) If σ(�) = {0} then Cε(n)(�, X) =
{
Fix� if n < dim X ,

{0} if n ≥ dim X .
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(iii) If σ(�) ⊂ ıR \ {0} then Cε(n)(�, X) =
{
Per� if n < 1

2 dim X ,

{0} if n ≥ 1
2 dim X .

Proof Recall from Lemma 3.2 that C(�, X) = {0} whenever σ(�) ∩ ıR = ∅, and in this
case Cε(n)(�, X) = {0} for every n ∈ N0, proving (i).

To establish (ii) and (iii), let (b1, . . . , bdim X ) be an ordered basis of X , relative to which
A� is a single real Jordan block. If σ(�) = {0} consider the two increasing functions
f0, f1 : R → R, given by f0(s) = � 12 s� and f1(s) = � 12 s�, respectively. Let mk = fε(n)k ◦
· · · ◦ fε(n)0(dim X). As seen in the proof of Lemma 3.2, Cε(n),k(�, X) = span {b1, . . . , bmk }
for every k ∈ N0, provided that mk ≥ 1, and Cε(n),k(�, X) = {0} otherwise. Note that

limk→∞ f0 ◦ · · · ◦ f0︸ ︷︷ ︸
ktimes

(s) =
{
1 if s > 0,
0 if s ≤ 0.

(3.9)

Consequently, ε(0) = (0, 0, . . .), and limk→∞ mk = 1, so Cε(0)(�, X) = span {b1}. Hence-
forth, assume n = ε(n)0 + 2ε(n)1 + · · · + 2�ε(n)� ≥ 1, with � ∈ N0 and ε(n)� = 1. Notice
that

fε(n)k ◦ · · · ◦ fε(n)0(n) = ε(n)k+1 + 2ε(n)k+2 + · · · + 2�−k−1ε(n)� ∀k = 0, . . . , �− 1,

hence in particular fε(n)�−1 ◦ · · · ◦ fε(n)0(n) = ε(n)� = 1, which implies fε(n)� ◦ · · · ◦
fε(n)0(n) = 0. Since f0, f1 are increasing, fε(n)� ◦ · · · ◦ fε(n)0(i) ≤ 0 for all i ≤ n, and since
ε(n)k = 0 for all k > �, it follows from (3.9) that limk→∞ fε(n)k ◦ · · · ◦ fε(n)0(i) = 0. In
particular, Cε(n)(�, X) = {0} whenever dim X ≤ n. Next, notice that

fε(n)k ◦ · · · ◦ fε(n)0(n + 1) = 1+ fε(n)k ◦ · · · ◦ fε(n)0(n) ∀k = 0, . . . , �,

hence in particular fε(n)� ◦ · · · ◦ fε(n)0(n + 1) = 1. Again by monotonicity, fε(n)� ◦ · · · ◦
fε(n)0(i) ≥ 1 for all i ≥ n + 1, and with (3.9) limk→∞ fε(n)k ◦ · · · ◦ fε(n)0(i) = 1. This
shows that Cε(n)(�, X) = span {b1} = Fix� whenever dim X ≥ n + 1, proving (ii).

Finally, to prove (iii) recall from the proof of Lemma 3.2 that

Cε(n),k(�, X) = span {b1, . . . , bm̃k , b 1
2 dim X+1, . . . , b 1

2 dim X+m̃k
} ,

provided that m̃k = fε(n)k ◦ · · · ◦ fε(n)0(
1
2 dim X) ≥ 1, and Cε(n),k(�, X) = {0} otherwise.

Again, limk→∞ m̃k equals 1 if 1
2 dim X ≥ n + 1, and equals 0 if 1

2 dim X ≤ n. This proves
(iii) since span {b1, b 1

2 dim X+1} = Per�. ��

Given an arbitrary linear flow� on X , let X =⊕�
j=1 Z j be such that�Z j is irreducible for

every j = 1, . . . , �. By combining Lemmas 3.6 and 3.7, it is clear thatCε(0)(�, X) = Bnd�,
and that

(
Cε(n)(�, X)

)
n∈N0

is a decreasing sequence of nested spaces, with Cε(n)(�, X) =
{0} for all n ≥ max�

j=1 dim Z j . Moreover, for every n ∈ N0,

dimCε(n)(�, X) = #
{
1 ≤ j ≤ � : σ(�Z j ) = {0}, dim Z j > n

}
(3.10)

+ 2 #
{
1 ≤ j ≤ � : σ(�Z j ) ⊂ ıR \ {0}, dim Z j > 2n

}
.

By Lemma 3.6, these numbers are preserved under orbit equivalence. Thus, iterated cores,
and especially their dimensions, provide crucial information regarding the numbers and
sizes of blocks in the real Jordan normal form of A�. However, these cores do not per se
distinguish between different eigenvalues of A�C . To distinguish blocks corresponding to
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different elements of σ(�) ∩ ıR, ideally in a way that is preserved under orbit equivalence,
a finer analysis of Bnd� is needed.

4 Bounded Linear Flows

Call a linear flow � on X bounded if Bnd� = X . (Recall that X is a finite-dimensional
normed space over R.) Clearly, every bounded linear flow is central, i.e., X�

C = X ; see also
Sect. 5. Unless explicitly stated otherwise, every linear flow considered in this section is
bounded. Note that � is bounded precisely if σ(�) ⊂ ıR and A� is diagonalisable (over C),
in which case Theorem 1.1 takes a particularly simple form.

Theorem 4.1 Two bounded linear flows�,� are C0-orbit equivalent if and only if A�, αA�

are similar for some α ∈ R
+.

The main purpose of this section is to provide a proof of Theorem 4.1, divided into several
steps for the reader’s convenience. Given a non-empty set 	 ⊂ C, refer to any element of
	Q := {ωQ : ω ∈ 	} as a rational class generated by 	. Note that for every ω, ω̃ ∈ C

either ωQ = ω̃Q or ωQ ∩ ω̃Q = {0}. Given ω ∈ C and a bounded linear flow � on X ,
associate with ωQ the �-invariant subspace

X�
ωQ
:= ker A� ⊕

⊕

s∈R+:ıs∈ωQ
ker
(
(A�)2 + s2 idX

) ⊃ Fix�.

A few basic properties of such spaces follow immediately from this definition.

Proposition 4.2 Let � be a bounded linear flow on X, and ω, ω̃ ∈ C. Then:

(i) X�
ωQ
∩ X�

ω̃Q
�= Fix� if and only if ωQ = ω̃Q = λQ for some λ ∈ σ(�) \ {0}, and

hence X�
ωQ
= Fix� precisely if ωQ ∩ σ(�) ⊂ {0};

(ii) For λ, λ̃ ∈ σ(�), X�
λQ
= X�

λ̃Q
if and only if λQ = λ̃Q;

(iii)
∑

λ∈σ(�) X
�
λQ
= X;

(iv) X�{0} = Fix�, and
⋃

λ∈σ(�) X
�
λQ
= Per�;

(v) For every λ ∈ σ(�) \ {0}, X�
λQ
= PerT�, with

T = T�
λQ
:= min

⋂

s∈R+:{−ıs,ıs}∩λQ∩σ(�)�=∅

2π

s
N,

and {x ∈ X�
λQ
: T�

x = T�
λQ
} is open and dense in X�

λQ
.

Recall fromSect. 2 that ifϕ is (h, τ )-related toψ then h(Perϕ) = Perψ , and yet h(PerTϕ)

may not be contained in PerSψ for any S ∈ R
+. Taken together, the following two lemmas

show that such a situation cannot occur for linear flows.

Lemma 4.3 Let�,� be bounded linear flows on X , Y , respectively, and assume that Per� =
X. If � is (h, τ )-related to � then there exists an α ∈ R

+ with the following properties:

(i) T�
h(x) = αT�

x for every x ∈ X;

(ii) h(PerT�) = PerαT� for every T ∈ R
+;

(iii) A�, αA� are similar.
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Proof By Proposition 4.2(iv), Per� = X if and only if X�
λQ
= X for some λ ∈ σ(�), and

since Per� = h(Per�) = h(X) = Y , also Y�
μQ
= Y for some μ ∈ σ(�). Clearly, if λ = 0

then μ = 0, in which case every α ∈ R
+ has all the desired properties. Henceforth assume

that λ �= 0, or equivalently that Fix� �= X , and hence μ �= 0 as well.
To prove (i), pick any x ∈ X \ Fix�. By Proposition 4.2(v), there exists a sequence

(xn) with xn → x and T�
xn = T�

λQ
for all n, so 〈x〉� = T�

λQ
/T�

x , and similarly 〈h(x)〉� =
T�

μQ
/T�

h(x). By Proposition 2.4(ii), therefore, T�
h(x)/T

�
x = T�

μQ
/T�

λQ
, that is, (i) holds with

α = T�
μQ

/T�
λQ

.

To prove (ii), pick any T ∈ R
+ and x ∈ PerT� \ Fix�. Then T /T�

x = m for some
m ∈ N, and (i) yields αT /T�

h(x) = m, that is, h(x) ∈ PerαT�. Thus h(PerT�) ⊂ PerαT�,
and reversing the roles of � and � yields h(PerT�) = PerαT�.

To prove (iii), denote A�, A� simply by A, B, respectively, and let σ(�) \ {0} =
{±ıa1, . . . ,±ıam} and σ(�) \ {0} = {±ıb1, . . . ,±ıbn} with appropriate m, n ∈ N and
real numbers a1 > · · · > am > 0 and b1 > · · · > bn > 0; for convenience, a0 := b0 := 0.
Also, let X0 = ker A, Y0 = ker B, as well as Xs = ker (A2+ s2 idX ), Ys = ker (B2+ s2 idY )

for every s ∈ R
+. Since A, B are diagonalisable (over C), to establish (iii) it suffices to show

that in fact m = n, and that moreover

ak = αbk and dim Xak = dim Ybk ∀k = 0, 1, . . . ,m. (4.1)

To this end, notice first that Per2π/s� =⊕k∈N0
Xks , and similarly Per2π/s� =⊕k∈N0

Yks .
For the purpose of induction, assume that, for some integer 0 ≤ � < min{m, n},

ak = αbk and dim Xak = dim Ybk ∀k = 0, 1, . . . , �. (4.2)

Now, recall that h(X0) = h(Fix�) = Fix� = Y0, and hence dim X0 = dim Y0 by the
topological invariance of dimension [17, ch. 2]. In other words, (4.2) holds for � = 0. Next,
let K� =

{
k ∈ N0 : ka�+1 ∈ {a0, a1, . . . a�}

}
, and note that K� ⊂ N0 is finite with 0 ∈ K�

and 1 /∈ K�. Moreover, since a�+1 > 0,

Per2π/a�+1� =
⊕

k∈N0
Xka�+1 =

⊕

k∈N\K�

Xka�+1 ⊕
⊕

k∈K�

Xka�+1 = Xa�+1 ⊕
⊕

k∈K�

Xka�+1 ,

whereas by (ii),

h(Per2π/a�+1�) = Per2πα/a�+1� =
⊕

k∈N0
Yka�+1/α =

⊕

k∈N\K�

Yka�+1/α ⊕
⊕

k∈K�

Yka�+1/α.

By assumption (4.2), dim Xka�+1= dim Yka�+1/α for every k ∈ K�. Since dimPer2π/a�+1� =
dimPer2πα/a�+1�, again by the topological invariance of dimension, clearly dim Xa�+1 =∑

k∈N\K�
dim Yka�+1/α > 0. This shows that ıka�+1/α ∈ σ(�) for some k ∈ N \ K�, and

also dim Xa�+1 ≥ dim Ya�+1/α because 1 ∈ N \ K�. Note that ka�+1/α /∈ {b0, b1, . . . , b�}
whenever k ∈ N \ K�. Thus ka�+1/α ≤ b�+1, and in particular a�+1 ≤ αb�+1. The same
argument with the roles of � and � reversed yields a�+1 ≥ αb�+1 and dim Xb�+1/α ≤
dim Yb�+1 . Consequently, (4.2) holds with �+1 instead of �, and in fact for all � ≤ min{m, n}
by induction. Since �,� are bounded, X = ⊕m

�=0 Xa�
, Y = ⊕n

�=0 Yb�
, from which it is

clear that m = n, showing in turn that (4.1) holds. As observed earlier, this proves that
A� = A and αA� = αB are similar. ��

As seen in the above proof, the assumption Per� = X in Lemma 4.3 simply means that
X�

λQ
= X for some λ ∈ σ(�). Thus σ(�) generates at most one rational class other than

{0}. Even when σ(�) does generate several rational classes, however, it turns out that if �

is (h, τ )-related to � then h(X�
λQ

) always equals Y�
μQ

with an appropriate μ. This way the
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homeomorphism h induces a bijection between the rational classes generated by σ(�) and
σ(�).

Lemma 4.4 Let �,� be bounded linear flows on X , Y , respectively. If � is (h, τ )-related
to � then there exists a (unique) bijection hQ : σ(�)Q → σ(�)Q with h(X�

λQ
) = Y�

hQ(λQ)

for every λ ∈ σ(�); in particular, σ(�) and σ(�) generate the same number of rational
classes.

The proof of Lemma 4.4 is facilitated by a simple topological observation [37].

Proposition 4.5 Let Z1, . . . , Z� be subspaces of X, with � ∈ N. If dim X/Z j ≥ 2 for every

j = 1, . . . , � then X \⋃�
j=1 Z j is connected.

Remark 4.6 Proposition 4.5 remains validwhen dim X = ∞, provided that each Z j is closed.
It also holdswhen X is a normed space overC, inwhich case it suffices to require that Z j �= X
for every j .

Proof of Lemma 4.4 Assume that σ(�) and σ(�) both generate at least two different rational
classes other than {0}. (Otherwise, the lemma trivially is correct.) Fix any λ ∈ σ(�) \ {0}.
Given x ∈ X�

λQ
⊂ Per�, Propositions 2.3 and 4.2(iv) guarantee that h(x) ∈ Y�

μQ
for an

appropriate, possibly x-dependent μ ∈ σ(�). Thus the family of closed, connected sets{
h−1(Y�

μQ
) : μ ∈ σ(�) \ {0}} constitutes a finite cover of X�

λQ
\ Fix�; by Proposition 4.5,

the latter set is connected. If X�
λQ
\ Fix� was not entirely contained in h−1(Y�

μQ
) for some

μ, then one could choose μ1, μ2 ∈ σ(�) \ {0} with μ1Q �= μ2Q such that

∅ �= h−1(Y�
μ1Q

) ∩ h−1(Y�
μ2Q

) ∩ (X�
λQ
\ Fix�) = h−1(Y�

μ1Q
∩ Y�

μ2Q
) ∩ X�

λQ
\ Fix�

⊂ h−1(Fix�) \ Fix� = ∅,

an obvious contradiction. Hence indeed h(X�
λQ

) ⊂ Y�
μQ

for some μ ∈ σ(�), and reversing

the roles of � and � yields h(X�
λQ

) = Y�
μQ

. Note that the rational class μQ is uniquely
determined by λQ, due to Proposition 4.2(ii). Letting hQ(λQ) = μQ precisely when
h(X�

λQ
) = Y�

μQ
therefore (uniquely) defines a map hQ : σ(�)Q → σ(�)Q. Since h is

one-to-one, so is hQ, and hence #σ(�)Q ≤ #σ(�)Q. Again, reversing the roles of � and �

yields #σ(�)Q = #σ(�)Q, and hQ is a bijection. ��
Combining Lemmas 4.3 and 4.4, notice that if λ ∈ σ(�) \ {0} and �,� are C0-orbit

equivalent, then the respective (linear) flows induced on X�
λQ

and Y�
hQ(λQ)

are linearly flow

equivalent with τx = αλQidR for every x ∈ X�
λQ

, where αλQ = T�
hQ(λQ)

/T�
λQ

. As it turns
out, Theorem 4.1 is but a direct consequence of the fact that αλQ does not actually depend
on λQ.

Lemma 4.7 Let �,� be bounded linear flows. If � is (h, τ )-related to � then

T�
hQ(λQ)

T�
λQ

=
T�
hQ (̃λQ)

T�
λ̃Q

∀λ, λ̃ ∈ σ(�) \ {0} ;

here hQ denotes the bijection of Lemma 4.4.

The proof of Lemma 4.7 given below is somewhat subtle. It makes use of a few elemen-
tary facts regarding maps of the 2-torus T := R

2/Z
2. Specifically, recall that with every
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continuous map f : T → T one can associate a continuous function Ff : R
2 → R

2 with
f (x + Z

2) = Ff (x) + Z
2 for all x ∈ R

2, as well as supx∈R2 ‖Ff (x) − L f x‖ < +∞ for
a unique L f ∈ Z

2×2. Two continuous maps f , f̃ : T → T are homotopic if and only if
L f = L f̃ ; moreover, L f ◦ f̃ = L f L f̃ . Also, if fn → f uniformly on T, then L fn = L f for
all sufficiently large n.

Given any u ∈ R
2, let κu(t, z) = z + ut for all (t, z) ∈ R × T. Thus κu simply is the

Kronecker (or parallel) flow on T generated by the differential equation ż = u. Recall that
for every z ∈ T, the κu-orbit κu(R, z) is either a singleton (if u = 0), homeomorphic to a
circle (if au ∈ Z

2 \ {0} for some a ∈ R), or dense in T. Variants of the following simple
rigidity property of Kronecker flows appear to have long been part of dynamical systems
folklore; cf. [2, Thm. 2] and [26, Lem. 6].

Proposition 4.8 Let u, ũ ∈ R
2. If f : T → T is continuous and maps some κu-orbit into a

κũ -orbit, i.e., f ◦κu(R, z) ⊂ κũ(R, z̃) for some z, z̃ ∈ T, then L f u, ũ are linearly dependent.

Remark 4.9 All concepts regarding T recalled above have precise analogues on the m-torus
R
m/Z

m for all m ∈ N, and Proposition 4.8 carries over verbatim with u, ũ ∈ R
m and their

associated m-dimensional Kronecker flows. Only the special case of m = 2, however, plays
a role in what follows.

Proof of Lemma 4.7 As in the proof of Lemma 4.3, denote A�, A� simply by A, B. Also, let
λ1Q, . . . , λ�Q and μ1Q, . . . , μ�Q, with � ∈ N0, be the distinct rational classes other than
{0} generated by σ(�) and σ(�) respectively, and hQ(λ jQ) = μ jQ for j = 1, . . . , �. As
there is nothing to prove otherwise, assume � ≥ 2, and let λ1 = λ, λ2 = λ̃. For the reader’s
convenience, the proof is carried out in several separate steps.

Step I—Topological preliminaries Let X j,k = ∑λ∈σ(�)∩(λ jQ+λkQ) X
�
λQ

for every 1 ≤
j ≤ k ≤ �, and similarly let Y j,k =∑μ∈σ(�)∩(μ jQ+μkQ) Y

�
μQ

. Clearly, X j,k is �-invariant

and contains both X�
λ jQ

(= X j, j ) and X�
λkQ

. Moreover, if { j1, k1} �= { j2, k2} then X j1,k1 ∩
X j2,k2 ⊂ X�

λQ
⊂ Per�, with an appropriate λ ∈ σ(�). Also, note that x ∈ X j,k \ Per� for

some j, k if and only if�(R, x) is homeomorphic toT. Since this property is preserved under
orbit equivalence, given any x ∈ X1,2, there exist j, k, possibly depending on x , such that
h(x) ∈ Y j,k . Thus the closed, connected sets {h−1(Y j,k) : 1 ≤ j ≤ k ≤ �} cover X1,2\Per�.
Since the latter set is connected, and h−1(Y j1,k1 ∩ Y j2,k2) ⊂ h−1(Per�) = Per�, the same
argument as in the proof of Lemma 4.4 demonstrates that h(X1,2) ⊂ Y j,k for some j, k, and
since Y�

μiQ
= h(X�

λiQ
) for i = 1, 2, it is clear that in fact h(X1,2) ⊂ Y1,2. Reversing the roles

of� and� yields h(X1,2) = Y1,2. Henceforth, assume w.l.o.g. that X1,2 = X and Y1,2 = Y .
(Otherwise, all topological notions employed in Steps III to V below have to be interpreted
relative to X1,2 and Y1,2, respectively.)

Step II—Arithmetical preliminaries For convenience, let Z0 = ker A = Fix�, and for
every j = 1, . . . , � let Z j =⊕s∈R+:ıs∈λ jQ

ker (A2 + s2 idX ), and also let Tj = T�
λ jQ

. With

this, X = ⊕�
j=0 Z j , and for each j = 1, . . . , � the eigenvalue λ j is a rational multiple of

2π ı/Tj . Since X = X1,2 by assumption, there exist unique k j,1, k j,2 ∈ Z, k j ∈ N with
gcd (k j,1, k j,2, k j ) = 1 and

k j/Tj = k j,1/T1 + k j,2/T2 ∀ j = 1, . . . , �.

Let LR be the subspace of R
� given by

LR = {x ∈ R
� : k j,1x,1 + k j,2x,2 − k j x, j = 0 ∀ j = 1, . . . , �}.

123



Journal of Dynamics and Differential Equations

Note that LR is two-dimensional and contains two linearly independent integer vectors.
(If � = 2 then simply LR = R

2.) Hence LZ := LR ∩ Z
� is a two-dimensional lattice,

that is, a discrete additive subgroup of LR. Let b1, b2 ∈ Z
� be a basis of this lattice, i.e.,

LZ = b1Z+ b2Z. Though not unique per se, the basis b1, b2 is uniquely determined under
the additional assumption that

b1,1 > 0, b2,1 = 0, 0 ≤ b1,2 < b2,2. (4.3)

(Note that if � = 2 then simply b1,1 = b2,2 = 1, b2,1 = b1,2 = 0.) Since clearly
[ 1/T1, . . . , 1/T� ]� ∈ LR \ {0}, there exists a unique u ∈ R

2 \ {0} such that
[ b1 | b2 ] u = [ 1/T1, . . . , 1/T� ]�. (4.4)

Notice in particular that u,1Q+ u,2Q = 1/T1Q+ 1/T2Q, and hence u,1, u,2 are rationally
independent because 1/T1, 1/T2 are.

A completely analogous construction can be carried out in Y : Let W0 = ker B = Fix�,
and letWj =⊕s∈R+:ıs∈μ jQ

ker (B2+ s2 idY ) for j = 1, . . . , �, as well as S j = T�
μ jQ

. Then

Y =⊕�
j=0 Wj , and the same procedure as above yields unique c1, c2 ∈ Z

� with

c1,1 > 0, c2,1 = 0, 0 ≤ c1,2 < c2,2, (4.5)

(and in fact c1,1 = c2,2 = 1, c2,1 = c1,2 = 0 in case � = 2), together with a unique
ũ ∈ R

2 \ {0} such that
[ c1 | c2 ] ũ = [ 1/S1, . . . , 1/S� ]� ; (4.6)

again, ũ,1, ũ,2 are rationally independent.
Step III—Construction of maps on T Denote by P0, . . . , P� the complementary linear

projections associated with the decomposition X =⊕�
j=0 Z j , i.e., P0 is the projection of X

onto Z0 along
⊕�

j=1 Z j etc. Note that Pj�t = �t Pj for all j = 0, 1, . . . , � and t ∈ R, due
to the �-invariance of Z j . Given any x ∈ X , define px : T → X as

px (z) = P0x +
∑�

j=1 �(b1, j z,1+b2, j z,2)Tj Pj x ∀z ∈ T,

with b1, b2 ∈ Z
� as in Step II. Clearly, px is continuous, px (0 + Z

2) = x , and with an
appropriate constant ν ∈ R

+,

‖px (z)− px̃ (z)‖ ≤ ν‖x − x̃‖ ∀x, x̃ ∈ X , z ∈ T. (4.7)

Thus pxn → px uniformly on T whenever xn → x . Also, with the unique u from (4.4)

px (ut + Z
2) = P0x +

∑�

j=1 �t(b1, j u,1+b2, j u,2)Tj Pj x = P0x +
∑�

j=1 �t Pj x = �t x ∀t ∈ R.

In terms of the Kronecker flow κu on T, this simply means that

px ◦ κu(t, 0+ Z
2) = �t x ∀t ∈ R. (4.8)

Since u,1, u,2 are rationally independent, the κu-orbit κu(R, 0+Z
2) is dense in T, and hence

px (T) = �(R, x). Thus, px maps T continuously onto the closure of the �-orbit of x , for
every x ∈ X .

Next, considerU := {x ∈ X : T�
Pj x
= Tj ∀ j = 1, . . . , �}, an open, dense, and connected

subset of X by Propositions 4.2 and 4.5. Whenever x ∈ U , note that px (z) = px (̃z) implies
z − z̃ ∈ Z

2, i.e., px is one-to-one and hence a homeomorphism from T onto �(R, x).
Moreover, p−1x depends continuously on x ∈ U in the following sense: If xn → x in
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Φ(R, x) Ψ R, h(x)

h

TT fx = q−1
h(x) ◦ h ◦ px

px qh(x)

0 + Z
2 0 + Z

2

u u

x

X

h(x)

Y

Fig. 4 The map fx : T → T is well-defined and continuous provided that x ∈ h−1(V ) ⊂ X and is a
homeomorphism whenever x ∈ U ∩ h−1(V )

U , and if (̃xn) converges to some x̃ with x̃n ∈ pxn (T) for every n, then x̃ ∈ px (T) and
p−1xn (̃xn) → p−1x (̃x) in T. To see this, let x̃n = pxn (zn) with the appropriate zn ∈ T, and
note that every subsequence (znk ) contains a subsequence that converges in T to some z
with x̃ = px (z). Since px is one-to-one, z is uniquely determined by this property, and so
(zn) =

(
p−1xn (̃xn)

)
converges to z = p−1x (̃x).

Again, a completely analogous construction canbe carried out inY :Denote byQ0, . . . , Q�

the projections associated with the decomposition Y = ⊕�
j=0 Wj and, given any y ∈ Y ,

define qy : T → Y as

qy(z) = Q0y +
∑�

j=1 �(c1, j z,1+c2, j z,2)S j Q j y ∀z ∈ T,

with c1, c2 ∈ Z
� as in Step II. As before, qy is continuous, qy(0 + Z

2) = y, and qyn → qy
uniformly on T whenever yn → y. In analogy to (4.8), with the unique ũ from (4.6),

qy ◦ κũ(t, 0+ Z
2) = �t y ∀t ∈ R, (4.9)

and qy maps T continuously onto �(R, y). With the open, dense, and connected subset
V := {y ∈ Y : T�

Q j y
= S j ∀ j = 1, . . . , �} of Y , the map qy is one-to-one whenever y ∈ V ,

and q−1y depends continuously on y ∈ V , in the sense made precise earlier.
Combining the homeomorphism h with the maps introduced so far yields a continuous

map fx : T → T, given by

fx (z) := q−1h(x) ◦ h ◦ px (z) ∀z ∈ T,

with fx (0+Z
2) = 0+Z

2, provided that x ∈ h−1(V ); see also Fig. 4.Notice that h−1(V ) ⊂ X
is open, dense, and connected.As seen earlier, if xn → x in h−1(V ) then fxn → fx pointwise.
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In fact, using the analogue for qh(x) of (4.7), it is readily seen that fxn → fx uniformly on T.
Thus x �→ L fx is continuous on h

−1(V ), and indeed constant because h−1(V ) is connected.
In other words, L fx = L for a unique L ∈ Z

2×2 and every x ∈ h−1(V ). Recall that px , and
hence also fx , is a homeomorphism whenever x ∈ U ∩ h−1(V ). This set, though perhaps
not connected, is open and dense in X , so certainly not empty. Thus L is invertible over Z,
or equivalently |det L| = 1.

Step IV—Properties of L and [ b1 | b2 ], [ c1 | c2 ] The scene is now set for recognizing
some finer properties of the matrices L ∈ Z

2×2 and [ b1 | b2 ], [ c1 | c2 ] ∈ Z
�×2, which truly

is the crux of this proof. Concretely, it will be shown both that L = I2 and that the first two
rows of [ c1 | c2 ] are positive integer multiples of the corresponding rows of [ b1 | b2 ]. To this
end, for i = 1, 2 fix xi ∈ Zi so that T�

xi = Ti . Then yi := h(xi ) ∈ W0 ⊕ Wi and T�
yi = Si .

Also, by (4.7) and its analogue for qy , picking ν ∈ R
+ large enough ensures that

‖px (z)− px̃ (z)‖ ≤ ν‖x − x̃‖, ‖qy(z)− qỹ(z)‖ ≤ ν‖y − ỹ‖ ∀x, x̃ ∈ X , y, ỹ ∈ Y , z ∈ T.

Since Si is the minimal �-period of yi , given any ε > 0, there exists a δ1(ε) > 0 such that

‖�t yi −�t̃ yi‖ < δ1(ε) for some t, t̃ ∈ R  ⇒ mink∈Z |(t − t̃ )/Si − k| < ε. (4.10)

By the continuity of h and the periodicity of xi , there also exists a δ2(ε) > 0 such that

‖x −�t xi‖ < δ2(ε) for some t ∈ R  ⇒ ‖h(x)− h(�t xi )‖ <
δ1(ε)

2(1+ ν)
. (4.11)

Moreover, notice the simple estimate, valid for x ∈ h−1(V ) and i = 1, 2,

‖qyi ◦ fx (z)− h ◦ pxi (z)‖ ≤ ν‖h(x)− yi‖ + ‖h ◦ px (z)− h ◦ pxi (z)‖ ∀z ∈ T. (4.12)

Finally, let zs, z̃s ∈ T be given by

zs =
[
0
s

]
+ Z

2, z̃s =
[−b2,2s

b1,2s

]
+ Z

2 ∀s ∈ R,

and observe that, for i = 1, 2,

pxi (zs) = �b2,i sTi xi , qyi ◦ fx (zs) = �γi (s)Si yi ∀s ∈ R, (4.13)

with γi (s) = [ c1,i , c2,i ]Ffx (zs). Similarly

pxi (̃zs) = �(−b1,i b2,2+b1,2b2,i )sTi xi , qyi ◦ fx (̃zs) = �γ̃i (s)Si yi ∀s ∈ R, (4.14)

with γ̃i (s) = [ c1,i , c2,i ]Ffx (̃zs). With these preparations, it is possible to analyze fx for x
close to x1 or x2. For the reader’s convenience, the analysis is carried out in two separate
sub-steps.

Sub-step IVa—Analysis of fx for x close to x1 Given any 0 < ε < 1
4 , let δ = δ2(ε)/(1+ν)

for convenience, and assume that x ∈ h−1(V ) with ‖x − x1‖ < δ. Then ‖h(x) − y1‖ <
1
2 δ1(ε)/(1+ ν) by (4.11), and using (4.13) with i = 1, recalling that b2,1 = 0,

‖px (zs)− px1(zs)‖ = ‖px (zs)− x1‖ <
ν

1+ ν
δ2(ε) < δ2(ε),

and hence ‖h ◦ px (zs) − h ◦ px1(zs)‖ < 1
2 δ1(ε)/(1 + ν) as well. With (4.12), therefore,

‖�γ1(s)S1 y1 − y1‖ < 1
2 δ1(ε), and (4.10) yields mink∈Z |γ1(s)− k| < ε for all s ∈ R. Since

γ1 is continuous, there exists a unique k ∈ Z such that |γ1(s)− k| < ε for all s. Recall that
γ1(s) = [ c1,1, 0 ]Ffx (zs) and that sups∈R |Ffx (zs)− L fx zs | < +∞. Consequently,

sups∈R |c1,1L1,2s| = sups∈R

∣∣[ c1,1, 0 ]Lzs
∣∣ < +∞,
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and since c1,1 > 0, it follows that L1,2 = 0, which in turn implies |L1,1| = |L2,2| = 1,
because |det L| = 1.

Similarly, using (4.14) with i = 1,

‖px (̃zs)−�−b1,1b2,2sT1x1‖ = ‖px (̃zs)− px1 (̃zs)‖ <
ν

1+ ν
δ2(ε),

and again ‖h ◦ px (̃zs)− h ◦ px1 (̃zs)‖ < 1
2 δ1(ε)/(1+ ν), so that (4.12) now yields

‖�γ̃1(s)S1 y1 −�τx1 (−b1,1b2,2sT1)y1‖ = ‖qy1 ◦ fx (̃zs)− h ◦ px1 (̃zs)‖ < 1
2 δ1(ε).

Hence mink∈Z |γ̃1(s) − τx1(−b1,1b2,2sT1)/S1 − k| < ε for all s ∈ R. Similarly to before,
and since L1,2 = 0, this implies that

sups∈R |b2,2c1,1L1,1s − τx1(b1,1b2,2sT1)/S1| < +∞.

As b1,1, b2,2, c1,1 all are positive, and τx1 is increasing, L1,1 ≥ 0, and so in fact L1,1 = 1.
Finally, let r = 1/(b1,1b2,2) and note that px1 (̃zs+r ) = px1 (̃zs) for all s, but also

‖�γ̃1(s+r)S1 y1 −�γ̃1(s)S1 y1‖ = ‖qy1 ◦ fx (̃zs+r )− qy1 ◦ fx (̃zs)‖
≤ 2ν‖h(x)− y1‖ + ‖h ◦ px (̃zs+r )− h ◦ px1 (̃zs+r )‖ + ‖h ◦ px (̃zs)− h ◦ px1 (̃zs)‖
< 2ν

δ1(ε)

2(1+ ν)
+ δ1(ε)

2(1+ ν)
+ δ1(ε)

2(1+ ν)

= δ1(ε) ∀s ∈ R.

Deduce from (4.10) that, with a unique k ∈ Z,

|γ̃1(s + r)− γ̃1(s)+ k| < ε ∀s ∈ R. (4.15)

Adding (4.15) with s = 0, r , . . . , (n−1)r yields |γ̃1(nr)−γ̃1(0)+nk| < nε for every n ∈ N.
Since the difference between γ̃1(nr) = [ c1,1, 0 ]Ffx (̃znr ) and [ c1,1, 0 ]Lz̃nr = −c1,1n/b1,1
remains bounded as n →∞, it follows that |c1,1/b1,1 − k| ≤ ε. Moreover, since ε > 0 was
arbitrary and b1,1, c1,1 are positive, in fact c1,1/b1,1 = k ∈ N. In summary, the analysis for
x being sufficiently close to x1 shows that L1,1 = 1, L1,2 = 0, and c1,1/b1,1 ∈ N.

Sub-step IVb—Analysis of fx for x close to x2 A completely analogous analysis can be
carried out for x being close to x2. Specifically, given any 0 < ε < 1

4 , assume that x ∈ h−1(V )

with ‖x − x2‖ < δ. Similarly to before, (4.12) and (4.13) now yield

‖�γ2(s)S2 y2 −�τx2 (b2,2sT2)y2‖ = ‖qy2 ◦ fx (zs)− h ◦ px2(zs)‖ < 1
2 δ1(ε) ∀s ∈ R,

and consequentlymink∈Z |γ2(s)−τx2(b2,2sT2)/S2−k| < ε. As γ2(s) = [ c1,2, c2,2 ]Ffx (zs),
this implies that

sups∈R |c2,2L2,2s − τx2(b2,2sT2)/S2| < +∞,

and hence L2,2 ≥ 0, so in fact L2,2 = 1. As well, px2(zs+1/b2,2) = px2(zs) for all s, but also

‖�γ2(s+1/b2,2)S2 y2 −�γ2(s)S2 y2‖ = ‖qy2 ◦ fx (zs+1/b2,2 )− qy2 ◦ fx (zs)‖
≤ 2ν‖h(x)− y2‖ + ‖h ◦ px (zs+1/b2,2 )− h ◦ px2 (zs+1/b2,2 )‖ + ‖h ◦ px (zs)− h ◦ px2 (zs)‖
< δ1(ε) ∀s ∈ R,

implying that |γ2(s + 1/b2,2)− γ2(s)− k| < ε for a unique k ∈ Z and all s ∈ R. By adding
these inequalities for s = 0, 1/b2,2, . . . , (n − 1)/b2,2, similarly to before, it follows that

|c2,2/b2,2 − k| = lim supn→∞ |γ2(n/b2,2)/n − k| ≤ ε,
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and since ε > 0 was arbitrary, c2,2/b2,2 ∈ N. Finally, utilizing (4.12) and (4.14) with i = 2,

‖�γ̃2(s)S2 y2 − y2‖ = ‖qy2 ◦ fx (̃zs)− h ◦ px2 (̃zs)‖ < 1
2 δ1(ε) ∀s ∈ R,

yields mink∈Z |γ̃2(s)− k| < ε for all s. Consequently, as L1,1 = L2,2 = 1 and L1,2 = 0,

sups∈R |s(b1,2c2,2 − b2,2c1,2 − L2,1b2,2c2,2)| = sups∈R

∣
∣[ c1,2, c2,2 ]Lz̃s

∣
∣ < +∞.

Thus necessarily L2,1 = b1,2/b2,2 − c1,2/c2,2. By (4.3) and (4.5), both ratios b1,2/b2,2 and
c1,2/c2,2 are non-negative and strictly less than 1. Thus L2,1 = 0 and b1,2/b2,2 = c1,2/c2,2.
In summary, the analysis for x being sufficiently close to x2 shows that L2,1 = 0, L2,2 = 1,
and hence L = I2, as well as c2,2/b2,2 ∈ N and b1,2/b2,2 = c1,2/c2,2.

Step V—Concluding the proof For every x ∈ U ∩ h−1(V ) the map gx : T → T given by
gx = p−1x ◦ h−1 ◦ qh(x) is a homeomorphism of T, with gx = f −1x , and carrying out Step IV
with the roles of � and � reversed yields Lgx = L−1 = I2, as well as b1,1/c1,1, b2,2/c2,2 ∈
N. This shows that in fact b1,1 = c1,1, b2,2 = c2,2, and hence also b1,2 = c1,2. With this, the
proof is readily completed: Combine (4.8), (4.9), the definition of fx , and the fact that � is
(h, τ )-related to �, to deduce that for every x ∈ h−1(V ),

fx ◦ κu(t, 0+ Z
2) = q−1h(x) ◦ h(�t x) = q−1h(x)

(
�τx (t)h(x)

) = κũ(τx (t), 0+ Z
2) ∀t ∈ R,

where u, ũ ∈ R
2 \ {0} are determined by (4.4) and (4.6) respectively. In particular

[
b1,1 0
b1,2 b2,2

]
u =
[
1/T1
1/T2

]
,

[
c1,1 0
c1,2 c2,2

]
ũ =
[
1/S1
1/S2

]
. (4.16)

By Proposition 4.8, the vectors L fx u, ũ are linearly dependent. Since L fx = I2 and the two
matrices in (4.16) are identical, linear dependence of L fx u, ũ implies linear dependence of
[ 1/T1, 1/T2 ]�, [ 1/S1, 1/S2 ]�, that is,

0 =
∣∣∣∣
1/T1 1/S1
1/T2 1/S2

∣∣∣∣ =
1

S1S2

(
S1
T1
− S2

T2

)
.

Thus, T�
μ1Q

/T�
λ1Q

= T�
μ2Q

/T�
λ2Q

, as claimed. ��

As alluded to earlier, by combining Lemmas 4.3, 4.4, and 4.7 it is now easy to establish
the “only if” part of Theorem 4.1. (The “if” part is obvious.)

Proof of Theorem 4.1 As in the proof of Lemma 4.7, let λ1Q, . . . , λ�Q, with � ∈ N0, be
the distinct rational classes other than {0} generated by σ(�); again there is nothing to
prove unless � ≥ 2. For convenience, denote the generators of the linear flows induced
on X�

λ jQ
and Y�

hQ(λ jQ)
by A j and Bj respectively, and let X�

λ jQ
= Fix� ⊕⊕m j

k=1 Xa j,k ,

Y�
hQ(λ jQ)

= Fix� ⊕⊕m j
k=1 Ya j,k/α j , in accordance with the proof of Lemma 4.3. As seen in

that proof, Hj A j = α j B j Hj , with α j = T�
hQ(λ jQ)

/T�
λ jQ

and an isomorphism Hj : X�
λ jQ

→
Y�
hQ(λ jQ)

satisfying HjFix� = Fix� as well as Hj Xa j,k = Ya j,k/α j for k = 1, . . . ,m j . By

Lemma 4.7, α j = α1 for all j = 1, . . . , �. Since X =∑�
j=1 X�

λ jQ
and Y =∑�

j=1 Y�
hQ(λ jQ)

,

letting Hx = Hj x for x ∈ ⊕m j
k=1 Xa j,k and Hx = H1x for x ∈ Fix�, yields a linear

isomorphism H : X → Y with H A� = α1A�H . ��
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5 Proof of the Classification Theorems

Let � be a linear flow on X , a finite-dimensional normed space over R. The subspaces

X�
S := {x ∈ X : limt→+∞�t x = 0} ,

X�
C := {x ∈ X : lim|t |→+∞ e−ε|t |�t x = 0 ∀ε > 0} ,

X�
U := {x ∈ X : limt→−∞�t x = 0} ,

referred to as the stable, central, and unstable space of �, respectively, are �-invariant,
and X = X�

S ⊕ X�
C ⊕ X�

U ; see, e.g., [12] for an authoritative account on linear dynamical
systems. Call � hyperbolic if X�

C = {0}, and central if X�
C = X . For • = S,C,U , let

P�• be the linear projection onto X�• along
⊕
◦�=• X�◦ . With this and �• := �X�• , clearly

� is linearly flow equivalent to the product flow �•�•, via the isomorphism �• P�• and
with τx = idR for all x ∈ X . By invariance, P�• �t = �t P�• for all t ∈ R, and hence also
P�• A� = A�P�• . Notice that if � is (h, τ )-related to � then h(X�

S ) = Y�
S , h(X�

U ) = Y�
U ,

whereas it is possible that h(X�
C ) �= Y�

C .

Proof of Theorem 1.1 To establish that (i)⇒(iv), assume that � is (h, τ )-related to �. Then
h(X�

S ) = Y�
S , h(X�

U ) = Y�
U , hence dim X�

S = dim Y�
S , dim X�

U = dim Y�
U , and it only

remains to prove the assertion regarding �C , �C . To this end, in analogy to the proofs in
Sect. 4, denote A�C , A�C by A, B respectively, and let X0 = ker A, Y0 = ker B, as well
as Xs = ker (A2 + s2 idX�

C
), Ys = ker (B2 + s2 idY�

C
) for every s ∈ R

+. For s ≥ 0 and

n ∈ N0, let c�
n (s) = dim

(
Xs∩Cε(n)(�, X)

)
. Recall from Sect. 3 that

(
c�
n (s)
)
is a decreasing

sequence of integers, with c�
0 (s) = dim Xs , as well as c�

n (s) = 0 for all large n. With this,
consider non-negative integers d�

n (s) := c�
n−1(s)−c�

n (s), with any n ∈ N. As a consequence
of (3.10), d�

n (0) simply equals the number of blocks Jn in the real Jordan normal form of A,

whereas 1
2d

�
n (s) equals, for every s ∈ R

+, the number of blocks

[
Jn −s In
s In Jn

]

.

Recall first that h(X0) = Y0, by Proposition 2.3, and that h
(
Cε(n)(�, X)

) = Cε(n)(�, Y )

for every n ∈ N0, by Lemma 3.6. It follows that c�
n (0) = c�

n (0) for all n ∈ N0, and hence
also d�

n (0) = d�
n (0) for all n ∈ N. Thus, A, B (and in fact αB for any α ∈ R

+) contain the
same number (possibly, zero) of blocks Jn in their respective real Jordan normal forms, for
each n ∈ N. Since this clearly proves (iv) in case σ(�) ∩ ıR ⊂ {0}, henceforth assume that
σ(�) ∩ ıR \ {0} �= ∅.

Pick any λ ∈ σ(�)∩ıR\{0}, and recall that X�
λQ
⊂ Bnd� aswell as h(Bnd�) = Bnd�.

Thus h(X�
λQ

) = Y�
hQ(λQ)

, by Lemma 4.4. As in the proof of Lemma 4.3, for convenience let
λQ∩σ(�)\ {0} = {±ıa1, . . . ,±ıam} and hQ(λQ)∩σ(�)\ {0} = {±ıb1, . . . ,±ıbm}, with
m ∈ N and real numbers a1 > · · · > am > 0 and b1 > · · · > bm > 0; again, a0 := b0 := 0.
As seen in that proof, ak = αbk for every k = 0, 1, . . . ,m, with α = T�

hQ(λQ)
/T�

λQ
∈ R

+,
but also, with the sets K� ⊂ N0 defined there,

h
(
Xa�+1 ⊕

⊕

k∈K�

Xka�+1
)
= Yb�+1 ⊕

⊕

k∈K�

Ykb�+1 ∀� = 0, 1, . . . ,m − 1. (5.1)

Now, assume that, for some 0 ≤ � < m,

d�
n (ak) = d�

n (bk) ∀n ∈ N, k = 0, 1, . . . , � ; (5.2)
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as seen earlier, (5.2) holds for � = 0. With (5.1) and Lemma 3.6, for any n ∈ N0,

c�
n (a�+1)+

∑

k∈K�

c�
n (ka�+1) = dim

((
Xa�+1 ⊕

⊕

k∈K�

Xka�+1
)
∩ Cε(n)(�, X)

)

= dim
((

Yb�+1 ⊕
⊕

k∈K�

Ykb�+1
)
∩ Cε(n)(�, Y )

)
= c�

n (b�+1)+
∑

k∈K�

c�
n (kb�+1).

Together with (5.2), this implies that d�
n (a�+1) = d�

n (b�+1) for every n ∈ N, i.e., (5.2) holds
with �+1 instead of �, and by induction (on �) in fact for � = m as well. Thus, A, αB contain

the same number of blocks

[
Jn −ak In

ak In Jn

]

in their respective real Jordan normal forms, for

each n ∈ N and k = 1, . . . ,m. The same argument can be applied to every rational class λQ

with λ ∈ σ(�)∩ ıR \ {0}. By Lemma 4.7, the resulting value of α is independent of λ. Thus
A�C = A and αA�C = αB are similar, as claimed.

Showing that (iv)⇒(iii)⇒(ii) requires straightforward, mostly routine arguments. Since
details of the latter can be found in many textbooks, e.g., [3,4,12,20,30], only a brief out-
line is included here for completeness. To prove that (iv)⇒(iii), note first that ‖x‖�S :=∫ +∞
0 ‖�t P�

S x‖ dt and its counterpart ‖ · ‖�S on Y define norms on X�
S and Y�

S respectively,
for which ‖�·x‖�S and ‖�·y‖�S are strictly decreasing to 0 as t → +∞ whenever x �= 0,
y �= 0. Consequently, given x ∈ X�

S \ {0}, there exists a unique tx ∈ R with ‖�tx x‖S = 1.
Also, by assumption, there exists a linear isomorphism HS : X�

S → Y�
S . It is readily con-

firmed that hS : X�
S → Y�

S , given by

hS(x) =
⎧
⎨

⎩

�−αtx HS�tx x

‖HS�tx x‖�S
if x ∈ X�

S \ {0},
0 if x = 0,

is a homeomorphism, and

hS(�t P
�
S x) = �αt hS(P

�
S x) ∀(t, x) ∈ R× X . (5.3)

Acompletely analogous argument, utilizing‖x‖�U :=
∫ 0
−∞ ‖�t P�

U x‖ dt , its counterpart‖·‖�U
on Y , and a linear isomorphism HU : X�

U → Y�
U , yields a homeomorphism hU : X�

U → Y�
U

for which (5.3) holds withU instead of S. With this, clearly�S×�U ,�S×�U areC0-flow
equivalent via the homeomorphism hS × hU and with τx = α idR for all x ∈ X�

S × X�
U .

Since H A�C = αA�C H by assumption, H(�C )t = (�C )αt H for all t ∈ R, that is, �C ,
�C are linearly flow equivalent.

To prove that (iii)⇒(ii), assume that �S × �U , �S × �U are C0-flow equivalent and
HC (�C )t = (�C )αt HC for all t ∈ R, with some linear isomorphism HC : X�

C → Y�
C

and α ∈ R
+. By the implication (i)⇒(iv) already proved, dim X�

S = dim Y�
S , dim X�

U =
dim Y�

U , and the argument used above to prove that (iv)⇒(iii) yields a homeomorphism
hS : X�

S → Y�
S satisfying (5.3), as well as its counterpart hU : X�

U → Y�
U . Combining

these ingredients,

h(x) := hS(P
�
S x)+ HC P

�
C x + hU (P�

U x) ∀x ∈ X ,

defines a homeomorphism h : X → Y with h(�t x) = �αt h(x) for all (t, x) ∈ R× X . Thus
�,� are C0-flow equivalent. The implication (ii)⇒(i) is trivial. ��

The proof of Theorem 1.2 given below relies on two simple observations, both of which
are straightforward linear algebra exercises [37]; recall that X , Y are finite-dimensional linear
spaces over R.
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Proposition 5.1 Let A, Ã : X → Y be linear, and assume that Z �= X is a subspace of X
with Z ⊃ ker A + ker Ã. Then the following are equivalent:

(i) Ax, Ãx are linearly dependent for each x ∈ X \ Z;
(ii) Ã = αA for some α ∈ R \ {0}.
Proposition 5.2 Let A : X → X be linear. Then the following are equivalent:

(i) A is nilpotent, i.e., An = 0 for some n ∈ N;
(ii) A, αA are similar for every α ∈ R \ {0};
(iii) A, αA are similar for some α > 1.

Remark 5.3 While the non-trivial implication (i)⇒(ii) in Proposition 5.1 may fail if Z �⊃
ker A + ker Ã, even when dim X = 1, finite-dimensionality of X (or Y ) is irrelevant for the
result. By contrast, although (i)⇒(ii)⇒(iii) remains valid in Proposition 5.2 when dim X =
∞, every other implication may fail in this case. Provided that R is replaced with C in (ii),
Propositions 5.1 and 5.2 also hold when X , Y are linear spaces over C.

Proof of Theorem 1.2 Clearly (iv)⇒(iii)⇒(ii)⇒(i), so only the implication (i)⇒(iv) requires
proof. To prepare for the argument, assume� is (h, τ )-related to� with aC1-diffeomorphism
h : X → Y . For convenience, denote the linear isomorphism D0h by H , the generators
A�, A� by A, B, and the projections P�• , P�• by P•, Q•, respectively. As seen earlier,
h(X�

S ) = Y�
S and hence HX�

S = Y�
S , and similarly for X�

U . It is possible, however, that
HX�

C �= Y�
C , and this in turn necessitates usage of one additional pair of invariant subspaces

as follows: Recall that X�
C ⊃ Bnd� ⊃ ker A and Y�

C ⊃ Bnd� ⊃ ker B. By Proposi-
tion 2.3, h(Bnd�) = Bnd�, and hence H Bnd� = Bnd�, but also ABnd� ⊂ Bnd�

and B Bnd� ⊂ Bnd�, due to invariance. With this, let XHB = X�
S ⊕ Bnd� ⊕ X�

U and
YHB = Y�

S ⊕ Bnd� ⊕ Y�
U . Plainly, HXHB = YHB , and crucially,

Q•Hx = HP•x ∀x ∈ XHB , • = S,C,U .

By Theorem 1.1, there is nothing to prove if X�
C = X , or equivalently if XHB \ X�

C = ∅.
Thus, henceforth assume that XHB \ X�

C �= ∅; notice that this in particular includes the
possibility of X�

C = {0}, i.e., the case of a hyperbolic flow �.
With the notations introduced above, pick any x ∈ XHB \ X�

C and t ∈ R
+. Note that if

τ was differentiable, then differentiating the identity h(et Ax) = eτx (t)Bh(x) at (0, 0) would
immediately yield H A = τ ′0(0)BH ; cf. [34, p. 233]. The following argument mimics this
process of differentiation for arbitrary τ . First observe that, for every ε > 0,

h(et Aεx)/ε = eτεx (t)Bh(εx)/ε. (5.4)

Suppose that limε↓0 τεx (t) = +∞. If so, limn→∞ τεn x (t) = +∞ for every strictly decreasing
sequence (εn) with limn→∞ εn = 0. In this case, applying QS to (5.4) yields

Het A PSx = QSHet Ax = limn→∞ eτεn x (t)BQSh(εnx)/εn = 0,

and hence PSx = 0, whereas applying QU yields

0 = limn→∞ e−τεn x (t)BQUh(et Aεnx)/εn = QU Hx = HPU x,

and hence PU x = 0. Taken together, x ∈ ker (PS + PU ) = X�
C , contradicting the fact that

x ∈ XHB \ X�
C . Consequently, ρ0(t, x) := lim infε↓0 τεx (t) < +∞ and

Het Ax = eρ0(t,x)BHx . (5.5)
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Since ρ0(t, x) = 0 would imply x ∈ Per� ⊂ X�
C , clearly ρ0(t, x) ∈ R

+. Also, notice
that if lim supt↓0 ρ0(t, x) was positive, possibly +∞, then PSx = 0 and PU x = 0 would
follow from applying QS and QU respectively to (5.5), again contradicting the fact that
x ∈ XHB \ X�

C . Thus limt↓0 ρ0(t, x) = 0.
Next, deduce from (5.5) that

H Ax = limt↓0 H
et A − idX

t
x = limt↓0

ρ0(t, x)

t
· e

ρ0(t,x)B − idY
ρ0(t, x)

Hx = limt↓0
ρ0(t, x)

t
BHx,

(5.6)
and so ρ0,0(x) := limt↓0 ρ0(t, x)/t exists because BHx �= 0. Clearly, ρ0,0(x) ≥ 0. In
summary, for every x ∈ XHB \ X�

C there exists ρ0,0(x) ≥ 0 such that H Ax = ρ0,0(x)BHx ;
in particular, BHx, H A are linearly dependent for each x ∈ XHB\X�

C . Notice that ker BH =
H−1ker B ⊂ H−1Bnd� = Bnd�, as well as ker H A = ker A ⊂ Bnd�, and hence
ker BH + ker H A ⊂ Bnd� �= XHB . Proposition 5.1, applied to BH , H A : XHB → YHB

and Z = Bnd� = XHB ∩ X�
C , guarantees the existence of α ∈ R \ {0} such that
H Ax = αBHx ∀x ∈ XHB , (5.7)

and from (5.6) it is clear that in fact α ∈ R
+. Thus the proof is complete in case XHB = X ,

or equivalently whenever Bnd� = X�
C . (This, for instance, includes the case of a hyperbolic

flow �.)
It remains to consider the case of Bnd� being a proper subspace of X�

C , where necessarily
Bnd� �= {0}. Deduce from Theorem 1.1 that there exists a linear isomorphism K : X → Y ,
with K X�• = Y�• for each • = S,C,U , and a β ∈ R

+ such that

K Ax = βBK x ∀x ∈ X�
C . (5.8)

Notice that (5.8) implies K Bnd� = Bnd�. Combine (5.7) and (5.8) to obtain

αH−1BHx = βK−1BK x ∀x ∈ Bnd�. (5.9)

For convenience, denote the generators of�Bnd� and�Y�
C
by BB and BC respectively. Since

H Bnd� = Bnd� = K Bnd�, (5.9) simply asserts that αBB , βBB are similar. It is now
helpful to distinguish two cases: On the one hand, if BB is not nilpotent, then α = β by
Proposition 5.2. In this case, L : X → Y with

L = HPS + K PC + HPU (5.10)

is a linear isomorphism, and L Ax = αBLx for all x ∈ X . On the other hand, if BB is
nilpotent then so is BC , and Proposition 5.2 shows that αBC , βBC are similar. Consequently,
there exists a linear isomorphism K̃ : X → Y , with K̃ X�• = Y�• for each • = S,C,U ,
such that K̃ Ax = αBK̃ x for all x ∈ X�

C . The same argument as in the non-nilpotent case
then applies, with K̃ in place of K in (5.10). In either case, therefore, L A = αBL , that is,
A� = A and αA� = αB are similar, and the proof is complete. ��

With the main results established, the remainder of this section provides a brief discussion
relating them to the existing literature.

In the case of hyperbolic flows, Theorem 1.1 is classical [3,4,12,20,30]. What makes the
result more challenging in general, then, is the presence of a non-trivial central space. On
this matter, two key references are [24,26]. In [24], the equivalence (ii)⇔(iv) of Theorem 1.1
is proved utilizing a version of flow equivalence (termed homeomorphy, also allowing for
negative α in (iv), that is, for time-reversal). To put this in perspective, notice that insisting
on flow (rather than mere orbit) equivalence greatly simplifies the arguments in the present
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article as well. For instance, Proposition 2.4(i) simply reads Tψ

h(x) = αT ϕ
x in this case, and

Lemma 4.7 (the proof of which required considerable effort) trivially holds. Consequently, to
decide whether two bounded real linear flows are C0-flow equivalent, all that is needed is an
elementary analysis of periodic points, as developed in Sect. 4. In particular, one may bypass
the topological considerations of [24, §3–4] which the authors found unduly hard to grasp.
To deal with non-semisimple eigenvalues on ıR, [24, §5] introduces a proximality relation
%ϕ : Specifically, x%ϕ x̃ if, given any neighbourhoods U , Ũ of x, x̃ ∈ X respectively, there
exists a v ∈ X such that ϕ(R, v) ∩ U �= ∅ and ϕ(R, v) ∩ Ũ �= ∅. Plainly, %ϕ is reflexive
and symmetric, but not, in general, transitive, and if ϕ is (h, τ )-related to ψ , then x%ϕ x̃ is
equivalent to h(x)%ψh(̃x). Moreover, if x ∈ C0(ϕ, X), then x%ϕ0, and for irreducible linear
flows the converse is true also. While the usage of %ϕ in [24] thus resembles the usage of
C0 (and C) in the present article, recall from Sect. 2 that these non-uniform cores may be
ill-behaved under products—and so may be %ϕ . In fact, as per Example 2.7 with u, ũ as in
(2.9), it is readily seen that u%ϕ0 and ũ%ϕ0, yet (u, ũ)���%ϕ×ϕ (0, 0). Good behaviour of %ϕ

under products, which even for linear flows may or may not occur in general, appears to have
been taken for granted throughout [24] without proper justification. For comparison, recall
from Sect. 2 that using uniform cores allows one to avoid this difficulty altogether; see also
[18,36].

The focus in [26] is on C0-orbit equivalence for linear flows, real or complex, for which
(i)⇔(iv) of Theorem 1.1 and, in essence, a version of Theorem 6.1 below are established. In
the process, the following terminology is employed (cf. also [9, sec. II.4]): For every x ∈ X ,
consider the ϕ-invariant closed sets

D−ϕ (x) =
⋂

t,ε∈R+
ϕ
(] −∞,−t], Bε(x)

)
, D+ϕ (x) =

⋂

t,ε∈R+
ϕ
([t,+∞[, Bε(x)

)
,

where Bε(x) denotes the open ε-ball centered at x . With this, Dϕ(x) := D−ϕ (x) ∩ D+ϕ (x)
and Sϕ := {x ∈ X : D−ϕ (x) �= ∅, D+ϕ (x) �= ∅} are called the ϕ-prolongation of x and the
ϕ-separatrix, respectively. Note that, in the parlance of Sect. 2, simply Dϕ(x) = Cx,x (ϕ, X)

and Sϕ = C(ϕ, X). A crucial lemma [26, Lem. 7] asserts that these sets are well-behaved
under products, in that, for instance, Sϕ×ψ = Sϕ × Sψ . As demonstrated by Example 2.7,
this is incorrect in general. Another crucial lemma [26, Lem. 8] asserts that prolongations
and separatrices are well-behaved under orbit equivalence. Although this assertion is correct
(and a special case of Lemma 2.5), its proof in [26] assumes τ : R× X → R in (1.1) to be
continuous. The reader will have no difficulty constructing examples of C0-orbit equivalent
flows on X = R

2 for which τ is not even measurable, let alone continuous. Sometimes τ

can be replaced by a continuous modification, but simple examples show that this may not
always be the case. Obviously, by Theorem 1.1, a continuous modification of τ always exists
between linear flows, but surely this should be a consequence, rather than an assumption,
of any topological classification theorem—as it is in the present article, where no regularity
whatsoever is assumed for τ beyond the requirement that τx be strictly increasing for each
x ∈ X . One observation regarding a counterpart of Lemma 4.7 is worth mentioning also:
[26, Prop. 3] implicitly assumes that no more than two different rational classes have to
be considered simultaneously. In the notation of the proof of Lemma 4.7, this amounts to
assuming that X1,2 = X�

λ1Q
⊕ X�

λ2Q
. As the reader may want to check, this drastically

simplifies the proof of that lemma, since Step II and much of Step IV become obsolete.
In general, however, such an assumption is unfounded, as it is quite possible for three or
more rational classes to be rationally dependent, and hence for X1,2 to be strictly larger than
X�

λ1Q
⊕ X�

λ2Q
.
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As far as the smooth classification of linear flows is concerned, most textbooks mention
the special case (ii)⇔(iv) of Theorem 1.2 which, of course, can be established immediately
by differentiating h(et Ax) = eαt Bh(x) w.r.t. x and t ; see, e.g., [3,12,30,32]. However, if one
only assumesC1-orbit equivalence,where τ maydepend on x in a potentially very roughway,
differentiation clearly is not available, and a finer analysis is needed. A substantial literature
exists of further classification results for linear flows (considering, e.g., Lipschitz [22] and
Hölder [29] equivalence) as well as non-autonomous [14] and control systems [7,27,35], and
also for non-linear flows derived from them [8,23].

Finally, it is worth pointing out that a similar classification problem presents itself in
discrete time, i.e., for linear operators A : X → X , B : Y → Y which are C�-equivalent if
h(Ax) = Bh(x) for all x ∈ X .While for � ≥ 1 this problem is easier than its continuous-time
analogue, for � = 0 it is significantly more difficult and, to some extent, still unresolved; see,
e.g., [10,11,15,19,25] and the references therein for the long history of the problem and its
many ramifications.

6 Equivalence of Complex Linear Flows

So far, the classification of finite-dimensional linear flows developed in this article has
focussed entirely on real flows. Such focus is warranted by the fact that the main result,
Theorem 1.1, is a truly real theorem, whereas Theorem 1.2 carries over verbatim to com-
plex flows. The goal of this concluding section is to make these two assertions precise, via
Theorems 6.1 and 6.2 below.

Throughout, let X be a finite-dimensional normed space over K = R or K = C; to avoid
notational conflicts with previous sections, the field of scalars is indicated explicitly wherever
appropriate. Further, let XR be the realification of X , i.e., the linear space XR equals X as
a set, but with the field of scalars being R, and define ιX : X → XR as ιX (x) = x . Thus, if
K = C, then ιX is a homeomorphism aswell as anR-linear bijection, and dim XR = 2 dim X .
(Trivially, ifK = R then XR equals X as a linear space, and ιX = idX .) Everymap h : X → Y
induces a map hR = ιY ◦ h ◦ ι−1X : XR → YR which is continuous (one-to-one, onto) if and
only if h is. If h is C� or linear then so is hR, but the converse is not true in general when
K = C. In particular, an R-linear map h : X → Y is C-linear precisely if hR JX = JY hR

where JX : XR → XR is the unique linear operator with JX ( · ) = ιX
(
ı ι−1X ( · )). Given any

(smooth) flow ϕ on X , its realification ϕR on XR is defined via (ϕR)t = (ϕt )R for all t ∈ R.
Clearly, if ϕ,ψ are C�-orbit (or -flow) equivalent then so are ϕR, ψR, and for � = 0 the
converse also holds. For a K-linear flow � on X , it is readily confirmed that all fundamental
dynamical objects associatedwith� arewell-behaved under realification in that, for instance,
A�R = A�

R
and also X�R

R• = ιX (X�• ) for• = S,C,U .With this, the topological classification
theorem for K-linear flows, a generalization and immediate consequence of Theorem 1.1,
presents itself as a truly real result in that topological equivalence is determined completely
by the associated realifications. (The reader familiar with [26] will notice how usage of
realifications avoids the somewhat cumbersome notion of c-analog.)

Theorem 6.1 Let �,� be K-linear flows on X , Y , respectively. Then each of the following
five statements implies the other four:

(i) �,� are C0-orbit equivalent;
(ii) �,� are C0-flow equivalent;
(iii) �R, �R are C0-orbit equivalent;
(iv) �R, �R are C0-flow equivalent;
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(v) dim X�
S = dim Y�

S , dim X�
U = dim Y�

U , and A�C
R

, αA�C
R

are R-similar for some α ∈
R
+.

Proof For K = R, this is part of Theorem 1.1, so assume K = C. Since hR : XR → YR is a
homeomorphism if and only if h : X → Y is, clearly (i)⇔(iii) and (ii)⇔(iv). By Theorem
1.1, (iii)⇔(iv)⇔(v). ��

By contrast, smooth equivalence of C-linear flows is not determined by the associated
realifications. To appreciate this basic difference, consider theC-linear flows�,� generated
by [ ı ], [−ı], respectively: While [ ı ]R, [−ı]R are R-similar, and hence �R, �R are C1- (in
fact, linearly) flow equivalent, [ ı ], α[−ı] are not C-similar for any α ∈ R

+, and correspond-
ingly �,� are not C1-orbit equivalent—though, of course, they are C0-flow equivalent by
Theorem 6.1. The following generalization of Theorem 1.2 shows that, just as in this simple
example, smooth equivalence always is determined by the K-similarity of generators (and
not by the R-similarity of realified generators).

Theorem 6.2 Let�,� be K-linear flows. Then each of the following four statements implies
the other three:

(i) �,� are C1-orbit equivalent;
(ii) �,� are C1-flow equivalent;
(iii) �,� are K-linearly flow equivalent;
(iv) A�, αA� are K-similar for some α ∈ R

+.

Apart from a few simple but crucial modifications, the proof of Theorem 6.2 closely
follows the arguments in previous sections and only is outlined here, with most details left to
the interested reader. A noteworthy stepping stone is the following extension of Theorem 4.1;
note that the increased smoothness is irrelevant when K = R, but is essential (for the “only
if” part) when K = C, as demonstrated by the simple example considered earlier.

Lemma 6.3 TwoboundedK-linear flows�,� areC1-orbit equivalent if andonly if A�, αA�

are K-similar for some α ∈ R
+.

Proof Only the case of K = C needs to be considered. Note that the definition of X�
ωQ

makes sense in this case, in fact, X�
ωQ
=⊕s∈R:ıs∈ωQ

ker (A�− ıs idX ), and Proposition 4.2
carries over verbatim. A crucial step, then, is to show that Lemma 4.3, with similarity in
(iii) understood to mean C-similarity, also remains valid provided that h : X → Y is
a C1-diffeomorphism. For assertions (i) and (ii), this is obvious, even when h is only a
homeomorphism. Differentiability of h, however, in addition yields H PerT� = PerαT� for
every T ∈ R

+, where H = D0h for convenience. To establish (iii), analogously to the proof
of Lemma 4.3, denote A�, A� by A, B respectively, and let σ(�) \ {0} = {ıa1, . . . , ıam}
with the appropriate m ∈ N0 as well as real numbers a j such that |a1| ≥ . . . ≥ |am | > 0,
and a j > a j+1 in case |a j | = |a j+1|. Similarly, σ(�) \ {0} = {ıb1, . . . , ıbn} with n ∈ N0

as well as |b1| ≥ . . . ≥ |bn | > 0, and b j > b j+1 whenever |b j | = |b j+1|. For convenience,
a0 = b0 = 0, and Xs = ker (A− ıs idX ), Ys = ker (B− ıs idY ) for every s ∈ R. Since A, B
are diagonalisable, it suffices to prove that m = n, and moreover that

ak = αbk and HXak = Ybk ∀k = 0, 1, . . . ,m. (6.1)

To this end, notice that Per2π/|s|� = ⊕k∈Z
Xks and Per2π/|s|� = ⊕k∈Z

Yks for every
s ∈ R \ {0}. Clearly, if mn = 0 then m = n = 0, and (6.1) holds. Henceforth, let m, n ≥ 1,
and assume that, for some integer 0 ≤ � < min{m, n},

ak = αbk and HXak = Ybk ∀k = 0, 1, . . . , � ; (6.2)
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since HX0 = Y0, this is clearly correct for � = 0. Letting

K� =
{
k ∈ Z \ {−1, 1} : k|a�+1| ∈ {a0, a1, . . . , a�}

}
,

note that K� is finite, and 0 ∈ K�. Deduce from

Per2π/|a�+1|� =
⊕

k∈Z
Xk|a�+1| = X−|a�+1| ⊕ X |a�+1| ⊕

⊕

k∈K�

Xk|a�+1| ,

together with (6.2) and

HX−|a�+1| ⊕ H|a�+1| ⊕
⊕

k∈K�

HXk|a�+1| = H Per2π/|a�+1|� = Per2πα/|a�+1|� (6.3)

=
⊕

k∈Z\K�

Yk|a�+1|/α ⊕
⊕

k∈K�

Yk|a�+1|/α,

that dim (X−|a�+1| ⊕ X |a�+1|) =
∑

k∈Z\K�
dim Yk|a�+1|/α > 0. Hence ık|a�+1|/α ∈ σ(�) for

some k ∈ Z \ K�, and so in fact |a�+1| ≤ α|b�+1|, but also dim (Y−|a�+1|/α ⊕ Y|a�+1|/α) ≤
dim (X−|a�+1| ⊕ X |a�+1|) because {−1, 1} ⊂ Z \ K�. Reversing the roles of � and � yields
that |a�+1| = α|b�+1| and dim (X−|a�+1| ⊕ X |a�+1|) = dim (Y−|b�+1| ⊕Y|b�+1|). Consequently,
(6.3) becomes

HX−|a�+1| ⊕ HX |a�+1| ⊕
⊕

k∈K�

HXk|a�+1| = Y−|b�+1| ⊕Y|b�+1| ⊕
⊕

k∈K�

Yk|b�+1|, (6.4)

and the goal now is to show that (6.2) holds with � + 1 instead of �. To this end, begin by
assuming that X |a�+1| �= {0}, and pick any x ∈ X |a�+1| \ {0}. Then εx ∈ Per2π/|a�+1|� and
h(εx) ∈ Per2π/|b�+1|� for every ε > 0, as well as

h(et Aεx)/ε = h(eıt |a�+1|εx)/ε = eτεx (t)Bh(εx)/ε. (6.5)

Note that 0 ≤ τεx (t) ≤ 2π/|b�+1| for every 0 ≤ t ≤ 2π/|a�+1|, and τεx ( · ) is increas-
ing. By the Helly selection theorem, there exists a strictly decreasing sequence (εn) with
limn→∞ εn = 0, along with an increasing function ρ with ρ(0) = 0, ρ(2π/|a�+1|) =
2π/|b�+1| such that limn→∞ τεn x (t) = ρ(t) for almost all (in fact, all but countably many)
0 ≤ t ≤ 2π/|a�+1|. With this, (6.5) yields

Heıt |a�+1|x = eρ(t)BHx for almost all 0 ≤ t ≤ 2π/|a�+1|.
Note that 0 < ρ(t) < 2π/|b�+1| for all 0 < t < 2π/|a�+1|. By monotonicity, ρ0 :=
limt↓0 ρ(t) exists, with 0 ≤ ρ0 < 2π/|b�+1|. If ρ0 > 0 then Hx ∈ Perρ0�, and hence
ρ0|b�+1| ∈ 2πN, which is impossible. Thus ρ0 = 0, and

ı |a�+1|Hx = limt↓0 H
eıt |a�+1| − 1

t
x = limt↓0

ρ(t)

t
· e

ρ(t)B − idY
ρ(t)

Hx = limt↓0
ρ(t)

t
BHx,

showing that ρ0,0 := limt↓0 ρ(t)/t exists, with ı |a�+1|Hx = ρ0,0BHx . Clearly ρ0,0 ≥ 0, in
fact, ρ0,0 > 0 since Hx �= 0, and hence Hx ∈ Y|a�+1|/ρ0,0 . In other words, if x ∈ X |a�+1| then
Hx ∈ Yb for some b ∈ R

+. Completely analogous reasoning yields Hx ∈ Y−b for some
b ∈ R

+ whenever x ∈ X−|a�+1|.
Recall that the goal is to establish (6.2) with �+ 1 instead of �. To this end, assume first

that |a�+1| = |a�|, and hence a�+1 = −a� < 0, but also b�+1 = −b� < 0. In this case
Xa�+1 = X−|a�+1| �= {0}, and utilizing the preceding considerations, together with (6.2) and
(6.4), it follows that HXa�+1 ⊂ Y−|b�+1| = Yb�+1 . Reversing the roles of � and � yields
HXa�+1 = Yb�+1 . Since a�+1 = αb�+1 in this case, (6.2) holds with �+ 1 instead of �.

It remains to consider the case of |a�+1| < |a�|. Here it is convenient to distinguish two
possibilities: On the one hand, if � = m−1 or |a�+2| < |a�+1| then exactly one of the spaces
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X±|a�+1| is different from {0}. As before, it is readily seen that a�+1, b�+1 have the same
sign, hence a�+1 = αb�+1, and HXa�+1 = Yb�+1 , so again (6.2) holds with � + 1 instead
of �. On the other hand, if |a�+2| = |a�+1| then a�+2 = −a�+1 < 0, and the argument
immediately following (6.3) shows that |a�+2| = α|b�+2| also. Thus a�+1 = αb�+1 > 0
and a�+2 = αb�+2 < 0, and analogous reasoning as before results in HXa�+1 = Yb�+1 ,
HXa�+2 = Yb�+2 . Again, (6.2) holds with � + 1 (in fact, � + 2) instead of �. Induction now
proves (6.1), and since X =⊕m

�=0 Xa�
, Y =⊕n

�=0 Yb�
, clearly m = n. As indicated earlier,

this establishes Lemma 4.3(iii) in the case of K = C and under the assumption that h is a
C1-diffeomorphism.

With Lemma 4.3 thus extended to complex linear flows, the remainder of the proof pro-
ceeds exactly as in Sect. 4, since Lemmas 4.4 and 4.7 carry over without any modifications,
and so does the proof of Theorem 4.1. (In fact, with the notation used in that proof, the linear
isomorphism Hj can be taken to be the restriction of D0h to X�

λ jQ
. Thus, instead of being

defined abstractly by A�, αA� both being diagonalisable and having the same eigenvalues
with matching geometric multiplicities, H now simply equals D0h.) ��
Outline of Proof of Theorem 6.2 Again, one only needs to consider the case of K = C and
establish (i)⇒(iv), as in the proof of Theorem 1.2. The crucial step is to extend Lemma 6.3
from bounded to central K-linear flows, i.e., to show that (i) implies C-similarity of
A�C , αA�C for some α ∈ R

+. To prove the latter along the lines of the proof of Theo-
rem 1.1, with Xs = ker (A�C − ıs idX�

C
), Ys = ker (A�C − ıs idY�

C
) for every s ∈ R, it

is necessary to first adjust the auxiliary results of Sect. 3, notably Lemmas 3.2 and 3.7, for
complex linear flows. With the details of these routine adjustments left to the reader, the
non-negative integer d�

n (s) now equals, for each n ∈ N and s ∈ R, the number of blocks
ıs In + Jn in the (complex) Jordan normal form of A�. Utilizing the proof of Lemma 6.3,
deduce that m = n, as well as ak = αbk for k = 0, 1 . . . ,m and an appropriate α ∈ R

+,
and that moreover d�

n (ak) = d�
n (bk) for all n, k. Again, the differentiability of h, h−1 is

essential here, unlike in the proof of Theorem 1.1. Thus, A�C , αA�C indeed are C-similar,
which in turn proves that (i)⇒(iv) in case X�

C = X . Apart from the fact that this latter exten-
sion of Lemma 6.3, rather than Theorem 1.1, has to be used to establish (5.8), the remaining
argument now is identical to the one proving Theorem 1.2 in Sect. 5. ��

To finally illustrate the difference between real and complex linear flows in dimensions
1 and 2, recall that on X = R there are exactly three (C0- or C1-) equivalence classes of
R-linear flows, represented by �(t, x) = etax with a ∈ {−1, 0, 1}. By contrast, on X = C

there are four C0-equivalence classes of C-linear flows, represented by �(t, x) = etcx with
c ∈ {−1, 0, 1, ı}, but infinitely many C1-equivalence classes, corresponding to c ∈ {ω ∈
C : |ω| = 1} ∪ {0}. Similarly, on X = R

2 there are exactly eight C0-equivalence classes of
R-linear flows, listed in (1.2), whereas for C-linear flows on X = C

2, all C0-equivalence
classes are given by all the matrices in (1.2) except for the left-most, together with

±
[
1 0
0 ı

]
,

[
ı 1
0 ı

]
,

[
ı 0
0 ıa

]
(0 ≤ a ≤ 1),

and all C1-equivalence classes are given by
[
0 0
0 0

]
,

[
0 1
0 0

]
,

[
c 1
0 c

]
,

[
c 0
0 ω

]
(c, ω ∈ C, |c| = 1, |ω| ≤ 1).

The reader may want to compare the latter to the seven singleton classes and five infinite
families that make up all C1-equivalence classes of R-linear flows on X = R

2, as listed in
the Introduction; cf. also [28, Ex. 1].
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