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Abstract

New elementary, self-contained proofs are presented for the topological and the smooth
classification theorems of linear flows on finite-dimensional normed spaces. The arguments,
and the examples that accompany them, highlight the fundamental roles of linearity and
smoothness more clearly than does the existing literature.
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1 Introduction

Let X be a finite-dimensional normed space over R and ¢ a flow on X,ie, ¢ :Rx X — X
is continuous, with (p(t, o(s, x)) =@t +s,x)and p(0,x) = x forallt,s € Rand x € X.
A fundamental problem throughout dynamics is to decide precisely which flows are, in
some sense, essentially the same. Formally, call two smooth flows ¢, ¥ on X, Y respectively
Ct-orbit equivalent, with £ € {0, 1, ..., oo}, if there exists a C £ -diffeomorphism (or home-
omorphism, in case £ =0) 7 : X — Y and a function 7 : R x X — R, with (-, x) strictly
increasing for each x € X, such that

h(p(t,x)) = ¥ (t(t,x), h(x)) Y, x)eRx X. (1.1)

If 7 in (1.1) can be chosen to be independent of x, and thus simply 7 (¢, x) = ot with some
o € RT, then ¢, ¥ are C¢-flow equivalent; they are linearly (orbit or flow) equivalent if
h(x) = Hx with some linear isomorphism H : X — Y. Notice that these definitions are
tailor-made for the present article and differ somewhat from terminology in the literature
which, however, is itself not completely unified. Usage herein of terminology pertaining to
the equivalence of flows is informed by the magisterial text [21], as well as by [3,20]. Widely
used alternative terms are (topologically) conjugate (for flow equivalent, often understood
to include the additional requirement that « = 1) and (topologically) equivalent (for orbit
equivalent); see [5,6,12,16,18,22,23,30-34].
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linearly flow equivalent — linearly orbit equivalent

I 4

C*>-flow equivalent — C>-orbit equivalent
I I

C’“flow equivalent - C*-orbit equivalent
I 4

C'-flow equivalent — C'-orbit equivalent

,,,,,,,,,,,,,,,,,,,,,, Yo
CO-flow equivalent :> CO-orbit equivalent
(<= dim X=1)

Fig. 1 Notions of equivalence for flows on normed spaces over R; no conceivable implication not shown in
the diagram is valid in general

Clearly, linear equivalence implies C¢-equivalence for any £, which in turn implies C°-
equivalence; also, flow equivalence implies orbit equivalence. Simple examples show that
none of these implications can be reversed in general, not even when dim X = 1, though the
latter case is somewhat special in that C%-orbit equivalence does imply C%-flow equivalence.
In any case, however, it turns out that all such examples must involve non-linear flows. In
fact, the main theme of this article is that for linear flows all the infinitely many different
notions of equivalence do coalesce, rather amazingly, into just fwo notions; see Figs. 1 and 2.

A flow ¢ on X is linear if each homeomorphism (or time-f-map) ¢(z, -) : X — X is
linear, or equivalently if ¢(z, -) = e'4” for every t € R, with a (unique) linear operator
A? : X — X, referred to as the generator of ¢. Thus a linear flow simply encodes the
totality of all solutions of the linear differential equation X = A¥x on X, in that ¢( -, xp)
is the unique solution of that equation satisfying x(0) = xo. To emphasize the fundamental
role played by linearity in all that follows, linear flows are henceforth denoted exclusively
by upper-case Greek letters @, W etc.

For linear flows, the weakest form of equivalence, C 0_orbit equivalence, implies the seem-
ingly much stronger C°-flow equivalence, and both properties can be characterized neatly in
terms of linear algebra. To state the following topological classification theorem, the main
topic of this article, recall that every linear flow ® on X uniquely determines a ®-invariant
decomposition X = X ;D ®X 23 ®X lq]) into stable, central, and unstable subspaces, with a
corresponding unique decomposition ® >~ &g x ®c x Dy ; see Sect. 5 for details.

Theorem 1.1 Let ®, W be linear flows on X, Y, respectively. Then each of the following four
statements implies the other three:

1) @,V are CY-orbit equivalent;
(ii) ®, W are CO-flow equivalent;
(ii) ®gx Py, Vs x Wy are CO-flow equivalent, and ®c, W¢ are linearly flow equivalent;
(iv) dim X® = dim Y;‘, dim X?} =dim Yl‘}', and A®C, a AYC are similar for some o € RY,
e, HA®C = o AYC H with some linear isomorphism H : Xg’ — Y&".
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linearly flow equivalent <= linearly orbit equivalent

i 3

C*>°-flow equivalent <~ C*°-orbit equivalent

1} 1} “smooth”
i (Theorem 1.2)
C*-flow equivalent = C*-orbit equivalent

0 3

C'-flow equivalent <~ C'-orbit equivalent

U ( X& =X or dimXx=1)

“topological”

CO-flow equivalent = CY%-orbit equivalent (Theorem 1.1)

Fig.2 By Theorems 1.1 and 1.2, for real linear flows all notions of equivalence coalesce into only two different
notions, or even just one if X® = XordimX =1

In the presence of smoothness, i.e., for C K—equivalence with £ > 1, the counterpart of
Theorem 1.1 is the following smooth classification theorem which shows that in fact the
weakest notion (C'-orbit equivalence) implies the strongest (linear flow equivalence).

Theorem 1.2 Let @, W be linear flows. Then each of the following four statements implies
the other three:

1) @,V are Cl-orbit equivalent;
(ii) ®, W are C'-flow equivalent;
(iii) @, ¥ are linearly flow equivalent;
(iv) A%, aAY are similar for some a € RT.

Taken together, Theorems 1.1 and 1.2 reveal a remarkable rigidity of finite-dimensional
real linear flows: For such flows, there really are only two different notions of equivalence,
informally referred to as topological and smooth equivalence; for central or one-dimensional
flows, even these two notions coalesce. Moreover, the theorems characterize these equiva-
lences in terms of elementary properties of the associated generators.

As far as the authors have been able to ascertain, variants of Theorem 1.1 were first
proved, independently, in [24,26], though of course for hyperbolic linear flows the result
dates back much further (see, e.g., [3,4,20]; a detailed discussion of the pertinent literature
is deferred to Sect. 5 when all relevant technical terms will have been introduced). Given the
clear, definitive nature of Theorem 1.1 and the fundamental importance of linear differential
equations throughout science, it is striking that the details of [24,26] have not been dissem-
inated more widely in over four decades [18]. A main objective of this article, then, is to
provide an elementary, self-contained proof of Theorem 1.1 that hopefully will find its way
into future textbooks on differential equations. In the process, several inaccuracies and gaps
in the classical arguments are addressed as well. As presented here, Theorem 1.2 is a rather
straightforward consequence of Theorem 1.1. Although the result itself seems to have long
been part of dynamical systems folklore [3,4,6,12,30,34], the authors are not aware of any
reference that would establish it in its full strength, that is, without imposing additional (and,
as it turns out, unnecessary) assumptions on 7.
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To appreciate the difference between Theorems 1.1 and 1.2, first note that for dim X = 1,
trivially all notions of equivalence coincide, yielding exactly three equivalence classes of
real linear flows, represented by ® (¢, x) = e’“x with a € {—1, 0, 1}. However, already for
dim X = 2 the huge difference between the theorems becomes apparent: On the one hand,
by Theorem 1.1, there are exactly eight topological (C?) equivalence classes, represented by
(1, x) = e'4x with A being precisely one of

o) [oo) Lo o) #[0 V) [0 ) #[o V] 02

By Theorem 1.2, on the other hand, all smooth (C') equivalence classes are represented

1 1 . .
01 ] and the five infinite

-1 0 10 1 —a
|: 0 a]’ i|:0 a:|’ :t|:a 1] (a € RY).

This article is organized as follows. Section 2 briefly reviews the notions of equivalence
for flows, as well as a few basic dynamical concepts. It then introduces cores, a new family of
invariant objects. Although these objects may well be useful in more general contexts, their
properties are established here only as far as needed for the subsequent analysis of flows on
finite-dimensional normed spaces. Section 3 specifically identifies cores for real linear flows,
and shows how they can be iterated in a natural way. As it turns out, the proof of Theorem 1.1
also hinges on a careful analysis of bounded linear flows, and the latter is carried out in Sect. 4.
With all required tools finally assembled, proofs of Theorems 1.1 and 1.2 are presented in
Sect. 5, together with several comments on related results in the literature that prompted this
work. While, for reasons that will become apparent in Sect. 6, the article focuses mostly
on real spaces, the concluding section shows how the results carry over to complex spaces
in a natural way. To keep the exposition focussed squarely on the main arguments, several
elementary (and, presumably, known) facts of an auxiliary nature are stated without proof;
for details regarding these facts, as well as others that are mentioned in passing but for which
the authors were unable to identify a precise reference, the interested reader is referred to the
accompanying document [37].

Throughout, the familiar symbols N, Ny, Z, Q, R™, R, and C denote the sets of all positive
integers, non-negative integers, integers, rational, positive real, real, and complex numbers,
respectively; for convenience, c + Q2 = {c + w : w € Q} and cQ = {cw : ® € Q} for any
¢ € C, Q c C. Occasionally, for the purpose of coordinate-dependent arguments, elements
of Z™, R™, or C", with m € N\ {1}, are interpreted as m x l-column vectors.

uniquely by the five left-most matrices in (1.2), together with £ [

families

2 Orbit Equivalence

Let X, Y be two finite-dimensional normed spaces over R, and let ¢, 1, respectively, be flows
on them; unless specified further, || - || denotes any norm on either space. Given two functions
h:X —Yandt:Rx X — R, say that ¢ is (&, t)-related to y if & is a homeomorphism,
7(-, x) is strictly increasing for each x € X, and

h(p(t,x)) = ¥ (t(t, x), h(x)) Y, x) €RxX. (1.1)

In what follows, for each ¢ € R the homeomorphism ¢(#, -) : X — X usually is denoted
¢y, and for each x € R the strictly increasing map t( -, x) : R — R is denoted t,. With this,
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(1.1) succinctly reads
hoi(x) =Ye @ oh(x) Y(,x) e RxX.

Thus ¢ is (h, t)-related to Y precisely if the homeomorphism /4 maps each ¢-orbit into
a Y-orbit in an orientation-preserving way. Note that no assumption whatsoever is made
regarding the x-dependence of t,. Still, utilizing the flow axioms of ¢, ¥, and the continuity
of h, h= 1, itis readily deduced from (1.1) that the function t can be assumed to have several
additional properties; cf. [5,6,31]. For convenience, these properties are understood to be part
of what it means for ¢ to be (&, t)-related to i throughout the remainder of this article.

Proposition 2.1 Let ¢, v be flows on X, Y, respectively, and assume that ¢ is (h, t)-related
to yr. Then @ is (h, T )-related to  where T, : R — R is, for every x € X, an (increasing)
continuous bijection with T, (0) = 0.

Recall from the Introduction that two flows ¢, v are (C°-)orbit equivalent if ¢ is (A, T)-
related to  for some h, 7; they are flow equivalent if, with the appropriate constanta € R,
the function t can be chosen so that 7, (t) = «t for all (¢, x) € R x X. This terminology is
justified.

Proposition 2.2 Orbit equivalence and flow equivalence are equivalence relations in the
class of all flows on finite-dimensional normed spaces.

A simple, classical example of orbit equivalence, presented in essence (though not always
in name) by many textbooks, is as follows [32, Sec. 3.1]: Assume that two flows ¢, ¥ on X are
generated by the differential equations X = V (x), x = W (x), respectively, with C*°-vector
fields V, W.If V. = wW for some (measurable and locally bounded) function w : X — R™
then ¢ is (idy, 7)-related to ¥, with 7, (1) = f; w(gs(x))ds forall (¢, x) € R x X.

For every x € X, let TY = inf{t € R* : ¢;(x) = x}, with the usual convention that
inf @ = +o0. Note that whenever the set {t € RT : ¢,;(x) = x} is non-empty, it equals
either RY or (nT¢ : n € N}. In the former case, 7)Y = 0, and x is a fixed point of ¢. In the
latter case, 0 < 7Y < 400, and x is T-periodic, i.e., o7 (x) = x with T € R*, precisely
for T e TYN; in particular, Ty is the minimal ¢-period of x. Denote by Fix ¢ and Perr¢
the sets of all fixed and T-periodic points respectively, and let Per ¢ = | J; g+ Perr¢. Note
that 77 is lower semi-continuous, with 7Y = 0 and 7)Y < 4-oo0 if and only if x € Fix ¢ and
x € Per ¢, respectively.

The g-orbit of any x € X is (R, x) = {¢;(x) : t € R}. Recall that C C X is ¢-invariant
if ¢;(C) = Cforallt € R, orequivalently if p(R, x) C C foreveryx € C. Clearly, Fix ¢ and
Per ¢ are g-invariant, and so is Pery¢ for every T € R*. Another example of a g-invariant
setis Bnd ¢ := {x € X :sup;cg llo: ()| < +oo}, which simply is the union of all bounded
@-orbits. Plainly,

Fix¢ C Perrg C Pero C Bndg VT € RY.

Proposition 2.3 Let ¢, ¥ be flows on X, Y, respectively, and assume that ¢ is (h, t)-related
to . Then C C X is g-invariant if and only if h(C) C Y is {-invariant. Moreover,

h(Fix¢) = Fixyr, h(Per¢) = Peryr, h(Bndy) = Bnd .

A simple observation with far-reaching consequences for the subsequent analysis is that,
under the assumptions of Proposition 2.3, and for any T € R™, the v/-invariant set & (Pery¢)
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may not be contained in Pergy for any S € R*. A numerical invariant that can be used to
address this “scrambling” of Per ¢ \ Fix ¢ by £ is the ¢-height of x, defined as

Ty
(x)? = lim Supzcper, 5 T—’fp Vx € Perg \ Fix ¢.
X
Note that (x)? equals either a positive integer or 400, and with (x)? := +oo for every
x € Fix ¢, the function ( - )¢ is upper semi-continuous on Per ¢; cf. [26, Def. 5]. As is readily
confirmed, minimal periods and heights are well-behaved under orbit equivalence.

Proposition 2.4 Let ¢, v be flows, and assume that ¢ is (h, t)-related to V. Then, for every
x € Perg:

Q) Ty = we(TE);

(i) (h(0))Y = (x)?.

The subsequent analysis relies heavily on the properties of certain invariant sets associated
with the flows under consideration. Specifically, given a flow ¢ on X and any two points
x7,xt € X, define the (x7, xT)-core C,— + (¢, X) as

Ci- (@, X) = [x € X: There exist sequences(tni) and (xni) with tni — +o00
andx,ﬁE — x such that ¢+ (x,f) — xi} ;

here and throughout, expressions containing 4 (or F) are to be read as two separate
expressions containing only the upper and only the lower symbols, respectively. Note that
Cy- x+(p, X) is g-invariant and closed, possibly empty. For linear flows, the (0, 0)-core
Co,0(p, X), henceforth simply denoted Co (¢, X), is naturally of particular relevance, and so
is the core

Clo, x):=J Ce- (9, X) D Colp, X).

Clearly, C(¢, X) also is g-invariant and contains Bnd ¢ as well as all non-wandering points
of ¢. For instance, if X is one-dimensional then C (¢, X) simply is the convex hull of Fix ¢,
whereas Co(¢, X) = {0} N Fix ¢. Most importantly, C (¢, X) and Co(¢, X) both are well-
behaved under orbit equivalence.

x~,xteX

Lemma 2.5 Let ¢, ¥ be flows on X, Y, respectively, and assume that ¢ is (h, t)-related to
Y. Then
h(Cy= 1+ (9. X)) = Chumynny (W, Y) Vx—,xT € X. 2.1)

Thus h(C(p, X)) = C(¥, Y), and if h(0) = 0 then also h(Co(¢, X)) = Co(y, Y).
The proof of Lemma 2.5 is facilitated by an elementary observation [37].

Proposition 2.6 Let ¢ be a flow on X, and x € X. Then the following are equivalent:

(i) Forevery ¢ > 0 there exists an X € X such that ||¢;(X) — x|| < e forall0 <t < el

(1) x € Fixg.

Proof of Lemma 2.5 1t suffices to prove (2.1), as all other assertions directly follow from it.
To do this, given x~,x" € X, denote C,~ +(¢, X) and Cpy—y pt) (¥, Y) simply by C
and D, respectively. From reversing the roles of (¢, X) and (¢, Y), as well as & and 21, it
is clear that all that needs to be shown is that 2(C) C D.
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Pick any x € C, together with sequences (¢) and (xF) with t¥ — 400 and xF — x
such that ¢, (xF) — x*;assume w.lo.g. thatt,” < 0 < ¢, for all n. Letting s = Tyt (t5),
note that s, <0 < s;F, and

h(x0) = h(x), Y (h(0)) = h(x™). (2.2)

By considering appropriate subsequences, assume that s, — s~ € [—00,0] and 5,7 —
st € [0, +00]. Note that (2.2) immediately yields 4(x) € D if {s~,sT} = {—o0, +00}, so
assume for instance that s < +o00. (The case of s~ > —o0 is completely analogous.) Then
L/ (h (x)) = h(x™) by (2.2), and, as will be shown below, in fact

h(x) e Per . (2.3)

Assuming (2.3), let T € R* be any y-period of h(x), and y = h(x),r;f = st +nT
for every n € N. With this clearly r,” — +o0, and ,+ (h(x)) = h(x™) for all n. Thus to
complete the proof it only remains to verify (2.3).

Assume first that st = 0, and hence x = x™T. For each n € N, define a non-negative
continuous function f, : R — Ras fu(s) = llg+ (x;7) — x|, and note that f,(0) =
llx,” — x| — 0, but also f,(1) = o+ (x;7) — x|l = 0. In fact, more is true:

lim,— o0 fu(s) =0 uniformly on [0, 1]. 2.4
To prove (2.4), suppose by way of contradiction that
€0 < fu (sk) = ”‘/’mﬁ (x)—x| VkeN, (2.5)
with appropriate &9 > 0, s¢ € [0, 1], and integers nx > k. Since 0 < ry 1= 7,4 (skt) <
T (t5) =4 — 0, clearly h((pmﬁ (x4 ) =V (h(x,',: ) — h(x), which, together with
(2.5), contradicts the continuity of k=1 at h(x), and hence establishes (2.4). Deduce that,
given any ¢ > 0, there exists an N € N with max,¢(o,1] fn(s) < & as well as t; > g1,
But then | ¢/ (x;) —x|| <eforall0 <t <e ! and Proposition 2.6 yields x € Fix ¢. By
Proposition 2.3, h(x) € Fix v, which proves (2.3) when s = 0.

Finally, assume that s* € RY, and let T = 77'(s") > 0. Then h(g+(x)) =

Y+ (h(x)) = h(x™), and consequently ¢,+ (x) = x*, as well as

Ve —ny (BOGD) =h oo (o0 () = hog_ v (xT) =h(x).

Since0 < 7+ (tF—1T) < 5;F forall large n, assume w.l.0.g. that T+ (tF—tt)y > r €10, s7],
and hence ¥, (h (x)) = h(x). On the one hand, if » € R™ then clearly 4(x) € Pervs. On
the other hand, if » = 0 then (2.4) holds with f,(s) = ||(ps(t;71+)(x;l") — x|, and the same
argument as above shows that x € Fix ¢. Thus (2.3) also holds when s* € R™. |

A crucial step in the subsequent analysis is the decomposition of flows into simpler, well-
understood parts. To prepare for this, recall that two flows ¢, ¥ on X, Y, respectively, together
induce the product flow ¢ x ¥ on X x Y, by letting (¢ X ¥); = ¢; x ¢ forallt € R. Endow
X x Y with any norm. It is readily seen that

Ciy )ty @ X Y, X X Y) C Co (9. X) x Cp- (Y, Y) Vx— xT e X,y yt ey,
and therefore also

Cloxy,XxY)CC(p,X) xC(Yy,Y); (2.6)
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the same inclusion is valid with Cy instead of C. Quite trivially, equality holds in (2.6) and its
analogue for Cy if one factor is at most one-dimensional. As the following example shows,
however, equality does not hold in general if min{dim X, dim Y} > 2.

Example 2.7 Let X = R?, and write Xt = (Rt)?2 and 1 = i for convenience. Consider

the flow ¢ on X generated by x = V (x), with the C*°-vector field

1 |:f(5)x1 log x; — sf(s)x1 log x2
Vi)y=1°9 sf(s)xzlogxy + f(s)x2logxs

0 otherwise ,

} ifx e X+\ {1},

where s = s(x) = /(logx1)? + (logx2)2, and f(s) = e~*~!/5 for all s € R*. Clearly,
(X\X1)U{1} C Fix ¢. Introducing (exponential) polar coordinates x; = e’ €?, x, = ¢ sin?
in X7 transforms X = V (x) into

F=0=f@r). Q.7

Deduce from (2.7) that lim;—, _ o, () = 0, lim;_, 4 7(t) = 400, and r — 0 is constant.
Consequently, lim;_, _o, ¢;(x) = 1 for every x € X, but also, given any x € X \ {1},
there exists a sequence (#;) with #;7 — 400 such that 6(t}) + 37 € 277 for all n, and
hence lim,, _, o Pt (x) = 0. Thus x € Cy,0(¢, X) forevery x € X\ {1},and C(p, X) = X;
see also Fig. 3.

Next, note that f is decreasing on [1, 4+00[, and hence any two solutions (r, 6), (¥, 5) of
(2.7) with r(0), 7(0) > 1 satisfy

[r()=F(®)| < |r(0)=F(0)

. e -8 < [r©) =FO)|+]|600)—80)| Vr=0; 2.8)

moreover, 6 — g is constant whenever r(0) = 7(0). Pick any a > el/ ﬁ, and consider

-1
u= |:a6il:|’ W= [“a ] 2.9)

Then r(t) = s(¢/(w)) = s(@: @) = F(r) > 1 and 6(1) — 6(1) € m+2nZ forallt > 0.
Also, let

U= {x ext :xg/5 > max{xl,xf}_l} = {x eXt\{1}:0 ¢ ]—%n, %n[+2nZ}.

For any ¢ > 0 sufficiently small, it is clear from (2.8) that for every ¢ > 0 at least one of the
two open sets ¢; (B, (1)) and ¢, (B, (it)) is entirely contained in U. Note that By (1) x By (i)
is a neighbourhood of (u, %) in X x X. Consequently, ((go X ga)ln+ (xn, )Ncn)) is unbounded
whenever 1,7 — 400 and (x,, X,) — (u, #). Thus, (u,%) ¢ C(p x ¢, X x X), whereas
clearly (u, ) € C(p, X) x C(¢p, X), and so the inclusion (2.6) is strict in this example.

Good behaviour of certain invariant objects under products is indispensable for the analysis
in later sections. Negative examples such as Example 2.7 therefore suggest that the cores
C(p, X) and Co(¢, X) be supplanted, or at least supplemented with similar objects that are
well-behaved under products. To this end, note that

C(p,X) = {x € X : There exist sequences (t,f) and (x,f) with tf — +o00

and x,jf — x suchthat ((ptni (x,jf)) both are bounded}.
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u,u € Cp, X) u g C*(p, X), u € C* (¢, X)
1Z2 (u,u) & Cp x p, X x X) A\Zo @, ¢ orbit equivalent, with A = idx

Fig.3 In general, (non-uniform) cores are well-behaved under orbit equivalence but not under products (left;
see Example 2.7), whereas for uniform cores the situation is the exact opposite (right; see Example 2.9)

In light of this, define the uniform core C*(p, X) as

C*(p, X) = {x € X : For every sequence (t,,) with |#,,| — +o00o there exists a sequence

(xn) withx, — x such that (¢;, (x,)) is bounded};
analogously, define the uniform (0, 0)-core Cjj (¢, X) as

Colp, X) = {x € X : Forevery sequence (1,) with |7,| — +o0 there exists a sequence

(xn) withx, — x such thatg,, (x,) = 0} C C*(g, X).

Again, C*(¢, X) and C(’)k (¢, X) are gp-invariant, and they obviously are contained in their
non-uniform counterparts, i.e.,

C*(p,X) C C(p, X), Cilp, X) C Colp, X). (2.10)

Moreover, C*(¢, X) D Bnd ¢, just as for (non-uniform) cores. For the flow ¢ in Example 2.7,
it is clear that C*(¢, X) = Fix ¢ # X = C(¢, X); see also Example 2.9 below. Thus the left
inclusion in (2.10) is strict in general, and so is the right inclusion.

As alluded to earlier, C*(p, X) and Cj(¢, X) are useful for the purpose of this article
because, unlike their non-uniform counterparts, they are well-behaved under products.

Lemma 2.8 Let ¢,  be flows on X, Y, respectively. Then

C*ox ¥, X xY)=C*p, X) x C*(¥, Y)
as well as

Cilo x ¥, X xY)=Ci(p, X) x C5(¢, Y).

Proof The asserted equality for C* (respectively, C;) is an immediate consequence of the fact
that ((¢ X ¥);, (xn, y»)) is bounded (converges to 0) if and only if (¢, (x,)) and (¥, (vs))
both are bounded (converge to 0). m]
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Regarding the behaviour of uniform cores under equivalence, it is readily checked that
if ¢,y are flow equivalent then h(C*(go, X)) = C*(y, Y); moreover, h(Cé((p, X)) =
Cy(¥, Y) if h(0) = 0. These equalities may fail under mere orbit equivalence, however,
so the analogue of Lemma 2.5 for uniform cores does not hold. The following example
demonstrates this.

Example 2.9 With the identical objects as in Example 2.7, first deduce from (2.8) that, given
any x € XT \ {1} and sufficiently small ¢ > 0, one may chose (t,) with t,, — +oc0 such
that ¢, (B¢ (x)) C U for all n. But then clearly (¢;, (x,)) is unbounded whenever x, — x,
and hence x ¢ C*(¢, X). Thus, C*(¢, X) = (X \ X)) U {1} = Fix¢ # C(p, X); see also
Fig. 3.

Next, fix a decreasing C*°-function g : R — R with g(s) = 1 foralls < 1 and g(s) =0
for all s > 2. Let ¢ be the flow on X generated by x = v(x)V(x), where v : X — R is
given by

14+ e4”g((s — logxj coss — log x; sins)s_les_l/s) ifx e X7\ {1},

vix) = { 1 otherwise ; .11

note that the vector field vV is C®. Similarly to Example 2.7, (X \ X ™) U {1} = Fix ¥, and
(exponential) polar coordinates in X transform x = v(x)V (x) into

i =6= )+ fg((1 = cos® — 1)), 2.12)

Note that » —6 again is constant for every solution of (2.12). Specifically, givenany 0 < a < L
let (rq4, 6,) be the solution of (2.12) with r(0) = 27 (14a) and6(0) = 0. Thenr, (1) —6,(t) =
27 (1 + a) and r,(t) — ro(t) < 2ma for all + > 0. Notice that lim;_, 4 74 (t) = +o00.
Consequently, for every 0 < a < % there exists a t, € R such that 7, = f(r,) for all
t > 1z, butalso e 1/0(1 4 ¢¥7) > 1 4 37, Clearly, limg o t, = +00; assume w.l.o.g. that
a + tg is decreasing on ]0, %]. It follows that 7y > e~ "0 (1 4+ ¢37) as well as 7, < ¢~" on
[74, +00[, and therefore also, with 7, := t, + ¥ 70lta)

0l 4 (1 — 1) (1 4 &37)

3 VYt >1,.
efalta) 41—, s vh=ta

00(t) — 04 (t) = ro(t) — ra(t) + 2ma > 27a + log

Deduce from this and the continuity of a > 6, (¢), that, given any integer j > 2and ¢ > 7 /i
there exists 0 < a;(t) < j_1 such that Oaj(,)(t) + %n € 2.

2
1
sequence with |t,| — +o0. If , - —oo then (1//,” (u)) is bounded, in fact ¥, (1) — 1,
so it suffices to assume that (z,) is increasing, and ¢; > t~1/2. Pick a sequence (j,) with
f/j, < ta < 11/j,,, for all n. Note that j, — oo, and hence 0 < aj, (t,) < j,; ' — 0.
Writing b, := a, (t,) for convenience, consider

|:6271(1+bn)
Uy =

With these preparations, consider the point u = |:e :| ¢ C*(¢, X), and let (1,) be any

| ] Vn e N.

With this, not only u, — u, but also ¥, (u,) = e~ /Y21 — 0, showing that (1, (u,))
is bounded. In other words, u € C* (v, X). Recall that ¢ and ¢ are generated by x = V (x)
and X = v(x)V(x), respectively, with v given by (2.11),and I <v <1+ e As pointed
out right after Proposition 2.2, the flows ¢, ¥ are orbit equivalent with 2 = idy, and yet
h(C* (g, X)) # C*(¥, X).
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3 Cores of Linear Flows

In a linear flow, naturally an invariant set is of particular interest if it also is a (linear) sub-
space. For instance, Fix ® and Bnd & (but not, in general, Per ®) are ®-invariant subspaces
for any linear flow &, and so are all uniform cores. As seen in the previous section, uniform
cores are well-behaved under products (Lemma 2.8) but not under orbit equivalence (Exam-
ple 2.9), whereas for (non-uniform) cores the situation is the exact opposite (Lemma 2.5 and
Example 2.7). This discrepancy is consistent with a lack of equality in (2.10) in general. One
main result of this section, Theorem 3.5 below, shows that both inclusions in (2.10) are in fact
equalities—provided that ¢ is linear. As an important consequence, all cores of linear flows
are invariant subspaces that are well-behaved under orbit equivalence and under products.
With regard to the last assertion in Lemma 2.5, the following additional property of orbit
equivalences is useful when dealing with linear flows; again, for convenience this property
is hereafter assumed to be part of what it means for ® to be (h, t)-related to W.

ProEosition 3.1 Let ®, V¥ be Linearﬂows, and assume that ® is (h, t)-related to V. Then ®
is (h, t)-related to ¥ where h(0) = 0.

In a first step towards Theorem 3.5, cores of irreducible linear flows are considered. Recall
that & is irreducible if X = Z & 7 , with ®-invariant subspaces Z, 7 , implies that Z = {0}
orZ = {0}. Plainly, ® is irreducible if and only if, relative to the appropriate basis, A® is
a single real Jordan block. In particular, for irreducible ® the spectrum o (®) := o (A®) is
either a real singleton or a non-real complex conjugate pair. In order to clarify the structure of
cores of irreducible linear flows, for every s € R denote by [s] and |s| the smallest integer
> s and the largest integer < s, respectively.

Lemma3.2 Let ® be an irreducible linear flow on X. Then C*(®, X) = C(®, X), and
0 ifo(®)NiR = o,
dim C*(®, X) = dim C(®, X) = { [3dimX] ifo(®) = {0},
2[;dim X ifo () C iR\ {0}
Similarly, C§(®, X) = Co(®, X), and
0 ifo(®)NiR =2,
dim C5(®, X) = dim Co(®, X) = L% dimX| ifo(P)=1{0},
2l dimX| ifo(®) C 1R\ {0}.

The proof of Lemma 3.2 utilizes explicit calculations involving several families of special
matrices. These matrices are reviewed beforehand for the reader’s convenience. First, given
any m € N and w € C, consider the diagonal matrix

Dy (0) =diag[1, , ..., 0" '] e C"*™,

for which D, (w) € R™*™ whenever w € R, as well as the nilpotent Jordan block of size m,

0O 1 0 --- 07
I = 0 e R,
1
LO 0
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Clearly, D,,(1) = idgm =: I,;, and D,, (@)~ = Dy (w~") whenever » # 0, but also
Dy, (a))*l and '™ D,, (w) are bounded (in fact, converge) as |w| — +00. 3.1

Moreover, recall that J)' = 0, and hence

tm—l

tn s gm—l
e =1, +tl, + +(m—1)!1’" vVt € R.

A simple lower bound for the size of ¢/’ x is as follows.

Proposition 3.3 For every m € N and norm || - || on R™ there exists a v € R such that
v|x
O (T
1+t2m_2

Next, recall that the function 1/ T, the reciprocal of the Euler Gamma function, is entire
[1, Ch. 6]. In particular, given any m, n € N and w € C, the Toeplitz-type matrix

1/T(w+1) 1/T(w+2) 1/T(w+n)
1/T (w) /T(w+1) - 1/T(w—14+n)
A,[,‘ﬁ]n:= . . . e Ccmn
T(@—m+2) 1/T@—-m+3) - JT@-m+n+1)

is well-defined, each of its entries depending analytically on w. Note that A,[f{f l e Rmxn

whenever w € R, and Ak,”. ],1 is upper triangular (respectively, the zero matrix) if and only
if w is an integer < 0 (an integer < —n). Also, in the case of a square matrix, the function
det A,[n',]m is entire and not constant, and hence A,[f{f ]m is invertible for most w.

Proposition 3.4 Letm € Nand w € C. Then

[w] _ m rd) .
det A, = szl T+ 0’

in particular, Ag,h]m is invertible unless w is a negative integer.

To appreciate the usefulness of the matrices D, and A,[,‘f, Jn in the study of linear flows,
note that

— tm_l —_
1t —
(m — 1)!
0 .o :
el — . =Dy () A D, (1) Vi e R\ {0}.
. . t
L0 - 0 1 |

More generally, for any 1 < j < m and t # 0, the m x m-matrix e’ T can be partitioned as

(1)~ 1A A m=jipy. =1 Alm=ilpy
| DiOTAR a0 | D07 A D @) (3.2)
—7 — —7 i _ i .
(D0 AL D@2 D AL D)
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Proof of Lemma 3.2 For simplicity, suppress the symbols (P, X) in all cores, i.e., write C
instead of C(®, X) etc. Note that if dim X < 1 then Cj = Co = {0}, whereas C* = C
equals {0} or X, depending on whether @ # 0 or ® = 0. Thus the lemma holds if dim X < 1.
Henceforth assume dim X > 2, and let (bq, ..., bgim x) be an ordered basis of X relative to
which A is a single real Jordan block. Throughout, no notational distinction is made between
linear operators on (respectively, elements of) X on the one hand, and their coordinate matrices
(column vectors) relative to (b;) on the other hand.

Assume for the time being that o (®) = {a} witha € R, and hence A® = algim x + Jdim x-
In this case,

. VX
1ox]) = e am ) = e Wy o pex, (33)

/T + 2dmX—2

by Proposition 3.3. Pick any x € C.If a # 0 and (®;,x,) is bounded for appropriate
sequences (#,) and (x,) with at, — +o00 and x,, — x, then (3.3) implies that x = 0. Thus
= {0} whenever a # 0, and only the case of a = 0 has to be considered further.
Assume first that dim X is odd, say dim X = 2d + 1 with d € N. Letting m = 2d + 1,
deduce from (3.2) with j = d + 1 that for all r # 0,

_ 0 — d
Da1 (7' ALy 4 Da®)|t'Dasi 7' A, 4y Dai (1)

¢ = 1 1 , (3.4)
0 | Dy AL D 1)
because A([jfj_l] = 0, whereas with j = d,
D) Ay Dasi @) |17 Dy AT Da ()
P, = 3.5

4Dy 0 ALY L D] D01 ALL L Da)
v
Let V = span{by, ..., bg}, pick any x = |:0i| € V with v € RY, and consider

v
X = B B 1d 0
[_t “Dyr1(0) I(Adlldﬂ) Az[ij-ldDd(t)vi|

(Recall that A dH di1 is invertible by Proposition 3.4.) From (3.1), it is clear that

lim|s|— 400 X; = X, and together with the expression for ®; in (3.4) also

Vt e R\ {0}.

0
|t|— 400
@txt:|: i| — 0.
d+1 1 [d] [0]
—1~ DDy (1)~ Ad d+l(Ad+l,d+l) Ad+1dDd(t)v

v
Thus x € Cj. Since x € V was arbitrary, V C Cjj. Conversely, given any x = |:i| e Cy,
w

with v € R?, w € R¥*! there exist sequences (1), (v,), and (w,) with t, — +o00, v, — v,
and w, — w such that

—1( Al0] d Ald]
@, |:v7":| — |: Dy y1(tn) (Ad—H dDd([n)Un +1, Ad+1’d+1Dd+l(tn)wn) ] — 0. (3.6)

Wy
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Recall from (3.1) that ( —d Dgiq (tn)) converges, and apply these matrices to the first com-
ponent of (3.6) to obtain

- 0 d
dAEjj.] aPatn)vn + AEH]_L,H] Dgy1(tn)wy, — 0.

With (3.1) also t*dAEHl 4Paty)vy, — 0, and hence At[idlldeDdH(tn)wn — 0. Since
Ad+1,d+1 is invertible and (Dd+1(tn)_]) converges, w, — 0 =w,ie.,x € V.Asx € Cp
was arbitrary, Co C V, and hence C§ = Cop = V;note thatdimV =d = L% dim X |.

w
Next, given any x = |:0i| € V @ span {by4 1}, with w € R4t consider

w
Xp 1= ~ B ] vt € R\ {0},
[—r Dy~ (A ) AEBLHdeow}

which againis well-defined as A[ + lisinvertible. As before, (3.1) implies lim ;|- 400 X; = X,
and together with the expression for @, in (3.5) also shows that

0
q)txt - d]

—d 1 [1] [d+11\—1 A [0] :|
| £ Day1(1)” (d+ld+1 Dgira(Big ) Bygsr)DariOw

converges as || — +00, and hence x € C*. Thus V @ span {bs+1} C C*. Conversely, given

w
any x = | — | € C, there exist sequences (f,), (w,), and (v,) with ¢, - 400, w, — w,
v

and v, — v such that

(o} |:wnj| |:Dd(t”) ( d]al+1Dd+1(l‘n)wn'i‘thrlA[d+1 Dd(t”)vn)i|
t =

3.7

Un

is bounded as n — oo0. Since t,, (d+1)Dd (t,) — O, applying these matrices to the first
component of (3.7) yields

DAY Dot wn + AT Dy (1) v, — 0.

As before, also A‘[;f;l]Dd(tn)vn — 0, and hence v, — 0 = v, i.e.,x € V @ span{bg41}.
In summary, C* = C = V @ span {bg+1}. This establishes the lemma when o (®) C R and
dim X is odd, as dim V @ span {bg41} = d + | = [4 dim X7.

The case of dim X even, say dim X = 2d, is similar but simpler: In this case, (3.2) with
m = 2d, j =d yields

_ — d
Da(6)" ALy Da(0)|1 Da(t)™ Ay Da ()

@, = Vi € R\ {0}.

0 . Dy(t)~' AL Dy ()
v
On the one hand, if x = |:0:| € V with v € R?, then

v \tlj}oo
X = B d 1,10 X,
—1=2 Dy~ (A T A Dy (r)w
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by (3.1), but also
O,x; = 0 ‘tl_)—too
tA — _ _ 0 dl\—1 0 9
—1=2 D)~ A (AL T A Dy

u
showing that V C C(’)‘ . On the other hand, if x = | — | € C with u, v € R?, then there exist
v

sequences (t,), (4,), and (v,) with t, - 400, u, — u, and v, — v, such that

[u} [de‘ (ALY Da(tnyun + 1 AL‘{},Dd(tmn)}
th -

Un

is bounded as n — oco. Applying t,jd D;(t,) — 0 to the first component yields v, — 0 = v,
as before, and hence x € V. In summary, CZ; = C* = Cyp = C = V. Noting that dimV =
d = 1 dim X establishes the lemma when o(®) C R and dim X is even.

Finally, it remains to consider the case of 0 (®) = {a £ 1b} witha € R, b € RT. Since

dim X is even in this case, let m = %dim X. Then A® = al, + Im| =Dl , which in
bln| Jm
turn yields
cos(bt) I, |— sin(bt)], etm| 0
P, = ' ,( n| 0 I Vi € R. (3.8)
sin(b) | cosGt)ly || 0 [etn

From (3.8) and Proposition 3.3, it is clear that, with an appropriate 7 € R™,

V|x
1o > e t— v Ry ex

V14 2m=2

As before, it follows that C = {0} unless a = 0, so only that case has to be analyzed further.
This analysis is virtually identical to the one above, simply because the left matrix on the
right-hand side of (3.8) does not in any way affect boundedness or convergence to 0 of &, x:
On the one hand, if m = 2d + 1 then, with W = span{by, ..., bg, byp+1, ..., bmta},

Co=Co=W, C*=C=W®span{bii1,bn+da+1}-

On the other hand, if m = 2d then Cj = Co = C* = C = W. In either case, dim W =
2d = ZL% dim X | and dim W @ span {by+1, byta+1} =2d +2 = 2(% dim X7. m]

Given any ®-invariant subspace Z of X, denote by ® 7 the linear flow induced by & on Z,
thatis, (¢, x) = ®,x for all (¢, x) € R x Z. Note that if X = @ﬁ':l Z ; with ®-invariant
subspaces Z1, ..., Zg, then ® is flow equivalent to the linear flow ><e,.=1 <I>Zj on Xﬁzl Zj,via
the linear isomorphism /(x) = (Pyx, ..., Pgx) and 7, = idg forall x € X; here P; denotes
the linear projection of X onto Z; along G}k;ﬁ i Zk- With this, an immediate consequence of
Lemma 3.2 announced earlier is

Theorem 3.5 Let @ be a linear flow on X. Then C*(®,X) = C(®,X), C5(®, X) =
Co(®, X), and both sets are ®-invariant subspaces ofXg’.

Proof Let X = @l}:l Z ; be such that each flow @7 ; is irreducible. With £ as above,
C(®, X)=h"'C (x‘]?:l oz, X, zj) ch! (x‘]?:l C(oy,, z.,-))

—p! (xle C*(®y,, Z,»)) — e (x§:1 ®z,. X Zj) — CH(®, X),
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where, from left to right, the equalities are due to Lemmas 2.5, 3.2, and 2.8, and the fact
that @ and X4:1 ®z; are flow equivalent via h, respectively, whereas the inclusion is the
£-factor analogue of (2.6). With (2.10), therefore, C*(®, X) = C(®, X), and recalling that
h(0) = 0, also C5(P, X) = Co(P, X). Let J ={1 < j < ¢: o(®z;) C 1R}. By Lemma
32,C(®z;,Z)) = {0} whenever j ¢ J, and consequently

—1 (e o
C(®, X)=h (ijl C(Pyz;, Zj)) = @jGJC@Zj, Zj)C @jejzj =X¢.
o

In light of Theorem 3.5, when dealing with linear flows only the symbols C and Cy are
used henceforth. Note that if Z is a ®-invariant subspace of X then one may also consider
cores of the flow &z, and this idea of restriction can be iterated. To do so in a systematic way,
given any binary sequence € = (€;)reN,, thatis, € € {0, 1} for all k, let Cé*_l(d% X)=X
and, for every k € Ny, let

C(Prei-1(p.x) CH 1@, X)) ife =0,

ck, x) =
(®, X) Co(Pees-t(p x). CF 1@, X)) ife =1

Clearly X D C&%(®, X) D C&!(®d, X) D - -, and hence the iterated core

€ e 1; €,k _ €.k
C(®. X) = limposoe CH(@. X) = () €@, X)

is a d-invariant subspace naturally inheriting basic properties from C(®, X) and Cyo(P, X).

Lemma 3.6 Let ©, V be linear flows on X, Y, respectively, and € a binary sequence.

(i) If @ is (h, T)-related to W then h(C*(®, X)) = C(V, Y).
(i) C(P x W, X x ¥) = C(P, X) x C(V, Y).

Proof With Lemma 2.5 and Proposition 3.1, h(Ce’O(dx X)) = CO0(y, Y). By induction,
for every k > 1, ®eer-1(g xy 18 (A, Tx)-related to Weer-1(y, y), With hg and 7 denoting
the restrictions of 7 and 7 to CS¥~1(®, X) and R x C* (@, X) respectively. Hence
h(Ce’k(Cb, X)) = C&k (W, Y), which proves (i). Similarly, with Lemma 2.8 and Theorem 3.5,
induction yields CS¥(® x W, X x Y) = CK(®, X) x CK(W, Y) for every k > 1, which
establishes (ii). O

It is not hard to see that C¢(®, X) = {0} whenever ¢, = 1 for infinitely many k. In
what follows, therefore, only terminating binary sequences (i.e., ¢, = 0 for all large k) are
of interest. Any such sequence (uniquely) represents a non-negative integer. More precisely,
given any n € No, let €(n) be the binary sequence of base-2 digits of n in reversed (i.e.,
ascending) order, that is,

o0
_ k .
n= ZkZOZ e(n)y Yn eNp;
thus, for instance, €(4) = (0,0, 1,0,0,...)ande(13) = (1,0, 1, 1,0, 0, ...). To understand
the structure of C€™ (®, X), first consider the case of an irreducible flow.
Lemma 3.7 Let ® be an irreducible linear flow on X.
() Ifo(®) N iR = @ then C<™W (P, X) = {0} for all n € Ny.

(i) If o (®) = {0} then C<™ (P, X) = {FE)(C)}CD Zzz i Z;Z§
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Per®d ifn < %dimX,

cen E(n) _
(i) If o (®) C 1R\ {0} then CVV (D, X) = 0 ifn> %dim X,

Proof Recall from Lemma 3.2 that C(®, X) = {0} whenever o (®) N:R = &, and in this
case C<(d, X) = {0} for every n € Ny, proving (i).

To establish (ii) and (iii), let (by, ..., bgim x) be an ordered basis of X, relative to which
A®is a single real Jordan block. If o (®) = {0} consider the two increasing functions
fo, f1i : R — R, given by fy(s) = [%s] and fi(s) = L%sj, respectively. Let my = fen), ©
-+ 0 fem), (dim X). As seen in the proof of Lemma 3.2, CEmk(p, X) = span {by, ..., by, }
for every k € Ny, provided that my > 1, and C k(g x) = {0} otherwise. Note that

. 1 ifs >0,
llmk—mofoo"'ofo(s)—{o 20 (3.9)

ktimes
Consequently, €(0) = (0,0, ...), and limy_, oo my = 1, so cO(p, X) = span {b;}. Hence-

forth, assume n = €(n)g + 2 () + - - - +2e(n)¢ > 1, with £ € Ny and €(n); = 1. Notice
that

Fete © 0 ey () = €M1 + 2t + -+ 275 ey, VE=0,...,0—1,

hence in particular fe),_, o -+ 0 fem),(n) = €(m)e = 1, which implies fe,), o --- o
Sfemyo(n) = 0. Since fo, f1 are increasing, fe(), © - © fem), (i) < Oforalli < n, and since
€(n); = 0 for all k > ¢, it follows from (3.9) that limi— 00 fe(n), © -+ © fe)o (i) = 0. In
particular, CcCEM (@, X) = {0} whenever dim X < n. Next, notice that

Jeap 0 0 femom+1) =1+ fegy 00 femy(m) Yk=0,...,¢,

hence in particular fe(), o - -+ o fem),(n + 1) = 1. Again by monotonicity, fe(), o --- o

Sfem)o (1) = 1foralli > n + 1, and with (3.9) limg— o0 fe@), © - © fe)o (i) = 1. This

shows that C€0 (®, X) = span {b1} = Fix ® whenever dim X > n + 1, proving (ii).
Finally, to prove (iii) recall from the proof of Lemma 3.2 that

CG(n),k(CI), X) = Span{bl,...,b,ﬁk,b%dimx_’_l, ""b%dimx—o—ﬁk}’

provided that fiix = fe(n), © - © fe(n (3 dimX) > 1, and C<™-¥(®, X) = {0} otherwise.
Again, limy_, o, 7y equals 1 if % dim X > n + 1, and equals O if % dim X < n. This proves
(iii) since span {b1, b%dim X+1} = Per ©. m]

Given an arbitrary linear flow ® on X, let X = @l;: | Zj besuchthat ®z; is irreducible for

every j = 1, ..., £.Bycombining Lemmas 3.6 and 3.7, it is clear that CG(O).(Q X) =Bnd @,
and that (Cf(”)(cb, X))neNo is a decreasing sequence of nested spaces, with CM (@, X) =

{0} for all n > maxﬁz  dim Z ;. Moreover, for every n € Ny,
dim C<™ (@, X) = #{1 <j<l:0(®z)={0},dimZ; > n} (3.10)
+ 2#[1 <j<t:o(®z) CiR\{0},dimZ; > 2n].

By Lemma 3.6, these numbers are preserved under orbit equivalence. Thus, iterated cores,
and especially their dimensions, provide crucial information regarding the numbers and
sizes of blocks in the real Jordan normal form of A®. However, these cores do not per se
distinguish between different eigenvalues of A®¢. To distinguish blocks corresponding to
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different elements of o (®) N R, ideally in a way that is preserved under orbit equivalence,
a finer analysis of Bnd & is needed.

4 Bounded Linear Flows

Call a linear flow ® on X bounded if Bnd ® = X. (Recall that X is a finite-dimensional
normed space over R.) Clearly, every bounded linear flow is central, i.e., X g’ = X; see also
Sect. 5. Unless explicitly stated otherwise, every linear flow considered in this section is
bounded. Note that ® is bounded precisely if o (P) C (R and A% s diagonalisable (over C),
in which case Theorem 1.1 takes a particularly simple form.

Theorem 4.1 Two bounded linear flows ®, W are C%-orbit equivalent if and only if A®, a AY
are similar for some a € RT.

The main purpose of this section is to provide a proof of Theorem 4.1, divided into several
steps for the reader’s convenience. Given a non-empty set 2 C C, refer to any element of
Qg = {0Q : w € Q} as a rational class generated by 2. Note that for every w, @ € C
either ¥Q = @Q or wQ N @Q = {0}. Given w € C and a bounded linear flow ® on X,
associate with w(Q the ®-invariant subspace

® @ D2, 2 .
Xggi=kerA® & P . ker((A%)? +5%idy) O Fix®.
A few basic properties of such spaces follow immediately from this definition.

Proposition 4.2 Let ® be a bounded linear flow on X, and w, @ € C. Then:

1) Xg’Q N XgQ # Fix @ if and only if oQ = @Q = AQ for some A € o (®) \ {0}, and
hence XS)DQ = Fix ® precisely if oQ N o (®) C {0};
(ii) For A A€ o (D), X;?Q = X%DQ if and only if \Q = XQ,
(i) 3 eo(a) XS)Q =X;
(iv) X{o) = Fix @, and U (0 X5y = Per ®;
(v) Forevery A € o(®) \ {0}, X;?Q = Pery ®, with

27
_ 7 -
T= T)‘Q =i mseR*:{—ls.ts}ﬂ)\Qﬂo(<l>);éz Ky N’

and {x € X;?Q : qu> = TA%Q} is open and dense in XfQ.

Recall from Sect. 2 thatif ¢ is (&, t)-related to ¥ then i (Per ¢) = Per ¢, and yet h(Perr ¢)
may not be contained in Pergir for any S € R™. Taken together, the following two lemmas
show that such a situation cannot occur for linear flows.

Lemma 4.3 Let ©, V be bounded linear flows on X, Y, respectively, and assume that Per & =
X. If ® is (h, T)-related to WV then there exists an o € RT with the following properties:

1) Th\l(’x) = ozTX<l> forevery x € X;

(ii) h(Pery ®) = PergrV for every T € RY;
(iii) A®, aAY are similar.
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Proof By Proposition 4.2(iv), Per ® = X if and only if X}\(Q = X for some A € o(P), and
since Per W = h(Per ®) = h(X) =Y, also Y;;IIQ =Y for some p € o (V). Clearly, if A =0
then ;o = 0, in which case every o € R has all the desired properties. Henceforth assume
that A # 0, or equivalently that Fix ® # X, and hence u # 0 as well.
To prove (i), pick any x € X \ Fix ®. By Proposition 4.2(v), there exists a sequence
(xn) with X, — x and Txf = T,\% for all n, so (x)® = T‘I> /T‘I> and similarly (h(x)Y
Q/ e By Proposition 2.4(ii), therefore, h(}()/T‘I> = T‘I’ / A» that is, (i) holds with

a=T Q/

To prove (11), pick any 7 € R* and x € Pery® \ Fix ®. Then T/T.* = m for some
m € N, and (i) yields aT/Th‘I(’x) = m, that is, h(x) € Peryr V. Thus h(Pery ®) C Per,7 W,
and reversing the roles of ® and W yields h(Perr &) = Per,7W.

To prove (iii), denote A®, AY simply by A, B, respectively, and let o(®) \ {0} =
{£ia1, ..., F1ay} and o (V) \ {0} = {£i1by, ..., x1b,} with appropriate m,n € N and
real numbers a; > --- > a,; > 0and by > --- > b, > 0; for convenience, ag := by := 0.
Also, let Xo = ker A, Yy = ker B, as well as X = ker (A2 +s2idy), Yy = ker (B% +s%idy)
forevery s € R™. Since A, B are diagonalisable (over C), to establish (iii) it suffices to show
that in fact m = n, and that moreover

ar =ab, and dimX, =dimY, Vk=0,1,...,m. 4.1)

To this end, notice first that Pero, /s & = EBkeNO Xks, and similarly Pery, s W = @keNo Yis.
For the purpose of induction, assume that, for some integer 0 < ¢ < min{m, n},

ar =abr and dimX, =dimY, Vk=0,1,..., ¢ “4.2)

Now, recall that h(Xo) = h(Fix ®) = Fix ¥ = Yy, and hence dim Xy = dim Yj by the
topological invariance of dimension [17, ch. 2]. In other words, (4.2) holds for £ = 0. Next,
let K¢ = {k € No : kagy1 € {ag. a1, ...ac}}, and note that K¢ C N is finite with 0 € K,
and 1 ¢ K. Moreover, since ag4+1 > 0,

Peryyjag, @ = @keN kagtr = ®keN\K kag4 @ k“/H»] =Xa, @ @kng(kaHl

whereas by (ii),

h(Perazja,,, ®) = Perarasap, ¥ = @keNOYka“l/a = @keN\K%/kaHl/a D @kekfk“fﬂ/“’

By assumption (4.2), dim Xy, , = dim Yiq,, /o for every k € K,. Since dim Peryy 4, ® =
dimPeryza/q,.,¥, again by the topological invariance of dimension, clearly dim X,,,, =
ZkeN\K[ dim Y4, /¢ > 0. This shows that ikagy/a € o (W) for some k € N\ Ky, and
also dim X,,,, > dimY,,_ /o because 1 € N\ K,. Note that kag,1/a ¢ {bo, b1, ..., be}
whenever k € N\ K;. Thus kag4+1/ < b4, and in particular ap+1 < abe41. The same
argument with the roles of ® and W reversed yields agy1 > abgyy and dim Xp,, /o <

dimYj, . Consequently, (4.2) holds with £+ 1 instead of £, and in fact for all £ < min{m, n}

by induction. Since ®, W are bounded, X = @y Xa,, ¥ = Dj_( Ys,, from which it is
clear that m = n, showing in turn that (4.1) holds. As observed earlier, this proves that
A® = Aand «AY = «B are similar. o

As seen in the above proof, the assumption Per ® = X in Lemma 4.3 simply means that
X;D = X for some A € o(®P). Thus o (P) generates at most one rational class other than
{0}. Even when o (®) does generate several rational classes, however, it turns out that if ®
is (h, 7)-related to W then h(X ) always equals Y w@ with an appropriate p. This way the
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homeomorphism / induces a bijection between the rational classes generated by o (®) and
o (V).

Lemma 4.4 Let ®, ¥ be bounded linear flows on X, Y, respectively. If ® is (h, t)-related
to W then there exists a (unique) bijection hg : o (P)g — o (V)g with h(XfQ) = Y];I['@(AQ)
for every ) € o (®); in particular, o (®) and o (V) generate the same number of rational
classes.

The proof of Lemma 4.4 is facilitated by a simple topological observation [37].

Proposition 4.5 Let Zy, ..., Zy be subspaces of X, with £ € N. If dim X /Z; > 2 for every
j=1,...,Lthen X \ U‘;:] Zj is connected.

Remark 4.6 Proposition 4.5 remains valid when dim X = oo, provided that each Z; is closed.
Italso holds when X is a normed space over C, in which case it suffices torequire that Z; # X
for every j.

Proof of Lemma 4.4 Assume that o (®) and o (V) both generate at least two different rational
classes other than {0}. (Otherwise, the lemma trivially is correct.) Fix any A € o (®) \ {0}.
Given x € X;?Q C Per &, Propositions 2.3 and 4.2(iv) guarantee that h(x) € Y 3’@ for an
appropriate, possibly x-dependent € o (¥). Thus the family of closed, connected sets
{h_l (Y;’Q) tueo(W)\ {O}} constitutes a finite cover of Xf’(@ \ Fix ®; by Proposition 4.5,
the latter set is connected. If X,‘\bQ \ Fix ® was not entirely contained in 2! (Y l‘f’@) for some
1, then one could choose 1, wa € o (W) \ {0} with 1 Q # u2Q such that
] —1 ¥ ) - —1,yW¥ w @ :
G#Eh (Y, @) N (Y50 N (X0 \Fix®) =h™ (Y, g NY,,0) NX;q \ Fix®

C h~'(Fix W) \ Fix ® = @,

an obvious contradiction. Hence indeed /(X f’Q) cY ;:PQ for some p € o (V), and reversing

the roles of ® and W yields h(Xf’Q) = Y:Q. Note that the rational class ©Q is uniquely
determined by AQ, due to Proposition 4.2(ii). Letting hg(AQ) = pnQ precisely when
h(XfQ) = Y:’Q therefore (uniquely) defines a map hqg : o(®)g — o(¥)g. Since & is
one-to-one, so is g, and hence #0 (P)g < #o (V). Again, reversing the roles of ® and ¥
yields #o (®)g = #0(¥)q, and A is a bijection. ]

Combining Lemmas 4.3 and 4.4, notice that if A € o(®) \ {0} and &, ¥ are C°-orbit
equivalent, then the respective (linear) flows induced on X ;DQ and Y,:I(El () are linearly flow
equivalent with 7, = a;gidg for every x € X;DQ, where o, = Thqé@@)/ T}\%. As it turns

out, Theorem 4.1 is but a direct consequence of the fact that a; does not actually depend
on AQ.

Lemma 4.7 Let ©, V be bounded linear flows. If ® is (h, t)-related to V then

Thw " Th\y &
00D _ 10D v T e o (@) {0}
TAQ TX@

here hq denotes the bijection of Lemma 4.4.

The proof of Lemma 4.7 given below is somewhat subtle. It makes use of a few elemen-
tary facts regarding maps of the 2-torus T := R2/Z2. Specifically, recall that with every
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continuous map f : T — T one can associate a continuous function Fy : R2 - R? with
f(x 4+ 2% = Fp(x) + Z* for all x € R?, as well as sup, .2 || Fy(x) — Lyx|| < oo for
aunique Ly € 7**2. Two continuous maps f, f T — T are homotopic if and only if
Ly = Lz moreover, L ;.7 = LysL7. Also, if f, — f uniformly on T, then L s, = L for
all sufficiently large n.

Given any u € RZ, let k,(f,z) = z 4 ut for all (r,z) € R x T. Thus &, simply is the
Kronecker (or parallel) flow on T generated by the differential equation z = u. Recall that
for every z € T, the «,-orbit «, (R, z) is either a singleton (if # = 0), homeomorphic to a
circle (if au € Z? \ {0} for some a € R), or dense in T. Variants of the following simple
rigidity property of Kronecker flows appear to have long been part of dynamical systems
folklore; cf. [2, Thm. 2] and [26, Lem. 6].

Proposition 4.8 Let u, i € R% If f : T — T is continuous and maps some i,-orbit into a
ky-orbit, i.e., for, (R, z) C kg(R,7) for some z,7 € T, then Lyu, i are linearly dependent.

Remark 4.9 All concepts regarding T recalled above have precise analogues on the m-torus
R™ /7™ for all m € N, and Proposition 4.8 carries over verbatim with u, u € R™ and their
associated m-dimensional Kronecker flows. Only the special case of m = 2, however, plays
arole in what follows.

Proof of Lemma 4.7 As in the proof of Lemma 4.3, denote A® AY simply by A, B. Also, let
MQ, ..., 2Qand u1Q, ..., ueQ, with £ € Ny, be the distinct rational classes other than
{0} generated by o (®) and o (V) respectively, and hg(1;Q) = ©;Q forNj =1,...,L As
there is nothing to prove otherwise, assume ¢ > 2, and let .1 = A, Ap = X. For the reader’s
convenience, the proof is carried out in several separate steps.
. .. . )

Step I—Topological preliminaries Let X ; = Zkea(@)ﬂ(AjQJrka) XAQ for every 1 <
J <k < £, and similarly let Y; ; = Zuea(\lf)ﬂ(u,@+uk@) YI:I’Q. Clearly, X ; ; is ®-invariant
and contains both Xf}Q (= X;, ;) and XﬁQ. Moreover, if {1, k1} # {j2, k2} then X, 1, N

Xjph C Xg)@ C Per @, with an appropriate A € o (®). Also, note that x € X ¢ \ Per @ for

some j, k if and only if ® (R, x) is homeomorphic to T. Since this property is preserved under
orbit equivalence, given any x € X1 2, there exist j, k, possibly depending on x, such that
h(x) € Y; . Thus the closed, connected sets {h_l(Yj,k) 11 < j <k <{}cover X1 ,\Per ®.
Since the latter set is connected, and 4 ~! Yji .k NYjpxy) C h~!(Per W) = Per @, the same
argument as in the proof of Lemma 4.4 demonstrates that 2(X2) C Y i for some j, k, and
since Y'Y Q= h(Xq’Q) fori =1, 2,itis clear thatin fact 7(X; 2) C Yj 2. Reversing the roles
of ® and W yields h(X1,2) = Y1,2. Henceforth, assume w.l.o.g. that X; o = X and Y, =Y.
(Otherwise, all topological notions employed in Steps III to V below have to be interpreted
relative to X1 2 and Y7 2, respectively.)

Step II—Arithmetical preliminaries For convenience, let Zyp = ker A = Fix <I> and for
every j =1,...,0letZ; = @seR+:meAijer (A% + s2idy), and also let T = Q) With

this, X = EBf-:O Zj,and for each j =1, ..., £ the eigenvalue A; is a rational multiple of
2m1/T;. Since X = X > by assumption, there exist unique k; 1,k;> € Z, k; € N with
ng (qul, kj,g, kj) =1 and

ki/Tj =kj1/Ti+kj2/To Vj=1,...,L
Let L be the subspace of R given by

Lr={xeR 1kjixi+kjoxs—kix;=0Vj=1...¢.
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Note that L is two-dimensional and contains two linearly independent integer vectors.
(If £ = 2 then simply Lr = R2) Hence L7 := Lg N Z* is a two-dimensional lattice,
that is, a discrete additive subgroup of Lg. Let by, by € 7! be a basis of this lattice, i.e.,
L7, = b1Z + byZ. Though not unique per se, the basis by, by is uniquely determined under
the additional assumption that

b]y] > 0, b2,1 =0, 0< b]yz < b2,2. (43)

(Note that if £ = 2 then simply b1 = b2 = 1, bo1 = b1 = 0.) Since clearly
[1/Ty,...,1/T, 1T € Lg \ {0}, there exists a unique u € RZ\ {0} such that

[b1|balu=[1/Ty,....1/Te]". (4.4)

Notice in particular that u 1Q + u 2Q = 1/T1Q + 1/7>Q, and hence u 1, u > are rationally
independent because 1/T7, 1/ are.

A completely analogous construction can be carried out in Y: Let Wy = ker B = Fix W,
andlet W; = ) @ker(Bz—l—s2 idy)forj=1,...,¢aswellas §; = T:’jQ. Then

seR*usep;
Y = @‘;:0 W, and the same procedure as above yields unique cy, ¢z € 7 with
c11>0, 21=0, 0<c12<c2, 4.5)
(and in fact ¢c1;;] = 22 = 1, 21 = c12 = 0 in case £ = 2), together with a unique
i € R?\ {0} such that
[eileal =11/S1,..., 1/8¢1"; (4.6)

again, U 1, il 5 are rationally independent.

Step IlI—Construction of maps on T Denote by Py, ..., P, the complementary linear
projections associated with the decomposition X = 691;:0 Zj,i.e., Py is the projection of X
onto Z along EBf-zl Zj etc. Note that P;®;, = &, Pj forall j =0,1,...,£andt € R, due
to the ®-invariance of Z;. Given any x € X, define p, : T — X as

14
px(z) = Pox + Zj:1 Py jz14+b 201 Pix Yz €T,

with by, by € Z as in Step II. Clearly, p, is continuous, p, (0 + Z2) = x, and with an
appropriate constant v € R,

Ipx(2) — px@)| < vlx =% Vx,x€X,zeT. 4.7

Thus py, — p, uniformly on T whenever x,, — x. Also, with the unique « from (4.4)

4 '
pelut + 7% = Pox + Z,-:] Dby jur+bojun Ty Pjx = Pox + Zj:1 @, Pjx = dx ViR
In terms of the Kronecker flow «,, on T, this simply means that
pxoku(t,0+7% = dx VieR. (4.8)

Since u 1, u » are rationally independent, the «,,-orbit «,, (R, 0+ Z2) is dense in T, and hence
px(T) = ®(R, x). Thus, p, maps T continuously onto the closure of the ®-orbit of x, for
every x € X.

Next, consider U :={x € X : TIEI;X =1T; Vj=1,...,¢},anopen, dense, and connected
subset of X by Propositions 4.2 and 4.5. Whenever x € U, note that py(z) = p,(Z) implies
-7 € 7% ie., px is one-to-one and hence a homeomorphism from T onto ® (R, x).
Moreover, p;l depends continuously on x € U in the following sense: If x, — x in
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X Y
(R, z) U (R, h(z))

: )

Dz qh(x)

=

T fac:(J}:(lm)ohopz

./ ) ;

0+ 72 0+ 72

Fig. 4 The map fy : T — T is well-defined and continuous provided that x € h! (V) € X and is a
homeomorphism whenever x € U N ! V)

U, and if (X;,) converges to some X with X;, € py, (T) for every n, then X € p,(T) and
px_n] &) — px_1 (%) in T. To see this, let X, = px, (z,) with the appropriate z, € T, and
note that every subsequence (z,,) contains a subsequence that converges in T to some z
with X' = p,(z). Since p, is one-to-one, z is uniquely determined by this property, and so
(zn) = (p;n1 (Xn)) converges to z = pi ®).

Again, acompletely analogous construction can be carried outin Y: Denote by Qo, ..., Q¢
the projections associated with the decomposition ¥ = @ﬁ':o W; and, given any y € Y,
define gy : T — Y as

l
qy(2) = Qoy + Zj:] \D(Cl,jz,l‘f’CZ,jZ,Z)Sj Qjy Vze T,

with c1, ¢; € Z* as in Step II. As before, qy is continuous, g, (0 + 7%) =y, and dy, = qy
uniformly on T whenever y, — y. In analogy to (4.8), with the unique % from (4.6),

gy okiz(t,0+ 7% = W,y Vit e R, (4.9)

and gy, maps T continuously onto W (R, y). With the open, dense, and connected subset
Vi={yeY: Tél’jy =S8; Vj=1,..., £} of Y, the map gy is one-to-one whenever y € V,

and g,/ ! depends continuously on y € V, in the sense made precise earlier.
Combining the homeomorphism £ with the maps introduced so far yields a continuous
map fy : T — T, given by

fe(@) =gy o hopr(@) V2 e,

with fy (0+7%) = 0+Zz,provided thatx € h=1(V);seealso Fig. 4. Notice thath~1(V) c X
is open, dense, and connected. As seen earlier, if x,, — x ink~! (V) then fx, — fx pointwise.
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In fact, using the analogue for gj, () of (4.7), it is readily seen that f,, — f, uniformly on T.
Thus x + L, is continuous on h~1(V), and indeed constant because »~! (V) is connected.
In other words, Ly, = L for a unique L € 7%*? and every x € h~!'(V). Recall that p,, and
hence also f, is a homeomorphism whenever x € U N h~!(V). This set, though perhaps
not connected, is open and dense in X, so certainly not empty. Thus L is invertible over Z,
or equivalently |det L| = 1.

Step IV—Properties of L and [ b1 | by ], [c1|c2] The scene is now set for recognizing
some finer properties of the matrices L € 72%2 and [bi|b2],[c1]c2] € 7% which truly
is the crux of this proof. Concretely, it will be shown both that L = I, and that the first two
rows of [ ¢1 | ¢2 ] are positive integer multiples of the corresponding rows of [ by | b3 ]. To this
end, fori = 1, 2 fix x; € Z; so that qui) = T;. Then y; := h(x;) € Wy & W; and Ty‘f’ =S;.
Also, by (4.7) and its analogue for gy, picking v € RT large enough ensures that

Ipx(@) = px@I < vix =%I, llgy(2) —g5@II =vly =3I Vx,X€X,y,yeY,zeT.
Since S; is the minimal W-period of y;, given any ¢ > 0, there exists a §;(¢) > 0 such that

[Wry; — Wryill < 8i(e) forsomer, 7€ R = mingez |(t —7)/S; —k| <&. (4.10)
By the continuity of 4 and the periodicity of x;, there also exists a §>(g) > 0 such that

31(¢)
2(14v)

Moreover, notice the simple estimate, valid for x € Kl (V)yandi =1, 2,
lgy; o fx(@) —ho px, (DI S vIlh(x) — yill +11ho px(@) —hopx ()| VzeT. (4.12)
Finally, let zy,Zs; € T be given by

is = |:Oi| + sz ZS‘ = |:_b2,25i| + Z2 Vs e R,
s b1.2s

lx — O;x;|| < S2(e) forsomet e R — ||h(x) — h(Dix;)|| < 4.11)

and observe that, fori =1, 2,

Pxi (25) = @iy s Xis Gy © [x(2s) = Wy 9)5,yi Vs €R, (4.13)
with y;(s) = [c1,i, ¢2,i 1Ff, (z4). Similarly
Pxi @) = ¢(—b1,ib2_2+b1_2b2v,-)sT,-xi7 qy; © fx(Zs) = \Ilﬂ(s)Si yi Vs eR, 4.14)

with y;(s) = [c1,i, c2,i 1F, (Zs). With these preparations, it is possible to analyze fy for x
close to x; or x». For the reader’s convenience, the analysis is carried out in two separate
sub-steps.

Sub-step IVa—Analysis of f for x close to x1 Givenany 0 < & < %, leté = 82(e)/(1+v)
for convenience, and assume that x € A~ (V) with ||x — x;|| < 8. Then ||A(x) — yill <
%61 (e)/(1 +v) by (4.11), and using (4.13) with i = 1, recalling that b, 1 =0,

v
14+v

and hence ||h o px(z5) — h o py (z9)|| < %51(8)/(] + v) as well. With (4.12), therefore,
1Yy, )8 31 — 1l < %81 (&), and (4.10) yields mingez |y1(s) — k| < € for all s € R. Since
y1 is continuous, there exists a unique k € Z such that |y (s) — k| < ¢ for all 5. Recall that
y1(s) = [c1,1,0]Fy, (z5) and that sup,p | Fr, (z5) — Ly, 25| < +00. Consequently,

[ Px(2s) = Pxy @)l = [ Px(2s) — X1l < 82(e) < 82(e),

supyer le1,1L1,25] = supseg [[c1,1, 01Lz| < 400,
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and since cq1,1 > 0, it follows that L1 > = 0, which in turn implies |Lq 1| = |L22| = 1,
because |[det L| = 1.
Similarly, using (4.14) with i = 1,
v

||Px(zs) - <I)—171,1172_2&7]-)‘71 ” = ||Px(2s) — Px; (ZS)” < 62(8)7

14+v

and again || o px(Zs) —h o py, (@) < %81(8)/(1 4+ v), so that (4.12) now yields

15 5151 91 = W, (<braboas VI = [1gy, © fx(@s) —h o px @)l < 181(e).

Hence mingez, |91 (s) — tx, (=b1,1b2,25T1)/S1 — k| < & for all s € R. Similarly to before,
and since L1 = 0, this implies that

supser |b2.2¢1,1L1,1S — Ty (b1,1b2,25T1) /S1] < +00.
As by,1, b22, c1,1 all are positive, and 1y, is increasing, L11 > 0, and soin fact L1 = 1.
Finally, let r = 1/(by,1b2,2) and note that py, (Zs4r) = px, (Zs) for all s, but also
||\D}7] (s+r)S1 Y1 — \11371 )81 V1 I = ”qyl o fx@x+r) —{qy, © fx(fs)”
<2[h(x) =yl + ko px(ZH—r) —ho Px; (ZS-H')” +lhope@s)—ho Px; @l

; 31(e) 31(e) 31(e)
20+v) 20 +v)  2(1+v)
=351(e) Vs eR.

Deduce from (4.10) that, with a unique k € Z,
Pi(s+7)—Pi(s) +k| <& VseR. (4.15)

Adding (4.15)withs =0, r, ..., (n—1)ryields |}| (nr) — 1 (0) +nk| < ne foreveryn € N.
Since the difference between ¥ (nr) = [c1,1, 01Ff, (Zyr) and [c1,1, 01LZ,r = —c1,1n/b1 1
remains bounded as n — o0, it follows that |c1,1/b1,1 — k| < €. Moreover, since ¢ > 0 was
arbitrary and by 1, c1,1 are positive, in fact ¢;1/b1,1 = k € N. In summary, the analysis for
x being sufficiently close to xj shows that L1 =1, L1 =0,and ¢1,1/b1,1 € N.

Sub-step IVb—Analysis of fx for x close to x, A completely analogous analysis can be
carried out for x being close to x,. Specifically, givenany 0 < ¢ < %, assume thatx € A~1(V)
with || x — x2|| < 4. Similarly to before, (4.12) and (4.13) now yield

”\Ilyz(s)Sz)’Z - \IJT)CZ(bzystz)yZH = ”qyz o fx(zg) —ho Px> (z)ll < %51 (e) Vs eR,

and consequently mingez, [y2(s) —Tx, (b2,25T2)/S2 —k| < 6. Asya(s) =[c1,2, 2,2 1Ff, (25),
this implies that

SUPeR [€2,2L2,25 — Ty, (b2,25T2)/S2| < 400,

and hence Ly » > 0, soin fact Ly 2 = 1. As well, py, (Z5+1/p,,) = Px, (z5) for all s, but also

Wy (s4+1/522)8: Y2 — Yy ()$: Y21l = 11gys © fxZs+1/by,) — dyr © fx (@5l
S20[lh(x) = 20l 4 11 © px (Zs41/by2) — 1 © Pxy (Zs41/by )| + 1h 0 px(zs) — h o pxy (zs) I
< 81(e) Vs eR,

implying that |2 (s + 1/b22) — y2(s) — k| < ¢ for aunique k € Z and all s € R. By adding
these inequalities for s = 0, 1 /b2 2, ..., (n — 1)/by 2, similarly to before, it follows that

lc2.2/b22 — k| =limsup,_,  [y2(n/b22)/n — k| < ¢,
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and since ¢ > 0 was arbitrary, c2,2/b2 2 € N. Finally, utilizing (4.12) and (4.14) withi = 2,

W55, 52 — y2ll = llgy, o fx @) —h o pr, Gl < 381(e) Vs € R,

yields mingez [V2(s) — k| < ¢ for all s. Consequently, as L1; = Lo, = 1 and L1 2 = 0,
supeg Is(b1,2¢22 — baac1a — Laoibaacan)| = supyeg [[ €12, €22 1LZ| < +o0.

Thus necessarily Ly 1 = b12/b22 — c1,2/c2,2. By (4.3) and (4.5), both ratios by 2/b2 2 and
c1,2/c2,2 are non-negative and strictly less than 1. Thus Ly ; = 0 and by 2/b22 = c1,2/¢2.2-
In summary, the analysis for x being sufficiently close to x, shows that Ly 1 =0, Ly =1,
and hence L = I, as well as ¢22/by» € Nand by 2/b22 = c1,2/c2.2.

Step V—Concluding the proof For every x € U N h~1 (V) the map g, : T — T given by
gx = py ' oh! o gy is a homeomorphism of T, with g, = f.~!, and carrying out Step TV
with the roles of ® and W reversed yields L, = L= = I, as well as bii/c1,1.b22/c22 €
N. This shows that in fact by, | = c1,1, b2,2 = ¢2,2, and hence also by 2 = ¢ 2. With this, the
proof is readily completed: Combine (4.8), (4.9), the definition of f, and the fact that ® is
(h, T)-related to W, to deduce that for every x € h~1(V),

froku(t, 0+ Z2) = g, 0 h(®1x) = gy (Ve (1)) = ki(ze (1), 0+ Z) Vi € R,
where u, # € R? \ {0} are determined by (4.4) and (4.6) respectively. In particular
big 0 1/T; cii 0 [~ |1/8
, — i , = . 4.16
|:b1,2 bz,z]u [1/T2] [61,2 Cz,z]u |:1/Sz (4-16)
By Proposition 4.8, the vectors L r,u, i are linearly dependent. Since L , = I and the two

matrices in (4.16) are identical, linear dependence of L f, u, & implies linear dependence of
[1/T0, 1/T2]", [1/81,1/8,]7, that s,

o VT US| _ 1 (S S
YT US| s\ T))
v o _ Vv 0] :
Thus, TMIQ/TMQ = TmQ/TAzQ’ as claimed. O

As alluded to earlier, by combining Lemmas 4.3, 4.4, and 4.7 it is now easy to establish
the “only if” part of Theorem 4.1. (The “if” part is obvious.)

Proof of Theorem 4.1 As in the proof of Lemma 4.7, let A;Q, ..., 2,Q, with £ € Ny, be
the distinct rational classes other than {0} generated by o (®); again there is nothing to
prove unless £ > 2. For convenience, denote the generators of the linear flows induced
on XS/@ and Yf){é(x,@) by A; and B; respectively, and let XEQ = Fix® ® @) Xaj s
Y}%(Aj(@) =Fix¥ @ @kmél Ya; /o, in accordance with the proof of Lemma 4.3. As seen in
that proof, HjA; = a;B;jHj, witha; = hg(ka)/Tf;Q and an isomorphism H; : Xf?Q —
Yf:Ic/g()\j@) satisfying H;Fix ® = Fix W as well as H; X4, = Y4, ja; fork =1,...,mj. By
. . l £
Lemma4.7,a; = o forall j = 1,.. .., 0. Since X =370, ijQ andY =3}, Yi:é(ij)’
letting Hx = H;x for x € EBZZI Xg;, and Hx = Hyx for x € Fix ®, yields a linear
isomorphism H : X — Y with HA® = 1AV H. u]
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5 Proof of the Classification Theorems

Let @ be a linear flow on X, a finite-dimensional normed space over R. The subspaces

X® = {x € X : lim; 400 ®rx =0},
XE = {x e X :limy- 0o e @, x =0 Ve > 0},

Xﬁ ={x e X :lim_ oo &;x =0},

referred to as the stable, central, and unstable space of ®, respectively, are ®-invariant,
and X = X g’ ®X S X 5; see, e.g., [12] for an authoritative account on linear dynamical
systems. Call ® hyperbolic if X = {0}, and central if X® = X. Fore = S,C, U, let
P2 be the linear projection onto X2 along G}O#. X2, With this and ®, := ® x@, clearly
@ is linearly flow equivalent to the product flow X, ®,, via the isomorphism X, PfI> and
with 7, = idg for all x € X. By invariance, PX®, = ®, P2 for all + € R, and hence also
PfI’Aq’ = A‘Dbe. Notice that if & is (&, 7)-related to W then h(Xg’) =YY, h(Xg’) =YY,
whereas it is possible that /(X ‘CD ) #Y g‘ .

Proof of Theorem 1.1 To establish that (i)=>(iv), assume that ® is (h, t)-related to W. Then
hX$) =Y, h(XP) = Y, hence dimX¢ = dimY¢, dim X = dimY,}, and it only
remains to prove the assertion regarding ®c, W¢. To this end, in analogy to the proofs in
Sect. 4, denote A%c, AVc by A, B respectively, and let Xo = ker A, Yo = ker B, as well
as X; = ker (A2 + 52 idxg), Yy = ker (32 + 52 idyg) for every s € RT. For s > 0 and
n € Ny, let cg’ (s) = dim (XS NCEM (@, X)). Recall from Sect. 3 that (c;f> (s)) is a decreasing
sequence of integers, with cg’ (s) = dim X, as well as cff (s) = 0O for all large n. With this,
consider non-negative integers d,? (s) := 63)—1 (s)— cflb (s), withany n € N. As a consequence
of (3.10), d,? (0) simply equals the number of blocks J,, in the real Jordan normal form of A,

| n Jn|—s1,

whereas idn (s) equals, for every s € R™, the number of blocks 1 7

n n
Recall first that 7(X¢) = Yy, by Proposition 2.3, and that h(CE(”) (D, X)) = CM(p,y)
for every n € Np, by Lemma 3.6. It follows that cff ) = c,\lp (0) for all n € Ny, and hence
also d?(0) = d)} (0) for all n € N. Thus, A, B (and in fact o B for any « € R*) contain the
same number (possibly, zero) of blocks J, in their respective real Jordan normal forms, for
each n € N. Since this clearly proves (iv) in case o (®) N R C {0}, henceforth assume that

o(®) NiR\ {0} # @.

Pickany A € o (®)N:R\ {0}, and recall that Xf)@ C Bnd ® aswellas h(Bnd &) = Bnd V.
Thus h(X;DQ) =Y, }:Ié) 0.Q) by Lemma 4.4. As in the proof of Lemma 4.3, for convenience let

rQNo (P)\{0} = {F1ay, ..., f1a,} and hg(AQ) No (W) \ {0} = {F1b1, ..., £1by}, with
m € N and real numbersa; > --- > a, > 0and by > --- > b,, > 0; again, ap := by := 0.
As seen in that proof, ay = aby forevery k = 0,1,...,m, witho = Th\é(AQ)/T/\% € RY,

but also, with the sets K; C Ny defined there,

h (xm, o@D, ka) = Yo @@, Yo VE=01.om—1 (D)

Now, assume that, for some 0 < ¢ < m,

d¥(a) =dY () YneN,k=0,1,...,¢; (5.2)
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as seen earlier, (5.2) holds for £ = 0. With (5.1) and Lemma 3.6, for any n € Np,

e @)+, e tkacen) = dim (X, @ @, Xearsr ) N C0(@, X))

= dim ((¥p,., ® @kemy,{h,m) NCOW, 1)) =¥ (i) D o (kbes).

Together with (5.2), this implies that d® (a41) = d)Y (be+1) forevery n € N, i.e., (5.2) holds
with £+ 1 instead of £, and by induction (on £) in fact for £ = m as well. Thus, A, « B contain

J —dk I
the same number of blocks r} J” i| in their respective real Jordan normal forms, for
A Ln n
eachn e Nandk =1, ..., m. The same argument can be applied to every rational class AQ

with A € o(®) N:R\ {0}. By Lemma 4.7, the resulting value of « is independent of A. Thus
A% = A and a AYC = o B are similar, as claimed.

Showing that (iv)=>(iii)=>(ii) requires straightforward, mostly routine arguments. Since
details of the latter can be found in many textbooks, e.g., [3,4,12,20,30], only a brief out-
line is included here for completeness. To prove that (iv)=>(iii), note first that ||x||<sI> =

0+o° || D, P;b x|| dt and its counterpart || - ||§’ on Y define norms on X ;D and Y;’ respectively,
for which ||d>.x||<sl> and ||\IJ.y||g’ are strictly decreasing to 0 as t+ — +o0o whenever x # 0,
vy # 0. Consequently, given x € Xg’ \ {0}, there exists a unique #, € R with [|®; x||s = 1.
Also, by assumption, there exists a linear isomorphism Hg : X g’ —Y ;’ . It is readily con-
firmed that hg : X ;D — Y;’ , given by

\IJ—G{Z‘X HS CD,X)C

hs(x) =1 |IHs®;x||¥
0 ifx =0,

ifx e X§\ {0},

is a homeomorphism, and
hs(®; P8 x) = Worhs(PFx) V(t,x) e R x X. (5.3)

A completely analogous argument, utilizing ||x||$ = ff)oo | D, P§x|| dt, its counterpart ||~||3
on Y, and a linear isomorphism Hy : X;I]> — Yl‘}’, yields a homeomorphism Ay : X?} — YZ‘}’
for which (5.3) holds with U instead of S. With this, clearly ®g x &y, g x Wy are C 0_flow
equivalent via the homeomorphism sg x hy and with 7, = «idg for all x € X ;D x X g’.
Since HA®C = o AYcH by assumption, H(®¢c); = (Wc)or H for all ¢ € R, that is, ¢,
W are linearly flow equivalent.

To prove that (iii)=>(ii), assume that &g x oy, Vg x Yy are CY-flow equivalent and
He(®¢); = (Ve)orHe for all ¢ € R, with some linear isomorphism He : X& — Y
and o € RT. By the implication (i)=(iv) already proved, dim X§ = dimYy’, dim X5, =
dim Y[\]l’ , and the argument used above to prove that (iv)=-(iii) yields a homeomorphism
hs : X® — Y satisfying (5.3), as well as its counterpart iy : Xp — Y;/. Combining
these ingredients,

h(x) == hs(P&x) + Hc PEx + hy(Pgx) Vx € X,

defines a homeomorphism 4 : X — Y with h(®;x) = Wy h(x) forall (f, x) € R x X. Thus
@, W are CO-flow equivalent. The implication (ii)=(i) is trivial. ]

The proof of Theorem 1.2 given below relies on two simple observations, both of which
are straightforward linear algebra exercises [37]; recall that X, Y are finite-dimensional linear
spaces over R.
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Proposition 5.1 Let A,NZ : X — Y be linear, and assume that Z # X is a subspace of X
with Z D ker A + ker A. Then the following are equivalent:

i) Ax, Ax are linearly dependent for each x € X \ Z;
(i) A = aA for some o € R\ {0}.

Proposition 5.2 Let A : X — X be linear. Then the following are equivalent:

(1) A is nilpotent, i.e., A" = 0 for some n € N;
(i) A, oA are similar for every a € R\ {0},
(iii) A, @A are similar for some o > 1.

Remark 5.3 While the non-trivial implication (i)=(ii) in Proposition 5.1 may fail if Z 2
ker A + ker Z, even when dim X = 1, finite-dimensionality of X (or Y) is irrelevant for the
result. By contrast, although (i)=>(ii)=>(iii) remains valid in Proposition 5.2 when dim X =
00, every other implication may fail in this case. Provided that R is replaced with C in (ii),
Propositions 5.1 and 5.2 also hold when X, Y are linear spaces over C.

Proof of Theorem 1.2 Clearly (iv)=(iii)=(ii)=>(i), so only the implication (i)=(iv) requires
proof. To prepare for the argument, assume ® is (%, 7)-related to W with a C'-diffeomorphism
h : X — Y. For convenience, denote the linear isomorphism Doh by H, the generators
A% AY by A, B, and the projections be, P.‘I’ by P,., Q,, respectively. As seen earlier,
h(Xg) = Y and hence HX$ = Y¢', and similarly for X§. It is possible, however, that
HX: # Y Y, and this in turn necessitates usage of one additional pair of invariant subspaces
as follows: Recall that Xg) D Bnd® D kerA and Yg’ D BndW¥ D ker B. By Proposi-
tion 2.3, h(Bnd ®) = Bnd W, and hence H Bnd ® = Bnd W, but also ABnd ® C Bnd &
and BBnd W C Bnd W, due to invariance. With this, let X3 = X§ @ Bnd ® & X} and
Yup = Ygl’ @ BndV¥ @ Yl‘]p. Plainly, H Xy p = Ym B, and crucially,

QeHx = HPyx Yx € Xyp,e=S,C,U.

By Theorem 1.1, there is nothing to prove if X g’ = X, orequivalently if Xyp \ X 33 = .
Thus, henceforth assume that Xgp \ X g’ # ; notice that this in particular includes the
possibility of X& = {0}, i.e., the case of a hyperbolic flow ®.

With the notations introduced above, pick any x € Xgp \ X g’ and ¢ € R*. Note that if
T was differentiable, then differentiating the identity 4 (e’ Ax) = e DB (x) at (0, 0) would
immediately yield HA = 7(0)BH; cf. [34, p. 233]. The following argument mimics this
process of differentiation for arbitrary . First observe that, for every ¢ > 0,

h(e'dex) /e = e DB p(ex)/e. (5.4)

Suppose thatlimg | ¢ Tey (£) = +00.1f50,1im;,, oo T¢,x (f) = +00 forevery strictly decreasing
sequence (&) with lim,,_, o, &, = 0. In this case, applying Qs to (5.4) yields

He'* Psx = QsHe' x = limy—_ o0 €™ DB Qsh(enx) /e, = 0,
and hence Psx = 0, whereas applying Q yields
0 = limy—oo e DBOuh(e'e,x) /e, = QuHx = HPyx,

and hence Pyx = 0. Taken together, x € ker (Ps + Py) = X g) , contradicting the fact that
x € Xgp\ XCCD. Consequently, po(f, x) := liminf, o 7cx (1) < 400 and

He'dx = P IB |y, (5.5)
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Since po(t, x) = 0 would imply x € Per® C X2, clearly po(t, x) € RT. Also, notice
that if lim sup, o po(7, x) was positive, possibly 400, then Psx = 0 and Pyx = 0 would
follow from applying Qg and Qp respectively to (5.5), again contradicting the fact that
x € Xgp \ X&. Thus lim, o po(t, x) = 0.

Next, deduce from (5.5) that

tA _ s tx)B _;

HAx = im0 HE— 9% ¢ — i o 2002 MO —idy timg 0 20 B,
t t po(t, x) t

(5.6)

and so poo(x) = lim; o po(t, x)/t exists because BHx # 0. Clearly, pgo(x) > 0. In

summary, forevery x € Xgp \ Xg’ there exists pg,o(x) > 0 such that HAx = pg,o(x)BHx;

inparticular, BH x, H A arelinearly dependent foreachx € Xyp\X g’ .Notice thatker BH =

H 'kerB ¢ H'Bnd¥ = Bnd®, as well as ker HA = kerA C Bnd @, and hence

ker BH +ker HA C Bnd ® # Xpp. Proposition 5.1, applied to BH, HA : Xgp — Yup
and Z =Bnd® = Xyp N Xg’, guarantees the existence of @ € R\ {0} such that

HAx =aBHx Vx € Xggp, 5.7

and from (5.6) it is clear that in fact « € R™. Thus the proof is complete in case Xy = X,
or equivalently whenever Bnd ® = X g’. (This, for instance, includes the case of a hyperbolic
flow ®.)

It remains to consider the case of Bnd ® being a proper subspace of X &, where necessarily
Bnd @ # {0}. Deduce from Theorem 1.1 that there exists a linear isomorphism K : X — Y,
with KX® = Y foreache = S, C, U, and a 8 € R such that

KAx = BBKx Vx € XQ. (5.8)
Notice that (5.8) implies K Bnd ® = Bnd W. Combine (5.7) and (5.8) to obtain
aH 'BHx = BK~'BKx Vx € Bnd ®. (5.9)

For convenience, denote the generators of Wppqy and \IJYg by Bp and B respectively. Since
HBnd® = Bnd¥ = K Bnd @, (5.9) simply asserts that « B, B Bp are similar. It is now
helpful to distinguish two cases: On the one hand, if Bp is not nilpotent, then « = S by
Proposition 5.2. In this case, L : X — Y with

L=HPs+ KPc+ HPy (5.10)

is a linear isomorphism, and LAx = aBLx for all x € X. On the other hand, if Bp is
nilpotent then so is B¢, and Proposmon 5.2 shows that @ B¢, B Bc are similar. Consequently,
there exists a linear isomorphism K:X — Y, with KX® = Y2 for each e = S, C, U,
such that K Ax = aBK x forall x € X ®_ The same argument as in the non-nilpotent case
then applies, with K in place of K in (5 10). In either case, therefore, LA = aBL, that is,
A® = Aand «AY = o B are similar, and the proof is complete. o

With the main results established, the remainder of this section provides a brief discussion
relating them to the existing literature.

In the case of hyperbolic flows, Theorem 1.1 is classical [3,4,12,20,30]. What makes the
result more challenging in general, then, is the presence of a non-trivial central space. On
this matter, two key references are [24,26]. In [24], the equivalence (ii)<>(iv) of Theorem 1.1
is proved utilizing a version of flow equivalence (termed homeomorphy, also allowing for
negative « in (iv), that is, for time-reversal). To put this in perspective, notice that insisting
on flow (rather than mere orbit) equivalence greatly simplifies the arguments in the present
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article as well. For instance, Proposition 2.4(i) simply reads Th‘/’x = «TY in this case, and
Lemma 4.7 (the proof of which required considerable effort) trivially holds. Consequently, to
decide whether two bounded real linear flows are CO-flow equivalent, all that is needed is an
elementary analysis of periodic points, as developed in Sect. 4. In particular, one may bypass
the topological considerations of [24, §3—4] which the authors found unduly hard to grasp.
To deal with non-semisimple eigenvalues on (IR, [24, §5] introduces a proximality relation
MRy: Specifically, xM, X if, given any neighbourhoods U, Uofx,¥ € X respectively, there
exists a v € X such that p(R, v) N U # @ and (R, v) N U # . Plainly, N, is reflexive
and symmetric, but not, in general, transitive, and if ¢ is (h, 7)-related to v, then xR, X is
equivalent to /1(x)Ry 1 (X). Moreover, if x € Co(g, X), then xR0, and for irreducible linear
flows the converse is true also. While the usage of 9, in [24] thus resembles the usage of
Cp (and C) in the present article, recall from Sect. 2 that these non-uniform cores may be
ill-behaved under products—and so may be f,. In fact, as per Example 2.7 with u, i as in
(2.9), it is readily seen that ud,0 and w0, yet (u, ﬁ')M(O, 0). Good behaviour of R,
under products, which even for linear flows may or may not occur in general, appears to have
been taken for granted throughout [24] without proper justification. For comparison, recall
from Sect. 2 that using uniform cores allows one to avoid this difficulty altogether; see also
[18,36].

The focus in [26] is on CY-orbit equivalence for linear flows, real or complex, for which
(i)<(iv) of Theorem 1.1 and, in essence, a version of Theorem 6.1 below are established. In
the process, the following terminology is employed (cf. also [9, sec. I1.4]): For every x € X,
consider the g-invariant closed sets

Dy () = (1), e 91— 00, =11 Be()), DF@) =), ¢(Ir. +0ol, Be(x),

where Bg(x) denotes the open g-ball centered at x. With this, Dy (x) := D, (x) N D; (x)
and S, :={x € X : D, (x) # &, DJ (x) # @} are called the g-prolongation of x and the
@-separatrix, respectively. Note that, in the parlance of Sect. 2, simply Dy (x) = Cy x (¢, X)
and S, = C(g, X). A crucial lemma [26, Lem. 7] asserts that these sets are well-behaved
under products, in that, for instance, Syxy = Sy X Sy . As demonstrated by Example 2.7,
this is incorrect in general. Another crucial lemma [26, Lem. 8] asserts that prolongations
and separatrices are well-behaved under orbit equivalence. Although this assertion is correct
(and a special case of Lemma 2.5), its proof in [26] assumes 7 : R x X — Rin (1.1) to be
continuous. The reader will have no difficulty constructing examples of C%-orbit equivalent
flows on X = R2 for which t is not even measurable, let alone continuous. Sometimes ©
can be replaced by a continuous modification, but simple examples show that this may not
always be the case. Obviously, by Theorem 1.1, a continuous modification of 7 always exists
between linear flows, but surely this should be a consequence, rather than an assumption,
of any topological classification theorem—as it is in the present article, where no regularity
whatsoever is assumed for T beyond the requirement that 7, be strictly increasing for each
x € X. One observation regarding a counterpart of Lemma 4.7 is worth mentioning also:
[26, Prop. 3] implicitly assumes that no more than two different rational classes have to
be considered simultaneously. In the notation of the proof of Lemma 4.7, this amounts to
assuming that X, = X;)]Q @ Xf;@. As the reader may want to check, this drastically
simplifies the proof of that lemma, since Step II and much of Step IV become obsolete.
In general, however, such an assumption is unfounded, as it is quite possible for three or
more rational classes to be rationally dependent, and hence for X ; to be strictly larger than
Xne ® X
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As far as the smooth classification of linear flows is concerned, most textbooks mention
the special case (ii)<>(iv) of Theorem 1.2 which, of course, can be established immediately
by differentiating h(e’Ax) = e‘“Bh(x) w.r.t. x and t; see, e.g., [3,12,30,32]. However, if one
only assumes C ' -orbit equivalence, where T may depend on x in a potentially very rough way,
differentiation clearly is not available, and a finer analysis is needed. A substantial literature
exists of further classification results for linear flows (considering, e.g., Lipschitz [22] and
Holder [29] equivalence) as well as non-autonomous [14] and control systems [7,27,35], and
also for non-linear flows derived from them [8,23].

Finally, it is worth pointing out that a similar classification problem presents itself in
discrete time, i.e., for linear operators A : X — X, B : Y — Y which are C K—equivalent if
h(Ax) = Bh(x) forallx € X. While for £ > 1 this problem is easier than its continuous-time
analogue, for £ = 0 it is significantly more difficult and, to some extent, still unresolved; see,
e.g., [10,11,15,19,25] and the references therein for the long history of the problem and its
many ramifications.

6 Equivalence of Complex Linear Flows

So far, the classification of finite-dimensional linear flows developed in this article has
focussed entirely on real flows. Such focus is warranted by the fact that the main result,
Theorem 1.1, is a truly real theorem, whereas Theorem 1.2 carries over verbatim to com-
plex flows. The goal of this concluding section is to make these two assertions precise, via
Theorems 6.1 and 6.2 below.

Throughout, let X be a finite-dimensional normed space over K = R or K = C; to avoid
notational conflicts with previous sections, the field of scalars is indicated explicitly wherever
appropriate. Further, let X be the realification of X, i.e., the linear space X equals X as
a set, but with the field of scalars being R, and define tx : X — Xp as tx(x) = x. Thus, if
K = C, then tx is ahomeomorphism as well as an R-linear bijection, and dim Xg = 2 dim X.
(Trivially, if K = Rthen Xy equals X asalinearspace,andtx = idx.) Everymaph : X — Y
induces amap hr =ty oh o L}l : Xr — YR which is continuous (one-to-one, onto) if and
only if & is. If 4 is C* or linear then so is A, but the converse is not true in general when
K = C. In particular, an R-linear map 4 : X — Y is C-linear precisely if hirJx = Jyhr
where Jx : Xg — X is the unique linear operator with Jx () = 1x(: L}l (). Given any
(smooth) flow ¢ on X, its realification ¢gr on X is defined via (pr); = (¢;)r forall t € R.
Clearly, if ¢, ¥ are Ct-orbit (or -flow) equivalent then so are ¢g, Yg, and for £ = 0 the
converse also holds. For a K-linear flow ® on X, it is readily confirmed that all fundamental
dynamical objects associated with ® are well-behaved under realification in that, for instance,
A%R = Aﬁg and also Xﬁ&* = LX(X?) fore = §, C, U. With this, the topological classification
theorem for K-linear flows, a generalization and immediate consequence of Theorem 1.1,
presents itself as a truly real result in that topological equivalence is determined completely
by the associated realifications. (The reader familiar with [26] will notice how usage of
realifications avoids the somewhat cumbersome notion of c-analog.)

Theorem 6.1 Let ®, W be K-linear flows on X, Y, respectively. Then each of the following
five statements implies the other four:
(i) @,V are CO-orbit equivalent;
(ii) ®, ¥ are CO-flow equivalent;
(ili) Pg, Wr are CO-orbit equivalent;
@iv) Ogr, VR are Co—ﬂow equivalent;
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v) dim Xg’ = dim Y;’, dim Xg’ =dimYY, and AEC, a'A]lqgc are R-similar for some a €
RT.

Proof For K = R, this is part of Theorem 1.1, so assume K = C. Since hr : Xp — Yrisa
homeomorphism if and only if 2 : X — Y is, clearly (i)<>(iii) and (ii)<>(iv). By Theorem
1.1, (ii) & (iv) (V). O

By contrast, smooth equivalence of C-linear flows is not determined by the associated
realifications. To appreciate this basic difference, consider the C-linear flows ®, W generated
by [ ], [—t], respectively: While [ ]g, [—t]r are R-similar, and hence ®r, VR are Cl- (in
fact, linearly) flow equivalent, [ 1 ], «[—1] are not C-similar for any « € R™, and correspond-
ingly ®, W are not C'-orbit equivalent—though, of course, they are C°-flow equivalent by
Theorem 6.1. The following generalization of Theorem 1.2 shows that, just as in this simple
example, smooth equivalence always is determined by the K-similarity of generators (and
not by the R-similarity of realified generators).

Theorem 6.2 Let @, W be K-linear flows. Then each of the following four statements implies
the other three:

1) @,V are Cl-orbit equivalent;
(ii) ®, W are C'-flow equivalent;
(iii) @, ¥ are K-linearly flow equivalent;
(iv) A%, aAY are K-similar for some a € RT.

Apart from a few simple but crucial modifications, the proof of Theorem 6.2 closely
follows the arguments in previous sections and only is outlined here, with most details left to
the interested reader. A noteworthy stepping stone is the following extension of Theorem 4.1;
note that the increased smoothness is irrelevant when K = R, but is essential (for the “only
if” part) when K = C, as demonstrated by the simple example considered earlier.

Lemma 6.3 Two bounded K-linearflows ®, W are C'-orbit equivalent ifand only if A®,  A¥
are K-similar for some a € RY.

Proof Only the case of K = C needs to be considered. Note that the definition of X 3@
makes sense in this case, in fact, Xj@ = @seR:zser ker (A® —isidy), and Proposition 4.2
carries over verbatim. A crucial step, then, is to show that Lemma 4.3, with similarity in
(iii) understood to mean C-similarity, also remains valid provided that 2 : X — Y is
aC 1-diffeomorphism. For assertions (i) and (ii), this is obvious, even when % is only a
homeomorphism. Differentiability of /2, however, in addition yields H Pery ® = Per,7 W for
every T € R, where H = Dyh for convenience. To establish (iii), analogously to the proof
of Lemma 4.3, denote A®, A¥ by A, B respectively, and let o (®) \ {0} = {1ay, ..., 1a;}

with the appropriate m € Ny as well as real numbers a; such that |a;| > ... > |a,| > 0,
and a; > ajy incase |aj| = |a;41|. Similarly, o (W) \ {0} = {1by, ..., 1b,} withn € Ny
aswellas |by| > ... > |b,| > 0,and b; > b whenever |b;| = |b;11|. For convenience,

ap = bp =0, and X5 = ker (A —1sidy), ¥y = ker (B —1sidy) forevery s € R. Since A, B
are diagonalisable, it suffices to prove that m = n, and moreover that

ar =aby and HX, =Y, Yk=0,1,....m. (6.1)

To this end, notice that Peray /)5 ® = @y Xis and Peryy /¥ = @y Yis for every
s € R\ {0}. Clearly, if mn = 0 then m = n = 0, and (6.1) holds. Henceforth, let m,n > 1,
and assume that, for some integer 0 < ¢ < min{m, n},

ar =ob, and HX, =Y, Vk=0,1,...,¢; (6.2)
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since H X = Yy, this is clearly correct for £ = 0. Letting
K¢ = {k € Z\{—1.1} : klagy1] € {ao. a1, . ... ac}}.

note that K is finite, and 0 € K. Deduce from

Peryn /a1 = D), _, Xitarer| = Xlari] © Xjapp| ® @kem Xklags1] »

together with (6.2) and

HX a1 ® Hiagi1) © EB,CE,Q HXkjai,| = H Peroryja | P = Petorayian, ¥V (6.3)

= @,{62\,{( Yeiagiii/e © @ke,{( Yjarsi1/as

that dim (X 4., | @ X4, ) = ZkeZ\KZ dim Yy|q,, 1/« > 0. Hence tklagy1|/a € o (W) for
some k € Z \ Ky, and so in fact |ag41| < a|bgy1], but also dim (Y_ 4, 1/¢ D Yiap)/a) <
dim (X _|q,,,| ® X|q,,,|) because {—1, 1} C Z \ K;. Reversing the roles of ® and W yields
that |ag4+1| = o|bg+1| and dim (X*\GHI ‘ GBX\W-H )= dim (Y*\hu—l\ () Y|bl+1 . Consequently,
(6.3) becomes

HX a1 ® HXjapy,| D @ke,{l H Xags1) = Y=t © Yipes ) © EB,CE,Q Yilbeya)s (6.4)

and the goal now is to show that (6.2) holds with ¢ 4 1 instead of £. To this end, begin by
assuming that X4, ,| # {0}, and pick any x € X4, \ {0}. Then ex € Perzy/|4,,, P and
h(ex) € Perpqp,,,| ¥ for every & > 0, as well as

h(e'dex)/e = h(e+lex) /e = e DB p(ex)/e. (6.5)

Note that 0 < 7.(t) < 27 /|bg41]| for every 0 < t < 2m/|ag+1], and 7., (-) is increas-
ing. By the Helly selection theorem, there exists a strictly decreasing sequence (g,) with
lim,— &, = 0, along with an increasing function p with p(0) = 0, pQ2n/|ac+1]) =
27 /|be+1| such that lim,, oo T, x () = p(¢) for almost all (in fact, all but countably many)
0 <t <2m/|ag+1]. With this, (6.5) yields

He''lnly — oPOBpry for almostall 0 < ¢ < 27 /|agy1].

Note that 0 < p(¢) < 27w /|be41| for all 0 < t < 2m/|ae+1|. By monotonicity, pg =
lim, o p(¢) exists, with 0 < pg < 27/|bgy1|. If pp > O then Hx € Per,, W, and hence
00lbe+1| € 2N, which is impossible. Thus pg = 0, and
tag| _ pPB _ |

tagei | Hx = lim, o Hetilx = lim, ;0 @ : epTldY
showing that pg o := lim, o p(t)/t exists, with t|ag1|Hx = po,oBHx. Clearly pg o > 0,in
fact, po,0 > O since Hx # 0, and hence Hx € Y|4, |/p9,- In other words, if x € X4, | then
Hx € Y, for some b € RT. Completely analogous reasoning yields Hx € Y_; for some
b € RT whenever x € X_q,, |-

Recall that the goal is to establish (6.2) with £ + 1 instead of £. To this end, assume first
that |agy1| = |ae|, and hence apy1 = —ag < 0, but also byy1 = —by < 0. In this case
Xapy1 = X—jap, # {0}, and utilizing the preceding considerations, together with (6.2) and
(6.4), it follows that HX,4,,, C Y_jp,,,| = Yp,,,. Reversing the roles of ® and ¥ yields
HXg4, | = Yp,,,. Since agy1 = abgy in this case, (6.2) holds with £ + 1 instead of £.

It remains to consider the case of |as4+1| < |a¢|. Here it is convenient to distinguish two
possibilities: On the one hand, if ¢ = m — 1 or |ag42| < |ag+1| then exactly one of the spaces

t
Hx = lim,w QBHX,
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X+jap,,| 1s different from {0}. As before, it is readily seen that a1, bgy1 have the same
sign, hence agy1 = abgyy, and HX,,, = Yp,,,, so again (6.2) holds with £ + 1 instead
of £. On the other hand, if |a¢y2| = |ag+1] then apyp = —apy1 < 0, and the argument
immediately following (6.3) shows that |asy2| = «|be4+2] also. Thus apy1 = aber; > 0
and ag12 = abgyz < 0, and analogous reasoning as before results in HXy,,, = Yp,,,,
HXayy = Yp,,,- Again, (6.2) holds with £ + 1 (in fact, £ + 2) instead of £. Induction now
proves (6.1), and since X = EBZ"ZO Xo, Y = @Z:o Yy, , clearly m = n. As indicated earlier,
this establishes Lemma 4.3(iii) in the case of K = C and under the assumption that 4 is a
C'-diffeomorphism.

With Lemma 4.3 thus extended to complex linear flows, the remainder of the proof pro-
ceeds exactly as in Sect. 4, since Lemmas 4.4 and 4.7 carry over without any modifications,
and so does the proof of Theorem 4.1. (In fact, with the notation used in that proof, the linear
isomorphism H; can be taken to be the restriction of Doh to XS,Q. Thus, instead of being

defined abstractly by A%, @AY both being diagonalisable and having the same eigenvalues
with matching geometric multiplicities, H now simply equals Doh.) O

Outline of Proof of Theorem 6.2 Again, one only needs to consider the case of K = C and
establish (i)=-(iv), as in the proof of Theorem 1.2. The crucial step is to extend Lemma 6.3
from bounded to central K-linear flows, i.e., to show that (i) implies C-similarity of
A®C o AYC for some o € RY. To prove the latter along the lines of the proof of Theo-
rem 1.1, with X, = ker (A%c — zsidxg), Y, = ker (A% — zsidyg) for every s € R, it
is necessary to first adjust the auxiliary results of Sect. 3, notably Lemmas 3.2 and 3.7, for
complex linear flows. With the details of these routine adjustments left to the reader, the
non-negative integer df,b (s) now equals, for each n € N and s € R, the number of blocks
151, + J, in the (complex) Jordan normal form of A®. Utilizing the proof of Lemma 6.3,
deduce that m = n, as well as ax = aby fork = 0, 1..., m and an appropriate o € RT,
and that moreover d,?) (ay) = al,‘lp (by) for all n, k. Again, the differentiability of 4, h1is
essential here, unlike in the proof of Theorem 1.1. Thus, A% @ AYC indeed are C-similar,
which in turn proves that (i)=>(iv) in case X® = X. Apart from the fact that this latter exten-
sion of Lemma 6.3, rather than Theorem 1.1, has to be used to establish (5.8), the remaining
argument now is identical to the one proving Theorem 1.2 in Sect. 5. O

To finally illustrate the difference between real and complex linear flows in dimensions
1 and 2, recall that on X = R there are exactly three (€% or clo) equivalence classes of
R-linear flows, represented by @ (¢, x) = ¢'?x witha € {—1,0, 1}. By contrast, on X = C
there are four C%-equivalence classes of C-linear flows, represented by ®(z, x) = e'“x with
c € {—1,0, 1,1}, but infinitely many C 1-equivalence classes, corresponding to ¢ € {w €
C : |o| = 1} U {0}. Similarly, on X = R? there are exactly eight Co-equivalence classes of
R-linear flows, listed in (1.2), whereas for C-linear flows on X = C% all C 0—equivalence
classes are given by all the matrices in (1.2) except for the left-most, together with

10 11 1 0
j:[o l], [0 l], [0 m} O=a=1),
and all C'-equivalence classes are given by

00 01 c 1 c 0
OO [ [ 1] 5 2] o ceimtor=n,

The reader may want to compare the latter to the seven singleton classes and five infinite
families that make up all C'-equivalence classes of R-linear flows on X = R2, as listed in
the Introduction; cf. also [28, Ex. 1].
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