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We review the recent notion of a nonautonomous dynamical system (NDS),
which has been introduced as an abstraction of both random dynamical systems
and continuous skew product flows. Our focus is on fundamental analogies and
discrepancies brought about by these two principal classes of NDS. We discuss
base dynamics mainly through almost periodicity and almost automorphy, and
we emphasize the importance of these concepts for NDS which are generated by
differential and difference equations. Nonautonomous dynamics is presented by
means of selected examples. We also mention several natural yet unresolved
questions.
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1. INTRODUCTION

Random dynamical systems and continuous skew product flows both describe
the dynamical behavior of systems under an external influence—random and
deterministic yet nonautonomous, respectively—which is inherent to the
concept. In both cases, the external influence is modeled by a dynamical
system (the so-called driving system) which is ergodic or continuous, respec-
tively. Both subjects have evolved rather independently up to now, and their
formal and practical analogies have been exploited only occasionally.

The theory of random dynamical systems was developed mainly by
Ludwig Arnold and his ‘‘Bremen Group.’’ As Arnold points out in [3],
one of the historical gates in the development of the theory of stochastic



differential equations was the discovery that their solution yields a cocycle
over an ergodic dynamical system which models randomness, i.e., a
random dynamical system. Results on multiplicative ergodic theory,
invariant manifolds, normal forms and bifurcation theory for random
dynamical systems are altogether contained in the monograph by Arnold
[4]. Recent results on Lyapunov’s second method and monotone systems
can be found in Arnold and Schmalfuss [9] and Arnold and Chueshov
[6–8]. For an overview of random dynamical systems in economics we
refer to Schenk-Hoppé [90]. We merely mention that there is also a vast
literature on infinite-dimensional random dynamical systems (see, for
instance, Flandoli and Schmalfuss [60]).

The study of continuous skew products originated from the ergodic
theory of discrete dynamical systems (Anzai [2] and Furstenberg [61]). It
was carried out during the 1960s by Miller [80], Millionscikov [82], Miller
and Sell [81], and Sell [93–95] where we have mentioned but a few of these
authors’ publications. We also refer to the slightly later contributions by
Artstein [10], Bronstein [28], and Zhikov and Levitan [113]. Meanwhile,
a fairly comprehensive theory of continuous skew product flows has
emerged. Among the multifarious results, we mention as examples, ranging
from classical to more recent, the spectral theory of Sacker and Sell [89]
(for its relation to the multiplicative ergodic theorem see Johnson, Palmer,
and Sell [65]), the invariant manifold theory by Yi [111], Chow and
Yi [42], Aulbach and Wanner [16], the results on monotone and almost
automorphic systems by Shen and Yi [99], Chueshov [43], Sell, Shen, and
Yi [97], and on inertial manifolds by Koksch and Siegmund [73], see also
the book by Sell and You [98] and references therein.

Quite often, results for random dynamical systems and continuous
skew product flows are structurally similar, and these similarities partly
extend to the corresponding proofs. It is therefore natural to ask whether
the analogies could be put on a formal, common basis. Such a unification
is provided by the concept of a nonautonomous dynamical system (NDS)
which may be regarded as an abstraction of both random dynamical
systems and skew product flows. Originating also from Arnold’s vicinity
(see, e.g., the Festschrift [50] for his sixtieth birthday), the notion of a
nonautonomous dynamical system is relatively recent and perhaps not yet
known to a wider audience. Nevertheless, work on the general theory of
NDS is under way (e.g., Caraballo and Langa [31]), and results are
promising not only with respect to a forthcoming theory but also for pro-
viding some additional insights about the classical concepts and their
interrelations.

The present paper takes part in this ongoing development by reviewing
some of the fundamental facets inherent to the new concept. We consider it
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essential for any further progress in the theory of NDS that unifying as
well as distinguishing aspects brought about by most important subclasses
are seen clearly. Accordingly, it is our main goal to draw the reader’s
attention to both analogies and discrepancies, thereby stimulating further
discussion and exchange. In the spirit we first carefully discuss the driving
system level. When comparing ergodic theory and topological dynamics in
this context, several analogies and differences may naturally come to one’s
mind.

• Existence and Realization

Given a continuous dynamical system on a compact metric space,
the Krylov–Bogoljubov theorem ensures that there always exist
invariant measures, and by a convexity argument there exist ergodic
measures as well. It is therefore easy to conceptually switch from the
topological to the statistical point of view, although it may be diffi-
cult to single out a relevant ergodic measure. On the other hand, the
celebrated Jewett–Krieger Theorem asserts that every ergodic map
on a (Lebesgue) probability space can be realized as (i.e., is mea-
surably isomorphic to) a uniquely ergodic homeomorphism on a
compact metric space (Petersen [86]). Despite its theoretical impor-
tance, this result may be of little practical help, as the isomorphism
is likely to destroy many particular features of the system under
consideration.

• Recurrence

A classical result highlightening the analogy of topology (via Baire
category) and measure, is the Poincaré recurrence theorem. Infor-
mally, it asserts that for a measure-preserving homeomorphism of a
bounded open set U ı Rd all points in U except a set of first
category and zero measure are recurrent. This perfect analogy,
however, does not extend far beyond Poincaré’s theorem. For
example, with respect to the Birkhoff ergodic theorem, Oxtoby says
in [85] that ‘‘curiously, though, this refinement of Poincaré’s
theorem turns out to be generally false in the sense of (Baire)
category; the set of points where [the asymptotic relative frequency]
is defined may be only of first category.’’

• Entropy

The concept of entropy yields a quantification of a dynamical sys-
tem’s complexity. It may analogously be introduced both in ergodic
theory and topological dynamics. An important link between both
constructions is provided by the variational principle (Walters [108]).
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This later result, however, also makes visible a fundamental dis-
crepancy between the two approaches: measure-theoretic entropy
quantifies complexity on average whereas its topological counterpart
quantifies the maximal complexity inherent to the system under
consideration. Notice also that both concepts trivially coincide in the
case of unique ergodicity.

• Almost Periodicity and Automorphy

The classical topic of almost periodic differential equations is a well-
known meeting point of the two concepts where one can switch from
one interpretation to the other by using the uniquely ergodic Haar
measure. The theory of almost periodicity, since established in the
1920s, has had lasting impact on the development of harmonic
analysis on groups and also on the development of the theory of
both topological and smooth dynamical systems. A vast amount of
research has been directed towards the study of almost periodic dif-
ferential equations in the past (see Fink [59] for a survey). Solutions
of almost periodic differential equations, however, are not neces-
sarily almost periodic themselves: Johnson [63] gives an example of
an almost periodic differential equation with a bounded solution
which is not almost periodic but merely almost automorphic. The
more general notion of almost automorphy was introduced by
Bochner in 1955. (See Bochner [22] and Veech [106] for classical
expositions, Shen and Yi [99] for a definitive recent treatment.)

Among the topics listed above, almost periodicity offers itself as an ideal
starting point for our discussion, and we present a fairly complete mathe-
matical treatment under a dynamical systems point of view.

Not least in the light of the above remarks, it is anything but surpris-
ing that, as far as the full nonautonomous dynamics is concerned, statisti-
cal and topological notions tend to diverge significantly. However, based
mainly on examples, our discussion in Section 4 aims at convincing the
reader that it is challenging yet highly worthwhile to explore the dark
region in the diagram below. (Notions and symbols will be explained in
detail in Section 2.)

One should certainly not expect an obvious unification of random
dynamical systems and continuous skew products. In the specific situation
of [85], Oxtoby observed that ‘‘the analogy [. . .] goes a long way here,
but eventually it breaks down.’’ We consider this statement particularly
appropriate for the (full) nonautonomous dynamics of NDS. Correspond-
ingly, our presentation is somewhat selective and cursory. Presumably, the
time has not yet come to give a clear overall picture of NDS. However, the
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power of the concept as well as its inherent subtleties should become
apparent through our discussion.

The organization of this paper is as follows. In Section 2 we briefly
review random dynamical systems and continuous skew product flows, and
we introduce as their common structure the notion of a nonautonomous
dynamical system. We explain how these systems may be generated by dif-
ferential equations, and we recall some notions from measurable and
topological dynamics.

Section 3 is devoted to a description of the analogies and discrepancies
between random dynamical systems and continuous skew products on the
driving system level. We give several illustrating examples. The main result
of this section is on the interplay of equicontinuity, recurrence, almost
periodicity and almost automorphy of the driving system.

In Section 4 we give a survey on selected topics for random dynamical
systems and continuous skew products which illustrate some of the differ-
ences between the two concepts but also exhibit properties inherent to their
common structure. Concludingly, we summarize in Section 5, and we also
suggest starting points for further investigations which could carry forward
our discussion.

2. BASIC DEFINITIONS AND PRELIMINARIES

The concept of a random dynamical system is an extension of the
deterministic concept of a dynamical system, and it reduces to the latter if
the noise is absent. It is tailor-mode to treat under a dynamical systems
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perspective many interesting systems which are under the influence of some
‘‘randomness,’’ such as random or stochastic differential equations

dxt=f0(xt) dt+ C
m

j=1
fj(xt) dW j

t .

For a comprehensive study of random dynamical systems we refer to the
monograph by Arnold [4].

The concept of skew product flows arose from topological dynamics
during the 1960s as a description of dynamical systems with nonautonomy,
i.e., showing an explicit time dependence. Since then, skew product flows
have extensively been studied. They are tailor-made to nonautonomous
systems such as nonautonomous differential equations

ẋ=f(t, x).

In both cases alluded to above, we do not obtain a dynamical system
directly from solving the respective differential equation. Instead, the solu-
tion gives rise to a so-called cocycle over a dynamical system which models,
respectively, the ‘‘randomness’’ and the ‘‘nonautonomy’’ of the equation.
Before giving formal definitions, we have to recall a few basic notions from
measurable and topological dynamics.

Let T(=R, Z) denote time and let h: T × W Q W be a measure-
preserving dynamical system in the sense of ergodic theory, i.e., (W, F, P)
is a probability space and (t, w) W h(t) w is a measurable3 flow which

3 w.r.t. B é F and F, respectively, where B denotes the Borel s-algebra of T.

leaves P invariant, i.e., h(t) P=P for all t ¥ T. (As it may cause confusion,
the synonymously used notion of a metric dynamical system will be
avoided here.) A set M … W is h-invariant (or simply invariant) if
h(t) M=M for all t ¥ T. We say that h is ergodic under P if every
h-invariant set has probability 0 or 1. Under fairly mild and reasonable
assumptions on the space (W, F, P), it is possible to sensibly decompose P
into ergodic components (see Denker, Grillenberger, and Sigmund [55] or
Klünger [72]).

Analogously, in the setting of topological dynamics h: T × P Q P
denotes a continuous dynamical system on a metric space (P, d). Let p ¥ P
be a point and consider its orbit O(p) :={h(t) p: t ¥ T}. Throughout this
paper we will use the symbol H(p) :=cl O(p) to denote the orbit closure.
The orbit of p inherits, via h(s) p À h(t) p :=h(s+t) p, from T the struc-
ture of an abelian group with neutral element 0 :=h0 p=p. Later we shall
investigate whether this structure extends to H(p), thereby making this set
a topological abelian group itself.
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Given a closed invariant set M, there may be non-void proper closed
subsets of M which are themselves invariant. If there are none, then h|M is
called minimal, and M is referred to as a minimal set (for h). Equivalently,
M is a minimal set if H(p)=M for every p ¥ M. Given any element p ¥ P,
its w-limit set w(p) denotes the set of all future accumulation points of
O(p), more formally

w(p) :=3
t \ 0

{h(s) p: s \ t}.

Analogously, the a-limit set a(p) is the set of all accumulation points in the
past. Both w(p) and a(p) are closed; also, h(t) w(p) … w(p), and similarly
for a(p). A point p is called positively (negatively) recurrent, if p ¥ w(p)
(respectively, p ¥ a(p)); it is recurrent if it is both positively and negatively
recurrent. The point p thus is recurrent if and only if for every e > 0 there
exists a monotonically increasing sequence (tk)k ¥ Z in T with |tk | Q . as
|k| Q . such that d(htk

p, p) < e for all k. If in addition supk ¥ Z(tk+1 − tk)
< . then p is called uniformly recurrent. Note that the notion of recurrence
does not depend on the specific metric as long as the latter induces the
topology of P.

We emphasize by a formal definition the structure common to random
dynamical systems and skew product flows. We will use the symbol T for
either R or Z, and we will denote by T+ all non-negative elements of T.

Definition 2.1 (Nonautonomous Dynamical System (NDS)). A non-
autonomous dynamical system (NDS) with (one-sided) time T+ on a metric
space X with base set P consists of two ingredients:

(i) A model of the nonautonomy, namely an action h: T × P Q P of
the group T on P, i.e., the family h(t, · )=h(t): P Q P of self-
mappings of the set P satisfies the group property

h(0)=idP, h(t+s)=h(t) p h(s),

for all t, s ¥ T.
(ii) A model of the system perturbed or forced by nonautonomy,

namely a cocycle j over h, i.e., a mapping j: T+ × P × X Q X,
(t, p, x) W j(t, p, x), such that (t, x) W j(t, p, x) is continuous
for all p ¥ P and the family j(t, p, · )=j(t, p): X Q X of self-
mappings of X satisfies the cocycle property

j(0, p)=idX, j(t+s, p)=j(t, h(s) p) p j(s, p), (2.1)

for all t, s ¥ T+ and p ¥ P.
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Remark 2.2.

(i) The pair of mappings

(h, j): T+ × P × X Q P × X, (t, p, x) W (h(t, p) j(t, p, x)),

is called the corresponding skew product. If P={p} consists of a
single point, then the cocycle j is a (semi-)dynamical system.

(ii) If T=Z then h(n)=hn, n ¥ T, where h :=h(1) is the time one
mapping. If T=R we often use the less clumsy notation ht

instead of h(t). We also say that j is an NDS to subsume the
situation of Definition 2.1.

(iii) If X is a linear space then an NDS F is called linear if for any
scalar a and x1, x2 ¥ X

F(t, p)[a(x1+x2)]=aF(t, p) x1+aF(t, p) x2,

for all t ¥ T+ and p ¥ P.

We now introduce the notion of a random dynamical systems. Since
we want to compare random dynamical systems to continuous skew pro-
ducts, we do not introduce the most general notion but require that the
state space be a metric space and assume w.l.o.g. ergodicity of the driving
system (see Klünger [72] for the decomposition into ergodic components).

Definition 2.3 (Random Dynamical System (RDS)). A (continuous)
random dynamical system is an NDS (h, j) which in addition has the
following properties:
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(i) The driving system h is an ergodic dynamical system (W, F, P,
(h(t))t ¥ T), i.e., the base (W, F, P) is a probability space and
(t, w) W h(t) w is a measurable flow which is ergodic under P.

(ii) The cocycle (t, w, x) W j(t, w) x is measurable.4

Remark 2.4. In denoting the base space by W in Definition 2.3 (and

4 w.r.t. B é F é B(X) and B(X), respectively, where B(X) is the Borel s-algebra of X.

also in Theorem 2.5 below) we pay deference to a strict tradition in random
dynamical systems theory. Nevertheless, (W, F, P) should be viewed as an
additional structure on P which by Definition 2.1 is a mere set.

As an important class of examples, we will later consider RDS which
are generated by random differential equations. This is the (easy) real noise
case in which the generator indeed is a certain family of ordinary differen-
tial equations with parameter w, i.e., it can be solved ‘‘path-wise’’ for each
fixed w as a deterministic nonautonomous ordinary differential equation
(see Arnold [4]).

Theorem 2.5 (RDS from Random Differential Equation). Let (W, F,
P, (h(t))t ¥ R) be a measure-preserving dynamical system, let f: W × Rd

Q Rd

be measurable, and consider the path-wise random differential equation

ẋ=f(htw, x). (2.2)

If (t, x) W f(htw, x) is continuous in (t, x), locally Lipschitz in x for all w

and

||f(w, x)|| [ a(w) ||x||+b(w),

where t W a(htw) and t W b(htw) are locally integrable, then (2.2) uniquely
generates through its solution

j(t, w) x=x+F
t

0
f(hsw, j(s, w) x) ds

an RDS j over h.

Next we define skew product flows. Again we do not introduce the
most general notion but instead require that the base space be a complete
metric space. For a reduction to this situation from more general base
spaces see Johnson, Palmer, and Sell [65].
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Definition 2.6 ( Skew Product Flow ( SPF )). A (continuous) skew
product flow is an NDS (h, j) which in additon has the following proper-
ties:

(i) The base is a metric space (P, d), and the driving system (t, p) W
h(t) p is continuous.

(ii) The cocycle (t, p, x) W j(t, p) x is continuous.

The well-known trick of making a nonautonomous differential equa-
tion

ẋ=f(t, x) (2.3)

autonomous by introducing a new variable for the time suggests to inves-
tigate a corresponding skew product flow with base P :=R and driving
system (t, s) W hts :=t+s. However, as P does not depend on f, we should
not expect a specific kind of nonautonomy (e.g., periodicity in t) to be
captured by this base dynamics. Moreover, P is not compact which may
cause additional difficulties. For a fairly general class of right hand sides f
the Bebutov flow (t, p) W ht p :=p( · +t, · ) on the hull P :=H(f )=
cl{f( · +t, · ): t ¥ R} of f can serve as a model for the nonautonomy
(Sell [95]). Here the closure is taken with respect to an adequate topology.
The evaluation mapping

f̄: P × Rd
Q Rd, (p, x) W p(0, x)

satisfies f̄(ht p, x)=p(t, x) and, since f ¥ H(f ) and therefore f̄(ht f, x)=
f(t, x), it is a natural ‘‘extension’’ of f to P × Rd. As a slight abuse of
notation we will sometimes omit the bar. Instead of looking at the single
Eq. (2.3) we consider the associated family of equations

ẋ=f̄(ht p, x), p ¥ P=H(f ). (2.4)

By using standard results about linearly bounded equations as in Amann
[1] and Arzela–Ascoli’s theorem as in Sell [95] one can prove the
following

Theorem 2.7 (SPF from Nonautonomous Differential Equation). Let
f: R × Rd

Q Rd be a continuous function, and consider the nonautonomous
differential equation (2.3). If (t, x) W f(t, x) is locally Lipschitz in x and

||f(t, x)|| [ a(t) ||x||+b(t),

where t W a(t) and t W b(t) are locally integrable, then the hull P :=H(f )
is a metric space (where the closure is taken in C(R × Rd, Rd) with the
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compact-open topology), the Bebutov flow (t, p) W ht p=p( · +t, · ) is con-
tinuous, and (2.3) uniquely generates through the solution

j(t, p) x=x+F
t

0
f̄(hs p, j(s, p) x) ds (2.5)

of the associated family of equations (2.4) an SPF j over h. Moreover,
H(f ) is compact if and only if (t, x) W f(t, x) is bounded and uniformly
continuous on every set of the form R × K where K … Rd is compact.

Remark 2.8. (i) Note that the hull H(f ) depends on the topology
chosen. Therefore it is necessary to determine an adequate topology for a
given f in order to make the Bebutov flow continuous. For example, in the
case of a linear ordinary differential equation ẋ=A(t) x in Rd with a
locally integrable matrix function A ¥ L1

loc :=L1
loc(R, Rd × d) it is easy to see

(Siegmund [100]) that j in (2.5) with f(t, x)=A(t) x is an SPF over the
Bebutov flow on P :=H(A) where the closure is taken in L1

loc. Moreover, P
is compact if and only if (Sell [95])

(a) there exists a > 0 such that >1
0 |A(s+t)| ds [ a for all t ¥ R, and

(b) for every e > 0, there is a d > 0 such that >1
0 |A(s+t+h) −

A(s+t)| ds [ e whenever |h| [ d and t ¥ R.

One could replace L1
loc by the space of essentially bounded A and still

obtain an SPF. The hull is then compact in the weak*-topology (Colonius
and Kliemann [45]).

(ii) An analogue of Theorem 2.7 holds for nonautonomous differ-
ence equation xn+1=f(n, xn) with the Bebutov flow (n, p) W hnp=
p( · +n, · ) on the hull P :=H(f )=cl{f( · +n, · ): n ¥ Z}.

3. BASE DYNAMICS

In this section we focus on the following question: Under which con-
ditions can the driving system (P, h) be interpreted as both an ergodic and
a continuous dynamical system on a metric space? Our starting point to
tackle this question is provided by almost periodic differential equations.
As will soon become clear, almost periodicity gives rise to a rotational flow
on a compact metrizable abelian group. By virtue of character theory the
dynamics of group rotations is easy to analyze. For our purpose the
following well-known theorem is crucial (Walters [108]).
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Theorem 3.1 (Haar Measure). Let G be a compact abelian group.
There exists a unique probability measure P on the Borel s-algebra B(G)
which is invariant under rotation, i.e., P(A)=P(gA) for all g ¥ G and
A ¥ B(G).

Later we will describe what happens if we slightly weaken the
assumptions on the dynamics which lead to an application of Theorem 3.1.
Instead of elaborating the most general case we consider it more instructive
to understand the difficulties by means of explicit examples. Therefore we
investigate the base dynamics of nonautonomous dynamical systems gen-
erated by nonautonomous difference or differential equations of the form

xn+1=f(n, xn) or ẋ=f(t, x),

where f: T × Rd
Q Rd, by considering the corresponding families

xn+1=f̄(hnp, xn) or ẋ=f̄(ht p, x), p ¥ P,

of equations over the Bebutov flow h: T × P Q P on the hull P :=H(f ). In
the sequel we shall use the symbol H(f ) without explicitly referring
to a topology; whenever we simultaneously deal with several different
topologies (via non-equivalent metrics), clarification will be ensured by
means of subscripts.

First we want to review almost periodic differential and difference
equations and therefore have to define what it means for a right-hand side
f to be almost periodic. For this purpose we consider two different
complete metrics on the set C(T × Rd, Rd) of continuous functions
f: T × Rd

Q Rd; both metrics emerge from the family of semi-metrics

dk, l(f, g) := sup
|s| [ k, ||x|| [ l

||f(s, x) − g(s, x)||
1+||f(s, x) − g(s, x)||

(k, l ¥ N).

The compact-open topology, i.e., the topology of uniform convergence on
compact sets K … T × Rd, is induced by

dco(f, g) := C
.

k, l=1
2−(k+l) dk, l(f, g),

whereas the somewhat hybrid metric

d.(f, g) := lim
k Q .

C
.

l=1
2−l dk, l(f, g)
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gives rise to a mixture of uniform (in the first argument) and locally
uniform (in the second argument) topology. Two elementary observations
about these metrics and the topologies they induce are contained in

Proposition 3.2. For all f, g ¥ C(T × Rd, Rd)

dco(f, g) [ d.(f, g),

and the topology induced by d. is strictly finer than the topology induced
by dco. The metric d. is invariant under a shift in the first argument, i.e.,

d.(f( · +t, · ), g( · +t, · ))=d.(f, g) for all f, g and t ¥ T, (3.1)

whereas dco is not.

Proof. With ak :=;.

l=1 2−ldk, l(f, g) obviously ak [ ak+1 [ 1 for all k,
and dco(f, g)=;.

k=1 2−kak [ limk Q . ak=d.(f, g). Fix any x0 ¥ Rd with
||x0 ||=1, define f0 ¥ C(T × Rd, Rd) by f0(t, x) :=max{0, 1 − 2 |t|} x0, and
let fn :=f0( · +n, · ), n ¥ N0. Denoting by 0 the null-function, it is easy to
see that dco(fn, 0) Q 0 whereas d.(fn, 0)=1

2 for all n, which implies that d.

induces a finer topology than dco does.
To prove the second assertion, notice first that for all k > K|t|L, for all

l ¥ N and f, g ¥ C(T × Rd, Rd)

dk − K|t|L, l(f, g) [ dk, l(f( · +t, · ), g( · +t, · )) [ dk+K|t|L, l(f, g), (3.2)

where, for any x ¥ R, KxL denotes the smallest integer not smaller than x.
Relation (3.1) obviously follows from (3.2). On the other hand, with the
functions fn defined earlier

dco(f0( · +n, · ), f1( · +n, · ))=dco(fn, fn+1) Q 0 ] 1
2=dco(f0, f1),

which shows that (3.1) cannot hold with d. replaced by dco. i

In the sequel, h(t) applied to a function f always denotes the Bebutov
flow (t, f ) W h(t) f=f( · +t, · ). According to Proposition 3.2, d. is
invariant under h. For the following definition, recall that L … T is rela-
tively dense if with some number T ¥ T+, [t, t+T] 5 L ] ” for all t ¥ T.

Definition 3.3 (Almost Periodic Functions). Let f: T × Rd
Q Rd be a

continuous function.
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(i) f is Bohr almost periodic if, for every e > 0, there exists a rela-
tively dense set Le … T such that

d.(h(t) f, f ) < e for all t ¥ Le.

(ii) f is Bochner almost periodic if any sequence in T contains a sub-
sequence (tn)n ¥ N such that h(tn) f converges in the d.-topology,
i.e., limn Q . f(t+tn, x) exists uniformly in (t, x) ¥ T × K for every
compact subset K … Rd.

Remark 3.4. Bohr and Bochner introduced almost periodicity for
functions f: T Q C. Bohr’s definition first appeared in his original paper in
1923 which is most easily found in the collection [26], see also [25]. In
1927, Bochner [20] gave his definition of almost periodicity and showed its
equivalence to the Bohr definition.

Example 3.5. Consider the function h: R Q C defined as

h(t) :=1+1
2 (e2pit+e2pi `2 t)

and take f: R Q R2 as f(t) :=(Rh(t), Ih(t)). An elementary calculation
yields

d.(ht f, f ) [ |sin pt|+|sin `2 pt| (t ¥ R),

the right-hand side of which becomes smaller than any given e on an
appropriate relatively dense set. Hence f is Bohr almost periodic; by virtue
of the invariance of d. and a diagonalization argument f may easily be
seen to be Bochner almost periodic, too.

To neatly visualize H(f ) let (Jt)t ¥ R denote the minimal Kronecker
flow on the two torus T2 :=R2/Z2 according to Jt: (x, y) W (x+t,
y+`2 t). Also, define a continuous function h0: T2

Q C as h0: (x, y) W 1+
1
2 (e2pix+e2piy). Evidently, h(t)=h0(Jt(0, 0)) for all t ¥ R. The assignment
ht f W Jt(0, 0) may be extended to a homeomorphism Y: H(f ) Q T2

which satisfies Y p ht=Jt p Y for all t. The Bebutov flow h on H(f ) is
therefore flow equivalent to the Kronecker flow J on T2.

According to Definition 3.3(i), a function f is Bohr almost periodic
precisely if it is uniformly recurrent with respect to the d.-metric; by (ii),
Bochner almost periodicity is equivalent to H(f ) being compact in that
topology. The following proposition allows one to simply speak of almost
periodic functions.
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Proposition 3.6. Let f: T × Rd
Q Rd be continuous. The following

three statements are equivalent:

(i) f is Bohr almost periodic.

(ii) f is Bochner almost periodic.

(iii) Any sequence in T contains a subsequence (tn)n ¥ N such that for
some continuous function g

h(tn) f Q g and h(−tn) g Q f

in C(T × Rd, Rd) with respect to the d.-metric, i.e., uniformly on
sets T × K where K … Rd is a compact set.

Proof.

(i) . (ii). follows similarly as for functions f: R Q C with the
standard arguments of Fink [59] which we do not repeat
here.

(ii) . (iii). By compactness d.(h(tn) f, g) Q 0 for some subsequence
(tn)n ¥ N and appropriate g. Since d. is invariant under h,
property (iii) follows.

(iii) . (ii). This is obvious. i

The classical Definition 3.3 rests on the hybrid metric d.. This metric
is not easy to operate with. For example, general compactness results are
much more sensibly formulated in the dco-topology (e.g., the Arzela–Ascoli
theorem). Furthermore, h may not be continuous, even when restricted to
individual orbits. The following lemma allows to circumvent these unplea-
sant facts; its content will also motivate the formal definition of an almost
periodic point given later.

Lemma 3.7. Let f: T × Rd
Q Rd be continuous. Then f is almost

periodic if and only if, for every e > 0, there exists a relatively dense set
Le … T such that

dco(h(t) g, g) < e for all t ¥ Le, g ¥ H(f ).

Proof.

(2) Let f be almost periodic. It is easy to see that f is bounded and
uniformly continuous on every set T × K where K … Rd is
compact. Hence H.(f )=Hco(f ), and this set is compact in
both topologies. Assume that dco(h(tn) f, h) Q 0 for some
sequence (tn) in T and h ¥ C(T × Rd, Rd). By compactness every
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subsequence of d.(h(tn) f, h) has a subsequence that converges
to 0. Therefore d.(h(tn) f, h) Q 0 itself, and the two metrics are
equivalent on H(f ). Since obviously d.(h(t) g, g) < e for all
g ¥ H(f ) and t taken from an appropriate relatively dense set
Le, the claim follows.

(1) Conversely, if dco(h(t) g, g) < e for all g ¥ H(f ) and t ¥ Le, then
dco(h(t+y) f, h(y) f ) < e for all y ¥ T, t ¥ Le. From this it is
easy to see that d.(h(t) f, f ) < e for all t ¥ Le, hence f is
(Bohr) almost periodic. i

Applications (most prominently from differential equations) may
require a notion slightly weaker than almost periodicity. The concept of
almost automorphy provides such a weakening of almost periodicity. It
was introduced by Bochner [21] in 1955 in an article on differential
geometry, and it has subsequently been studied by many others, notably by
Veech [106, 107].

Definition 3.8 (Almost Automorphic Functions). Let f: T × Rd
Q Rd

be a continuous function. This function is almost automorphic if every
sequence in T has a subsequence (tn)n ¥ N such that for some function g

h(tn) f Q g and h(−tn) g Q f

holds pointwise, i.e., limn Q . h(tn) f(t, x)=g(t, x) and limn Q . h(−tn) g(t, x)
=f(t, x) for all (t, x) ¥ T × Rd.

Example 3.9. Let T=Z, fix an irrational real number n and consider
thereal-valuedfunction(sequence)f=(fk)k ¥ Z=(sign(cos 2pnk))k ¥ Z,where,
as usual, sign(0)=0 and sign(x)=x/|x| for x ] 0. (In essence, this
example stems from Furstenberg’s seminal paper [62].) Since for any s ] t
the sequences h sf and h tf differ at least at one position, f is certainly not
almost periodic. Given any sequence in T, there is a subsequence (tn)n ¥ N

such that

(h tnf )k=sign(cos(2pnk+2pntn))=: gk, n

converges for all k as n Q .. Ideally, one would like to write

gk := lim
n Q .

gk, n=sign(cos(2pnk+2pr))

for this limit, with some r ¥ [0, 1[. However, such a representation is not
correct if 4r — 4nl (mod 1) for some l, because in this case there are two
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possible limits for (h tnf )n ¥ N, see also Example 3.18 below. With g=(gk)k ¥ Z,
an elementary calculation confirms that nevertheless limn Q .(h−tng)k=fk

holds for all k, i.e., f is an almost automorphic function.

Example 3.10. The pointwise convergence in Definition 3.8 may be
complicated to work with in practice. For example, the function g does not
need to be continuous. In addition one can easily end up with non-compact
hulls, as the following example illustrates. Recall the complex valued
funtion h in Example 3.5 but define now f: R Q R2 as f(t) :=(Rh(t), Ih(t))/
|h(t)|. (This function is quite popular in publications on almost automorphy
[99, 106].)

We claim that f is almost automorphic in the sense of Definition 3.8
(yet not almost periodic). An easy way to see this is as follows. Let (Jt)t ¥ R

denote the same minimal Kronecker flow on the two-torus T2 as before.
With f0: T2 0{(1

2 , 1
2)} Q R2 defined as f0(x, y) :=(Rh0(x, y), Ih0(x, y))/

|h0(x, y)|, we clearly have f(t)=f0(Jt(0, 0)) for all t ¥ R. From this repre-
sentation we deduce (as in Example 3.9) that f is not almost periodic. Since
the function f0 has directional limits at (1

2 , 1
2) it follows that from

any sequence in R we may extract a subsequence (tn)n ¥ N such that
limn Q . htn

f(t) :=g(t) exists for all t, and also limn Q . h−tn
g(t)=f(t).

Therefore f is almost automorphic. It is, however, easy to choose (tn)n ¥ N

in such a way that g is not continuous. Moreover, as f is not uniformly
continuous, the hull H(f ) is not compact (in the dco-topology), a fact
immediately ruling out many techniques from topological dynamics.

For all situations of practical relevance, the following lemma provides
a satisfactory class of almost automorphic functions.

Lemma 3.11. Let f: T × Rd
Q Rd be uniformly continuous and

bounded on every set T × K with K … Rd denoting a compact set. Then f is
almost automorphic if and only if any sequence in T contains a subsequence
(tn)n ¥ N such that for some continuous function g

h(tn) f Q g and h(−tn) g Q f

with respect to the dco-metric, i.e., uniformly on compact subsets of T × Rd.

Proof.

(2) If f is bounded and uniformly continuous on every set T × K
then every sequence in T contains a subsequence (tn)n ¥ N such
that dco(h(tn) f, g) Q 0 and dco(h(−tn) g, h) Q 0 for appropriate
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continuous functions g, h. If f is almost automorphic then
h=f, and thus the convergence in Definition 3.8 is in fact
locally uniform.

(1) This is obvious. i

Remark 3.12. The class of functions showing up in Lemma 3.11
coincides with the class of admissible functions defined and dealt with
exclusively in Shen and Yi [99]; see also Theorem 2.7.

Lemmas 3.7 and 3.11, respectively, characterize almost periodicity and
almost automorphy of a function in terms of the corresponding Bebutov
flow. It is natural to imitate these results on a formal level so as to provide
a definition of almost periodic and almost automorphic points under arbi-
trary flows.

Definition 3.13 (Almost Periodic and Almost Automorphic Point). Let
h: T × P Q P be a continuous flow on a complete metric space (P, d).

(i) A point p ¥ P is called almost periodic (abbreviated henceforth as
a.p.), if, for every e > 0, there exists a relatively dense set Le … T
such that

d(h(t) q, q) < e for all t ¥ Le, q ¥ H(p).

(ii) A point p ¥ P is called almost automorphic (a.a.), if any sequence
in T contains a subsequence (tn)n ¥ N such that for some q ¥ P

h(tn) p Q q and h(−tn) q Q p.

The orbit of an a.p. or a.a. point p naturally inherits from T the
structure of an abelian group. For Theorem 3.1 to be useful in this dynam-
ical context (so as to yield for instance a uniquely ergodic system), we have
to check whether H(p) is a compact group. A simple condition which
ensures that the group structure of the orbit O(p) can be extended to H(p)
reads as follows.

Proposition 3.14. If the family (h(t))t ¥ T is equicontinuous, then H(p)
is a group. Whenever H(p) is a group, then it is also a minimal set.

Proof. Let (h(sn) p)n ¥ N, (h(tn) p)n ¥ N denote two sequences converg-
ing to q, r in H(p), respectively. We are going to show that limn Q . hsn − tn

p
yields a well-defined element q ı r ¥ H(p). Indeed, given e > 0, we find by
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equicontinuity that (h(−tn) p)n ¥ N is a Cauchy sequence and hence con-
verges. But then also

d(h(sn − tn) p, h(sm − tm) p)

[ d(h(sn − tn) p, h(sn − tm) p)+d(h(sn − tm) p, h(sm − tm) p) < e

for m, n sufficiently large. Therefore (h(sn − tn) p)n ¥ N is a Cauchy sequence
itself. A completely similar reasoning reveals that the limit thereof does not
depend on the choice of the approximating sequences. Consequently, H(p)
is a topological abelian group.

In order to prove the second statement, we notice that the orbit of
every q ¥ H(p) is just a rotated version of O(p), more precisely
O(q)=q À O(p). Since rotations are homeomorphisms, every orbit is
dense in H(p). i

Remark 3.15.

(i) It should be pointed out that the proof of Proposition 3.14 (and
also of Theorem 3.21 below) only requires the family (ht)t ¥ T to
be locally equicontinuous. Since, however, even simple one-
dimensional examples show that (local) equicontinuity is not
necessary for H(p) to be a group, we have refrained from relax-
ing the assumptions in Proposition 3.14 by using the rather
unusual notion of local equicontinuity.

(ii) Notice that minimality is not sufficient for the closure H(p) to be
a group, even if it happens to be compact. Take for example
T=Z and h a minimal diffeomorphism of the two-torus T2

which admits more than one ergodic measure (see Katok and
Hasselblatt [67] for an explicit construction). It is easy to see
that each of these measures would be invaraint under rotations of
the compact set H(p)=T2, which therefore cannot be a topo-
logical group. (Evidently, the algebraic structure induced by h

does not coincide with the usual group structure of T2.)

Corollary 3.16. If H(p) is a group, then it is either homeomorphic and
isomorphic to OT, +P, or else every point q ¥ H(p) is recurrent.

Proof. Suppose first that a(p) 2 w(p)=”. Then H(p)=O(p), and
the map k: O(p) Q T with k(h(t) p) :=t is easily seen to be both a
homeomorphism and a group isomorphism. If a(p) 2 w(p) is not empty,
then minimality yields a(q)=w(q)=H(p) for every q ¥ H(p). i
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Example 3.17. Consider once more the almost periodic function f
introduced in Example 3.5. An inspection of the first half in the proof of
Lemma 3.7 shows that (ht)t ¥ R is equicontinuous; hence H(f ) is a compact
group. The map Y in Example 3.5 constitutes a group isomorphism and
homeomorphism between OH(f ), À P and OT2, +P.

Example 3.18. In general, H(p) is not a group, not even if p is a.a.
To see this, let f be again the sequence (sign(cos 2pnk))k ¥ Z of Example 3.9.
By taking appropriate sequences in T=Z it is easy to see that both
g+=(g+

k )k ¥ Z and g−=(g−
k )k ¥ Z are elements of H(f ), where

g ±
k :=3 sign(sin 2pnk) if k ] 0,

± 1 if k=0.

Let (tn) denote a sequence in T for which 2ntn decreases to 0 (mod 1). Then

h tnf Q f, h tng+
Q g+ and h tng−

Q g+ as n Q ..

If there were a continuous group structure on H(f), then

g+= lim
n Q .

h tng −= lim
n Q .

h tnf À g −=f À g −=g −,

an obvious contradiction. i

This example shows that the orbit closure of an a.a. point need not be
a group and therefore Theorem 3.1 may be out of reach. However, if H(p)
is compact then there always exist h-invariant probability measures on
H(p) by virtue of the Krylov–Bogoljubov theorem. According to the next
proposition the orbit closure of an a.a. point is compact. Moreover, almost
automorphy apparently is not far from almost periodicity.

Proposition 3.19. If p is almost automorphic then H(p) is compact
and p is uniformly recurrent. If p is uniformly recurrent then H(p) is a
minimal set. (For compact H(p) the converse of the latter statement is also
true.)

Proof. By its very definition, every a.a. point has a precompact orbit.
Furthermore, if q ¥ H(p) then h(tn) p Q q for an appropriate sequence, and
(suppressing subscripts) also h(−tn) q Q p by automorphy. Hence p ¥ H(q),
and H(p) is minimal. Consider any open set U containing p. It is
easily seen that O(p) … H(p) … h(t1) U 2 · · · 2 h(tn) U for appropriate
t1,..., tn ¥ T. This shows that p is uniformly recurrent. Assume in turn that
p is uniformly recurrent and q ¥ H(p). Given e > 0 there exists d1 > 0 such
that d(h(t) p, h(t) r) < e/3 and d(h(t) p, p) < e/3 whenever d(p, r) < d1
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and |t| < d1. By uniform recurrence we also have d(h(tk) p, p) < d1 where
T :=supk ¥ Z (tk+1 − tk) < .. Continuity at q implies d(h(d1l) q, h(d1l) s) <
e/3 whenever d(q, s) < d2, provided that |l| [ T/d1+1. Putting all estimates
together we see that d(p, h(d1l) q) < e for an appropriate l. Hence
p ¥ H(q), and H(p) is minimal. Finally, if H(p) is compact and minimal,
then the same reasoning as above shows that p is uniformly recurrent. i

A general result from topological dynamics due to Ellis and
Gottschalk [58] asserts that one can assign to the restriction h|M of the
flow h: T × P Q P to any compact minimal set M … P a dynamical system
hŒ: T × MŒ Q MŒ which is a maximal equicontinuous factor of (M, h|M) in
the following sense:

(i) (MŒ, hŒ) is a factor of (M, h|M), i.e., p p h(t)|M=hŒ(t) p p for
some continuous surjective map p: M Q MŒ and all t ¥ T;

(ii) (hŒ(t))t ¥ T is equicontinuous;
(iii) every other equicontinuous factor of (M, h|M) is a factor of

(MŒ, hŒ).

It is easy to see that all maximal equicontinuous factors of (M, hM) are
flow equivalent (and hence justifiably referred to as the maximal equicon-
tinuous factor). Moreover, the points at which the factor map is one-to-one
are characterized by the following celebrated theorem.

Theorem 3.20 (Veech [106]). Let M … P be a compact minimal set.
Then

{m ¥ M : m is an a.a. point}={m ¥ M : #p−1{p(m)}=1},

i.e., the a.a. points in a compact minimal set are exactly those points with one-
point p-fibers over the maximal equicontinuous factor.

We are now in a position to prove the main result of this section. It
characterizes the situation when H(p) is a compact abelian group and
relates this to equicontinuity, recurrence, almost periodicity, and almost
automorphy. (Remember that throughout this section h(t) stands for the
restriction of h(t) to H(p).)

Theorem 3.21. The following statements are equivalent:

(i) The family (h(t))t ¥ T is equicontinuous, and p is recurrent.

(ii) H(p) is a compact abelian group.

(iii) p is almost periodic.

(iv) Every point q ¥ H(p) is almost automorphic.
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Proof.

(i) 2 (ii) Let us first show that p if uniformly recurrent. Given
e > 0 there exists d > 0 such that d(h(t) a, h(t) p) < e/3
whenever d(a, p) < d, and also d(h(tk) p, p) < d for some
sequence (tk)k ¥ Z. But then d(h(tk+tl) p, p) < e for all
k, l ¥ Z, implying that p is uniformly recurrent. It remains
to show that H(p) is compact. As P is complete this
boils down to verifying that H(p) is totally bounded.
Consider the sequence (tk)k ¥ Z with d(h(tk) p, p) < d from
above. For any t we have d(h(t) p, h(t − t̂) p) < e/3
where t̂ denotes the element of (tk)k ¥ Z closest to and
lower than t. As every finity e/3-cover of the compact
set {h(t) p: 0 [ t [ supk ¥ Z (tk+1 − tk)} naturally yields a
finite e-cover of H(p), the latter set is compact.

(ii) 2 (iii) Observe that (ht)t ¥ T is a family of translations, due to
h(t) q=q À h(t) p for all q ¥ H(p). Consequently, H(p)
is a minimal set. It is well known that there exists a
metric dŒ on H(p), uniformly equivalent to d, with
respect to which ht is an isometry for all t ¥ T (see
Walters [108]). More formally, given e > 0 there exist
d1(e), d2(e) > 0 such that dŒ(a, b) < e whenever d(a, b)
< d1, and d(a, b) < e whenever dŒ(a, b) < d2. Fix now
e > 0 and argue as in the proof of Proposition 3.19 to find
a uniformly recurrent point r ¥ H(p), i.e., d(h(tk) r, r) <
d1(d2(e)) for all k, and also supk ¥ Z (tk+1 − tk) < .. Then

dŒ(h(tk) q, q)=dŒ(h(tk) r, r) < d2(e)

for all k and all q ¥ H(p), implying that p is almost
periodic.

(iii) 2 (iv) We observe that by virtue of a diagonalization argument
every sequence in H(p) has a Cauchy subsequence. By
completeness H(p) is compact. Given q ¥ H(p) and any
sequence in O(q) we therefore may find a subsequence
such that h(tn) q Q r as well as h(−tn) r Q s for appro-
priate r, s ¥ H(p). It remains to show that s=q. Given
e > 0 and d(h(t −

k) a, a) < e for all a ¥ H(p) and k ¥ Z
where T :=supk ¥ Z (t −

k+1 − t −

k) < . we see that for some t
with |t| [ T both d(r, h(t) q) < e and d(r, h(t) s) < e hold.
Since e was arbitrary, q=s follows; hence q is a.a.
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(iv) 2 (i) We just have to recall that H(p) is compact and then
apply Veech’s Theorem 3.20 to see that p is in fact a
homeomorphism. Therefore (h(t))t ¥ T is equicontinuous.
By Proposition 3.19, p is (uniformly) recurrent. i

Remark 3.22. The conditions in Theorem 3.21(i) are independent.
On the one hand, h(t): x W x+t is equicontinuous (T=R=P), and H(p)
is a group which is not compact because no point is recurrent. On the other
hand, consider the space {0, 1}Z endowed with the product topology, and
let h1=s be the left-shift (T=Z). If p is a recurrent point with dense orbit,
then H(p) is compact but certainly not a group (with its algebraic structure
being induced by s).

In topological dynamics, the following corollary is sometimes drawn
on for another yet equivalent definition of almost periodicity (Brown [29]).

Corollary 3.23. Let H(p) be compact. The family (h(t))t ¥ T is equi-
continuous if and only if p is almost periodic.

Although it is an immediate consequence of Theorem 3.21, we wish to
emphasize the following observation by singling it out as a statement of its
own.

Corollary 3.24. Let h: T × P Q P be a compact minimal flow. Then
every point in the maximal equicontinuous factor of (P, h) is a.p.

Example 3.25. Consider again the function f=(fk)k ¥ Z=(sign
(cos 2pnk))k ¥ Z of Example 3.9. As in Example 3.18 we see that every limit
point in H(f ) either is of the form (sign(cos(2pnk+2pr)))k ¥ Z where
4r ¨ Z+4nZ, or otherwise equals h lg ± for some l ¥ Z. The assignment
h tf W e2pint (t ¥ Z) may be extended to yield a continuous map p from
H(f ) onto S1 for which p p h1=Rn p p holds, with Rn denoting the rota-
tion of S1 by an angle 2pn. Moreover, except for the countable set
Me :=O(g+) 2 O(g−) ı H(f ) the factor map p is one-to-one. It is easy to
check that every point in H(f )0Me is a.a. whereas no point in Me is. This
identifies (S1, Rn) as the maximal equicontinuous factor of (H(f ), h).

We summarize by arranging in a diagram below some of the dynami-
cal properties we have been dealing with in this section. Implications which
have been proved are indicated by double-line arrows. (The other ones are
obvious.) None of these implications can be reversed in general, as we have
had occasion to observe above.
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p periodic |Q p a.p.=====2 p a.a. |Q H(p) compact

|| ||
e e

H(p) group p unif. recurrent |Q p recurrent
x y

H(p) minimal

With all these results at hand, we can now put into perspective the well-
known fact that almost periodicity gives rise to a uniquely ergodic flow.

Corollary 3.26. Under any of the equivalent conditions in Theorem 3.21,
the family (h(t))t ¥ T is uniquely ergodic on H(p).

Proof. The orbit of the neutral element is dense in H(p). The claim
thus follows directly from Theorem 3.1. i

At this point it is worth recalling that the dynamical systems studied in
their own right here will serve as driving systems for general NDS in the
next section. As has been pointed out earlier, assumptions on the base
dynamics are typically imposed in order to make the driven NDS fall into
the scope of general techniques. Dynamical regularity, ensured, e.g., by
unique ergodicity, plays a crucial role in this context. For the rest of the
present section we therefore discuss the topic of unique ergodicity and also
the somewhat related property of vanishing entropy.

Example 3.27. Recall that Example 3.25 yielded (S1, Rn) as the
maximal equicontinuous factor of the discrete-time system (H(f ), h) from
Example 3.9. Under the factor map p the exceptional set Me projects onto

p(Me)={ ± ie2pink: k ¥ Z}={z ¥ S1: #p−1({z}) > 1},

a set of vanishing Haar measure, lS1(p(Me))=0. Therefore (H(f ), h) is
uniquely ergodic with respect to a probability measure that projects onto
lS1 under p. For the topological entropy of (H(f ), h) we have htop(h)=0
by virtue of the variational principle (Walters [108]). These facts consis-
tently indicate that even though the system (H(f ), h) fails to be a.p., it is
nevertheless rather regular and dynamically well-behaved.

We mention in passing that everything that has been said about the
dynamics of (fk)k ¥ Z=(sign(cos(2pnk)))k ¥ Z under h=h1 may be given a
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continuous-time analogue by means of a straightforward suspension con-
struction. Indeed, the function

f(t) := C
k ¥ Z

fk max{0, 1 − 2 |t − k|}

is a.a. under (ht)t ¥ R, and (H(f ), h) has as its maximal equicontinuous
factor the suspension flow of (S1, Rn), a minimal Kronecker flow on T2.
Essentially the same argument as before show that the system (H(f ), h) is
uniquely ergodic and has zero entropy. (See Berger, Siegmund, and Yi [18]
for details and more examples.)

The observations in the last example concerning unique ergodicity and
zero entropy are fairly general. Let M be a minimal set under h and denote
by (MŒ, hŒ) the maximal equicontinuous factor. According to Corollary 3.26
there exists a unique hŒ-invariant probability measure mŒ on MŒ. Let Me

denote the exceptional set in M, that is

Me :={m ¥ M: #p−1{p(m)} > 1}.

By invariance of Me and (unique) ergodicity of the almost periodic
(maximal equicontinuous) factor we get mŒ(p(Me)) ¥ {0, 1}. If mŒ(p(Me))=1
then (M, h) is also uniquely ergodic. (This situation occurs in Example 3.27.)
If on the other hand mŒ(p(M0))=0 then the question of unique ergodicity
is more delicate and has to be tackled by other means. Examples show that
both positive and negative results may be found ([18, 78, 99]). As far as
entropy is concerned, we have the following simple fact.

Proposition 3.28. Let P, Q denote compact metric spaces, and let
(Q, J) be a factor of (P, h) via p: P Q Q. If supq ¥ Q #p−1({q}) < ., then
htop(J)=htop(h).

Proof. We have to show that htop(h) [ htop(J) because the reverse
inequality is obvious. By a theorem due to Bowen [27] the estimate
htop(h) [ htop(J)+supq ¥ Q htop(h, p−1({q})) holds. Since the last summand
vanishes for all q due to the finiteness of p−1({q}), the result follows. i

As an application of this proposition, we could have proved htop(h)=0
in Example 3.27 without invoking the variational principle.

Example 3.29. We briefly sketch an a.a. system which lacks unique
ergodicity and also has positive entropy; all the relevant details may be
found in [18]. Let S2={0, 1}Z denote the space of bi-infinite sequences on
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two symbols, endowed with any metric inducing the product topology. The
(left) shift map on S2 is denoted by s. Fix w=(wk)k ¥ Z ¥ S2 and consider
the sets

Jn :=(jn+2N+nZ) 2 (−jn+2N+nZ) ı Z (n ¥ N0),

where N \ 2, and the integers jn are determined inductively according to

j0 :=0 and jn+1 :=min 3k \ 0: k ¨ 0
n

i=0
Ji
4 .

Evidently, Z equals the disjoint union of the sets Jn. Define a point
x(w) ¥ S2 by setting

(x(w))k=xk(w) := C
.

n=0
wn1Jn

(k).

In other words, xk(w)=wn whenever k ¥ Jn. It is easy to see that x(w) is
a.a. with respect to s. Moreover, x(w) is not a.p. unless (wk)k ¥ Z is constant
eventually. It is shown in [18] that for every e > 0 there exists an integer
N(e) and a residual set We ı S2 such that for N \ N(e) and for every
w ¥ We the symbolic dynamical system (H(x(w)), s) lacks unique ergodi-
city and has entropy htop(s|H(x(w))) > log 2 − e, which is close to the largest
possible value log 2. The corresponding maximal equicontinuous factor of
(H(x(w)), s) turns out to be OZ2, À1P, i.e., the (totally disconnected)
group of dyadic integers with the addition by one. i

Example 3.30. In Example 3.10 we already observed that for the
almost automorphic function f given there, the hull H(f ) is not compact
in the compact-open topology. Nevertheless, a neat description of H(f )
may again be given by means of a function resembling the function Y in
Example 3.5. To this end let P denote the complement of the ‘‘forbidden’’
trajectory of (1

2 , 1
2) under J, i.e., P :=T2 0{Jt(

1
2 , 1

2): t ¥ R}, metricized as a
subspace of T2. Defining Y: P Q C(R, R2) by Y(x, y) :=f0(J•(x, y)) again
yields a continuous one-to-one map. Furthermore Y p Jt=ht p Y for all
t ¥ R, and Y maps P onto H(f ). Since Y(x, y)(t)=f0(Jt(x, y)) varies
rapidly whenever Jt(x, y) is near (1

2 , 1
2), two points (x, y) and (xŒ, yŒ) of P

are near to each other only if Y(x, y) is close to Y(xŒ, yŒ), i.e., the inverse
map Y−1 is also continuous. Therefore, (P, J|P) and (H(f ), h) are flow
equivalent. As a consequence, the latter system is uniquely ergodic, its
unique invariant probability measure being Y(lT2 |P).
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Example 3.31. As the preceding example shows, a lack of compact-
ness of H(p) does not necessarily rule out (finite) ergodic theory as a tool.
However, it may happen that no invariant probability measure at all exists
on H(p). Consider for instance the Bebutov flow h of the function

A(t) :=2t cos t2.

We claim that there does not exist any h-invariant probability measure on
H(A). This may easily be seen as follows.

Let (Jt)t ¥ R denote the flow corresponding to a unit velocity motion to
the right on the real line, i.e., Jt: x W x+t. A cumbersome yet elementary
analysis confirms that for some a > 0 the estimate

sup
|t| [ 1

|hs1
f(t) − hs2

f(t)| \ a min{1, |s1 − s2 |}

holds, where a does not depend on s1, s2. The assignment Y: ht f W t=
Jt(0) therefore is uniformly continuous (with respect to the metric dco), and
clearly Y(ht f )=Jt p Y(f ). Hence any h-invariant probability measure on
H(A) would induce via Y a J-invariant probability measure on R, an
object which evidently does not exist.

As indicated by the above examples, the case of non-compact H(p)
typically needs a refined analysis, and invariant probability measures have
to be looked for by means of techniques tailored to the particular system
under consideration. As merely one general fact we mention the following
consequence of Prokhorov’s theorem (Stroock [105]). Recall that we have
constantly assumed P to be a complete space.

Proposition 3.32. If the metric space P is separable (and hence
Polish), then there exists a h-invariant probability measure if and only if for
some probability measure m and any e > 0 one can find a compact set Ke … P
such that m(ht(Ke)) > 1 − e holds for all t ¥ T.

As we have seen throughout this section, almost periodicity is easy to
grasp from a topological as well as from a statistical viewpoint. Almost
automorphy, though seemingly still denominating a regular pattern of
recurrence, may already indicate a certain dynamical complexity, notice-
able, e.g., through a lack of unique ergodicity, positive entropy etc. Even
for an a.a. point p, however, H(p) is a compact set, and notions from
topological dynamics and ergodic theory both apply.
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4. NONAUTONOMOUS DYNAMICS

In this section we give a series of examples which illustrate the current
gap between random dynamical systems and continuous skew products.
We survey selected topics and compare the results achieved for both con-
cepts.

Example 4.1 (Lyapunov’s Second Method and Attractors). In order
to recall Lyapunov’s second method, let j be a continuous dynamical
system on a locally compact metric space X and let A be a nonvoid
compact set which is invariant under j. The following two statements are
equivalent (Bhatia and Szegö [19], see also Sell and You [98] for a defini-
tion of stability which allows for the semiflow to have a singularity at t=0
and references on the related LaSalle Invariance Principle):

(a) A is asymptotically stable, i.e.,

(i) for all e > 0 there exists a d > 0 such that j(t) Ud(A) … Ue(A)
for all t \ 0, where Ue(A) :={x ¥ X: d(x, A) < e}, d(x, A) :=
infy ¥ A d(x, y), is the open e-neighborhood of A,

(ii) A is the attractor of j, i.e., limt Q . d(j(t, x), A)=0 for all
x ¥ X.

(b) There exists a Lyapunov function V: X Q R+ for A, i.e.,

(i) V is continuous,

(ii) V is uniformly bounded, i.e., for all C > 0 there exists a com-
pact set K … X such that V(x) \ C for all x ¨ K,

(iii) V is positive-definite, i.e., V(x)=0 if x ¥ A, and V(x) > 0 if
x ¨ A,

(iv) V is strictly decreasing along orbits of j, i.e., V(j(t, x))
< V(x) for x ¨ A and t > 0.

In [9], Arnold and Schmalfuss generalize Lyapunov’s second method for
RDS. It is a special feature of their work that it identifies the matching
random notions of stability, Lyapunov functions, and attraction which
allow for a coherent extension of the deterministic result. The definition of
an attractor has been generalized to the random case by Crauel and
Flandoli [49], Crauel, Debussche, and Flandoli [48], and Schmalfuss [92].
Meanwhile there are at least two different notions of a random
attractor, that is a random compact set A which is invariant, i.e., satisfies
j(t, w) A(w)=A(h(t) w) for all t ¥ T:
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(i) A is a cocycle or pullback attractor if for any bounded set D … X

lim
t Q .

d(j(t, h(−t) w) D | A(w))=0 P-almost surely,

where d(A | B) :=supx ¥ A d(x, B) is the Hausdorff semi-metric.
Note that this implies P-limt Q . d(j(t, · ) D | A(h(t) · ))=0.

(ii) A is a weak attractor or attractor in probability if, for any
bounded set D … X,

P-lim
t Q .

d(j(t, · ) D, A(h(t) · ))=0,

i.e., if limt Q . P{w: d(j(t, w) D, A(h(t) w)) > e}=0 for all e > 0.

Similarly to (i), a forward attractor can be defined by requiring that

lim
t Q .

d(j(t, w) D | A(h(t) w))=0.

Another notion of attractor using a ‘‘background measure’’ is the Milnor
attractor, see Ashwin [11]. One can show by means of examples that all
these concepts lead to different notions of attractors. For a comparison see
Ashwin and Ochs [14], Caraballo and Langa [30], Cheban, Kloeden, and
Schmalfuss [40], and Scheutzow [91]. An attractor may also depend on
the class of attracted sets: Allowing the attracted sets D to depend on w,
one can distinguish between local attractors attracting different families
{D(w)}, the so-called attracting universes. Note that in the autonomous
case all these concepts conincide.

The above notions of attractors (i) and (ii) describe the attraction of
(bounded) sets. As in the autonomous case, there is a difference between set
and point attractors. A point attractor version of (ii) which allows for
attraction of arbitrary random variables reads as follows.

(iii) A is a weak (point) attractor if for any random variable x

P-lim
t Q .

d(j(t, · ) x( · ), A(h(t) · ))=0.

It turns out that (iii) is the adequate notion to prove Lyapunov’s second
method for RDS, which is a strong indication that (iii) is the natural defi-
nition of a random attractor, see [9] for details. However, it is the notion
(i) of a cocycle attractor which has an obvious correspondence for SPF (by
omitting ‘‘P-almost surely’’), whereas (ii) and (iii) are random notions
which intrinsically make use of the probability measure on the base.
Moreover, Caraballo and Langa [31] (see also [33]) show that a cocycle
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attractor Ae of an abstract NDS je which is a perturbation of an NDS j,
converges upper semicontinuously to the unperturbed attractor A, provided
that Ae is contained in a compact absorbing set which converges in the
Hausdorff semidistance to a compact forward invariant absorbing set of A.
They apply this upper semicontinuity result to a nonautonomous pertur-
bation of an autonomous attractor and to a random perturbation of a
nonautonomous attractor, thereby showing that the concept of cocycle
attractor for abstract NDS is a meaningful notion for both SPF and RDS.

We should point out that cocycle attractors for NDS are not unique in
general. Uniqueness follows, e.g., if the attractor is bounded uniformly
over the base, or if the base flow preserves a probability measure, i.e., in
the situation of RDS. For attractors in the extended state space P × X
with compact P, see Babin and Sell [17] and Sell and You [98], for their
relation to pullback and forward attractors, see Cheben, Kloeden, and
Schmalfuss [40]. Pullback and forward attractors for a nonautonomous
Lotka–Volterra system are studied by Langa, Robinson, and Suarez [75,
76], results on attractors for multivalued RDS are contained in Caraballo,
Langa, and Valero [32, 36, 37], and finiteness of the attractor dimension
for specific infinite-dimensional systems is shown, e.g., by Debussche
[52, 53], Caraballo, Langa, and Robinson [34], and Caraballo, Langa,
and Valero [38].

For SPF, Lyapunov’s second method has not been established yet.
This seems to be an interesting open problem, as any answer is likely to
indicate a ‘‘correct’’ generalization of the attractor notion for SPF.
However, there are already many results available on nonautonomous
Lyapunov functions, and especially on pullback attractors by Kloeden (see,
e.g., [69]) and Cheban, Kloeden, and Schmalfuss (see [39] and references
therein).

The next example shows two numerical NDS which are viewed neither
as RDS nor as SPF, and it suggests that numerics for RDS which are done
pathwise, i.e., for fixed w; have the same structure as numerics for SPF.

Example 4.2 (Numerical NDS). Consider a numerical scheme for an
ODE ẋ=f(x) as in Kloeden, Keller, and Schmalfuss [70]. An explicit one-
step numerical scheme with variable time steps hn > 0 is often written as

xn+1=Fhn
(xn) :=xn+hfhn

(xn),

with increment function fhn
(e.g., in the Euler scheme hn=h > 0, fh(x)=

f(x), and in the Heun scheme hn=h > 0, fh(x)=1
2[f(x)+f(x+hf(x))]).

Let the base P be the set of positive bi-infinite sequence h=(hj)j ¥ Z which
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form divergent series in both directions with h as the shift operator, i.e.,
with hŒ=hnh defined by h −

j :=hn+j. Then the cocycle

j(0, h) x0 :=x0, j(n, h) x0 :=Fhn − 1
p · · · p Fh0

(x0),

for n \ 1, h=(hj) and x0 ¥ Rd defines an NDS which models the numerical
scheme. For an application to the discretization of attractors see Kloeden
and Schmalfuss [71].

Another class of numerical NDS describing a numerical method for
both RDS and SPF is the box algorithm of Dellnitz and Junge (see, e.g.,
Dellnitz, Froyland, and Junge [54] for an introduction). It was used by
Keller and Ochs [68] to compute random attractors, and by Siegmund
[103] to approximate nonautonomous invariant manifolds. The abstract
formulation for an NDS j: Z+ × P × Rd

Q Rd is as follows: Choose a
compact set Q … Rd, a step size K ¥ N and a finite collection B=(Bi)

m
i=1 of

connected, closed subsets Bi of Q with (i) 1m
i=1 Bi=Q and (ii) int Bi 5

int Bj=” if i ] j, 1 [ i, j [ m. Then ĵ: Z+ × P ×P(B) QP(B) is the box
NDS over ĥ=hK, where

P(B) :=3BI=0
i ¥ I

Bi : I … {1,..., m}4

and ĵ(n, p)=ĵ(1, h (n − 1) Kp) p · · · p ĵ(1, p) is defined by

ĵ(1, p) BI :=BJ=0
j ¥ J

Bj

with J={j ¥ {1,..., m} : j(K, p) BI 5 Bj ] ”}. Here the state space P(B)
is a metric space with the Hausdorff metric.

The next example is on linear theory for RDS and SPF. It explains the
relation between the Lyapunov exponents as provided by the multiplicative
ergodic theorem of Oseledets and the spectral intervals of the Sacker–Sell
spectrum, which is well-understood if the base is compact (Johnson,
Palmer, and Sell [65]), for related early work in the russian literature see
Millions̆c̆ikov [83].

Example 4.3 (Oseledets and Sacker–Sell Spectra). Assume that P is
a compact metric space. Let F: T × P Q Gl(d, R) be a linear continuous
skew product flow over a driving system h: T × P Q P. Let Fl(t, p) x :=
e−ltF(t, p) x be the shifted cocycle. Recall that Fl has an exponential
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dichotomy over P if there is a (continuous) projector (p, x) W (p, Q(p) x)
on Rd and constants K \ 1, a > 0, such that

||Fl(t, p) Q(p) F−1
l (s, p)|| [ Ke−a(t − s), t [ s,

||Fl(t, p)[I − Q(p)] F−1
l (s, p)|| [ Kea(t − s), t \ s,

for all p ¥ P and t, s ¥ T. The set of l ¥ R for which Fl fails to have an
exponential dichotomy over P is defined to be dyn S, the dynamical (or
dichotomy or Sacker–Sell) spectrum. The spectral theorem (Sacker and Sell
[89]) assures that dyn S=1k

i=1 [ai, bi] is the union of k nonoverlapping
compact intervals, where 1 [ k [ d. The boundary of dyn S is the finite
collection of end points {a1,...,ak, b1,..., bk}. If m is an ergodic measure on P
then the set S(m)={l1,..., lk} of Lyapunov exponents of F is the Oseledets
spectrum (w.r.t. m). If, additionally, P is connected then

boundary dyn S … 0
m

S(m) … dyn S,

where the union is taken over all ergodic measure m on P. (A slightly more
technical inclusion result with the union taken over all invariant probability
measures on P can be found in [65]).

What can be said if the base P is not compact? Consider the scalar
differential equation ẋ=A(t) x with A(t)=2t cos(t2), t ¥ R, from Example
3.31. Let j be the continuous skew product flow over the Bebutov flow h

on the hull H(A)=cl{A( · +s): s ¥ R} in some topology (e.g., the compact-
open topology). Then for hsA=2( · +s) cos( · +s)2 ¥ H(A) we get

j(t, hsA) x=exp(sin(s+t)2 − sin s2) x.

Now we show that the hull H(A) cannot be compact. Arguing negatively,
assume that H(A) is compact. Using the continuity there is an e > 0 such
that

|j(t, s(s, A))| < 2 for |t| < e and all s ¥ R.

Now choose k ¥ N with t :=`p/2+2kp − ` − p/2+2kp < e and s :=
` − p/2+2kp to obtain the contradiction

exp(2)=exp(sin(s+t)2 − sin s2) < 2,

proving that the hull is not compact with respect to any topology. A simple
computation shows that the dynamical spectrum of this equation is
dyn S={0} and that the Lyapunov exponent exists as a limit and equals 0.
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On the other hand the multiplicative ergodic theorem is not applicable
because there exists no ergodic measure on the hull as we have seen in
Example 3.31.

In the following example, one can see that once the linear theories are
provided, one can expect analog qualitative theories for RDS and SPF.
Also, the proofs are similar if only one knows how to cope with the non-
uniformity of RDS.

Example 4.4 (Hartman–Grobman, and Normal Forms). Invariant mani-
fold theory is one of the cornerstones of qualitative theory. It dates back to
Hadamard (graph transformation method) as well as Lyapunov and
Perron (Lyapunov–Perron method). We certainly cannot survey the vast
literature on the subject, but we have to mention some results for SPF with
compact base space which use exponential dichotomy and the Sacker–Sell
spectral theory, namely Chow and Yi [42] and Yi [111, 112] for classical
as well as Sell [96] for generalized center manifolds. Invariant manifold
theory for RDS is part of smooth ergodic theory and was initiated by Pesin
in 1976. His technique to cope with the non-uniformity of the linear theory
provided by the multiplicative ergodic theory can be adapted to RDS.
More recently, Wanner [110] used this technique to transfer the determi-
nistic construction of center manifolds and foliations to RDS, and he was
thus able to prove the Hartman–Grobman result for RDS by using the
same ideas as in the deterministic case [109]. Once an Oseledets splitting
Rd=E1(w) À · · · À En(w) for the linearized cocycle F is given, a random
norm ||x||o, w is constructed which crucially improves the uniformity in the
behavior of F by means of the estimate

elit − o |t| [ ||F(t, w)Ei(w) ||o, w, h(t) w [ elit+o |t| for all t ¥ T,

where l1,..., ln are the corresponding Lyapunov exponents provided by the
multiplicative ergodic theorem of Oseledets.

In contrast to the topological linearization of hyperbolic systems
accomplished by the Hartman–Grobman theorem, the aim of normal form
theory is to simplify (ultimately linearize) a system by means of a smooth
coordinate transformation. However, some ‘‘resonant’’ terms may defy
elimination, and so the ‘‘simplest possible’’ form in general is nonlinear. It
was Poincaré who founded the normal form theory in his thesis in 1879.
For a system ẋ=f(x) with equilibrium 0 and eigenvalues l1,..., ln of the
linearization Df(0), he formulated a nonresonance condition

a1l1+ · · · +anln ] lj,
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which ensures the existence of a smooth transformation eliminating the jth
component of the Taylor coefficient 1

a1! · · · an! Da1
x1

· · · Dan
xn

f(0) of the nonli-
nearity. Normal form theory for RDS generated by random differential/
difference equations or stochastic differential equations is elegantly devel-
oped and described in Arnold [4]. The linear theory of course again builds
on the multiplicative ergodic theorem, and the eigenvalues in Poincaré’s
nonresonance condition are replaced by the Lyapunov exponents. Later,
Siegmund [101, 102] and Colonius and Siegmund [46] extended normal
form theory to SPF generated by nonautonomous differential/difference
equations and control systems (see Colonius and Kliemann [45]), respec-
tively. For these systems, the linear theory relies on the Sacker–Sell or
dichotomy spectrum which consists of disjoint compact intervals li=[ai, bi],
where bi < ai+1, i=1,..., n − 1. (We also write l1 < · · · < ln in this situa-
tion). The corresponding nonresonance condition which generalizes Poin-
caré’s condition takes the form

a1l1+ · · · +anln < lj or a1l1+ · · · +anln > lj,

where multiples and sums of sets are taken pointwise. i

An extension to RDS and SPF of bifurcation results for dynamical
systems in anything but obvious, and it seems that new concepts have to be
found.

Example 4.5 (Bifurcation Theory). Bifurcation theory for NDS is a
relatively new branch which has been developed almost independently for
RDS and SPF so far. Remarkable succes has been achieved for RDS by
Ludwig Arnold and his ‘‘Bremen Group.’’ The basic concepts of their
theory are laid down in Chapter 9 (Bifurcation Theory) of the monograph
[4]. One approach is dynamical or D-bifurcation which is related to sign
changes of Lyapunov exponents li(ma) of ja-invariant measures ma, with
a denoting a bifurcation parameter, as opposed to qualitative changes
of stationary densities of the corresponding Markov process (denoted
P-bifurcations), the latter being not related to the stability measured by
Lyapunov exponents of the RDS. Examples show that the concept of
D-bifurcation is more adequate to generalize deterministic bifurcation sce-
narios. Moreover, as it is summarized by Arnold in [5], the complete
analysis of the case of stochastic differential equations (SDE) with state
space R, done by Crauel, Imkeller, and Steinkamp [51], shows that in
dimension one, invariant measures bifurcate from invariant measures at
parameter values where the Lyapunov exponent is equal to zero, and this is
all that can happen! In higher dimensions, less is know. A promising
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approach of Ashwin [11] and Ashwin and Ochs [14] is to use a notion of
Milnor attractor to relate D-bifurcations to blowout bifurcations of chaotic
attractors, see also [12, 13]. For a result on a stochastic pitchfork bifurca-
tion in the infinite-dimensional setting, see Caraballo, Langa, and
Robinson [35]. Bifurcation theory for SPF seems to be intricate, too, as
the few papers on the subject suggest. Langa, Robinson, and Suarez [74]
give, by means of relatively simple examples of nonautonomous pitchfork
and saddle-node bifurcations, an illustration of the idea of a bifurcation as
a change in the structure and stability of a cocycle attractor. In more tech-
nical papers, Johnson and Yi investigate a Hopf bifurcation from non-
periodic solutions of differential equations, thereby continuing earlier
investigations on the bifurcation of invariant tori (see [64, 66] and refer-
ences therein). In analogy to RDS, they use the linearization and its spec-
trum to analyze the nonlinear bifurcating system. More precisely, they
assume that a one-parameter family of C3 vector fields admits a one-
parameter family m W Ym of compact invariant sets such that (i) Ym is an
asymptotically stable attractor for m < 0, (ii) Ym is no longer an attractor for
m > 0 and (iii) all Ym are homeomorphic (but not diffeomorphic) to a
2-torus. Using a variant of center manifold theory and rotation numbers,
they provide assumptions under which a parameter interval (0, d) contains
an open and dense subset such that the system admits a stable attracting
2-torus Zm which depends in a strongly discontinuous way on m ¥ (0, d).

Center manifolds and the reduction principle of Pliss [87] are indis-
pensable tools in the bifurcation theory of dynamical systems [77]. The
counterparts for RDS and SPF are developed for various situations (see,
e.g., [4, 15, 42, 79, 84, 110] and the references therein) and they are
expected to be similarly useful in the development of a nonautonomous
bifurcation theory for reduced lower-dimensional NDS.

Today, monotone methods and comparison arguments are increas-
ingly intertwined with dynamical systems theory (see, e.g., Smith [104] and
the literature quoted therein). Monotonicity simplifies the investigation of
the long-time behavior and of the invariant objects of a dynamical system.

Example 4.6 (Monotone Systems). In a series of papers, Arnold and
Chueshov [6–8] and Chueshov [43] (see also the book [44]) developed a
systematic study of order-preserving (or monotone) RDS and SPF culmi-
nating in a limit set trichotomy for order preserving systems. Their defini-
tion of an order preserving RDS, resp. SPF, naturally extends to NDS.
Thereto, let X ] ” be a subset of a real Banach space V and let V+ … V be
a closed convex cone such that V+ 5 (−V+)={0}. This cone defines a
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partial order on X as follows: We have x \ y if and only if x − y ¥ V+, and
we write x > y when x \ y but x ] y. If V+ has nonempty interior int(V+)
we say that V is strongly ordered, and we write x ± y if x − y ¥ int(V+).
Moreover, assume that every bounded set B in X is contained in an order
interval. Then an NDS (h, j) is said to be strongly order-preserving if

x > y implies j(t, p) x ± j(t, p) y for all t \ 0 and p ¥ P.

Shen and Yi show in [99] that a scalar parabolic PDE generates a strongly
order-preserving SPF. Exploiting zero number properties which hold for
this special class of PDEs they get, e.g., the result that if the driving system
is compact and has a unique ergodic probability measure P then unique
ergodicity of a minimal set E … P × X of the SPF (h, j) is equivalent to

P{p ¥ P : #E(p)=1}=1,

where #E(p) denotes the cardinality of the fiber of E over p. The unique
ergodic probability measure on E then is a lifting of P. The lifting problem
for RDS is investigated by Crauel [47], and Eckmann and Hairer [56, 57].
It would be interesting to formulate these results for NDS in order to
extract the common core of the theory for RDS and SPF and to obtain, for
instance, a limit set trichotomy theorem for abstract order-preserving NDS.

5. CONCLUSIONS

What is the gap between random dynamical systems (RDS) and con-
tinuous skew products (SPF)? In Section 2, we observed as their obvious
common structure that they both constitute a cocycle over a group action
of time (the driving-system). Following the recent coining of the term in the
Festschrift [50], we called this common structure a nonautonomous dynam-
ical system (NDS). From the point of view adopted here, it is thus mainly
the gap between ergodicity and continuity of the driving system which
causes the gap between RDS and SPF. Moreover, a typical feature of RDS
is the lack of compactness in the base, and therefore, in general, also a lack
of uniformity. As we pointed out by quoting from Oxtoby [85] earlier, one
should not expect too much from analogies alone, even though the con-
cepts do look similar. However, in the compact and uniquely ergodic case
for example the gap disappears, and the concepts coincide to a large extent.
Almost periodic dynamics (which are always conjugate to group rotations)
provide the best-known examples for such a good match. The concept of
almost automorphy, on the other hand, ‘‘is essential and fundamental in
the qualitative study of almost periodic differential equations’’ (Shen and
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Yi [99]). Example 3.18 shows that almost automorphic dynamics do not
yield a group in general, although an almost automorphic flow always is
compact and minimal by Proposition 3.19. Nevertheless, Example 3.27
clearly points out that in order to better understand almost automorphic
dynamics, it is indispensable to have a closer look at the associated maxi-
mal equicontinuous (hence almost periodic) factor. If the set of points
supporting one-point fibers over this factor has full Haar measure, then the
almost automorphic flow has zero entropy. In other words, an almost
automorphic flow can have positive (topological) entropy only if the set of
one-point fibers has zero Haar-measure, as is the case in Example 3.29.

Quantitative concepts like entropy (or, more generally, topological
pressure, see Walters [108]) or spectra may equally stimulate a broader
view on NDS in the spirit of the present article (notwithstanding the fact
that the technicalities inherent to these topics largely precluded a detailed
discussion here). For example, in its measure-theoretic form, entropy
quantifies on average the complexity inherent to the system whereas its
topological counterpart measures the maximal complexity. The well-known
variational principle asserts that the topological entropy actually equals the
supremum over the measure-theoretic entropy taken at all ergodic mea-
sures. A similar relation exists between the Oseledets and the Sacker–Sell
spectrum, as outlined in Example 4.3: The union of the Lyapunov expo-
nents over all ergodic measures is an inner approximation for the Sacker–
Sell spectrum which measures the exponential growth rates uniformly over
the base. For RDS, entropy has been developed in Bogenschütz [23]. It
turns out that most of the classical notions and results (e.g., the Shannon–
McMillan–Breiman theorem, the variational principle, etc.) carry over to
the nonautonomous context in a very natural way, see also Bogenschütz
and Crauel [24].

It seems as if some issues of uniformity or maximality of concepts for
SPF might be handled successfully by considering the corresponding con-
cepts for the family of RDS in view of all ergodic measures of the driving
system. As has been pointed out in Section 4, so far only ad-hoc techniques
exist in this context. A careful, systematic analysis also assessing the
potential of the approach therefore constitutes one of the directions along
which—in our opinion—further investigations will be worthwhile. Another
pressing problem suggests itself through Example 4.1 on Lyapunov’s
second method: Has the natural definition of an attractor for SPF really
been found yet? Does it allow a coherent generalization of Lyapunov’s
second method to SPF, just as the notion of random attractor does for
RDS? It is the similar structure of results for RDS and SPF, as apparent,
e.g., in Example 4.2 and 4.4, which encourages this simultaneous study. It
is an interesting problem to find out to which extent such a structure also
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exists for the monotone systems in Example 4.6. As a possible strategy, one
could compare the limit set theorem for monotone RDS [8] with the result
for SPF [43] in order to understand up to which extent the new findings
reflect a property of the abstract NDS alone, not depending on the partic-
ular driving system.

It is beyond doubt that any refined knowledge about the similarities
and differences between RDS and SPF will be an invaluable help when
trying to profit from the work in both areas. As one field of future research
which certainly requires such a two-eyed perspective, we finally have to
mention the development of a comprehensive bifurcation theory for NDS.
To the best of our knowledge, this highly interesting though challenging
subject has not entered the phase of a substantial breakthrough yet.
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