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The distribution of digits and mantissae in dynamical systems (both in continu-
ous and discrete time) is discussed in light of two simple yet fundamental results.
By utilizing shadowing and uniform distribution techniques, it is shown that sys-
tems with regular long-term behavior are surprisingly likely to exhibit Benford’s
logarithmic mantissa distribution — much in contrast to systems with stationary
statistical properties. The results complement and extend recent work.

Let b be an integer larger than one. Every real x > 0 can be written

uniquely as x = Mb(x)bl where Mb : R
+ → [1, b[ denotes the (base b)

mantissa function, and l is the appropriate integer. For convenience set

Mb(0) = 0. Also, let λ symbolize Lebesgue measure on R, and, for x ∈ R,

denote by bxc the largest integer not larger than x.

Intuitively, one might expect that mantissae Mb and first significant

digits bMbc should be more or less uniformly distributed on [1, b[ and

{1, . . . , b − 1}, respectively, for sufficiently large and diverse aggregations

of numerical data. Quite often, however, this intuition is mistaken: a loga-

rithmic mantissa distribution turns out to be of fundamental importance.

Definition 1. A function f : [0, +∞[→ R is a b-Benford function if

lim
T→∞

T−1λ
(

{0 ≤ t ≤ T : Mb(|f(t)|) ≤ s}
)

= logb s , ∀s ∈ [1, b[ ;

it is called a (strict) Benford function if it is b-Benford for all b ∈ N\{1}.

For simplicity, real-valued sequences (xn) will be treated as functions t 7→

xbtc. It is well-known1,2 that any measurable function f is b-Benford if and

only if
(

logb |f(t)|
)

is continuously uniformly distributed (c.u.d.) mod 1.

Following an article by Benford,3 the emergence of the logarithmic

mantissa distribution, termed Benford’s Law (BL), has been discussed

extensively.2,4,5 It was, however, only recently that dynamical systems have

been studied as potential sources of that distribution.1,6,7,8,9,10
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BL has been characterized as the only continuous mantissa distribution

which is base-invariant.4 It is natural to require that a general pattern of

mantissa distribution, if one exists at all, does not depend on the particular

choice of the base. Various classical systems (e.g. Lorenz flow, Hénon and

logistic maps) have been studied for the emergence of BL.9,10 Even though

trajectories of such “chaotic” systems may coincidentally be Benford func-

tions, strict Benford behavior is completely unlikely. (For simplicity the

following result is stated for the one-dimensional discrete-time case only;

see Ref. 7 for details and generalizations.)

Theorem 2. Let T : R → R preserve the probability measure µ. Then

µ
(

{x : the T -orbit of x is strict Benford }
)

= 0 .

A key idea in the proof is the simple observation that for any probability µ

on R and Φb : x 7→ logb |x| the measure µ ◦ Φ−1
b cannot be uniform for all

b. (See Ref. 11 for a related result.) Obviously, this need not be true if µ

is infinite (take dµ = x−1dx, x > 0 as an example), and systems preserving

an infinite measure may well generate strict Benford functions.7

In light of Theorem 2 it is natural to focus on transient dynamics which

may indeed generate Benford data in abundance.1,8 As a generalization of

earlier results1,6, this is illustrated here through an analysis of the initial

value problem,

ẋ = a1(t) + a2(t)x + a3(x, t) , x(0) = x0 , (1)

where a1, a2 are C0, and a3 is C1 such that |a3(x, t)| ≤ Γ(|x|) for all t ≥ 0,

|x| ≥ ξ ≥ 0 and a non-increasing function Γ. Let A2(t) =
∫ t

0 a2(τ)dτ . The

unique solution of (1) is denoted by (ϕtx0) provided it exists for all t ≥ 0.

Theorem 3. Suppose that
∫ ∞

0

(

|a1(τ)| + Γ(eA2(τ))
)

e−A2(τ)dτ < ∞ and inf
τ≥0

A2(τ) > −∞ . (2)

Then there exists ξ′ ≥ 0 such that (1) has a unique solution (ϕtx0) whenever

|x0| ≥ ξ′, and (ϕtx0) is a b-Benford function if and only if
(

A2(t)/ log b
)

is

c.u.d. mod 1.

Basically, this follows from the fact that h : x 7→ x+
∫ ∞

0 a3(ϕτ x, τ)e−A2(τ)dτ

defines a continuous function on R\[−ξ′, ξ′] with sup|x|≥ξ′ |h(x) − x| < ∞,

and log eA2(t)h(x)−log ϕtx tends to a finite limit as t → ∞. The question as

to whether (ϕtx0) is b-Benford is thus reduced to a problem of (continuous)

uniform distribution theory for which extensive knowledge is on available.12
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Remark 4. (i) Clearly, (ϕtx0) is b-Benford for either all or no sufficiently

large |x0|. This all-or-nothing situation is contrasted by fully non-linear,

discrete-time systems for which (small) exceptional sets exist.1,6

(ii) To see that Theorem 3 is strictly stronger than all results for linearly

dominated systems in Ref. 1 (which correspond to a1 = 0, Γ = 1), consider

the initial value problem

ẋ = −a2(t)x
(

1 − g(x)
)

, x(0) = x0 , (3)

where a2(t) = (1 + t)−1, and g is C1 with g(0) = 0. The Benford behavior

of (ϕtx0) for small |x0|, undecidable by Ref. 1, is clarified by (a “reciprocal”

version of) Theorem 3: no such solution is b-Benford for any b.

(iii) If the coefficients a1, a2 in (1) do not depend on t, then conditions

(2) reduce to a2 > 0, in which case (ϕtx0) is a strict Benford function for all

large |x0|. BL is thus a common phenomenon for those differential equations

which are linearly-dominated in a sense and whose time-dependence is weak.

A similar statement holds true in higher dimensions.6

(iv) Although Theorem 3 appears to be close to optimal for non-

decreasing A2, it is hardly surprising that interesting systems with oscilla-

tory A2 lie beyond the scope of that result. Take A2(t) = t(sin t)2 in (3) as

an example: For g = 0, (ϕtx0) is strict Benford if x0 6= 0, but
∫ ∞

0 e−A2(τ)dτ

diverges, and the general case g 6= 0 remains open.
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