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Abstract

This paper studies best finitely supported approximations of one-dimensional probability measures
with respect to the Lr -Kantorovich (or transport) distance, where either the locations or the weights of
the approximations’ atoms are prescribed. Necessary and sufficient optimality conditions are established,
and the rate of convergence (as the number of atoms goes to infinity) is discussed. In view of
emerging mathematical and statistical applications, special attention is given to the case of best uniform
approximations (i.e., all atoms having equal weight). The approach developed in this paper is elementary;
it is based on best approximations of (monotone) Lr -functions by step functions, and thus different from,
yet naturally complementary to, the classical Voronoi partition approach.
c⃝ 2019 Elsevier Inc. All rights reserved.
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1. Introduction

Finding best finitely supported approximations of a given (Borel) probability measure µ on
R is an important basic problem that has been studied extensively and from several perspectives.
Assuming for instance that

∫
R |x |

r dµ(x) < +∞ for some r ≥ 1, a classical question asks to
minimize the Lr -Kantorovich (or transport) distance dr (ν, µ) over all discrete probabilities ν
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supported on at most n atoms, where n is a given positive integer. A rich theory of quantization
of probability measures addresses this question, as well as applications thereof in such diverse
fields as information theory, numerical integration, and optimal transport, among others; see,
e.g., [5,17,26] and the many references therein. As is well known, a minimal value of dr (ν, µ)
always is attained for some discrete probability ν = δ•,n

•
which may or may not be determined

uniquely by this minimality property. Moreover, dr (δ•,n
•
, µ) → 0 as n → ∞, and the precise

rate of convergence has attracted particular interest. A celebrated theorem (see Proposition 5.27)
asserts that, under a mild moment condition,

(
ndr (δ•,n

•
, µ)

)
converges to a finite positive limit

whenever µ is non-singular (w.r.t. Lebesgue measure). Results in a similar spirit have been
established for important classes of singular measures, notably self-similar and -conformal
probabilities [18,20,30]. While these classical results crucially employ Voronoi partitions (as
developed in some detail, e.g., in [17]), alternative tools and extensions to other metrics have
recently been studied also [5,7,10].

A second important perspective on the approximation problem is that of random empirical
quantization [4,9]. To illustrate it, let (X j ) j≥1 be an iid. sequence of random variables with
common law µ, and consider the (random) empirical measure µn =

1
n

∑n
j=1 δX j ; here and

throughout, δa is a Dirac unit mass at a ∈ R. Then dr (µn, µ) → 0 with probability one as
n → ∞, as well as Edr (µn, µ) → 0. A comprehensive analysis of the rate of convergence
of
(
Edr (µn, µ)

)
is provided by the recent monograph [3] which, in particular, identifies

necessary and sufficient conditions for decay to occur at the “standard rate” (n−1/2), that is, for(
n1/2Edr (µn, µ)

)
to be bounded above and below by finite positive constants. Beyond these

one-dimensional results, rates of convergence for random empirical quantization have lately
been studied in higher dimensions and other settings also; see, e.g., [4,9,13].

The purpose of the present article is to develop a third perspective on the approximation
problem that in a sense lies between the two established perspectives briefly recalled above.
Specifically, we present an in-depth study of finitely supported approximations that are non-
random yet constrained in that either the locations or the weights of the approximations’
atoms are prescribed. To the best of our knowledge, such approximations have not been
studied systematically in the literature, though the recent papers [1] and [5] do consider
(uniform) “U-quantization” and discrete approximations of absolutely continuous probabilities
µ, respectively. The necessary and sufficient conditions for best constrained approximations
presented in this article make no assumptions on µ beyond

∫
R |x |

r dµ(x) < +∞. They follow
rather directly from elementary properties of monotone functions and exploit a certain duality
between locations and weights of atoms. By contrast, note that Voronoi partitions are typically
much less useful if weights, rather than positions, are prescribed [17].

Arguably the simplest special case where our results apply is that of best uniform ap-
proximations: Given µ and a positive integer n, for which ν =

1
n

∑n
j=1 δx j is dr (ν, µ)

minimal, where x1, · · · , xn ∈ R? Theorem 5.5 characterizes the (often unique) minimizer δun
•

;
here usage of the superscript un emphasizes the fact that a best uniform approximation δun

•

typically is quite different from any best approximation δ•,n
•

. The special case of best uniform
approximations is of considerable interest in itself: In statistics, when dealing with empirical
data sets, practical considerations may demand that all atoms have equal weights, or at least
that they be integer multiples of one fixed unit weight [2]. Also, best uniform approximations
are close analogues of support points [25], the latter being minimizers relative to a slightly
different metric (energy distance). One may thus view δun

•
as a quasi Monte Carlo (MC)

tool that minimizes the integration error bound |
∫

f dµ−
∑n

j=1 f (x j )| ≤ Lip ( f ) d1(δun
•
, µ)

for a wide class of functions (cf. [11]), and consequently a careful analysis of d1(δun
•
, µ) as
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n → ∞ is indispensable. In computational mathematics, best uniform approximations also
arise naturally in the form of restricted MC methods, and a basic question is how performance
of the latter compares to general (non-restricted) MC methods, that is, how dr (δun

•
, µ) compares

to dr (δ•,n
•
, µ) as n → ∞; see, e.g., [14,15] and the many references therein. Restricted MC

methods have recently found applications in “big-data” problems in Bayesian statistics [25]
and the numerical solution of SDE, notably in mathematical finance [15,16,27].

Just as for the best unconstrained and the random empirical approximations mentioned
earlier, dr (δun

•
, µ) → 0 as n → ∞, which again makes the rate of convergence a natural object

of study. Presented in Section 5.2, our results in this regard are quite similar to those of [3],
despite their obviously different context. As a simple illustrative example, consider the standard
normal distribution, i.e., let d

dxµ( ]−∞, x]) =
1

√
2π

e−x2/2 for all x ∈ R. From Proposition 5.27,
it follows that in the case of best (unconstrained) approximations, for all r ≥ 1,

dr (δ•,n
•
, µ) = O(n−1) as n → ∞ ,

whereas for random empirical approximations, [3, Sec.6.5] shows that

Edr (µn, µ) =

⎧⎨⎩ O(n−1/2) if 1 ≤ r < 2 ,
O(n−1/2(log log n)1/2) if r = 2 ,
O(n−1/r (log n)1/2) if r > 2 .

By contrast, for best uniform approximations, with r = 2 and along the subsequence n = 2k ,
the sharp rate of convergence for

(
dr (δun

•
, µ)

)
is (n log n)−1/2, as proved by [15]. Utilizing the

main results of the present article, notably Theorem 5.5, one can show that in fact

dr (δun
•
, µ) =

{
O(n−1(log n)1/2) if r = 1 ,
O(n−1/r (log n)−1/2) if r > 1 .

Not too surprisingly, the rate of convergence of
(
dr (δun

•
, µ)

)
is slower than that of

(
dr (δ•,n

•
, µ)

)
,

but faster than that of
(
Edr (µn, µ)

)
.

Due to the nature of the underlying approximation problem for monotone functions, our
approach is not restricted to dr , and results in a similar spirit can be established for other
important metrics and for discrete approximations with countable support. One-dimensionality,
on the other hand, is crucial: In multi-dimensional (Euclidean) spaces, upper bounds for the
rate of decay of best uniform approximations have been established only recently [8], via a
uniform decomposition approach. In addition, we mention [15] which analyzes a best uniform
approximation problem (referred to as random bit quadrature) in a Hilbert space setting with
L2-Kantorovich metric, motivated also by MC applications.

This article is organized as follows. Section 2 introduces the notations used throughout, and
recalls definition and basic properties of the metric dr for the reader’s convenience. Section 3
reviews several elementary facts about monotone functions and their quantile and growth sets,
as well as the notion of a balanced function, to be used subsequently in Section 4 to characterize
best approximations of (monotone) Lr -functions by step functions. While they may also be of
independent interest, these results crucially serve as tools in Section 5, the main part of this
work. In that section, necessary and sufficient conditions for best finite approximations with
prescribed locations (Section 5.1) or weights (Section 5.2) are established. Much attention is
devoted to the special case of best uniform approximations δun

•
, and in particular to the rate of

convergence of
(
dr (δun

•
, µ)

)
. Convergence theorems and finite range (upper and lower) bounds

for such sequences are provided. All results are illustrated via simple examples of µ which
include absolutely continuous (exponential, Beta) as well as singular (Cantor, inverse Cantor)
probability measures.
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2. Notations

The following, mostly standard notations are used throughout. The natural and real numbers
are denoted N and R, respectively. The extended real numbers are R = R ∪ {−∞,+∞}. For
any a ∈ R, sgn a = 1 if a > 0, sgn 0 = 0, and sgn a = −1 if a < 0. The indicator function of
any set A ⊂ R is denoted 1A, and log symbolizes the natural logarithm. For x ∈ R, let |x | be
the absolute value, ⌊x⌋ the floor (i.e., the largest integer ≤ x), and ⟨x⟩ = x −⌊x⌋ the fractional
part of x , respectively. Lebesgue measure on R is symbolized by λ, and δa stands for the Dirac
measure concentrated at a, i.e., δa(A) = 1A(a) for all A.

The usual notations for intervals, e.g., [a, b[ = {x ∈ R : a ≤ x < b} are used. Endowed
with the topology {[−∞, a[ ∪ U ∪ ]b,+∞] : a, b ∈ R, U ⊂ R open}, the space R is
compact and homeomorphic to the unit interval I = [0, 1]. Throughout, I ⊂ R always denotes
a closed (and hence compact) interval that is non-degenerate, i.e., λ(I ) > 0. For A ⊂ R,

denote by # A,
◦

A, and A the cardinality (number of elements), interior, and closure of A,
respectively. Every non-empty A has an infimum inf A and a supremum sup A; if A is closed,
then inf A = min A and sup A = max A. If A ⊂ R is an interval and f : A → R is monotone,

then f (a−) = limε↓0 f (a−ε) and f (a+) = limε↓0 f (a+ε) both exist for every a ∈
◦

A. For any
set A ⊂ R and any function f : A → R, the image of A under f is f (A) = { f (a) : a ∈ A},
while the pre-image of B ⊂ R is f −1(B) = {a ∈ A : f (a) ∈ B}. Also, for every b ∈ R, let
{ f ≤ b} = f −1([−∞, b]); the sets { f ≥ b}, { f < b}, { f > b}, and { f = b} are defined
analogously. Denote by essinfA f and esssupA f the essential infimum and supremum of f on
A, respectively. For 1 ≤ r < +∞ and any (closed, non-degenerate) interval I ⊂ R, let Lr (I )
be the space of all measurable functions f : I → R that are (absolutely) r -integrable with
respect to λ, and L∞(I ) the space of all functions bounded λ-almost everywhere (a.e.). For
f ∈ Lr (I ), let f +

= max{ f, 0} and f −
= (− f )+, hence f = f +

− f −.
Let P be the family of all Borel probability measures on R with µ(R) = 1. For every

µ ∈ P , Fµ : R → I with Fµ(x) = µ([−∞, x]) is the associated distribution function, F−1
µ

the associated (upper) quantile function, i.e.,

F−1
µ (t) = sup{Fµ ≤ t}, ∀ t ∈]0, 1[ , (2.1)

and supp µ the support of µ, that is, the smallest closed set of µ-measure 1. Both Fµ and F−1
µ

are non-decreasing and right-continuous. As a consequence, F−1
µ generates a positive Borel

measure µ−1 on ]0, 1[ via

µ−1(]t, u]) = F−1
µ (u) − F−1

µ (t), ∀0 < t < u < 1 .

Note that µ−1, referred to as the inverse measure of µ, is finite if and only if supp µ is bounded,
since in fact µ−1(]0, 1[) = max supp µ − min supp µ; see, e.g., [3, App.A] for further basic
properties of inverse measures.

For every r ≥ 1, the set of probability measures with finite r th moment is denoted Pr ,
i.e., Pr =

{
µ ∈ P :

∫
R |x |

r dµ(x) < +∞
}
. Thus µ ∈ Pr if and only if F−1

µ ∈ Lr (I). On Pr ,
the Lr -Kantorovich distance dr is

dr (µ, ν) =

(∫
I

⏐⏐F−1
µ (t) − F−1

ν (t)
⏐⏐r dt

)1/r

=
F−1

µ − F−1
ν


r
, ∀µ, ν ∈ Pr . (2.2)

For r = 1, by Fubini’s theorem,

d1(µ, ν) =

∫
R

⏐⏐Fµ(x) − Fν(x)
⏐⏐ dx, ∀ µ, ν ∈ P1 .
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When endowed with the metric dr , the space Pr is separable and complete, and dr (µn, µ) → 0
implies that µn → µ weakly. Note that Pr ⊃ Ps and dr ≤ ds whenever r < s. On Ps , the
metrics dr and ds are not equivalent, as the example of µn = (1 − n−s)δ0 + n−sδn shows,
for which ds(µn, δ0) ≡ 1, and yet limn→∞ dr (µn, δ0) = 0 for all r < s, and hence µn → δ0
weakly. The reader is referred to [12,32] for details on the mathematical background of the
Kantorovich distance, and to [17,32] for a discussion of its usefulness in the study of mass
transportation and quantization problems.

3. Monotone and balanced functions and their inverses

Quantization, as informally alluded to in the Introduction, may be understood as the
approximation of a given probability measure by finite weighted sums of point masses. Every
quantile function is non-decreasing; in particular, the quantile function associated with a finitely
supported probability measure is a monotone step function. Therefore, it is natural – not least
in view of (2.2) – to formulate the ensuing approximation problem more generally as a problem
about the best approximation of monotone Lr -functions by step functions. Towards this goal,
we first present some relevant properties of monotone functions. For ease of exposition, the
focus is on non-decreasing functions, but all subsequent arguments hold analogously for
non-increasing functions as well.

Given an interval I ⊂ R and a non-decreasing function f : I → R, define the t-quantile
set Q f

t of f as

Q f
t = [inf{ f ≥ t}, sup{ f ≤ t}], ∀t ∈ R ;

here and throughout, inf∅ := max I and sup∅ := min I . Also remember that I is closed
and non-degenerate, by convention. As a generalization of (2.1), the (upper) inverse function
f −1

: R → R associated with f is

f −1(t) := sup{ f ≤ t} = max Q f
t , ∀t ∈ R .

Note that f −1 is non-decreasing, right-continuous and, on f (I ), coincides with the ordinary

inverse of f whenever f is one-to-one. Moreover, ( f −1)−1(x) = f (x+) for all x ∈
◦

I ; in
particular, therefore, ( f −1)−1 equals f a.e. on

◦

I , and in fact everywhere if f is right-continuous.
A few elementary properties of quantile sets are as follows.

Proposition 3.1 ([2, Lem. 2.7]).. Let f : I → R be non-decreasing. Then, for every t ∈ R, the
set Q f

t is a non-empty, compact (possibly one-point) subinterval of I , and f (x) = t whenever
min Q f

t < x < max Q f
t ; in particular, Q f

t equals { f = t} whenever the latter set is non-empty.
Moreover, the following hold:

(i) If t < u then x ≤ y for every x ∈ Q f
t and every y ∈ Q f

u , and the set Q f
t ∩ Q f

u contains
at most one point.

(ii) For every x ∈ I and t ∈ R, x ∈ Q f
t if and only if t ∈ Q f −1

x .

For any non-decreasing function f : I → R, call x ∈ I a growth point of f if f (y) < f (x)
for all y ∈ I with y < x , or f (y) > f (x) for all y > x ; see also [3, p. 97]. Define the growth
set of f as

G f
= {x ∈ I : x is a growth point of f } .

Thus for example, G Fµ = supp µ for every µ ∈ P , and {0, 1} ⊂ G F−1
µ ⊂ I. An elementary

relation between growth and quantile sets follows directly from the definitions.
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Proposition 3.2. Let f : I → R be non-decreasing. Then G f is a closed subset of I ,
non-empty unless f is constant, and G f

∪ {min I,max I } =
⋃

t∈R{min Q f
t ,max Q f

t }.

Next, we recall a useful terminology from [6]: Given a bounded interval I ⊂ R, call a
measurable function f : I → R balanced if⏐⏐λ({ f > 0}) − λ({ f < 0})

⏐⏐ ≤ λ({ f = 0}) ,

and denote by B f
:= {t ∈ R : f −t is balanced} the set of all balanced values of f . To establish

a few basic properties of B f (in Lemma 3.6), consider the auxiliary function ℓ f : R → R given
by

ℓ f (t) =
1
2

(
min I + max I + λ({ f < t}) − λ({ f > t})

)
.

The following properties of ℓ f are straightforward to verify.

Proposition 3.3. Let I be a bounded interval and f : I → R a measurable function. Assume
that f is finite a.e. Then the following hold:

(i) ℓ f is non-decreasing;
(ii) For every t ∈ R, ℓ f (t±) = ℓ f (t) ±

1
2λ ({ f = t}), and hence ℓ f is continuous at t if

and only if λ ({ f = t}) = 0. Moreover, λ({ℓ−1
f < t} ∩ I ) = λ ({ f < t}) as well as

λ({ℓ−1
f > t} ∩ I ) = λ ({ f > t});

(iii) limt→−∞ ℓ f (t) = ℓ f (−∞) = min I and limt→+∞ ℓ f (t) = ℓ f (+∞) = max I ;
(iv) If f is non-decreasing then

ℓ f (t) =
1
2

(
f −1(t) + f −1(t−)

)
, ∀ t ∈ R ,

and also

ℓ−1
f (x) = ( f −1)−1(x) = f (x+), ℓ−1

f (x−) = f (x−), ∀ x ∈
◦

I ;

(v) If f ∈ Lr (I ) for some 1 ≤ r < +∞, then
ℓ−1

f − t


r = ∥ f − t∥r for every t ∈ R.

Example 3.4. Let I = I and

f (x) =

⎧⎪⎨⎪⎩
3
4 (x + 1) if 0 ≤ x < 1

3 ,

1
2 if 1

3 ≤ x < 2
3 ,

3
2 x − 1 if 2

3 ≤ x ≤ 1.

Here the functions ℓ f , ℓ
−1
f : R → R are given by

ℓ f (t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2
3 max{t, 0} if t < 1

2 ,

1
2 if t =

1
2 ,

2
3 if 1

2 < t < 3
4 ,

4
3 min{t, 1} −

1
3 if t ≥

3
4 ,

ℓ−1
f (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−∞ if x < 0,
1
2 min{3x, 1} if 0 ≤ x < 2

3 ,

1
4 (3x + 1) if 2

3 ≤ x < 1,
+∞ if x ≥ 1.

Fig. 1 illustrates that indeed
ℓ−1

f − t


r = ∥ f − t∥r for all t , as asserted by Proposition 3.3(v).

Remark 3.5. By Proposition 3.3(v), minimizing t ↦→ ∥ f − t∥r for f ∈ Lr (I ) is equivalent
to minimizing t ↦→

ℓ−1
f − t


r for the monotone function ℓ−1

f . Note also that if f ∈ Lr (I ) is
non-decreasing then f and ℓ−1

f coincide a.e., by Proposition 3.3(iv).



C. Xu and A. Berger / Journal of Approximation Theory 244 (2019) 1–36 7

Fig. 1. Graphing f , ℓ f , and ℓ−1
f of Example 3.4.

Utilizing Propositions 3.1 and 3.3, we now establish a few basic properties of the sets B f

that will be used in the next section.

Lemma 3.6. Let I be a bounded interval and f : I → R a measurable function. Assume
that f is finite a.e. Then B f

= Q
ℓ f
1
2 (min I+max I )

. Moreover, the following hold:

(i) For every t ∈ R, λ ({ f > t}) > λ ({ f ≤ t}) if t < min B f , and λ ({ f < t}) >
λ ({ f ≥ t}) if t > max B f ;

(ii) λ
(

f −1(
◦

B f )
)

= 0;
(iii) λ

({
f ≤ min B f

})
= λ

({
f ≥ max B f

})
.

Proof. For convenience, let ξ =
1
2 (min I + max I ), and note that, by definition, B f

=

{t : |ℓ f (t) − ξ | ≤
1
2λ({ f = t})}. Define a = inf{ℓ f ≥ ξ}, b = sup{ℓ f ≤ ξ}, and hence

[a, b] = Q
ℓ f
ξ . It is easy to see that a and b are finite, with a ≤ b, and

ℓ f (a−) ≤ ξ ≤ ℓ f (a+), ℓ f (b−) ≤ ξ ≤ ℓ f (b+) ,

which implies that a, b ∈ B f , by Proposition 3.3(ii). For every t ∈ ]a, b[, ℓ f (t) = ξ , thus
t ∈ B f , and hence [a, b] ⊂ B f . For every t > b, ℓ f (t−) > ξ , so again by Proposition 3.3(ii),
ℓ f (t) − ξ > 1

2λ({ f = t}), which implies that t /∈ B f and λ({ f < t}) > λ({ f ≥ t}). Similarly,
t /∈ B f and λ({ f > t}) > λ({ f ≤ t}) for every t < a. This proves that B f

= [a, b] = Q
ℓ f
ξ ,

and also establishes (i).

To prove (ii) and (iii), assume that
◦

B f
̸= ∅, i.e., a < b. For every t ∈

◦

B f , ℓ f (t) = ξ ,
i.e., λ({ f > t}) = λ({ f < t}). Hence for all a < t1 < t2 < b,

λ({ f < t1}) ≤ λ({ f < t2}) = λ({ f > t2}) ≤ λ({ f > t1}) = λ({ f < t1}) .

Thus λ({t1 ≤ f < t2}) = λ({t1 < f ≤ t2}) = 0. Letting t1 ↓ a and t2 ↑ b, properties (ii) and
(iii) immediately follow from the continuity of λ. □

Remark 3.7. If, under the assumptions of Lemma 3.6, the function f is non-decreasing, then
B f

= Q f −1

1
2 (min I+max I )

.
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4. Approximating L r -functions by step functions

This section characterizes the best approximations of a given function by step functions.
Two main results (Lemma 4.1 and Theorem 4.3) will be used in Section 5 to identify best
finitely supported approximations of a given probability measure µ ∈ P; they may also be
of independent interest. Throughout this section, we assume that the closed, non-degenerate
interval I ⊂ R is bounded. (For unbounded I , most statements become either trivial or
meaningless.)

First, we give a result on the best approximation of a monotone function by a (monotone)
step function with a prescribed range and a single jump at a variable location.

Lemma 4.1. Assume that f : I → R is non-decreasing, and f ∈ Lr (I ) for some r ≥ 1. Let
a, b ∈ R with a < b. Then the value of f −

(
a1[min I,ξ [ + b1[ξ,max I ]

)
r , ∀ξ ∈ I ,

is minimal if and only if ξ ∈ Q f
1
2 (a+b)

.

Proof. Given f ∈ Lr (I ) and a < b, define ψ(ξ ) =
 f −

(
a1[min I,ξ [ + b1[ξ,max I ]

) 
r for all

ξ ∈ I , and let c =
1
2 (a + b). Clearly, the function ψ is non-negative and continuous, and so

attains a minimal value. If ξ > f −1(c) then there exists 0 < ε < ξ− f −1(c) such that f (x) > c
for all x ∈ [ξ − ε, ξ ]. Hence

ψ(ξ )r
− ψ

(
f −1(c)

)r
=

∫ ξ

f −1(c)
(| f (x) − a|

r
− | f (x) − b|

r ) dx

=

∫ ξ

f −1(c)

(
( f (x) − a)r

− ( f (x) − b)r) 1{ f ≥b}dx

+

∫ ξ

f −1(c)

(
( f (x) − a)r

−
(
b − f (x)

)r) 1{ f<b}dx

≥

∫ ξ

ξ−ε

(b − a)r 1{ f ≥b}dx +

∫ ξ

ξ−ε

(2 f (x) − a − b)r 1{ f<b}dx

≥ εmin{b − a, 2( f (ξ − ε) − c)}r > 0 ,

i.e., ψ(ξ ) > ψ
(

f −1(c)
)
. Similarly, ψ(ξ ) > ψ

(
f −1(c)

)
whenever ξ < inf{ f ≥ c}. Therefore

ψ attains its minimal value on the interval
[
inf{ f ≥ c}, f −1(c)

]
= Q f

c , and the proof will
be complete once it is shown that in fact ψ is constant on Q f

c . If Q f
c is a singleton, then,

trivially, this is the case. On the other hand, if ξ, η ∈

◦

Q f
c with ξ < η, then f ([ξ, η]) = {c}, by

Proposition 3.1, and

ψ(η)r
− ψ(ξ )r

=

∫ η

ξ

(| f (x) − b|
r
− | f (x) − a|

r ) dx =

∫ η

ξ

(|c − b|
r
− |c − a|

r ) dx = 0 .

Thus ψ is constant on Q f
c , as claimed. □

Remark 4.2. The monotonicity of f is essential in Lemma 4.1. To see this, take for instance
I = [0, 5] and the (non-monotone) function f = 16 · 1[0,1[ + 8 · 1[1,2[ + 18 · 1[2,3[ + 9 · 1[3,5].
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For a = 0, b = 24, it is straightforward to verify that
 f − 24 · 1[ξ,5]


r is minimal precisely

for ξ ∈ {0, 2, 5} if r = 1 or r = 2, for ξ = 5 if 1 < r < 2, and for ξ ∈ {0, 2} if r > 2. In
general, therefore, the set of minimizers ξ is not an interval and may depend on r .

The remainder of this section deals with a problem that is dual to the one addressed by
Lemma 4.1, namely the best approximation of an Lr -function f by a step function with
prescribed locations but variable jumps. By considering intervals of constancy individually,
clearly it is enough to consider the approximation of f by a constant function. Remember
that the closed, non-degenerate interval I ⊂ R is assumed to be bounded throughout.

Theorem 4.3. Assume that f ∈ Lr0 (I ) for some r0 ≥ 1. Then for every 1 ≤ r ≤ r0, there
exists τ f

r ∈ R such that f − τ f
r


r ≤ ∥ f − t∥r , ∀t ∈ R.

Moreover, the following hold:

(i) τ f
r ∈ [essinfI f, esssupI f ];

(ii) ∥ f − t∥1 =

 f − τ
f

1


1

if and only if t ∈ B f ;

(iii) For 1 < r ≤ r0, the number τ f
r is unique, and r ↦→ τ

f
r is continuous.

Proof. Given f ∈ Lr0 (I ), recall that f ∈ Lr (I ) for every 1 ≤ r ≤ r0, since I is bounded.
Hence the auxiliary function φr given by

φr (t) = λ(I )−1/r
∥ f − t∥r , ∀t ∈ R , (4.1)

is well defined and real-valued. Note that lim|t |→+∞ φr (t) = +∞. Since φr is convex, there
exists τ f

r ∈ R such that φr (τ f
r ) ≤ φr (t) for all t ∈ R.

It remains to prove assertions (i)–(iii). To establish (i), let b = esssupI f for convenience,
and observe that, for all t > b,

λ(I )(φr (t)r
− φr (b)r ) =

∫
I

((
t − f (x)

)r
−
(
b − f (x)

)r)dx ≥

∫
I
(t − b)r dx

= λ(I )(t − b)r > 0,

hence φr (t) > φr (b). Similarly, φr (t) > φr (essinfI f ) whenever t < essinfI f . This shows that
τ

f
r ∈ [essinfI f, esssupI f ].

To prove (ii), given t > max B f , pick any u with max B f < u < t . Then,

λ(I )
(
φ1(t) − φ1(u)

)
=

∫
I
(| f (x) − t | − | f (x) − u|) dx

≥

∫
{ f<u}

(
t − f (x) −

(
u − f (x)

))
dx

+

∫
{ f ≥u}

(
f (x) − t − ( f (x) − u)

)
dx

= (t − u)
(
λ({ f < u}) − λ({ f ≥ u})

)
> 0 ,
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by Lemma 3.6(i), and so τ
f

1 ≤ max B f . Similarly, τ f
1 ≥ min B f . On the other hand, if

t, u ∈ B f , then

λ(I )
(
φ1(u) − φ1(t)

)
=

∫
{ f ≤min B f }

(
u − f (x) −

(
t − f (x)

))
dx

+

∫
f −1(

◦

B f )
(| f (x) − u| − | f (x) − t |)dx

+

∫
{ f ≥max B f }

(
f (x) − u − ( f (x) − t)

)
dx

= (u − t)
(
λ({ f ≤ min B f

}) − λ({ f ≥ max B f
})
)

= 0 ,

by Lemma 3.6(ii) and (iii). Thus φ1(t) is minimal if and only if t ∈ B f .
Regarding (iii), we claim that the number τ f

r is unique for 1 < r ≤ r0. Trivially, this is true
if f is essentially constant. In any other case, note that φr

r is differentiable w.r.t. t , and

λ(I )
r

dφr
r (t)
dt

=

∫
I
| f (x) − t |r−1sgn

(
t − f (x)

)
dx

=

∫
{ f<t}

(
t − f (x)

)r−1dx −

∫
{ f>t}

( f (x) − t)r−1dx

=

∫
{ f ≤min B f }

(
t − f (x)

)r−1dx −

∫
{ f ≥max B f }

( f (x) − t)r−1dx

(4.2)

is increasing in t . Thus φr
r is strictly convex, and τ f

r is unique.
To show that r ↦→ τ

f
r is continuous on ]1, r0], pick any 1 < r ≤ r0 and any sequence (rn)

in ]1, r0] with limn→∞ rn = r . Given ε > 0, by the strict convexity of φr , there exists δ > 0
such that φr (τ f

r ±ε) > φr (τ f
r )+3δ. On the other hand, limn→∞ φrn (t) = φr (t) for every t ∈ R,

by the Dominated Convergence Theorem. Hence for all sufficiently large n,

φrn (τ f
r ± ε) > φr (τ f

r ) + 2δ and φrn (τ f
r ) < φr (τ f

r ) + δ ,

from which it is clear that |τ
f

rn − τ
f

r | < ε. Since ε > 0 was arbitrary, r ↦→ τ
f

r is continuous. □

For monotone functions, Theorem 4.3 takes a particularly simple form.

Corollary 4.4. Assume that f : I → R is non-decreasing, and f ∈ Lr0 (I ) for some r0 ≥ 1.
Then for every 1 ≤ r ≤ r0, there exists τ f

r ∈ R such that f − τ f
r


r ≤ ∥ f − t∥r , ∀ t ∈ R .

Moreover, the following hold:

(i) τ f
r ∈ [ f (min I+), f (max I−)].

(ii) ∥ f − t∥1 = ∥ f − τ
f

1 ∥1 if and only if t ∈ Q f −1

1
2 (min I+max I )

.

(iii) For 1 < r ≤ r0, the number τ f
r is unique and r ↦→ τ

f
r is continuous.

Remark 4.5. (i) If f ∈ L2(I ) then simply τ f
2 =

1
λ(I )

∫
I f (x) dx .

(ii) For r = 1, Corollary 4.4 immediately yields Lemma 4.1. Indeed, under the assumptions
of the latter, f −1

|[a,b] ∈ L1([a, b]), and ∥ f − (a1[min I,ξ [ + b1[ξ,max I ])∥1 is minimal if and only
if ∥ f −1

|[a,b] − ξ∥1 is minimal. By Corollary 4.4, this is the case precisely if ξ ∈ Qg−1

1
2 (a+b)

with

g = f −1
|[a,b], which by Proposition 3.1 is equivalent to ξ ∈ Q f

1
2 (a+b)

.
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Given r > 1, the number τ f
r depends on f in a monotone and continuous way, as the

following two simple observations show.

Proposition 4.6. Assume that f, g ∈ Lr (I ) for some r > 1, and f ≤ g. Then τ f
r ≤ τ

g
r , and

τ
f

r = τ
g
r if and only if f = g a.e.

Lemma 4.7. Assume that f, fn ∈ Lr0 (I ) for some r0 > 1 and all n ∈ N. If limn→∞ fn = f
in Lr0 (I ), then limn→∞ τ

fn
r = τ

f
r locally uniformly on ]1, r0].

Proof. Since fn → f in Lr0 (I ) and I is bounded, supn∈N ∥ fn∥r0 < +∞ and, for all r ∈ ]1, r0]
and n ∈ N,⏐⏐τ fn

r

⏐⏐ = λ(I )−1/r
τ fn

r


r ≤ λ(I )−1/r (

 fn − τ fn
r


r + ∥ fn∥r )

≤ 2λ(I )−1/r
∥ fn∥r ≤ 2λ(I )−1/r0∥ fn∥r0 ,

by Hölder’s inequality. This shows that (τ fn
r ) is uniformly bounded on ]1, r0].

Fix any 1 < s < r0. To prove that limn→∞ τ
fn

r = τ
f

r uniformly on [s, r0], suppose by way
of contradiction that there exists ε0 > 0, a sequence (r j ) in [s, r0] and an increasing sequence
(n j ) in N such that⏐⏐⏐τ f

r j
− τ

fn j
r j

⏐⏐⏐ ≥ ε0, ∀ j ∈ N .

Assume w.o.l.g. that r j → r∗ and, by the uniform boundedness of (τ fn
r ), τ

fn j
r j → τ ∗

∈ R.
Since r ↦→ τ

f
r is continuous at r∗, it follows that

|τ
f

r∗ − τ ∗
| ≥ ε0 . (4.3)

On the other hand, f − τ
fn j

r j


r j

≤
 f − fn j


r j

+

 fn j − τ
fn j

r j


r j

≤
 f − fn j


r j

+

 fn j − τ f
r j


r j

≤ 2
 f − fn j


r j

+

 f − τ f
r j


r j
,

and letting j → ∞ yields, ∥ f − τ ∗∥r∗ ≤

 f − τ
f

r∗


r∗

since (r, t) ↦→ ∥ f − t∥r is continuous.

By Theorem 4.3(iii), τ ∗
= τ

f
r∗ , which clearly contradicts (4.3). □

Remark 4.8. In Lemma 4.7, the convergence τ fn
r → τ

f
r in general is not uniform on ]1, r0].

To see this, take for example I = [0, 2] and fn = 2 ·1[1+2−n ,2] for all n ∈ N. With f = 2 ·1[1,2],
clearly, f, fn ∈ L∞(I ) and limn→∞ fn = f in Lr (I ) for every r ≥ 1. Still, limr↓1 τ

fn
r = 0 for

every n, whereas τ f
r = 1 for all r > 1.

Note that if f : I → R is affine, i.e., f (x) = ax + b for all x ∈ I and the appropriate
a, b ∈ R, then τ f

r = f
( 1

2 (min I + max I )
)

for all r > 1. In this context, Lemma 4.7 can be
given a slightly stronger, quantitative form.

Proposition 4.9. Assume that f : I → R is measurable, and let ξ =
1
2 (min I + max I ). If,

for some a, b, c ∈ R,

| f (x) − (ax + b)| ≤ c|x − ξ |, ∀ x ∈ I ,

then f ∈ L∞(I ), and
⏐⏐⏐τ f

r − f (ξ )
⏐⏐⏐ ≤

1
2 cλ(I ) for every r > 1.
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Fig. 2. For the (non-decreasing) function f = (−4) · 1[0,1[ + 4 · 1[5,8] the value of τ f
r depends non-monotonically

on r ; see Example 4.10(i).

The remainder of this section studies how, given f , the number τ f
r depends on r . First, this

dependence is illustrated by an example, where for simplicity f ∈ L∞(I ) is a non-decreasing
step function.

Example 4.10. Let I = [0, 8].
(i) Consider the function f = (−4) · 1[0,1[ + 4 · 1[5,8], for which B f

= {0}, and clearly
0 ≤ τ

f
r ≤ 4 for every r > 1. By (4.2),

(τ f
r + 4)r−1

+ 4(τ f
r )r−1

= 3(4 − τ f
r )r−1 , (4.4)

and using (4.4), it is readily deduced that τ f
1+

:= limr↓1 τ
f

r = 0, but also τ f
∞ := limr→+∞ τ

f
r =

0. On the other hand, τ f
2 = 1, and hence r ↦→ τ

f
r is non-monotone; see Fig. 2. Note that in

order for r ↦→ τ
f

r to be non-monotone, a step function f has to attain at least three different
values.

(ii) Consider the function f = (−a)1[0,1[ + (−1) ·1[1,4[ +1[4,5[ +b1[5,8] with real parameters
a, b > 1. In this case, B f

= [−1, 1], and (4.2) yields, for every r > 1,

(τ f
r + a)r−1

+ 3(τ f
r + 1)r−1

= (1 − τ f
r )r−1

+ 3(b − τ f
r )r−1 ,

from which it is straightforward to deduce that τ f
1+

exists and equals the unique real root of

ga,b(τ ) := (3b+a +4)τ 3
−3(b2

+b−a −1)τ 2
+ (b3

+3b2
+3a +1)τ −b3

+a = 0 . (4.5)

Given τ ∈ ]−1, 1[, note that lima→+∞ ga,b(τ ) = +∞ for every b > 1, and limb→+∞ ga,b(τ ) =

−∞ for every a > 1. By the Intermediate Value Theorem, there exists a = a(τ ), b = b(τ )
such that ga,b(τ ) = 0. Since the real root of (4.5) is unique, τ f

1+
= τ . This shows that with

a, b > 1 chosen appropriately, τ f
1+

can have any value in ]−1, 1[. Note that, similarly to (i),
τ

f
∞ =

1
2 (b − a).

As seen in Example 4.10, the number τ f
r may depend on r in a non-monotone way. In both

cases considered, however, the limits τ f
1+

= limr↓1 τ
f

r and τ f
∞ = limr→+∞ τ

f
r exist. Also, by

modifying Example 4.10(ii) appropriately, it is clear that, given any compact interval J ⊂ R
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and any τ ∈ J , one can find f ∈ L∞(I ) with B f
= J and τ f

1+
= τ . In fact, one can choose f

to be a non-decreasing step function.
This section concludes with a demonstration that, just as in Example 4.10, τ f

1+
exists always

(Theorem 4.11), whereas, unlike in Example 4.10, τ f
∞ may not exist (Example 4.15).

Theorem 4.11. Assume that f ∈ Lr0 (I ) for some r0 > 1. Then τ f
1+

exists, and τ f
1+

∈ B f .

Proof. We first show that

[lim infr↓1τ
f

r , lim supr↓1τ
f

r ] ⊂ B f , (4.6)

and then that limr↓1 τ
f

r exists. For any 1 < r ≤ r0, let φr be defined as in (4.1). Recall that φr

is convex, and r ↦→ φr (t) is continuous and non-decreasing for any t ∈ R. Assume that rn ↓ 1
with τ f

rn → τ . Then φ1

(
τ

f
rn

)
≤ φrn

(
τ

f
rn

)
≤ φrn (t), and hence φ1(τ ) = limn→∞ φ1

(
τ

f
rn

)
≤

limn→∞ φrn (t) = φ1(t). Since t ∈ R was arbitrary, Theorem 4.3(ii) yields τ ∈ B f , which in
turn establishes (4.6).

It remains to show that limr↓1 τ
f

r exists, which is non-trivial only if B f is non-degenerate.

In this case, define Ψ :

◦

B f
→ R as

Ψ (t) =

∫
{ f ≤min B f }

log
(
t − f (x)

)
dx −

∫
{ f ≥max B f }

log( f (x) − t) dx, ∀t ∈

◦

B f .

Note that Ψ is well-defined and continuous. Moreover, if t, u ∈ B f with t < u then, as B f
̸= I ,

Ψ (t) − Ψ (u) =

∫
{ f ≤min B f }

log
t − f (x)
u − f (x)

dx +

∫
{ f ≥max B f }

log
f (x) − u
f (x) − t

dx < 0,

showing that Ψ is increasing. By (4.2), t ↦→
λ(I )

r
dφr

r (t)
dt is a real-valued increasing function. To

compare the latter to Ψ , notice the elementary inequality

|yr−1
− 1 − (r − 1) log y| ≤ (r − 1)2e| log y|, ∀y > 0, 1 ≤ r ≤ 2. (4.7)

With Lemma 3.6 and (4.7), for any fixed 0 < ε < min{1, 1
2λ(B f )}, there exists Cε > 0 such

that ⏐⏐⏐⏐λ(I )
r

dφr
r (t)
dt

− (r − 1)Ψ (t)
⏐⏐⏐⏐ ≤ Cε(r −1)2, ∀1 < r ≤ 2, t ∈ [min B f

+ε,max B f
−ε].

(4.8)

Since Ψ is increasing, three cases may be distinguished:

(i) Ψ (τ ) = 0 for a unique τ ∈

◦

B f . Pick ε > 0 so that min B f
+ ε < τ < max B f

− ε. Then
for every δ > 0, (4.8) implies dφr

dt (τ + δ) > 0 and dφr
dt (τ − δ) < 0 for all r > 1 sufficiently

small. It follows that τ f
r ∈ [τ − δ, τ + δ] for all r > 1 sufficiently small, and since δ > 0 was

arbitrary, limr↓1 τ
f

r = τ .

(ii) Ψ (τ ) > 0 for all τ ∈

◦

B f . Similarly to case (i), for every δ > 0, (4.8) yields
dφr
dt (min B f

+ δ) > 0 for all r > 1 sufficiently small. This implies that τ f
r < min B f

+ δ for
all r > 1 sufficiently small and hence lim supr↓1 τ

f
r ≤ min B f . By (4.6), limr↓1 τ

f
r = min B f .

(iii) Ψ (τ ) < 0 for all τ ∈

◦

B f . This case is completely analogous to (ii), with limr↓1 τ
f

r =

max B f . □
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Corollary 4.12. Assume that f : I → R is non-decreasing, and f ∈ Lr0 (I ) for some r0 > 1.
Then τ f

1+
exists, and τ f

1+
∈ Q f −1

1
2 (min I+max I )

.

Recall that in Example 4.10 the limit τ f
∞ also exists. This is a consequence of the fact that

f is bounded, together with the following simple observation.

Theorem 4.13. Assume that f ∈
⋂

r≥1 Lr (I ). If f −
∈ L∞(I ) or f +

∈ L∞(I ), then
limr→+∞ τ

f
r =

1
2 (essinfI f + esssupI f ).

Proof. Let f be non-constant (otherwise, r ↦→ τ
f

r is constant, too), and assume that
f −

∈ L∞(I ), that is, essinfI f > −∞. (The case f +
∈ L∞(I ) is completely analogous.) Let

u =
1
2 (essinfI f +esssupI f ) for convenience, fix any essinfI f < t < u, and let δ = t−essinfI f .

For τ < t , note that τ − essinfI f < δ and λ({ f ≥ τ + δ}) > 0, and hence, with (4.2),

λ(I )
rδr−1

dφr
r (τ )
dτ

=

∫
{ f<τ }

(
τ − f (x)

δ

)r−1

dx −

∫
{ f>τ }

(
f (x) − τ

δ

)r−1

dx

≤ λ(I )
(
τ − essinfI f

δ

)r−1

−

∫
{ f ≥τ+δ}

(
f (x) − τ

δ

)r−1

dx

−

∫
{τ≤ f<τ+δ}

(
f (x) − τ

δ

)r−1

dx

≤ λ(I )
(
τ − essinfI f

δ

)r−1

− λ({ f ≥ τ + δ}) < 0,

for all sufficiently large r . Thus lim infr→+∞ τ
f

r ≥ τ , and since t and τ < t were arbitrary,
lim infr→+∞ τ

f
r ≥ u. A similar argument shows lim supr→+∞ τ

f
r ≤ u. □

Corollary 4.14. If f ∈
⋂

r≥1 Lr (I ) is non-decreasing and either f (min I+) > −∞ or
f (max I−) < +∞, then limr→+∞ τ

f
r =

1
2

(
f (min I+) + f (max I−)

)
.

The final example shows that, unlike in Example 4.10, limr→+∞ τ
f

r may not exist if f is
unbounded.

Example 4.15. Consider the function f : I → R given by

f =

∞∑
n=0

2n(−1)n−11In ,

where I :=
⋃

∞

n=0 In , and I0, I1, · · · are pairwise disjoint, contiguous half-open intervals,
with I1 to the right of I0, and generally I2n+1 immediately to the right of I2n−1, as well

as I2n+2 immediately to the left of I2n . (Clearly, f is non-decreasing on
◦

I .) The lengths
λn := λ(In) > 0 will be determined by induction shortly, subject to the requirement that
λn+1 ≤

1
2λn for all n ≥ 0. Thus I is a non-degenerate, closed interval of length

∑
n≥0 λn ≤ 2λ0,

and f ∈
⋂

r≥1 Lr (I ) but clearly f /∈ L∞(I ). For each N ∈ N, let fN =
∑N

n=0 2n(−1)n−11In

and note that limr→+∞ τ
fN

r = (−1)N−1, by Theorem 4.13. Moreover,

∥ fN+1 − fN ∥r = 2(N + 1)λ1/r
N+1, ∀r > 1, N ∈ N . (4.9)
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Let λ0 = 1, r0 = 1, and assume that λ1, λ2, . . . , λN with λn ≤
1
2λn−1 as well as

r0 < r1 < · · · < rN with rn ≥ max{rn−1, n + 1} for n = 1, . . . , N have been chosen in
such a way that, for every 1 ≤ n ≤ N ,

|τ fn
r j

− (−1) j−1
| < 21− j

− 2−n, ∀1 ≤ j ≤ n . (4.10)

For N = 1, clearly such a choice is possible. By Lemma 4.7 and (4.9), choosing λN+1 ≤
1
2λN

sufficiently small guarantees that

|τ
fN+1

r − τ fN
r | < 2−(N+1), ∀r ∈ [r1, rN ] ,

and consequently

|τ
fN+1

r j − (−1) j−1
| ≤ |τ

fN+1
r j − τ fN

r j
| + |τ fN

r j
− (−1) j−1

|

< 2−(N+1)
+ 21− j

− 2−N
= 21− j

− 2−(N+1), ∀ j = 1, . . . , N .

Also, choose rN+1 ≥ max{rN , N + 2} such that |τ
fN+1

rN+1 − (−1)N
| < 2−(N+1). Thus (4.10) holds

for n = N +1, and in fact for all n ∈ N, by induction. Furthermore, note that, given any r > 1,

∥ fN − f ∥r =

(∑
n>N

(2n)rλn

)1/r

≤ 2λ1/r
0

(∑
n>N

nr 2−n

)1/r

→ 0 as N → ∞ ,

and so in particular limN→∞ ∥ fN − f ∥r j = 0 for every j ∈ N. By Lemma 4.7, |τ
fN

r j − τ
f

r j | <

2− j for all sufficiently large N , which, together with (4.10), yields |τ
f

r j − (−1) j−1
| < 3 · 2− j .

Since j ∈ N was arbitrary and r j ↑ +∞, this shows that lim infr→+∞ τ
f

r ≤ −1 and
lim supr→+∞ τ

f
r ≥ 1. On the other hand, using (4.2), it is readily confirmed that t d

dt ∥ f −t∥r
r > 0

for t = ±1 and all r > 1, and consequently |τ
f

r | < 1. Thus lim infr→+∞ τ
f

r = −1 and
lim supr→+∞ τ

f
r = 1.

By modifying Example 4.15 appropriately, it is straightforward to establish

Proposition 4.16. Given any (bounded) interval I ⊂ R and numbers −∞ ≤ a ≤ b ≤ +∞,
there exists a non-decreasing function f ∈

⋂
r≥1 Lr (I ) such that lim infr→+∞ τ

f
r = a and

lim supr→+∞ τ
f

r = b.

5. Best constrained approximations

In this section, we apply results established in previous sections, notably Lemma 4.1 and
Theorem 4.3, to investigate best constrained approximations of µ ∈ Pr , i.e., approximations
of µ by finitely supported probabilities for which either locations (Section 5.1) or weights
(Section 5.2) are prescribed. We establish existence of best constrained approximations and
study their behaviour as the number of atoms goes to infinity. Finally, in Section 5.3 we relate
these results to the classical theory of best (unconstrained) approximations. The main results
of this section are Theorems 5.1, 5.5, 5.15, 5.20, 5.21 and 5.33.

First, we fix a few notations specific to this section. Given n ∈ N, let Ξn = {x ∈ Rn
:

x1 ≤ · · · ≤ xn} and Πn = {p ∈ Rn
: pi ≥ 0,

∑n
i=1 pi = 1}. For any x ∈ Ξn , the conventions

x0 = −∞ and xn+1 = +∞ are adopted, and for any p ∈ Πn , let Pi =
∑i

j=1 p j , i = 0, 1, . . . , n;
note that P0 = 0 and Pn = 1. Given x ∈ Ξn and p ∈ Πn , let δp

x =
∑n

i=1 piδxi . Throughout,
usage of the symbol δp

x tacitly assumes that x ∈ Ξn, p ∈ Πn , with n ∈ N either specified
explicitly or else clear from the context.
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5.1. Best approximations with prescribed locations

Let µ ∈ Pr for some r ≥ 1, and n ∈ N. Given x ∈ Ξn , call δp
x with p ∈ Πn a best

r-approximation of µ, given x if

dr (δp
x , µ) ≤ dr (δq

x , µ), ∀q ∈ Πn .

Denote by δ•
x any (possibly not unique) best r -approximation of µ, given x. (Note that δ•

x also
depends on r . In the interest of readability, this dependence is made explicit by a subscript
only when necessary to avoid ambiguities.)

The existence of best r -approximations with prescribed locations can be established using
the results of Sections 3 and 4.

Theorem 5.1. Assume that µ ∈ Pr for some r ≥ 1, and n ∈ N. For every x ∈ Ξn , there
exists a best r-approximation of µ, given x. Moreover, dr

(
δ

p
x , µ

)
= dr

(
δ•

x, µ
)

with p ∈ Πn if
and only if, for every i = 1, . . . , n,

xi < xi+1 implies Pi ∈ Q
F−1
µ

1
2 (xi +xi+1)

. (5.1)

Proof. For convenience, let Ai = Q
F−1
µ

1
2 (xi +xi+1)

for 0 ≤ i ≤ n; note that A0 = [−∞, 0], An =

[1,+∞], and every Ai is a compact (possibly one-point) interval, by Proposition 3.1. Since
the theorem trivially is correct for n = 1, henceforth assume n ≥ 2. We first establish (5.1), as
the asserted existence of best r -approximations will follow directly from it.

Labelling x ∈ Ξn as

xi0+1 = · · · = xi1 < xi1+1 = · · · = xi2 < xi2+1 = · · · < · · · < xim−1+1 = · · · = xim (5.2)

with integers j ≤ i j ≤ n for 1 ≤ j ≤ m ≤ n, and i0 = 0, im = n, note first that
dr (δp

x , µ) = dr (δp
x , µ), where x ∈ Ξm and p ∈ Πm , with x j = xi j , and P j = Pi j for 1 ≤ j ≤ m.

Moreover, (5.1) reduces to P j ∈ Q
F−1
µ

1
2 (x j +x j+1)

for all 1 ≤ j ≤ m−1. To establish (5.1), therefore,
it can be assumed w.o.l.g. that xi < xi+1 for all i .

To prove that (5.1) is necessary, let δp
x be a best r -approximation of µ, given x . Given any

1 ≤ i ≤ n − 1, let p̃ ∈ Πn satisfy p̃ j = p j for all j ̸= i, i + 1, and 0 ≤ p̃i ≤ pi + pi+1. Note
that Pi−1 ≤ P̃i ≤ Pi+1.

If Pi−1 < Pi+1, then dr
(
δ

p
x , µ

)
≤ dr

(
δ

p̃
x , µ

)
implies

∥ fi − (xi 1[Pi−1,Pi [ + xi+11[Pi ,Pi+1])∥r ≤ ∥ fi − (xi 1[Pi−1,P̃i [ + xi+11[P̃i ,Pi+1])∥r ,

with fi = F−1
µ |[Pi−1,Pi+1]. Since P̃i ∈ [Pi−1, Pi+1] was arbitrary, Lemma 4.1 and Proposition 3.1

yield Pi ∈ Q fi
1
2 (xi +xi+1)

= Ai .

If Pi−1 = Pi+1, let i− and i+ be the minimum and maximum, respectively, of the (non-
empty) set {0 ≤ j ≤ n : Pj = Pi }. Clearly, 0 ≤ i−

≤ i − 1, i + 1 ≤ i+
≤ n, and i+

− i−
≥ 2.

Assume first that i−
= 0, in which case i+

≤ n − 1 and Pi = Pi+ = 0. Lemma 4.1, applied
to fi+ yields 0 ∈ Ai+ . Recall that Ai ⊂ I and max Ai ≤ min Ai+ , by Proposition 3.1. Thus
0 ≤ min Ai ≤ min Ai+ ≤ 0, and hence 0 = Pi ∈ Ai . By a completely analogous argument,
the case of i+

= n, where i−
≥ 1 and Pi = Pi− = 1, leads to 1 = Pi ∈ Ai . Finally, assume

that 1 ≤ i− < i+
≤ n − 1. In this case, Lemma 4.1, applied to fi− and fi+ yields Pi− ∈ Ai−

and Pi+ ∈ Ai+ , respectively. Thus Pi = Pi− = Pi+ ∈ Ai− ∩ Ai+ . Since j ↦→
1
2 (x j + x j+1) is
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increasing, Proposition 3.1 implies that Ai = {Pi }, and hence trivially Pi ∈ Ai . This completes
the proof that (5.1) holds whenever dr (δp

x , µ) is minimal, i.e., (5.1) is necessary.
To see that (5.1) also is sufficient, let p ∈ Πn satisfy (5.1) and consider p̃ ∈ Πn with

P̃i = max Ai for all i . As dr (δp
x , µ) then has the same value for every p satisfying (5.1), clearly,

it is enough to show that dr (δp
x , µ) = dr (δp̃

x , µ). To see the latter, note that by Proposition 3.1(i),
Pi ≤ P̃i ≤ Pi+1, for all 1 ≤ i ≤ n−1, and |xi − F−1

µ (t)| = |xi+1 − F−1
µ (t)| for all Pi < t < P̃i .

Consequently,

dr
(
δp

x , µ
)r

=

n∑
i=1

∫ Pi

Pi−1

⏐⏐xi − F−1
µ (t)

⏐⏐r dt

=

n∑
i=1

(∫ P̃i−1

Pi−1

⏐⏐xi − F−1
µ (t)

⏐⏐r dt +

∫ Pi

P̃i−1

⏐⏐xi − F−1
µ (t)

⏐⏐r dt

)

=

n∑
i=1

(∫ P̃i−1

Pi−1

⏐⏐xi−1 − F−1
µ (t)

⏐⏐r dt +

∫ Pi

P̃i−1

⏐⏐xi − F−1
µ (t)

⏐⏐r dt

)

=

n∑
i=1

(∫ P̃i

Pi

⏐⏐xi − F−1
µ (t)

⏐⏐r dt +

∫ Pi

P̃i−1

⏐⏐xi − F−1
µ (t)

⏐⏐r dt

)

=

n∑
i=1

∫ P̃i

P̃i−1

⏐⏐xi − F−1
µ (t)

⏐⏐r dt = dr (δp̃
x , µ)r .

As indicated earlier, the asserted existence of a best r -approximation of µ, given x , is a direct
consequence of (5.1). Indeed, when x ∈ Ξn is written as in (5.2), Proposition 3.1(i) guarantees
that the m intervals Ai1−1, Ai2−1, . . . , Aim−1 ⊂ I are arranged in such a way that t ≤ u for
all t ∈ Ai j −1 and u ∈ Ai j+1−1. It is possible, therefore, to choose p ∈ Πn satisfying (5.1). □

Given µ ∈ Pr and xn ∈ Ξn for all n, it is natural to ask whether dr (δ•
xn
, µ) → 0 as n → ∞.

The following example illustrates that this may or may not be the case.

Example 5.2. Let µ be the standard exponential distribution with Fµ(x) = 1 − e−x for
all x ≥ 0. Note that µ ∈

⋂
r≥1 Pr . Given xn = (1, 2, . . . , n)/

√
n ∈ Ξn , Theorem 5.1 yields a

unique best r -approximation of µ, namely, δpn
xn with Pn,i = Fµ( 2i+1

2
√

n ) = 1−e−(2i+1)/(2
√

n) for 1 ≤

i ≤ n −1. It is readily confirmed that limn→∞

√
ndr (δ•

xn
, µ) =

1
2 (r +1)−1/r for every r ≥ 1; in

particular, therefore, limn→∞ dr (δpn
xn , µ) = 0. By contrast, consider yn = (0, 2, . . . , 2n − 2) ∈

Ξn , for which limn→∞ dr (δ•
yn
, µ) = dr (ν, µ) > 0 with ν = (1 − e−1)δ0 + 2 sinh 1

∑
∞

i=1 e−2iδ2i .
Note that while every point in supp µ = [0,+∞] is the limit of an appropriate sequence (xn,in ),
this clearly is not the case for (yn).

As Example 5.2 suggests, a condition has to be imposed on (xn), with xn ∈ Ξn for all n, in
order to guarantee that limn→∞ dr (δ•

xn
, µ) = 0.

Theorem 5.3. Assume that µ ∈ Pr for some r ≥ 1, and xn ∈ Ξn for every n ∈ N. Then
limn→∞ dr (δ•

xn
, µ) = 0 if and only if

lim
n→∞

min
1≤i≤n

|x − xn,i | = 0, ∀x ∈ R ∩ supp µ. (5.3)

In particular, (5.3) holds whenever

lim
n→∞

(
Fµ(xn,1) + max

1≤i≤n−1
(xn,i+1 − xn,i ) + 1 − Fµ(xn,n)

)
= 0 .
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Proof. For convenience, let Pn,i = Fµ
( 1

2 (xn,i + xn,i+1)
)

for all n ∈ N and 0 ≤ i ≤ n, as
well as A = I \ {Pn,i : n ∈ N, 0 ≤ i ≤ n} and fn = Fδpn

xn
. Note that |F−1

µ (t) − xn,i | =

min1≤ j≤n |F−1
µ (t) − xn, j | whenever Pn,i−1 < t < Pn,i , and hence

|F−1
µ (t) − f −1

n (t)| = min
1≤ j≤n

|F−1
µ (t) − xn, j |, ∀t ∈ A. (5.4)

We first show that (5.3) is necessary. To see this, assume that (5.3) fails. Then, with the
appropriate ε > 0, x ∈ supp µ and sequence (nk),

min
1≤i≤nk

|x − xnk ,i | ≥ 2ε, ∀k ∈ N.

Since fn is constant on [x − ε, x + ε] whereas Fµ is not,

d1(δ•

xnk
, µ) = d1(δ

pnk
xnk
, µ) ≥ min

c∈R

∫ x+ε

x−ε

|Fµ(y) − c| dy > 0, ∀k ∈ N,

and so lim supn→∞ dr (δ•
xn
, µ) > 0 as well.

To see that (5.3) also is sufficient, note first that if F−1
µ is continuous at t ∈ A, then

F−1
µ (t) ∈ supp µ, and hence f −1

n (t) → F−1
µ (t), by (5.4). Since F−1

µ is monotone, f −1
n → F−1

µ

a.e. on I. If supp µ is bounded then f −1
n → F−1

µ in Lr (I), by the Dominated Convergence
Theorem, i.e., limn→∞ dr

(
δ

pn
xn , µ

)
= 0, and thus limn→∞ dr

(
δ•

xn
, µ
)

= 0. If, on the other
hand, supp µ is unbounded, then, given any ε > 0, choose ν ∈ P with bounded support and
dr (µ, ν) < ε. Then dr (δ•

xn
, µ) ≤ dr (̃δ•

xn
, µ) ≤ dr (̃δ•

xn
, ν) + dr (ν, µ), where δ̃•

xn
denotes a best

r -approximation of ν, given xn . By the above, lim supn→∞ dr (δ•
xn
, µ) ≤ ε, and since ε > 0 was

arbitrary, limn→∞ dr (δ•
xn
, µ) = 0. □

Example 5.4. Let µ be the Beta(2, 1) distribution, i.e., Fµ(x) = x2 for all x ∈ I, and consider
xn = (1,

√
2, . . . ,

√
n)/

√
n ∈ Ξn . By Theorem 5.3, limn→∞ dr (δ•

xn
, µ) = 0 for every r ≥ 1.

Unlike in Example 5.2, however, the rate of convergence depends on r : With αr =
1
2 +

1
max{2,r}

and the appropriate 0 < Cr < +∞,

lim
n→∞

nαr dr (δ•

xn
, µ) = Cr

whenever r ̸= 2, whereas

lim
n→∞

n√
log n

d2(δ•

xn
, µ) =

1

4
√

3
.

Thus
(
dr (δ•

xn
, µ)

)
decays like (n−αr ) and (n−1

√
log n) if r ̸= 2 and r = 2, respectively.

5.2. Best approximations with prescribed weights

Let µ ∈ Pr for some r ≥ 1, and n ∈ N. Given p ∈ Πn , call δp
x with x ∈ Ξn a best

r-approximation of µ, given p if

dr (δp
x , µ) ≤ dr (δp

y , µ), ∀y ∈ Ξn.

Denote by δp
• any best r -approximation of µ, given p. (Again in the interest of readability, the

r -dependence of δp
• is made explicit by a subscript only when necessary to avoid ambiguity.)

An important special case of p ∈ Πn is the uniform probability vector un = (1, . . . , 1)/n. Best
r -approximations of µ, given un , will be referred to as best uniform r -approximations, and
denoted δun

•
. As in the case of prescribed locations studied in Section 5.1, the existence of best



C. Xu and A. Berger / Journal of Approximation Theory 244 (2019) 1–36 19

r -approximations with prescribed weights follows from results in Sections 3 and 4. Due to the
nature of (2.2), the proof of the following theorem even is simpler than that of its counterpart,
Theorem 5.1.

Theorem 5.5. Assume that µ ∈ Pr for some r ≥ 1, and n ∈ N. For every p ∈ Πn , there
exists a best r-approximation of µ, given p. Moreover, d1

(
δ

p
x , µ

)
= d1

(
δ

p
• , µ

)
if and only if,

for every i = 1, . . . , n,

Pi−1 < Pi implies xi ∈ QFµ
1
2 (Pi−1+Pi )

, (5.5)

and for r > 1, dr
(
δ

p
x , µ

)
= dr

(
δ

p
• , µ

)
if and only if, for every i = 1, . . . , n,

Pi−1 < Pi implies xi = τ fi
r , where fi = F−1

µ

⏐⏐
[Pi−1,Pi ]

. (5.6)

Proof. As in the proof of Theorem 5.1, existence follows immediately, once (5.5) and (5.6)
are established. Labelling P as

Pi0 = · · · = Pi1−1 < Pi1 = · · · = Pi2−1 < Pi2 = · · · < · · · < Pim−1 = · · · = Pim−1

with integers j ≤ i j ≤ n + 1 for 1 ≤ j ≤ m ≤ n, and i0 = 0, im = n + 1, note that
dr
(
δ

p
x , µ

)
= dr

(
δ

p
x , µ

)
, where x ∈ Ξm and p ∈ Πm , with x j = xi j , and P j = Pi j for

1 ≤ j ≤ m. Moreover, (5.5) reduces to x j ∈ QFµ
1
2 (P j−1+P j )

for all 1 ≤ j ≤ m, whereas (5.6)

reduces to x j = τ
f j

r with f j = F−1
µ

⏐⏐
[P j−1,P j ]

. Thus, to establish (5.5) and (5.6), it can be
assumed w.o.l.g. that Pi−1 < Pi for all i .

Given p ∈ Πn , it is clear from dr (δp
x , µ)r

=
∑n

i=1 ∥xi − fi∥
r
r that dr (δp

x , µ) is minimal if
and only if ∥xi − fi∥r is minimal for every i . By Corollary 4.4, the latter is the case precisely

if xi ∈ Q
f −1
i

1
2 (Pi−1+Pi )

= QFµ
1
2 (Pi−1+Pi )

for r = 1, and if xi = τ
fi

r for r > 1. □

Remark 5.6. (i) For r = 1 and p = un , Theorem 5.5 reduces to [2, Theorem 2.8]. In particular,
1
n

∑n
i=1 δF−1

µ ( 2i−1
2n ) is a best uniform 1-approximation of µ ∈ P1. For n = 1, (5.5) yields the

well-known fact that d1(δa, µ) is minimal if and only if a ∈ R is a median of µ.
(ii) For r = 2, if µ ∈ P2 and p ∈ Πn with pi > 0 for all i , then by Remark 4.5(i), the

unique best 2-approximation of µ, given p, is δp
x with xi = p−1

i

∫ Pi
Pi−1

F−1
µ (t) dt . In particular,

d2(δa, µ) is minimal precisely for a =
∫ 1

0 F−1
µ (t) dt .

Example 5.7. Given µ ∈ Pr and p ∈ Πn , Theorem 5.5 can also be utilized to minimize
dr (
∑n

i=1 piδxi , µ) where x ∈ Rn but not necessarily x ∈ Ξn . For instance, with µ = Beta(2, 1)
as in Example 5.4 and p = (2/3, 1/3) as well as q = (1/3, 2/3), for r = 1,

δp
•

=
2
3δ1/

√
3 +

1
3δ

√
5/6, δq

•
=

1
3δ1/

√
6 +

2
3δ2/

√
6 .

Since d1(δp
• , µ) ≈ 0.12154 > d1(δq

• , µ) ≈ 0.10677, it follows, that minx∈R2 d1( 2
3δx1+

1
3δx2 , µ) =

d1(δq
• , µ). In general, this minimizing problem can be solved by applying Theorem 5.5 to

(pσ (1), . . . , pσ (n)) ∈ Πn for all permutations σ of {1, . . . , n}. The permutations yielding the
minimal value may depend on r . Often, not all n! permutations σ have to be considered.
For instance, if F−1

µ is concave on ]0, 1[ as in the above example, then only the (unique)
non-decreasing rearrangement of p is relevant.
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Given µ ∈ Pr and pn ∈ Πn for all n, it is natural to ask whether dr (δpn
• , µ) → 0 as n → ∞.

As in the dual situation of Section 5.1, this may or may not be the case, as illustrated by the
following example.

Example 5.8. Consider again the exponential distribution µ of Example 5.2. By (5.5), the
unique best uniform 1-approximation of µ is δun

xn
with xn,i = F−1

µ ( 2i−1
2n ) = log 2n

2n−2i+1 , for
every n ∈ N and 1 ≤ i ≤ n, and

nd1(δun
•
, µ) = −2

n∑
i=1

i log
2i − 1

2i
+ log

(2n)!
22nn!nn

=
1
4

log n + O(1) as n → ∞ .

By Remark 5.6(ii), the best uniform 2-approximation of µ is unique, namely δun
yn

with yn,i =

n
∫ i/n

(i−1)/n F−1
µ (t) dt = log

en(n − i)n−i

(n − i + 1)n−i+1 , and

√
nd2(δun

•
, µ) =

√n −

n−1∑
i=1

i(i + 1)(log
i

i + 1
)2 = C2 + O(n−1) as n → ∞ ,

where C2
2 = 1 +

∑
∞

i=1

(
1 − i(i + 1)

(
log i

i+1

)2
)

≈ 1.0803. In fact, it can be shown that
limn→∞ n1/r dr (δun

•
, µ) = Cr whenever r > 1, with the appropriate 0 < Cr < +∞. Thus

dr (δun
•
, µ) → 0 as n → ∞, but the rate of convergence evidently depends on r , and is

slower than (n−1). By contrast, consider pn ∈ Πn with pn,i =
2i−1

2n−1 for 1 ≤ i ≤ n. Then
limn→∞ dr (δpn

• , µ) = dr (ν, µ) > 0 with ν =
∑

∞

i=1 2−iδai , and ai = F−1
µ (3 · 2−i−1) if r = 1 and

ai = τ
F−1
µ |[2−i ,2−i+1].

r if r > 1.

Example 5.8 suggests a simple condition that may be imposed on (pn), with pn ∈ Πn for
every n, in order to guarantee that limn→∞ dr (δpn

• , µ) = 0. The following result is a counterpart
of Theorem 5.3. Due to the nature of (2.2), the proof is similar but not identical; recall that
G F−1

µ ⊂ I for every µ ∈ P .

Theorem 5.9. Assume that µ ∈ Pr for some r ≥ 1, and pn ∈ Πn for every n ∈ N. Then
limn→∞ dr (δpn

• , µ) = 0 if and only if

lim
n→∞

min
1≤i≤n

|t − Pn,i | = 0, ∀t ∈ G F−1
µ . (5.7)

In particular, (5.7) holds whenever limn→∞ max1≤i≤n pn,i = 0.

Proof. For every n ∈ N, let δpn
xn be a best r -approximation of µ, given pn , and also fn = Fδpn

xn
,

for convenience.
To see that (5.7) is necessary, suppose that

min
1≤i≤nk

⏐⏐t − Pnk ,i
⏐⏐ ≥ 2ε, ∀k ∈ N,

for some 0 < t < 1, 0 < ε < min{t, 1−t}, and the appropriate sequence (nk). (The other cases,
t = 0 and t = 1, are analogous.) Since f −1

nk
is constant on [t − ε, t + ε] whereas F−1

µ is not,

dr (δ
pnk
• , µ)r

= dr (δ
pnk
xnk
, µ)r

≥ min
c∈R

∫ t+ε

t−ε
|F−1
µ (u) − c|

r
du > 0, k ∈ N,

and hence lim supn→∞ dr (δpn
• , µ) > 0.
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To show that (5.7) also is sufficient, assume that t is a continuity point of F−1
µ . If t ∈ G F−1

µ

then, given ε > 0, there exist t1, t2 ∈ G F−1
µ with |F−1

µ (t1,2) − F−1
µ (t)| < ε and either t < t1 < t2

or t1 < t2 < t . Assume w.o.l.g. that t < t1 < t2. (The other case is similar.) By (5.7),
t < Pn,in < Pn,in+1 < t2 for all sufficiently large n and the appropriate 1 ≤ in ≤ n.
Since f −1

n is constant on [Pn,in , Pn,in+1] with a value between F−1
µ (Pn,in ) ≥ F−1

µ (t) and
F−1
µ (Pn,in+1) ≤ F−1

µ (t) + ε, clearly f −1
n (t) → F−1

µ (t). If, on the other hand, t /∈ G F−1
µ ,

then let ]a, b[ ⊂ I be the largest interval that contains t but is disjoint from G F−1
µ . Assume

w.o.l.g. that 0 < a < b < 1. (The cases a = 0 and b = 1 are analogous.) Then
a, b ∈ G F−1

µ . Given ε > 0, since F−1
µ − F−1

µ (t) ∈ Lr (I), there exists δ > 0 such that∫
A |F−1

µ (u) − F−1
µ (t)|r du < ε whenever λ(A) < δ. Let in = min{1 ≤ j ≤ n : Pn, j > t}.

Note that Pn,in−1 ≤ t < Pn,in . If a ≤ Pn,in−1 < Pn,in ≤ b, then f −1
n (t) = F−1

µ (t). If
Pn,in−1 < a, then |Pn,in−1 − a| = min1≤i≤n |a − Pn,i |, max{b, Pn,in } − b ≤ min1≤i≤n |b − Pn,i |,
and (a − Pn,in−1) + max{b, Pn,in } − b < δ for all sufficiently large n, by (5.7). Hence

(t − a)|F−1
µ (t) − f −1

n (t)|r ≤

∫ Pn,in

Pn,in−1

|F−1
µ (u) − f −1

n (t)|r du

≤

∫ Pn,in

Pn,in−1

|F−1
µ (u) − F−1

µ (t)|r du

=

∫ a

Pn,in−1

|F−1
µ (u) − F−1

µ (t)|r du

+

∫ max{b,Pn,in }

b
|F−1
µ (u) − F−1

µ (t)|r du < ε.

For Pn,in > b, an analogous argument applies. In summary, f −1
n → F−1

µ a.e. on I, and the
remaining argument is identical to the one in the proof of Theorem 5.3. □

Since δp
• is a best approximation of µ ∈ Pr w.r.t. the metric dr , given weights p, it is natural

to ask whether δp
• reflects any basic feature of µ. Most basically perhaps, how is supp δp

•

related to supp µ ? As the following example shows, it may not be possible to guarantee
supp δp

• ⊂ supp µ.

Example 5.10. Let µ be the Cantor probability measure, i.e., the log 2
log 3 -dimensional Hausdorff

measure on the classical Cantor middle third set. Using the fact that QFµ
t is a non-degenerate

interval for every dyadic rational 0 < t < 1, it is readily seen that δun
•

is not unique for any
n ∈ N whenever r = 1. For instance, 1

2 (δ1/5 + δ4/5) and 1
2 (δ1/9 + δ8/9) both are best uniform

1-approximations of µ, and {1/5, 4/5} ∩ supp µ = ∅ whereas {1/9, 8/9} ⊂ supp µ. For
r > 1, however, δun

•
always is unique. In fact, δ

u2k
• even is independent of r > 1, due to

symmetry, and supp δ
u2k
• ∩ supp µ = ∅. For example, δu2

• =
1
2 (δ1/6 + δ5/6) for all r > 1, and

{1/6, 5/6} ∩ supp µ = ∅.

To formalize the observations in Example 5.10, note that if δp
x is a best 1-approximation

of µ, given p ∈ Πn , then, by Theorem 5.5, xi ∈ QFµ
1
2 (Pi−1+Pi )

whenever Pi−1 < Pi . Since the

endpoints of all quantile sets QFµ
t belong to supp µ, by Proposition 3.2, it is possible to choose

y ∈ Ξn with d1(δp
y , µ) = d1(δp

x , µ) and supp δp
y ⊂ supp µ. Similarly, if r > 1, then xi = τ

fi
r

with fi = F−1
µ

⏐⏐
[Pi−1,Pi ]

, and consequently xi ∈ [F−1
µ (Pi−1), F−1

µ (Pi−)]. By Corollary 4.4(i), it
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follows that

min supp µ = F−1
µ (P0+) ≤ xi ≤ F−1

µ (Pn−) = max supp µ, ∀i = 1, . . . , n .

This establishes

Proposition 5.11. Assume that µ ∈ Pr for some r ≥ 1, and n ∈ N. If r = 1 or
supp µ is connected, then there exists a best r-approximation δp

• of µ, given p ∈ Πn , with
supp δp

• ⊂ supp µ.

Among the best approximations of µ, given p ∈ Πn , the case of uniform approximations,
i.e., p = un , arguably is the most important. In this case, Theorem 5.9 has the following
corollary; see also [25, Thm.2].

Corollary 5.12. Assume that µ ∈ Pr for some r ≥ 1, and 1 ≤ s ≤ r . For every
n ∈ N, let δun

•,s be a best uniform s-approximation of µ. Then limn→∞ dr (δun
•,s, µ) = 0. In

particular, limn→∞ dr (δun
xn
, µ) = 0 for xn,i = F−1

µ ( 2i−1
2n ), i.e., for δun

xn
being one best uniform

1-approximation of µ.

Despite its simplicity, Corollary 5.12 touches upon a recurring theme and motivation of
the present article, namely the surprising versatility of best uniform 1-approximations: Not
only are they easy to compute (by virtue of Theorem 5.5) and hence preferable for practical
computations, but they also provide reasonably good uniform dr -approximations. In fact,
beyond what Corollary 5.12 asserts, they often even capture the precise rate of convergence of(
dr (δun

•
, µ)

)
; see, e.g., Example 5.18, and the discussion following Proposition 5.27.

Remark 5.13. For r = s = 2, Corollary 5.12 yields [1, Thm. 3.6]. In [1], a convex order
on P is considered, shown to be preserved by best uniform 2-approximations, and applied to
the numerical construction of martingales. We conjecture that best uniform r -approximations
preserve this order for all r > 1. By contrast, best (unconstrained) 2-approximations, considered
in Section 5.3, do not in general preserve the convex order; see [1, Thm.2.1].

The remainder of this subsection is devoted to a study of dr (δun
•
, µ) as n → ∞. Since

best uniform r -approximations may be hard to identify explicitly, we will also consider
asymptotically best uniform r -approximations. Formally, (δun

xn
) with xn ∈ Ξn for all n ∈ N is a

sequence of asymptotically best uniform r-approximations of µ ∈ Pr \
{
δ

ui
x : i ∈ N, x ∈ Ξi

}
if

lim
n→∞

dr (δun
xn
, µ)

dr (δun
• , µ)

= 1.

To illustrate a possible behaviour of
(
dr (δun

•
, µ)

)
, as well as the practical relevance of

asymptotically best uniform approximations, we first consider a simple example.

Example 5.14. Let µ = Beta(2, 1) as in Example 5.4. Theorem 5.5 yields a unique best
uniform r -approximation of µ for every r ≥ 1. For r = 1, a short calculation shows that

nd1(δun
•
, µ) =

1
4

+ O(n−1/2) as n → ∞,

whereas for r = 2,

nd2(δun
•
, µ) =

1

4
√

3

√
log n + O(1) as n → ∞.
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For 1 < r < 2, however, δun
•

is not easy to calculate explicitly. This not only makes the
rate of convergence of

(
dr (δun

•
, µ)

)
hard to determine, but it also emphasizes the need for

simple asymptotically best uniform approximations. In fact, Theorem 5.15 shows that, for every

1 ≤ r < 2, limn→∞ ndr (δun
•
, µ) =

(
21−2r

(r+1)(2−r )

)1/r
, and (δun

xn
), with xn,i =

√
2i−1

2n for 1 ≤ i ≤ n,
is a sequence of asymptotically best uniform r -approximations. By contrast, it turns out that
limn→∞ n1/2+1/r dr (δun

•
, µ) is finite and positive whenever r > 2.

The observations in Example 5.14 are a special case of a general principle: If the quantile
function of µ ∈ Pr is absolutely continuous (and not constant), then

(
ndr (δun

•
, µ)

)
converges

to a positive limit. This fact may be seen as an analogue, in the context of best uniform
approximations, of a classical result regarding best approximations; cf. Proposition 5.27.

Theorem 5.15. Assume that µ ∈ Pr for some r ≥ 1. If µ−1 is absolutely continuous (w.r.t.
λ) then

lim
n→∞

ndr (δun
•
, µ) =

1
2(r + 1)1/r

(∫
I

(
dµ−1

dλ

)r
)1/r

. (5.8)

Moreover, if dµ−1

dλ ∈ Lr (I) then (δun
xn

), with xn,i = F−1
µ ( 2i−1

2n ) for 1 ≤ i ≤ n, is a sequence of
asymptotically best uniform r-approximations of µ, unless µ is degenerate, i.e., unless µ = δa
for some a ∈ R.

Proof. For convenience, let f = F−1
µ |]0,1[, as well as Jn,i = [ i−1

n ,
i
n ] and xn,i = f ( 2i−1

2n ) for
n ∈ N and 1 ≤ i ≤ n. Note that the non-decreasing function f is absolutely continuous, by
assumption. For the reader’s convenience, the following proof is divided into four steps: First,
(5.8) will be established assuming that f has a C1-extension to I; then (5.8) will be shown to
hold in general, regardless of whether both sides are finite (Step 2) or infinite (Step 3); finally,
the assertion regarding asymptotically best uniform approximations will be proved (Step 4).

Step 1. Assume f can be extended to a C1-function on I. Then

nr dr (δun
xn
, µ)r

= nr
n∑

i=1

∫
Jn,i

| f (t) − xn,i |
r dt ≤ nr

n∑
i=1

(max
Jn,i

f ′)r
∫

Jn,i

⏐⏐⏐⏐t −
2i − 1

2n

⏐⏐⏐⏐r dt

=
1

2r (r + 1)
·

1
n

n∑
i=1

(max
Jn,i

f ′)r .

Since ( f ′)r is Riemann integrable, λ(Jn,i ) = 1/n, and similarly

nr dr (δun
xn
, µ)r

≥
1

2r (r + 1)
·

1
n

n∑
i=1

(min
Jn,i

f ′)r ,

it follows that limn→∞ ndr (δun
•
, µ) =

1
2(r+1)1/r (

∫
I f ′(t)r dt)1/r < +∞. Moreover, f ′ is uniformly

continuous, hence given ε > 0, there exists N ∈ N such that

| f ′(t) − f ′(u)| ≤ ε, ∀t, u ∈ I, |t − u| <
1
N
.

Whenever n ≥ N , therefore, the Mean Value Theorem yields⏐⏐⏐⏐ f (t) − xn,i − f ′

(
2i − 1

2n

)(
t −

2i − 1
2n

)⏐⏐⏐⏐ ≤ ε

⏐⏐⏐⏐t −
2i − 1

2n

⏐⏐⏐⏐ , ∀t ∈ Jn,i ,
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and consequently, with yn,i = τ
f |Jn,i

r ,

|yn,i − xn,i | ≤
ε

n
, ∀1 ≤ i ≤ n,

by Proposition 4.9. It follows that

nr dr (δun
•
, δun

xn
)r

= nr dr (δun
yn
, δun

xn
)r

= nr
n∑

i=1

∫
Jn,i

|yn,i − xn,i |
r

≤ εr ,

and since ε > 0 was arbitrary,

lim sup
n→∞

|nr dr (δun
•
, µ)r

− nr dr (δun
xn
, µ)r

| ≤ lim
n→∞

nr dr (δun
•
, δun

xn
)r

= 0,

which establishes (5.8), with the same finite value on either side.

Step 2. Let the non-decreasing and absolutely continuous function f be arbitrary, but assume
that f ′

∈ Lr (I). Similarly, let µ̃ ∈ Pr be such that µ̃−1 is absolutely continuous, with f̃ := F−1
µ̃

and f̃ ′
∈ Lr (I). For n ∈ N and 1 ≤ i ≤ n, pick any tn,i ∈ Jn,i and define zn,i = f (tn,i ),

z̃n,i = f̃ (tn,i ). Below, it will be shown that, for any r ≥ 1,

|nr dr (δun
zn
, µ)r

− nr dr (δun
z̃n
, µ̃)r

| ≤ 2∥ f ′
− f̃ ′

∥r∥ f ′
+ f̃ ′

∥
r−1
r , ∀n ∈ N. (5.9)

To see that (5.8) follows easily from (5.9), at least under the current assumption that f ′
∈ Lr (I),

fix r ≥ 1 and w.o.l.g. 0 < ε < ∥ f ′
∥r . There exists µ̃ ∈ Pr such that f̃ has a C1-extension to

I, and ∥ f ′
− f̃ ′

∥r < ε. With the appropriate tn , let δun
zn

be a best uniform r -approximation of
µ, and δun

xn
a best uniform r -approximation of µ̃. For all sufficiently large n, Step 1 and (5.9)

yield

nr dr (δun
zn
, µ)r

≤ nr dr (δun
xn
, µ)r

≤ nr dr (δx̃n , µ)r
+ 2ε(ε + 2∥ f ′

∥r )r−1

≤
1

2r (1 + r )
(∥ f ′

∥r + ε)r
+ ε + 2ε(ε + 2∥ f ′

∥r )r−1,

but also
nr dr (δun

zn
, µ)r

≥ nr dr (δun
z̃n
, µ̃)r

− 2ε(ε + 2∥ f ′
∥r )r−1

≥
1

2r (1 + r )
(∥ f ′

∥r − ε)r
− ε − 2ε(ε + 2∥ f ′

∥r )r−1.

Since ε > 0 was arbitrary, this establishes (5.8).
It remains to verify (5.9), which only requires the elementary inequality, valid for all r ≥ 1,

|ar
− br

| ≤ r |a − b|(ar−1
+ br−1), ∀a, b ≥ 0, (5.10)

together with a repeated application of Hölder’s inequality, as follows: Note first that

dr (δun
zn
, µ)r

=

n∑
i=1

(∫ tn,i

(i−1)/n

(∫ tn,i

t
f ′(u)du

)r

dt +

∫ i/n

tn,i

(∫ t

tn,i
f ′(u)du

)r

dt

)
, (5.11)

and consequently⏐⏐dr (δun
zn
, µ)r

− dr (δun
z̃n
, µ̃)r

⏐⏐ ≤

n∑
i=1

(∫ tn,i

(i−1)/n

⏐⏐⏐⏐(∫ tn,i

t
f ′(u) du

)r

−

(∫ tn,i

t
f̃ ′(u) du

)r ⏐⏐⏐⏐dt

+

∫ i/n

tn,i

⏐⏐⏐⏐⏐
(∫ t

tn,i
f ′(u) du

)r

−

(∫ t

tn,i
f̃ ′(u) du

)r ⏐⏐⏐⏐⏐ dt

)
.
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With (5.10), therefore,∫ tn,i

(i−1)/n

⏐⏐⏐⏐(∫ tn,i

t
f ′(u) du

)r

−

(∫ tn,i

t
f̃ ′(u) du

)r ⏐⏐⏐⏐ dt

≤ r
∫ tn,i

(i−1)/n

⏐⏐⏐⏐∫ tn,i

t

(
f ′(u) − f̃ ′(u)

)
du
⏐⏐⏐⏐
((∫ tn,i

t
f ′(u)du

)r−1

+

(∫ tn,i

t
f̃ ′(u) du

)r−1
)

dt

≤ 2r
∫ tn,i

(i−1)/n

⏐⏐⏐⏐∫ tn,i

t

(
f ′(u) − f̃ ′(u)

)
du
⏐⏐⏐⏐ (∫ tn,i

t

(
f ′(u) + f̃ ′(u)

)
du
)r−1

dt

≤ 2r (a−

i )1/r (b−

i )(r−1)/r ,

where, using Hölder’s inequality again

a−

i =

∫ tn,i

(i−1)/n

⏐⏐⏐⏐∫ tn,i

t

(
f ′(u) − f̃ ′(u)

)
du
⏐⏐⏐⏐r dt ≤

1
rnr

∫ tn,i

(i−1)/n

⏐⏐ f ′(t) − f̃ ′(t)
⏐⏐r dt,

b−

i =

∫ tn,i

(i−1)/n

(∫ tn,i

t

(
f ′(u) + f̃ ′(u)

)
du
)r

dt ≤
1

rnr

∫ tn,i

(i−1)/n

(
f ′(t) + f̃ ′(t)

)r dt.

By a completely analogous argument,

∫ i/n

tn,i

⏐⏐⏐⏐⏐
(∫ t

tn,i
f ′(u) du

)r

−

(∫ t

tn,i
f̃ ′(u) du

)r ⏐⏐⏐⏐⏐ dt ≤ 2r (a+

i )1/r (b+

i )(r−1)/r , ∀1 ≤ i ≤ n,

where

a+

i =

∫ i/n

tn,i

⏐⏐⏐⏐⏐
∫ t

tn,i

(
f ′(u) − f̃ ′(u)

)
du

⏐⏐⏐⏐⏐
r

dt ≤
1

rnr

∫ i/n

tn,i

⏐⏐ f ′(t) − f̃ ′(t)
⏐⏐r dt,

b+

i =

∫ i/n

tn,i

(∫ t

tn,i

(
f ′(u) + f̃ ′(u)

)
du

)r

dt ≤
1

rnr

∫ i/n

tn,i

(
f ′(t) + f̃ ′(t)

)r dt.

In summary, therefore,

nr
⏐⏐dr (δun

zn
, µ)r

− dr (δun
z̃n
, µ̃)r

⏐⏐ ≤ 2rnr
n∑

i=1

(
(a−

i )1/r (b−

i )(r−1)/r
+ (a+

i )1/r (b+

i )(r−1)/r)
≤ 2rnr

(
n∑

i=1

(a−

i + a+

i )

)1/r ( n∑
i=1

(b−

i + b+

i )

)(r−1)/r

≤ 2rnr
(

1
rnr

∫
I
| f ′(t) − f̃ ′(t)|r dt

)1/r ( 1
rnr

∫
I

(
f ′(t) + f̃ ′(t)

)r dt
)(r−1)/r

= 2∥ f ′
− f̃ ′

∥r∥ f ′
+ f̃ ′

∥
r−1
r ,

which is just (5.9).
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Step 3. To establish (5.8) in case the value on the right is +∞, assume that f ′ /∈ Lr (I). For
N ∈ N, let gN = min{ f ′, N } and, given C > 0, choose N so large that ∥gN ∥

r
r ≥ 2r (1 + r )C .

Let µN be a probability measure with (F−1
µN

)′ = gN . By (5.11),

dr (δun
zn
, µ)r

≥

n∑
i=1

(∫ ti

(i−1)/n

(∫ ti

t
gN (u) du

)r

dt +

∫ i/n

ti

(∫ t

ti
gN (u) du

)r

dt
)

≥ dr (δun
•
, µN )r ,

and since Step 2 applies to µN ,

lim inf
n→∞

nr dr (δun
•
, µ)r

≥ lim
n→∞

nr dr (δun
•
, µN )r

=
1

2r (r + 1)
∥gN ∥

r
r ≥ C.

As C > 0 was arbitrary, nr dr (δun
•
, µ)r

→ +∞ whenever f ′ /∈ Lr (I), i.e., (5.8) is valid in this
case also.

Step 4. Finally, to prove the assertion regarding asymptotically best uniform approximations,
assume that f ′

∈ Lr (I). Note that ∥ f ′
∥r > 0 whenever µ ̸= δa for all a ∈ R. In

this case, given ε > 0, pick µ̃ ∈ Pr such that f̃ = F−1
µ̃ has a C1-extension to I and

∥ f ′
− f̃ ′

∥r < ε. By Step 1, limn→∞ nr dr (δun
x̃n
, µ̃)r

=
∥ f̃ ′

∥
r
r

2r (r+1) , whereas Step 2 guarantees that

limn→∞ nr dr (δun
•
, µ)r

=
∥ f ′

∥
r
r

2r (r+1) , and (5.9) yields

|nr dr (δun
x̃n
, µ̃)r

− nr dr (δun
xn
, µ)r

| ≤ 2ε(1 + 2∥ f ′
∥r )r−1.

Combining these three facts leads to

lim sup
n→∞

dr (δun
xn
, µ)r

dr (δun
• , µ)r

≤ lim sup
n→∞

nr dr (δun
•
, µ)r

+ 2ε(1 + 2∥ f ′
∥r )r−1

2−r∥ f ′∥r
r (r + 1)−1

≤

(
1 +

ε

∥ f ′∥r

)r

+ 2r+1(r + 1)ε
(1 + 2∥ f ′

∥r )r−1

∥ f ′∥r
r

,

as well as to an analogous lower bound for lim infn→∞

dr (δun
xn ,µ)r

dr (δun
• ,µ)r

. Since ε > 0 was arbitrary,

limn→∞

dr (δun
xn ,µ)

dr (δun
• ,µ)

= 1, i.e., (δun
xn

) is a sequence of asymptotically best uniform r -approximations
of µ, as claimed. □

The following examples highlight the importance of the absolute continuity and integrability
assumptions, respectively, in Theorem 5.15.

Example 5.16. Let µ be the inverse of the Cantor probability measure in Example 5.10.
Explicitly, µ is purely atomic, with µ

(
{ j2−m

}
)

= 3−m for every m ∈ N and every odd
1 ≤ j ≤ 2m . Note that F−1

µ |]0,1[ simply equals the classical Cantor function, hence is

continuous, in fact, log 2
log 3 -Hölder, and dµ−1

dλ = 0 a.e. While Theorem 5.15, if it did apply,
would seem to suggest that limn→∞ ndr (δun

•
, µ) = 0, a detailed, elementary analysis shows

that this is not the case. In fact,
(
nαdr (δun

•
, µ)

)
may not converge to a finite positive limit for

any r ≥ 1 and α > 0. More specifically, let αr =
1
r + (1 −

1
r ) log 2

log 3 for r ≥ 1. With this,
3αr dr (δu3n

• , µ) = dr (δun
•
, µ) for all n, and hence

2−2+1/r 3−2/r
≤ lim inf

n→∞
nαr dr (δun

•
, µ) = inf

n∈N
nαr dr (δun

•
, µ),
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as well as

lim sup
n→∞

nαr dr (δun
•
, µ) = sup

n∈N
nαr dr (δun

•
, µ) ≤ 21/r .

We suspect the bounded sequence
(
nαr dr (δun

•
, µ)

)
to be divergent for every r ≥ 1. This

illustrates that the conclusion of Theorem 5.15 may fail if µ−1 is not absolutely continuous.

Example 5.17. The integrability assumption also is crucial (for the second assertion) in
Theorem 5.15. To see this, let µ be the standard exponential distribution, where dµ

dλ /∈ L1(I),
and (5.8) yields limn→∞ ndr (δun

•,r , µ) = +∞ for all r ≥ 1, in perfect agreement with the
observations in Example 5.8. Deduce from a short calculation that

√
nd2(δun

•,1, µ) = D2 + O(n−1) as n → ∞ ,

where D2
2 = 1+2

∑
∞

i=1

(
1 − i(1 + log

√
4i2−1
2i ) log 2i+1

2i−1

)
≈ 1.1749. Recall from Example 5.8

that
√

nd2(δun
•,2, µ) = C2 + O(n−1) with C2

2 ≈ 1.0803. Thus while (δun
•,1) identifies the correct

rate of decay for
(
d2(δun

•,2, µ)
)
, namely

(
n−1/2

)
, it is not a sequence of asymptotically best

uniform 2-approximations of µ, since

lim
n→∞

d2(δun
•,1, µ)

d2
(
δ

un
•,2, µ

) =
D2

C2
> 1 .

Similarly, for any r > 1 it can be shown that limn→∞ n1/r dr (δun
•,1, µ) = Dr with the appropriate

constant Dr > Cr , and Cr as in Example 5.8.

Example 5.18. Let µ be the standard normal distribution. By [15, Thm.1],
(
d2(δun

•,2, µ)
)

decays like
(
n−1/2(log n)−1/2

)
along the subsequence n = 2k . Moreover, as pointed out in [15,

Rem.6], best uniform 1-approximations δun
•,1 converge to µ as fast as δun

•,2 do (w.r.t. d2). In fact,
elementary computations confirm that the sequences(

n1/r (log n)αr dr (δun
•,r , µ)

)
,
(
n1/r (log n)αr dr (δun

•,1, µ)
)

are bounded above and below by positive constants, where αr = −
1
2 if r = 1, and αr =

1
2

if r > 1. Thus, best uniform 1-approximations converge precisely as fast as do best uniform
r -approximations. Together with the previous example, this suggests that (δun

•,1), though perhaps
not a sequence of asymptotically best uniform r -approximations, may nevertheless often
capture the correct rate of convergence of

(
dr (δun

•,r , µ)
)
, even when dµ−1

dλ ̸∈ Lr (I).

Remark 5.19. For any (non-degenerate) µ ∈ P , [3, Prop. A.17] asserts that µ−1 is absolutely
continuous if and only if supp µ is connected and dµa

dλ > 0 a.e. on supp µ, where µa is the
absolutely continuous part (w.r.t. λ) of µ; in this case, moreover,

∫
I(

dµ−1

dλ )r
=
∫

supp µ
( dµa

dλ )1−r .

If F−1
µ not even is continuous, then the decay of

(
dr (δun

•
, µ)

)
may be less homogeneous

than in Example 5.16. For instance, for the Cantor measure of Example 5.10, it is not hard to
see that, for any r ≥ 1, both numbers

lim inf
n→∞

n
log 3
log 2 dr (δun

•
, µ) and lim sup

n→∞

n1/r dr (δun
•
, µ)

are finite and positive. Thus, in general it cannot be expected that for some αr > 0, the sequence(
nαr dr (δun

•
, µ)

)
is bounded below and above by positive constants, let alone convergent. Still,
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it is possible to identify a universal lower bound for
(
dr (δun

•
, µ)

)
with µ ∈ Pr : But for trivial

exceptions, this sequence never decays faster than
(
n−1

)
.

Theorem 5.20. Assume that µ ∈ Pr for some r ≥ 1. Then

lim sup
n→∞

ndr (δun
•
, µ) > 0, (5.12)

unless µ = δa for some a ∈ R.

Proof. Denote F−1
µ by f for convenience, and for every n ∈ N, let ai = f ( 2i−1

4n ) and
bi = f ( 2i−1

4n+2 ) for 1 ≤ i ≤ 2n. Then b1 ≤ a1 ≤ b2 ≤ a2 · · · ≤ b2n ≤ a2n ≤ b2n+1, and

2nd1(δu2n
•
, δ

u2n+1
• )

= 2n
2n∑

i=1

(
(ai − bi )

(
i

2n + 1
−

i − 1
2n

)
+ (bi+1 − ai )

(
i

2n
−

i
2n + 1

))

=
1

2n + 1

2n∑
i=1

(
(2n + 1 − i)(ai − bi ) + i(bi+1 − ai )

)
≥

1
2n + 1

(
n∑

i=1

i(bi+1 − bi ) +

2n∑
i=n+1

(
(2n + 1 − 2i)(ai − bi ) + i(bi+1 − bi )

))

=
1

2n + 1

(
n∑

i=1

i(bi+1 − bi ) +

2n∑
i=n+1

(
(2n + 1 − i)(bi+1 − bi ) + (2i − 2n − 1)(bi+1 − ai )

))

≥
1

2n + 1

(
n∑

i=1

i(bi+1 − bi ) +

2n∑
i=n+1

(2n + 1 − i)(bi+1 − bi )

)

=

2n+1∑
i=n+2

bi

2n + 1
−

n∑
i=1

bi

2n + 1
.

Since f is locally Riemann integrable on ]0, 1[, it follows that

lim sup
n→∞

2nd1(δu2n
•
, δ

u2n+1
• ) ≥

∫ 1/2

0

(
f (t +

1
2 ) − f (t)

)
dt,

and consequently

lim sup
n→∞

ndr (δun
•
, µ) ≥ lim sup

n→∞

nd1(δun
•
, µ) ≥

1
2 lim sup

n→∞

2nd1(δu2n
•
, δ

u2n+1
• )

≥
1
2

∫ 1/2

0

(
f (t +

1
2 ) − f (t)

)
dt > 0

unless f is constant, i.e., unless µ = δa for some a ∈ R. □

It is natural to ask whether Theorem 5.20 has a counterpart in that there also exists a
universal upper bound on

(
dr
(
δun
•
, µ
))

. In general, this is not the case: As an immediate
consequence of Theorem 5.33, given r ≥ 1 and any sequence (an) of positive real numbers
with limn→∞ an = 0, there exists µ ∈ Pr such that dr (δun

•
, µ) ≥ an , for all n ∈ N. Under

additional assumptions, however, an upper bound on
(
dr (δun

•
, µ)

)
can be established.
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Theorem 5.21. Assume that µ ∈ Pr for some r ≥ 1.

(i) If µ ∈ Ps with s > r then limn→∞ n1/r−1/sdr (δun
•
, µ) = 0.

(ii) If supp µ is bounded then lim supn→∞ n1/r dr (δun
•
, µ) < +∞.

Proof. Again, for convenience, let f = F−1
µ , and xn,i = f ( 2i−1

2n ) for all n ∈ N and 1 ≤ i ≤ n.
With t0 = Fµ(0), assume w.o.l.g. that 0 < t0 < 1. (The cases t0 = 0 and t0 = 1 are completely
analogous.) Recall that f is non-decreasing and right-continuous, (t − t0) f (t) ≥ 0 for all t ∈ I,
and 0 ≤ f (t0), − f (t0−) < +∞. For all sufficiently large n, therefore,

dr (δun
•
, µ)r

≤ dr (δun
xn
, µ)r

=

n∑
i=1

∫ 2i−1
2n

i−1
n

((
xn,i − f (t)

)r
+

(
f
(

t +
1

2n

)
− xn,i

)r)
dt

≤

n∑
i=1

∫ 2i−1
2n

i−1
n

(
f
(

t +
1

2n

)
− f (t)

)r

dt ≤

∫ 1−
1

4n

1
4n

(
f
(

t +
1

4n

)
− f

(
t −

1
4n

))r

dt

=

∫ t0−
1

4n

1
4n

(⏐⏐⏐⏐ f
(

t −
1

4n

)⏐⏐⏐⏐− ⏐⏐⏐⏐ f
(

t +
1

4n

)⏐⏐⏐⏐)r

dt

+

∫ t0+
1

4n

t0−
1

4n

(
f
(

t +
1

4n

)
+

⏐⏐⏐⏐ f
(

t −
1

4n

)⏐⏐⏐⏐)r

dt

+

∫ 1−
1

4n

t0+
1

4n

(
f
(

t +
1

4n

)
− f

(
t −

1
4n

))r

dt

≤

∫ t0−
1

2n

0
| f (t)|r dt −

∫ t0

1
2n

| f (t)|r dt + 2r−1
∫ t0+

1
2n

t0−
1

2n

| f (t)|r dt

+

∫ 1

t0+
1

2n

| f (t)|r dt −

∫ 1−
1

2n

t0

| f (t)|r dt

= an + (2r−1
− 1)bn,

where the numbers an, bn are given by

an =

∫ 1
2n

0
| f (t)|r dt +

∫ 1

1−
1

2n

| f (t)|r dt and bn =

∫ t0+
1

2n

t0−
1

2n

| f (t)|r dt,

respectively. Note that

0 ≤ nbn ≤ max
{

f
(

t0 +
1

2n

)
,− f

(
t0 −

1
2n

)}r

→ max{ f (t0),− f (t0−)}r

as n → ∞,

and hence (nbn) is bounded.
(i) If µ ∈ Ps for some s > r then, by virtue of Hölder’s inequality,

0 ≤ an ≤

⎛⎝(∫ 1
2n

0
| f (t)|sdt

)r/s

+

(∫ 1

1−
1

2n

| f (t)|sdt

)r/s
⎞⎠ 2r/snr/s−1,
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which shows that limn→∞ n1−r/san = 0. It follows that

0 ≤ n1−r/sdr
(
δun
•
, µ
)r

≤ n1−r/san + (2r−1
− 1)n1−r/sbn → 0 as n → ∞,

and hence limn→∞ n1/r−1/sdr
(
δun
•
, µ
)

= 0, as claimed.
(ii) If supp µ is bounded then esssupI| f | is finite. In this case, (nan) is bounded, and so is(

n1/r dr
(
δun
•
, µ
))

. □

Remark 5.22. (i) Boundedness of supp µ is essential in Theorem 5.21(ii), as evidenced, e.g., by
Example 5.17 for r = 1. Notice, however, that the conclusion of Theorem 5.21(ii) remains valid
in this example whenever r > 1.

(ii) If supp µ is disconnected, and hence F−1
µ is discontinuous at some 0 < t < 1, then

there exists (nk) such that ⟨nk t⟩ ∈ [1/3, 2/3] for all k. For all sufficiently large k, therefore,

nkdr (δ
unk
• , µ)r

≥ nk min
c∈R

∫ (⌊nk t⌋+1)/nk

⌊nk t⌋/nk

|F−1
µ (s) − c|

r
ds

≥ min
c∈[F−1

µ (t−),F−1
µ (t)]

1
3

((
F−1
µ (t) − c

)r
+
(
c − F−1

µ (t−)
)r)

≥ 21−r 3−1(F−1
µ (t) − F−1

µ (t−)
)r
.

Hence (5.12) can be strengthened to lim supn→∞ n1/r dr (δun
•
, µ) > 0 whenever supp µ is

disconnected. In fact, by Theorem 5.21(ii), (n−1/r ) is the sharp upper rate of
(
dr (δun

•
, µ)

)
in

case supp µ is bounded and disconnected, a situation observed for instance for the Cantor
measure of Example 5.10.

(iii) By utilizing a uniform decomposition approach, a multi-dimensional analogue of
Theorem 5.21 is established in [8], with the threshold rates of convergence depending both
on r and on the dimension of the ambient (Euclidean) space.

5.3. Best approximations

This final subsection relates the results presented earlier to the classical theory of best
(unconstrained) approximations. Let µ ∈ Pr for some r ≥ 1. Given n ∈ N, call the probability
measure δp

x with x ∈ Ξn and p ∈ Πn a best r-approximation of µ if

dr (δp
x , µ) ≤ dr (δq

y , µ), ∀y ∈ Ξn, q ∈ Πn.

Denote by δ•,n
•

any best r -approximation of µ. (As before, the dependence of δ•,n
•

on r is made
explicit by a subscript only where necessary to avoid ambiguities.) It is well known that best
r -approximations exist always.

Proposition 5.23 ([17, Sec. 4.1]).. Assume that µ ∈ Pr for some r ≥ 1. For every n ∈ N, there
exists a best r-approximation δ•,n

•
of µ. If # supp µ ≥ n then # supp δ•,n

•
= n.

By combining Proposition 5.23 with Theorem 5.1 and 5.5, a description of all best
r -approximations is easily established.

Theorem 5.24. Assume that µ ∈ Pr for some r ≥ 1, and n ∈ N. Let δp
x with x ∈ Ξn, p ∈ Πn

be a best r-approximation of µ. Then, for every i = 1, . . . , n,
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(i) xi < xi+1 implies Pi ∈ Q
F−1
µ

1
2 (xi +xi+1)

; and

(ii) Pi−1 < Pi implies xi ∈ QFµ
1
2 (Pi−1+Pi )

if r = 1, or xi = τ
fi

r with fi = F−1
µ

⏐⏐
[Pi−1,Pi ]

if
r > 1.

Moreover, if # supp µ ≤ n then δp
x = µ, whereas if # supp µ > n then xi < xi+1 and Pi−1 < Pi

for all i = 1, . . . , n.

Proof. Note that δp
x is both a best r -approximation of µ, given p, and a best r -approximation

of µ, given x, and thus conclusions (i) and (ii) follow directly from Theorem 5.1 and 5.5. For
the non-trivial case where # supp µ > n, Proposition 5.23 implies that # supp δp

x = n, or
equivalently, xi < xi+1 and Pi−1 < Pi for all i = 1, . . . , n. □

As an important special case of Theorem 5.24, assume that µ ∈ Pr is continuous. Then Q
F−1
µ

a

is a singleton for every a ∈ R, and Theorem 5.24 asserts that every best 1-approximation δp
x

of µ satisfies

Fµ

(
xi + xi+1

2

)
= Pi , and Fµ(xi ) =

Pi−1 + Pi

2
, ∀i = 1, . . . , n,

and hence in particular

2Fµ(xi ) = Fµ

(
xi−1 + xi

2

)
+ Fµ

(
xi + xi+1

2

)
, ∀i = 1, . . . , n. (5.13)

Similarly, every best 2-approximation of µ satisfies

Fµ

(
xi + xi+1

2

)
= Pi , and (Pi − Pi−1)xi =

∫ Pi

Pi−1

F−1
µ (t) dt, ∀i = 1, . . . , n,

and consequently

xi Fµ

(
xi + xi+1

2

)
− xi Fµ

(
xi−1 + xi

2

)
=

∫ 1
2 (xi +xi+1)

1
2 (xi−1+xi )

x dFµ(x), ∀i = 1, . . . , n. (5.14)

Note that (5.13) and (5.14) each yield n equations for x1, . . . , xn . These equations are exactly
the classical optimality conditions, derived, e.g., in [17, Sec. 5.2] by means of Voronoi
partitions.

Example 5.25. Let µ =
1
2λ|[0,1] +

1
2δ1. While µ is not continuous, and hence not directly

amenable to the classical conditions (5.13) and (5.14), Theorem 5.24 applies and yields, for
instance, δ•,2

•,r = ξ (r )δξ (r ) +
(
1−ξ (r )

)
δ3ξ (r ) for all r ≥ 1, where r ↦→ ξ (r ) is smooth, decreasing,

with ξ (1) =
1
3 , ξ (2) =

3−
√

3
4 , and limr→+∞ ξ (r ) =

1
4 .

If (i) and (ii) in Theorem 5.24 identify only a single probability measure δp
x then the latter

clearly is a best r -approximation. In general, however, and unlike in Theorems 5.1 and 5.5,
the conditions of Theorem 5.24 are not sufficient, as the following example shows. Moreover,
best r -approximations in general are not unique, not even when r > 1.

Example 5.26. Consider µ =
1
3λ[−1,1]+

1
3δ0 and let n = 2. For r = 1, Theorem 5.24 identifies

exactly three potential best 1-approximations δ
p j
x j , j = 1, 2, 3, namely

x1 = (− 2
3 , 0), p1 = ( 2

9 ,
7
9 ), x2 = (− 1

4 ,
1
4 ), p2 = ( 1

2 ,
1
2 ), x3 = (0, 2

3 ), p3 = ( 7
9 ,

2
9 ).
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It is clear from d1(δp1
x1 , µ) = d1(δp3

x3 , µ) =
2
9 <

7
24 = d1(δp2

x2 , µ) that the two (non-symmetric)
probability measure δp1

x1 , δ
p3
x3 are best 1-approximations of µ, whereas the (symmetric) δp2

x2 is
not. Similarly, for r = 2, Theorem 5.24 yields three candidates of which again only the two
non-symmetric ones turn out to be best 2-approximations of µ.

Since dr (δ•,n
•
, µ) ≤ dr (δun

•
, µ) for every µ ∈ Pr and n ∈ N, clearly limn→∞ dr (δ•,n

•
, µ) = 0.

The rate of convergence of
(
dr (δ•,n

•
, µ)

)
has been, and continues to be, studied extensively;

see, e.g., [17,19–21,23,28] and the references therein. Arguably the simplest situation occurs
if µ ∈ Pr has a non-trivial absolutely continuous part and satisfies a mild moment condition.
In this case,

(
dr (δ•,n

•
, µ)

)
decays like (n−1) for every r .

Proposition 5.27 ([17, Thm. 6.2]). Assume that µ ∈ Pr for some r ≥ 1. If µ ∈ Ps with s > r
then

lim
n→∞

ndr (δ•,n
•
, µ) =

1
2(r + 1)1/r

(∫
R

(
dµa

dλ

) 1
r+1
) r+1

r

,

where µa is the absolutely continuous part (w.r.t. λ) of µ.

It is instructive to compare Proposition 5.27 to Theorem 5.15. To do so, assume that
µ ∈ Ps for some s > r and that µ−1 is absolutely continuous. Then limn→∞ ndr (δ•,n

•
, µ)

and limn→∞ ndr (δun
•
, µ) both are finite and positive, provided that µ is non-singular and

dµ−1

dλ ∈ Lr (I). Thus
(
dr (δ•,n

•
, µ)

)
and

(
dr (δun

•
, µ)

)
exhibit the same rate of decay, namely

(n−1). Note that while the latter rate is a universal upper bound on
(
dr (δ•,n

•
, µ)

)
, at least

under the mild assumption that µ ∈ Ps for some s > r , it is a universal lower bound
on

(
dr (δun

•
, µ)

)
, by Theorem 5.20. Even if both sequences decay at the same rate, however,

limn→∞ ndr (δ•,n
•
, µ) ≤ limn→∞ ndr (δun

•
, µ), and equality holds only if either µ =

1
λ(I )λ|I for

some bounded, non-degenerate interval I ⊂ R or else µ = δa for some a ∈ R. Thus only in
the trivial case of a (possibly degenerate) uniform distribution µ does (δun

•
) provide a sequence

of asymptotically best r -approximations of µ (as defined below).

Example 5.28. Let µ be the exponential distribution of Example 5.2. For r = 1 and every
n ∈ N, (5.13) identifies a unique best 1-approximation δpn

xn , with

xn,i = −2 log
n + 1 − i
√

n(n + 1)
, Pn,i =

i(2n + 1 − i)
n(n + 1)

, ∀i = 1, . . . , n .

Here δ•,n
•

is unique, and nd1(δ•,n
•
, µ) = n log(1+

1
n ) = 1+O(n−1) as n → ∞, in agreement with

Proposition 5.27. For comparison, recall from Example 5.8 that limn→∞
n

log n d1(δun
•
, µ) =

1
4 .

For r > 1, no explicit expression seems to be known for δ•,n
•

, not even when r = 2. However,
in a sense made precise below, (δp̃n

yn ) with

yn,i = (r + 1) log
n + 1

n − i + 1
, P̃n,i = 1 −

(
(n + 1 − i)(n − i)

(n + 1)2

) r+1
2
, ∀i = 1, . . . , n

yields a sequence of asymptotically best r -approximations of µ for any r > 1.

Example 5.28 illustrates that even in very simple situations it may be difficult to compute
δ•,n
•

explicitly. Not least from a computational point of view, therefore, it is natural to seek
r -approximations that at least are optimal asymptotically. Specifically, call (δpn

xn ) with xn ∈ Ξn ,
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pn ∈ Πn for all n ∈ N a sequence of asymptotically best r-approximations of µ ∈ Pr with
# supp µ = ∞, if

lim
n→∞

dr (δpn
xn , µ)

dr (δ•,n
• , µ)

= 1.

There exists a large literature on asymptotically best approximations. Specifically, mild con-
ditions (such as µ ∈ Pr being absolutely continuous with dµ

dλ Hölder continuous and positive
on

◦

supp µ, among others) have been established which guarantee that (δ•
xn

) is a sequence of
asymptotically best approximations of µ, where

xn,i = F−1
µr

(
i

n + 1

)
, ∀i = 1, . . . , n , (5.15)

with dµr
dλ =

dµ
dλ

1
r+1∫

R
dµ
dλ

1
r+1

; see, e.g., [24,31] and the references therein.

Example 5.29. Let µ = Beta(2, 1) as in Example 5.4 and 5.14. While for arbitrary n ∈ N, the
authors do not know of an explicit expression for δ•,n

•
for any r ≥ 1, (5.15) yields a sequence

(δpn
xn ) of asymptotically best r -approximations of µ, with

xn,i =

(
i

n + 1

) r+1
r+2
, Pn,i =

1

4(n + 1)
2(r+1)

r+2

(
i

r+1
r+2 + (i + 1)

r+1
r+2

)2
, ∀i = 1, . . . , n−1 ,

and xn,n = ( n
n+1 )

r+1
r+2 . From this, a short calculation leads to, for instance,

nd2(δpn
xn
, µ) =

3

8
√

2
+ O(n−1) as n → ∞ ,

which is consistent with Proposition 5.27.

If µ ∈ Ps is singular then Proposition 5.27 only yields limn→∞ ndr (δ•,n
•
, µ) = 0. The

detailed analysis of
(
dr (δ•,n

•
, µ)

)
in this case is an active research area, for which already a

substantial literature exists, notably for important classes of singular probabilities such as self-
similar and -conformal measures; see, e.g., [17,18,20,29,30,32]. A key notion in this context
is the so-called quantization dimension of µ ∈ Pr of order r , defined as

Dr (µ) = lim
n→∞

log n
− log dr (δ•,n

• , µ)
,

provided that this limit exists. For instance, Proposition 5.27 implies that Dr (µ) = 1 whenever
µa ̸= 0. The relations of Dr (µ) to various other concepts of dimension have attracted
considerable attention [17,20,29,32].

Example 5.30. For the Cantor measure µ of Example 5.10, [22, Cor. 4.7 and Rem. 6.1] show
that, for every r > 1,

0 < lim inf
n→∞

nlog 3/ log 2dr (δ•,n
•
, µ) < lim sup

n→∞

nlog 3/ log 2dr (δ•,n
•
, µ) < +∞.

From this, it is clear that Dr (µ) =
log 2
log 3 , which is independent of r and coincides with the

Hausdorff dimension of supp µ.
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Example 5.31. Let µ be the inverse Cantor measure of Example 5.16. Note that µ is not a
self-similar, and hence the classical results for self-similar probabilities do not apply. Still, µ
is the unique fixed point of a contraction on P1, namely ν ↦→

1
3 (ν ◦ T −1

1 + δ1/2 + ν ◦ T −1
2 ),

with the similarities T1(x) =
1
2 x and T2(x) =

1
2 (1+ x). This property enables a fairly complete

analysis of
(
dr (δ•,n

•
, µ)

)
which the authors intend to present elsewhere. Specifically, with βr =

(1 −
1
r ) +

1
r

log 3
log 2 , it can be shown that, for every r ≥ 1, the numbers lim infn→∞ nβr dr (δ•,n

•
, µ)

and lim supn→∞ nβr dr (δ•,n
•
, µ) both are finite and positive. In particular, Dr (µ) = β−1

r . Note
that, unlike in the previous example, Dr (µ) depends on r , and log 2

log 3 ≤ Dr (µ) < 1. Thus Dr (µ)
is larger than 0, the Hausdorff dimension of µ, but smaller than 1, the Hausdorff dimension of
supp µ = I.

Proposition 5.27 guarantees that under a mild moment condition,
(
dr (δ•,n

•
, µ)

)
decays at least

like
(
n−1

)
, and in fact may decay faster, as Examples 5.30 and 5.31 illustrate. Even for purely

atomic µ, however, the decay of
(
dr (δ•,n

•
, µ)

)
can be arbitrarily slow. This final observation, a

refinement of [17, Ex.6.4], uses the following simple calculus fact; cf. also [3, Thm.3.3].

Proposition 5.32. Given any sequence (an) of non-negative real numbers with limn→∞ an = 0,
there exists a decreasing sequence (bn) with limn→∞ bn = 0 such that (bn −bn+1) is decreasing
also, and bn ≥ an for all n.

Theorem 5.33. Given r ≥ 1 and any sequence (an) of non-negative real numbers with
limn→∞ an = 0, there exists µ ∈ Pr such that dr (δ•,n

•
, µ) ≥ an for every n ∈ N.

Proof. In view of Proposition 5.32, assume w.o.l.g. that (an) and (ar
n − ar

n+1) both are
decreasing. Pick a0 > a1 such that ar

0 − ar
1 > ar

1 − ar
2, and let cr =

∑
∞

k=1 2−(k−1)r (ar
k−1 − ar

k ).
Note that cr is finite and positive. Consider µ =

∑
∞

k=1 pkδxk , where pk = c−1
r 2−(k−1)r (ar

k−1−ar
k )

and xk = 3 · 2k−1c1/r
r for all k ∈ N. Since

∑
∞

k=1 pk xr
k = 3r ar

0 < +∞, clearly µ ∈ Pr . For
every n ∈ N, define Kn ⊂ N as

Kn = {k ∈ N : supp δ•,n
•

∩ [2kc1/r
r , 2k+1c1/r

r [ = ∅} .

Since # supp δ•,n
•

≤ n and the intervals [2kc1/r
r , 2k+1c1/r

r [, k ∈ N, are disjoint, # (N \ Kn) ≤ n.
Moreover,

min
y∈supp δ•,n•

|xk − y|
r

≥ 2(k−1)r cr for every k ∈ Kn .

Recall from [7, (ii), p.1847] that dr (δ•,n
•
, µ)r

=
∫
R miny∈supp δ

•,n
•

|x − y|
r dµ(x); see also

[17, Lemma 3.1]. It follows that, for every n ∈ N,

dr (δ•,n
•
, µ)r

=

∞∑
k=1

pk min
y∈supp δ

•,n
•

|xk − y|
r

≥

∑
k∈Kn

pk2(k−1)r cr =

∑
k∈Kn

(ar
k−1 − ar

k ).

Moreover, recall that (ar
n−1 − ar

n) is decreasing, and # (N \ Kn) ≤ n. Thus

dr (δ•,n
•
, µ)r

≥

∞∑
k=n+1

(ar
k−1 − ar

k ) = ar
n,

and hence dr (δ•,n
•
, µ) ≥ an for every n ∈ N. □
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