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TREATMENT OF TENSORIAL RELATIVE PERMEABILITIES

WITH MULTIPOINT FLUX APPROXIMATION

MARKUS WOLFF, BERND FLEMISCH, RAINER HELMIG, AND IVAR AAVATSMARK

Abstract. Multi-phase flow in porous media is most commonly modeled by adding a saturation-
dependent, scalar relative permeability into the Darcy equation. However, in the general case
anisotropically structured heterogeneities result in anisotropy of upscaled parameters, which not
only depends on the solid structure but also on fluid-fluid or fluid-fluid-solid interaction. We
present a method for modeling of incompressible, isothermal, immiscible two-phase flow, which
accounts for anisotropic absolute as well as relative permeabilities. It combines multipoint flux
approximation (MPFA) with an appropriate upwinding strategy in the framework of a sequential
solution algorithm. Different tests demonstrate the capabilities of the method and motivate the

relevance of anisotropic relative permeabilities. Therefore, a porous medium is chosen, which is
heterogeneous but isotropic on a fine scale and for which averaged homogeneous but anisotropic
parameters are known. Comparison shows that the anisotropy in the large-scale parameters is
well accounted for by the method and agrees with the anisotropic distribution behavior of the
fine-scale solution. This is demonstrated for both the advection dominated as well as the diffusion
dominated case. Further, it is shown that off-diagonal entries in the relative permeability tensor
can have a significant influence on the fluid distribution.

Key words. porous media, two-phase flow, anisotropic medium, anisotropy, tensorial relative
permeability, MPFA, upwinding, capillary pressure, gravity

1. Introduction

Multi-phase flow and transport phenomena in porous media are the governing
processes in many relevant systems. An example for a natural system is the sub-
surface, considering for example the remediation of non-aqueous phase liquids or
modeling of CO2 storage scenarios (e.g. [15]). Biological systems can for example
be found in the human body, where flow through the brain or in the lung can be
modeled as flow through porous media (e.g. [36, 23, 20]), and there also exist many
technical applications in which multi-phase flow through porous media is important
(e.g. [9, 8]).

Flow and transport processes in permeable media occur on different spatial scales
and are in general highly affected by heterogeneities. Usually, averaged equations
applying an REV (Representative Elementary Volume) concept are used, where the
most common model is the so-called Darcy equation.This model can be used for
single phase flow as well as for multi-phase flow. Parameters of averaged equations
usually directly (analytical methods, averaging methods, etc.) or indirectly (e.g.
experiments, measurements, etc.) imply an upscaling of processes which occur
on smaller scales. If upscaling methods are applied to flow in porous media with
distinctive anisotropically structured block heterogeneities, a direction dependence
of the upscaled large-scale parameters results. It is fairly common to assume and
determine anisotropic absolute permeabilities on various scales. Anisotropic phase-
dependent behavior is often neglected in the upscaling process. However, it has
been observed at different scales that upscaling can also lead to phase-dependent
anisotropic full-tensor effects (e.g. [34, 10, 18]). These can either be treated in a
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classical sense by deriving anisotropic phase-dependent parameters like phase and
relative permeabilities respectively [33] or by upscaling strategies which are more
closely linked to a certain discretization method and account for full-tensor effects
by incorporating global effects into isotropic upscaled parameters (e.g. [14, 27]).
We will further focus on the former. If the principal directions of an upscaled total
permeability coincide with the directions of a cartesian computational grid, the
extension of a basic finite volume scheme is quite obvious. In that case, it just has
to be distinguished between the different grid directions. In all other cases, new
numerical techniques have to be developed which are able to account for anisotropies
which are represented by full tensor relative permeability functions, and which are
largely independent of the choice of the grid (structured, unstructured). Moreover,
upwinding strategies have to be revisited to account properly for the advection
dominated behavior of multiphase flows.

In the following sections a mathematical model including the general case of
anisotropic phase permeabilities is introduced and some mathematical as well as
physical issues of the tensor properties of this parameters are discussed. It is im-
portant to choose a mathematical formulation which allows a numerical treatment
which meets the challenges presented by the tensor properties. Further, a numer-
ical scheme is developed which accounts for anisotropic behavior due to tensorial
parameters in both the advective or gravity driven case as well as in the capillary
dominated case. The scheme is based on multipoint flux approximation (MPFA)
which has been derived for second order elliptic equations like Darcy’s law [3, 17, 1].
There exist various types of MPFA methods where the most common one is the
MPFA O-method. MPFA can be applied to unstructured grids [4] and in gen-
eral shows good convergence properties for single-phase flow on quadrilateral grids
[6, 32, 25, 13]. However, different kinds of MPFA methods differ with regard to
convergence rates and monotonicity of the solution. Monotonicity of MPFA meth-
ods has been studied for example in [28, 29, 31]. The application of MPFA to
multi-phase flow (extended Darcy) is straight forward as long as the relative per-
meabilities are described by scalar functions [3, 1]. In that case, the problem of
evaluating the fluxes by MPFA is the same as for single-phase flow. However, if
the relative permeabilities are tensors, the MPFA has to be extended to correctly
account for the properties of this specific multi-phase flow regime. This applies
to the simplified case neglecting capillary pressure and gravity, and becomes even
more important for situations in which capillary pressure and gravity cannot be
neglected. In particular, special attention is payed to a consistent upwinding strat-
egy. The numerical method is tested on various examples, which are physically
motivated and demonstrate the effects of anisotropic phase permeabilities as well
as the capability of the model to account for this effects.

2. Mathematical model for two-phase flow

In the following, we describe our mathematical model for two-phase flow assum-
ing immiscible and incompressible fluids. It is based on two conservation equations
for mass, one for each of the fluid phases:

φ
∂Sw

∂t
+∇·vw − qw = 0,(1)

φ
∂Sn

∂t
+∇·vn − qn = 0.(2)

The wetting phase fluid is indicated by subscript w and the non-wetting phase fluid
by subscript n, S is the saturation, φ is the porosity of the porous medium and q
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a source/sink term. The momentum equations to get the phase velocities vw and
vn can be simplified, applying several reasonable assumptions, to Darcy’s law (e.g.
[38]). It was originally derived from experimental studies for one-phase flow and
extended to multi-phase flow (e.g. [35, 21])

vw = −
Ktotw

µw
(∇ pw + ̺wg∇ z),(3)

vn = −
Ktotn

µn
(∇ pn + ̺ng∇ z).(4)

In Equations (3) and (4) Ktot is the total phase permeability that is usually split
up into relative permeability of a phase times absolute permeability of the porous
medium, µ the dynamic fluid viscosity, p the pressure and ̺ the density of the
phases, and g is the gravity constant acting in z-direction. To close the system
given by Equations (1) to (4) further statements are needed: The pores are entirely
filled with both phases

(5) Sw + Sn = 1,

the phase pressures are not independent but related by the capillary pressure

(6) pc = pn − pw,

and the capillary pressure as well as the total phase permeabilities are modeled
as functions of the saturation, which are given in terms of nonlinear constitutive
relations

pc := pc (Sw) ,(7)

Ktotα := Ktotα (Sw) , α ∈ {w, n} .(8)

Considering Darcy’s law, it is obvious that the total permeability is acting like a
diffusion coefficient for pressure. Thus, in the general case, it should be a symmet-
ric tensor (real eigenvalues which are the permeabilities acting in the direction of
the associated eigenvectors) and it should be positive semi-definite (which means
that the eigenvalues are non-negative so that flow always takes place in the direc-
tion of decreasing potential). Further, in the fully saturated case, the total phase
permeability should be the absolute permeability

(9) Ktotw (1) = Ktotn (1)
!
= K,

while in the unsaturated case the medium is effectively impermeable for the corre-
sponding phase

(10) Ktotw (0) = Ktotn (0)
!
= O.

As stated before, the total phase permeability is usually split up into relative per-
meability of a phase and absolute permeability of the porous medium

(11) Ktotα = krαK.

In the general case the absolute or intrinsic permeability depends on the geometric
structure of the porous medium, which means it can be different in different spatial
directions, and thus has to appear as a full tensor in the Darcy equations. Usually,
it is assumed that the anisotropic character of flow is independent of the actual
flow process and solely controlled by the porous medium and thus by the absolute
permeability. Therefore, relative permeability, which includes fluid-fluid as well
as fluid-fluid-solid interactions, is a scalar coefficient. However, starting from the
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statements on total permeability given before, under the assumption that it con-
sists of a relative permeability times absolute permeability, a general expression for
relative permeability is given by

(12) Krα (Sα) = Ktotα (Sα)K
−1,

which leads to

(13) Ktotα = KrαK.

Examples and physical motivation for the need for both full tensor absolute as well
as relative permeability have already been given before (Sec. 1) and are further
extended in Section 4.

The tensorial coefficients, especially the tensorial relative permeabilities, lead
to new challenges for the numerical method. These will be discussed in detail in
the next section which deals with the discretization of the mathematical model.
However, meeting these challenges also influences the choice of the mathematical
formulation and thus some points are already mentioned here: If the direction of
flow is saturation dependent via saturation dependent tensorial coefficients, the
upwind direction cannot necessarily be estimated directly from the solution of the
old time step. Thus, we reformulate Equations (1) to (4) into a system of equations
which can be solved sequentially. It is a common assumption that the resulting
pressure equation (Eq. (16)) can be treated without upwinding, because it balances
total flow instead of phase flow. Further, we choose a formulation which introduces
phase potentials instead of phase pressures [22]. By solving for the potentials,
the gravity term is not completely moved to the right-hand side of the system of
equations that has to be solved. We have observed that this can lead to a better
solution behavior in the context of a sequential solution strategy where the solution
for the velocity field and for the transport of the phases are decoupled. Finally,
for reasons of efficiency, the formulation should ensure that the number of different
transmissibilities which have to be calculated by the MPFA method is as small as
possible.

With definitions of the phase mobilities Λw = Krw/µw and Λn = Krn/µn, the
total mobility Λt = Λw +Λn, and the potentials

Φw = pw + ̺wg z

Φn = pn + ̺ng z

Φc = Φn − Φw = pc + (̺n − ̺w)g z

(14)

a total velocity can be formulated as sum of the phase velocities as

vt =vw + vn = −ΛwK∇Φw −ΛnK∇Φn

=−ΛwK∇Φw +ΛnK∇Φw −ΛnK∇Φw −ΛnK∇Φn

=−ΛtK∇Φw −ΛnΛ
−1
t ΛtK∇(Φn − Φw)

=−ΛtK∇Φw
︸ ︷︷ ︸

vaw

−FnΛtK∇(Φc)
︸ ︷︷ ︸

vc

(15)

where vaα is called advective velocity of the phase α, vc can be called capillary
velocity, although it also includes gravity effects, and Fα = ΛαΛ

−1
t is a tensorial

definition of the fractional flow function of the phase α. By adding equations (1)
and (2), we get a total mass balance equation. In the case of immiscible and
incompressible flow this equation, which is also called pressure equation, simplifies
to

(16) ∇·vt = ∇·(vaw + vc) = qt.
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One additional equation is needed for transport of the phase and the phase mass,
respectively. In case of immiscible flow we simply use one of the conservation
equations for mass (Eq. (1) and (2)), which is then called saturation equation and
insert phase velocities which now can be expressed in terms of va and vc:

φ
∂Sw

∂t
+∇·(Fwvaw) = qw,(17)

φ
∂Sn

∂t
+∇·(Fnvaw + vc) = qn.(18)

3. Numerical method and multipoint flux approximations

We apply a cell-centered finite-volume method (CCFV) to Equations (16) and
(17) leading to the system of equations

∫

∂V

vt · n dA =

∫

V

qt dV,(19)

∫

V

φ
∂Sw

∂t
dV +

∫

∂V

vw · n dA =

∫

V

qw dV,(20)

where n is the normal vector pointing outward of volume V at the volume boundary
∂V . Equations (19) and (20) can now be written in discrete form

n∑

i=1

ftoti = qtV(21)

φ
∂Sw

∂t
V +

n∑

i=1

fwi
= qwV,(22)

where ftoti is the total flux and fwi
the wetting phase flux at a cell face i. According

to the mathematical formulation introduced before we further split the total flux
into its two components:

(23)

n∑

i=1

ftoti =

n∑

i=1

(
fawi

+ fci
)
= qtV

The main challenge using the CCFV scheme now is the calculation of the numerical
flux, which has to be capable of managing a tensorial relative permeability. Further,
this flux should by its design be able to deal with the special challenges of advection-
dominated problems. This means that the need for an upwinding concept has to
be considered.

3.1. Existing numerical flux functions. The method most commonly used in
finite-volume codes for groundwater or reservoir simulation is two-point flux approx-
imation (TPFA) and descendants as numerical flux functions. However, during the
last decade, the technique of multi-point flux approximations (MPFA) has been
developed, supplementing the former.

Both classes of numerical flux functions are related to each other, as MPFA can
be interpreted as a conceptual upgrade of TPFA. They were originally designed for
flow laws like

(24) v = −K∇ p

which describes one-phase Darcy flow (for the sake of simplicity, gravity and vis-
cosity are neglected here).
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Figure 1. Example interaction volume for motivation of MPFA

TPFA are motivated by classical finite-difference methods. Thus the flux at face
i is approximated as

(25) fi ≈ Ti(p2 − p1),

where subscript 1 and 2 denote the two finite-volume grid cells which share in-
terface i and Ti is the transmissibility at face i. In case of one-phase flow (Eq.
(24)) it includes the absolute permeability and some geometric information. A
common approach in standard finite volume simulators is to apply a harmonic av-
erage to calculate absolute permeabilities at a face i from the cell permeabilities.
Compared to a arithmetic average the harmonic average naturally accounts for im-
permeable layers or structures. It should be mentioned that TPFA corresponds to
an one-dimensional approximation of the flux leading to an important assumption
for TPFA methods which is the assumption on the grid property known as K-or-
thogonality (see [3, 1]). If the grid is not K-orthogonal, TPFA yields an inconsistent
approximation of the flux. This leads to an error in the solution which does not
vanish if the grid is refined [2].

One approach to solving this problem is MPFA. There exists a variety of MPFA
methods like the MPFA-O(η) method [3, 17, 32], the MPFA-U method [5], the
MPFA-Z method [30], the MPFA- L method [7, 12], etc. The main aspect of MPFA
methods is to increase accuracy compared to TPFA, especially in case of general
non-orthogonal grids or anisotropic coefficients, by increasing the flux stencil. The
various methods differ in the size of the flux stencil due to differently shaped control
volumes for flux approximation. This leads to different convergence behavior and
monotonicity of the methods, although it seems that there is no method, which is
superior for all kinds of grids or applications. The most popular method, which
is also further used in this work, is the MPFA-O method (MPFA-O(0), e.g. [1]).
However, the ideas that are developed later to treat phase-dependent anisotropic
parameters can be transferred to any MPFA method.

The fundamental concept of MPFA is simple: Instead of the one-dimensional
approximation used by TPFA, a multi-dimensional approximation is applied:

(26) fi ≈
∑

j∈J

tij(pj),

where the set J includes all cells j which surround face i (e.g. 6 cells (2-d), or 18
cells (3-d) for a quadrilateral grid), and tij are called transmissibility coefficients.

For reasons of simplicity only the two-dimensional case will be further considered,
although everything can be easily transferred to three dimensions. A finite-volume
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grid is sketched in Figure 1 (solid lines). A dual grid (dashed lines) is constructed by
drawing lines from each cell center (i, j, k, l, ...) to the midpoints of the cell faces.
Every grid cell of the dual mesh now includes one vertex of the finite-volume mesh
and divides its cell faces in two parts. Further, the dual grid cells, called interaction
volumes, can be divided into four sub-volumes, one corresponding to every cell of
the finite-volume grid that is part of the interaction volume. In analogy to the
TPFA procedure, the idea is to use a linear approximation for the pressure in
every sub-volume of an interaction volume. Like the TPFA, these approximations
have to interpolate the nodal value of pressure at the cell centers. Furthermore,
the approximation of pressure at an edge midpoint has to be the same from both
sides. To preserve local conservation of fluxes it is requested that the flux leaving

one control volume is equal to that entering the next one (e.g. fij
!
= fji). We

exemplarily write the equation describing conservation of flux along the edge from
i to j

fij ≈ −nT
ijKi

Γij

2Fi

[

(pij − pi)ν
(i)
ij + (pil − pi)ν

(i)
il

]

= nT
ijKj

Γij

2Fj

[

(pij − pj)ν
(j)
ij − (pjk − pj)ν

(j)
jk

]

.
(27)

The definition of the quantities Fi, pij , ν
(i)
ij , Γij as well as the details on the

approximation of the pressure gradient are not further given here, but can be found
for example in [1]. Finally, using these expressions for equality of fluxes, a system
of 4 equations can be formulated for every interaction volume. This can be solved
for the transmissibility matrix T, such that

(28) Tp = f ,

where p is the vector of cell pressures of the four adjacent finite-volume cells sharing
one interaction volume, and f is the vector of fluxes over the corresponding half
edges. For detailed introduction and derivation of a MPFA-O method we exem-
plarily refer to [1, 5, 19].

In case of one-phase flow, the whole procedure of calculating the global transmis-
sibility matrix can be accomplished in a single preprocessing step as the transmissi-
bilities do not change during the simulation. For K-orthogonal grids, the described
MPFA method reduces to TPFA with harmonic averages. However, the former can
also be consistently applied to any full-tensor permeability fields on arbitrary grids.
In case of multi-phase flow, the approximation of the fluxes by MPFA reduces to
the form described before for one-phase flow as long as the relative permeabilities
are scalars and assumed to be constant along the cell faces [3, 1].

3.2. Extension of multi-point flux approximations for multi-phase flow
and tensorial relative permeabilities. The next step is the transfer of the con-
cepts introduced before for one-phase flow (Eq. (24)) to multiphase flow (Eq. (3)
and (4)) in the general case in which relative permeabilities are tensors. This means
that saturation dependent quantities appear in the MPFA approximation. Thus, a
fundamental difference is that the MPFA operators are saturation dependent and
change with time. The transmissibilities Tt (advective wetting phase flux faw), Tn

(capillary flux fc) and Tw (wetting phase flux fw) are either related to total flow
(Tt) or to phase flow (Tn, Tw). Especially the latter involves a careful treatment.
One reason is the requirement that phase dependent quantities require an upwind-
ing for advection-dominated problems. Another reason is that phase dependent
properties like Fα become zero if the phase is not present. Thus, the equations for
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conservation of fluxes (e.g. Eq. (29)) can degenerate to the trivial statement 0 = 0,
and the system of equations that has to be solved for the transmissibility matrix
would be under-determined. Further, MPFA by construction acts like a harmonic
average, which means that a fluid α could never enter a cell if Sα = 0 and therefore
Fα = 0. This once more points out that an appropriate upwind scheme is impor-
tant. In the case of scalar relative permeability functions, upwinding is straight
forward because the direction of flow can be directly determined from the single
phase transmissibilities. However, in the case of tensorial relative permeabilities,
the determination of an upwind direction is challenging. Following, the multi-point
flux approximations of the different flux terms (faw , fc and fw) are derived, while
special emphasis is given to upwinding in case of tensorial phase-dependent coeffi-
cients.

Advective flux. Comparing Equation (24)) and Equation (15) it is obvious that
the advective flux can be approximated similar to the case of one-phase flow simply
by adding the total permeability into the approximation. Again, we write the
equation for conservation of flux at the half edge from i to j:

fij ≈ −nT
ijΛtiKi

Γij

2Fi

[

(Φij − Φi)ν
(i)
ij + (Φil − Φi)ν

(i)
il

]

= nT
ijΛtjKj

Γij

2Fj

[

(Φij − Φj)ν
(j)
ij − (Φjk − Φj) ν

(j)
jk

]

.
(29)

The total mobility Λt, which is a property of the total flux, can be easily included
into the concept. It is not necessary to apply any upwinding and it can never
become zero, because it is the sum of the phase mobilities. The advective flux term
can thus be approximated as

(30) faw = TtΦw,

where Tt is called total transmissibility and is an operator for the approximation
of ΓnTΛtK∇, with Γ being the area of an half cell face. The vector faw contains
the advective fluxes of the wetting phase corresponding to the sub-faces, while Φw

holds wetting-phase potentials associated with sub-volumes (Fig. 1).

Capillary flux. The second flux term, which has to be approximated is the term
fc, which includes not only the total mobility tensor (Eq. (29)) but the product
FnΛt. Thus, instead of the total transmissibility a phase transmissibility is required
giving the capillary flux at the half face between cell i and j as

(31) fc = TnΦc.

However, there exist two main problems for the calculation of the phase transmis-
sibility Tn. First, the fractional flow function tensor has to be approximated at the
cell face. Since the capillary flux term in this formulation includes both capillary
and gravity effects, where the flux driven by gravity has advective character, an
upwinding scheme is necessary ( Fn = Fupw

n ). Second, in contrast to the total
mobility, the phase mobility can become zero if the phase is at or below residual
saturation. Like discussed before, this would lead to a degeneration of the system
of equations which has to be solved to get the transmissibility matrix.

As mentioned upwinding can cause problems in the context of tensorial coeffi-
cients: by adding Fupw

n into Equation (29) we multiply Λn and K and thus the
relative permeability with the absolute permeability. So, depending on upw = i
or upw = j, one of the products of relative and absolute permeability (from cell
i or j) is a product where both permeabilities come from the same cell whereas
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the other product is a mixed product. For the latter case it is not guaranteed that
the total permeability satisfies the criteria discussed before (sec. 2). Even if both,
the absolute permeability as well as the relative permeability are symmetric and
positive definite, the total permeability resulting from the mixed product does not
have to satisfy this properties, because the principal directions could be completely
different. An entirely unphysical behavior could be the result, for example a flow in
the direction of increasing potential. Furthermore, we multiply ΛT

t and Λt, which
could result in similar problems although the total mobility is supposed to be quite
smooth and numerically easy to handle.

The solutions to these problems are quite simple. Instead of upwinding the
whole mobilities only the quantity that shows hyperbolic character, namely the
saturation, is used in the upwinding procedure. Accordingly, we write

(32) Fnij
= Fupw

nij
= Fnij

(Supw) .

We assumed before that we do not need to apply an upwinding scheme on the
total mobility Λt to calculate the advective flux. To be consistent we also use this
assumption for the other flux terms. For the capillary flux this means that only
the fractional flow function is calculated from an upwind saturation Supw. The
determination of an upwind direction which is quite simple for scalar fractional
flow functions however is nontrivial for tensor functions. The reason is that a
tensor coefficient like F can lead to phase normal flux in opposite direction than
the total flux as well as the phase potential difference of two neighboring cells. We
therefore suggest the following procedure:

(1) Calculate the phase transmissibilities without upwinding.
(2) Calculate phase fluxes using the pressure field of the old time step (this

is reasonable as in the sequential solution strategy the capillary flux term
is also assumed to be known from the old time step and thus completely
moved to the right hand side).

(3) Calculate upwind fractional flow functions, where the directions of the pre-
viously calculated phase fluxes determine the upwind direction.

To address the second problem of possibly ill-posed linear systems during the cal-
culation of the phase transmissibilities, we suggest the following: the coefficients
fcij of the vector fc are given by

(33) fcij = Γijn
T
ijFn,εijnijfc,mpfaij ,

where fc,mpfaij are the coefficients of a flux vector fc,mpfa,

(34) fc,mpfa = TnΦc,

with the transmissibility Tn calculated from flux balances like

fc,mpfaij ≈ −nT
ijFn,mpfaijΛtiKi

Γij

2Fi

[

(Φij − Φi) ν
(i)
ij + (Φil − Φi) ν

(i)
il

]

= nT
ijFn,mpfaijΛtjKj

Γij

2Fj

[

(Φij − Φj)ν
(j)
ij − (Φjk − Φj)ν

(j)
jk

]

.
(35)

To ensure that the system of flux balances can always be solved for a transmissibility
matrix we now add the condition

(36) Fn,mpfa =

{

I, if λ (Fn,mpfa) < ε

Fn, else
, Fn,ε =

{

I, if λ (Fn,ε) ≥ ε

Fn, else
.
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which ensures that the fractional flow function tensor is removed from the transmis-
sibility calculation if one of its eigenvalues λ (Fn) is smaller than a certain threshold
ε.

Wetting phase flux. From Equation (17) we see that the wetting phase flux has
the same structure than the capillary flux. Thus, the MPFA approximation can
be written by substituting the capillary potential in Equation (34) by the wetting
phase potential, the non-wetting phase fractional flow functions of Equations (33)
and (35) by the wetting phase fractional flow function, and the capillary flux by
the advective flux:

(37) fwij
= Γijn

T
ijFw,εij

nijfw,mpfaij ,

(38) fw,mpfa = TwΦw.

The crucial points concerning phase quantities in the MPFA method have already
been discussed for the approximation of the capillary flux. It is obvious that the
same problems occur for the approximation of the phase flux. Thus, we approximate
the wetting phase fractional flow function tensor at a face ij as

(39) Fwij
= Fupw

wij
= Fwij

(Supw) .

Compared to the capillary flux, which has to be determined for the solution of
the pressure equation, the wetting phase flux is needed to solve the saturation
transport equation. This means, that in a sequential solution strategy the pressure
field of the new time step is already known. Thus, the scheme to determine the
upwind directions given for the capillary flux is also applied for the phase flux, but
substituting the pressure of the old time step in step (2) by the pressure of the new
time step.

As stated before, in the original MPFA method for single-phase flow the trans-
missibilities have to be calculated only once in a preprocessing step and do not
change during a simulation. Of course, this is different if a saturation dependent
quantity like mobility is included into the transmissibility. Additionally, different
terms like advective term, gravity or capillary pressure term need different treat-
ment leading to different MPFA operators or transmissibilities, respectively. In the
proposed method we need to calculate three different transmissibilities to calculate
the different fluxes (advective flux, capillary flux, wetting/non-wetting phase flux).
Further, four additional transmissibilities are needed to determine the upwind di-
rections (wetting and non-wetting phase direction for each potential and saturation
transport calculation) leading to seven transmissibility calculations for each grid
vertex and each time step. Depending on the flow problem, it can be reasonable
to determine the upwind direction only once each time step (for both equations).
This would reduce the transmissibility calculations to five, but could also reduce
accuracy. To make further statements about efficiency different methods have to be
investigated. One alternative can be found in [24], where the authors approximate
the phase fluxes using an approximate Riemann solver.

Some remarks on upwinding. There exists one crucial difficulty for upwinding
in presence of tensor coefficients like relative permeability, which are saturation
dependent and therefore change in time. Except for the case where it can be
assumed that the direction of the total permeability does not change with saturation
but only the absolute values, it is not possible to base the upwinding decision on
the solution of the old time step. However, in the general case the direction of
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tensorial total permeabilities is saturation dependent. Thus, the direction of flow
can change from one time step to another as saturation changes.

The challenge of an MPFA concept for multi-phase flow is to avoid upwinding
whenever this is possible and if it can not be avoided to find a solution that is suffi-
ciently accurate and computationally efficient. If Equations (1) and (2) are solved
simultaneously applying a fully implicit scheme the only way out of the upwinding
dilemma seems to be the following: First, calculate transmissibility matrices for
every possible upwind combination for every interaction volume (2e4 = 16 combi-
nations = 16 transmissibility matrices for each interaction volume (2-d)). Second,
find and apply kind of heuristic criteria to decide which is the most likely combina-
tion. It is obvious, that on the one hand formulation of reasonable criteria can be
difficult and on the other hand recalculation of the transmissibilities is very costly
(already in 2-d). This consideration is the motivation to use a different model for-
mulation. The reformulation into one equation for potentials and one equation for
transport of saturation accompanied with a sequential solution strategy allows for
decoupling of some steps. Thus, upwinding decisions described before are not based
on the old solution, but always on information of the new time step that is already
available. Of course, this concept also includes some necessary assumptions:

• It is common to use the total mobility without any upwinding because it is
a property of the total flow which uses to behave quite smooth within the
model domain. We assume that this still holds for tensorial total mobilities.
This allows to calculate the advective flux (Eq. (29) without any upwinding.

• The capillary as well as the gravity part are assumed to be known from the
old time step, and put to the right hand side of the system of equations.
This is common if a pressure (or potential) equation and a transport equa-
tion (e.g. for saturation) are solved sequentially. Thus, it is assumed that
it is sufficient to base the upwind decision for this flux term also on the
solution of the old time step.

• In the procedure to determine the upwind directions, cell values of the phase
quantities are used for transmissibility calculation. Thus, it is assumed that
the upwinding has no influence on the direction of flow but only on the
amount of fluid that crosses a cell face.

• We apply saturation upwinding instead of direct upwinding of the relative
permeability. In the homogeneous case this results in the same relative
permeability than relative permeability upwinding. However, saturation
upwinding also ensures that heterogeneous anisotropy is accounted for in
the flux approximation and that unphysical fluxes (e.g. in opposite direction
to the potential gradient) are avoided.

4. Numerical Examples

In this section different numerical experiments are performed and the results are
shown to demonstrate and test the capabilities of the proposed numerical method.
In a first part, we use a diagonal relative permeability tensor derived for a horizon-
tally layered system. It has been shown for example in [10, 18] that in such systems
layers of different entry pressures can lead to anisotropic relative permeabilities at
a larger scale. In the second part, we consider full tensor relative permeabilities. If
we still think of a layered system a full tensor could result from an upscaling if the
layers are not horizontal but rotated. Of course there are also other effects that
might cause anisotropy of large scale relative permeability functions. Although the
example we present is not the result of an upscaling, but artificially generated, it
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Figure 2. Setup of the infiltration experiment.

demonstrates the effects of a full relative permeability tensor as well as it provides
a meaningful test for our numerical method. We do not compare MPFA and TPFA
as it has already been shown for simpler cases that TPFA leads to inaccuracy if it
is used on unstructured grids or with anisotropic parameters (e.g. [12]). We further
remark that all numerical test examples discussed in the following use symmetric
tensors for the total phase permeability. However, the presented algorithm does
not require this symmetry.

4.1. Diagonal relative permeability tensor from upscaling. The first test
example is taken from [18], where flow experiments and numerical simulations
of a horizontally layered system are compared. The layers consist of three dif-
ferent soil types (permeability Kfine = 6.38 × 10−11, Kmedium = 1.22 × 10−10,
Kcoarse = 2.55 × 10−10, porosity Φ = 0.38). The setup is shown in Figure 2. A
DNAPL (Denser Non-Aqueous-Phase Liquid, here TCE) is injected from the top
into a domain of 1.2 m length and 0.5 m height. The upper and lower boundaries
are closed for flow, except for the injection area. On the right as well as on the
left boundary a hydrostatic pressure profile is assumed. The domain is initially
fully water saturated. The location of the layers as well as the entry pressures of
the differently permeable layers (entry pressure pdfine

= 882.9, pdmedium
= 539.55,

pdcoarse
= 353.16) are shown in Figure 3. On this scale (fine scale) Brooks-Corey

type functions are used for capillary pressure-saturation and relative-permeability-
saturation relations [11]. The capillary pressure-saturation curves of the different
layers are correlated to the permeabilities according to a Leverett J-function [26].
The upscaled capillary pressure function for this system is plotted in Figure 4a, the
effective relative permeability functions for the two fluids in different coordinate
directions are shown in Figure 4b. Both kinds of effective coarse scale functions are
derived from capillary equilibrium conditions. The steady state fluid distributions
(each representing one point on each graph shown in Figure 4) are obtained from
a static site-percolation model (see e.g. [37]) and used to calculate a coarse scale
saturation for a given equilibrium capillary pressure. The relative permeability
functions are calculated from the steady state saturation distributions applying an
upscaling concept for single-phase flow [16]. The simulated time is 1 hour while
the injection is stopped after ∼ 50 minutes. For a more detailed description of the
problem setting and the upscaling method we refer to [18].
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Figure 3. Model domain with the discrete lenses showing the
different entry pressures.
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Figure 4. Coarse scale constitutive relations from upscaling (see [18]).

Figure 5. Saturation distributions of example 1 calculated with
resolved lenses.

First, we compare the results using the upscaled, diagonal relative permeabil-
ity tensor function with the results modeling the discrete lenses (no anisotropy on
the scale of the single layers). For better comparability we use the same numer-
ical methods (Cell Centered Finite Volumes with MPFA), but for scalar relative
permeability functions in the discrete case. The grid consists of 60×50 elements
which allows the resolution of the lenses. The saturation distribution resulting from
the simulation of the discrete system shown in Figure 5 is in good agreement with
the results presented in [18] for the real experiment as well as for the numerical
simulation. The simulations using the upscaled tensor functions are carried out
on different grid types which are shown in Figures 6a to 6d. The unstructured
grids (B-D) are chosen to be no longer K-orthogonal, which means that the normal
vectors of the cell faces do not have to be in alignment with the directions of the
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(a) grid A (b) grid B

(c) grid C (d) grid D

Figure 6. Different structured and unstructured grids used to
test the mpfa method.

anisotropy. Like for the discrete calculations grids consisting of 60×50 elements
(grids A-C) and approximately 60×50 elements (grid D, 3082 elements) respec-
tively are used. In particular, the same amount of TCE is injected. The results are
shown in Figure 7a (structured), and Figures 7b to 7d (unstructured). For better
comparison, the following spatial moments are calculated:

(40) m0 =

∫

V

ΦSn dV,

(41) m1 =
1

m0

∫

V

ΦSnx dV,

(42) M2 =
1

m0

∫

V

ΦSn(x−m1)(x −m1)
T dV,

wherem0 is the non-wetting phase volume in the system, m1 is the center of gravity
of the non-wetting phase plume, and M2 is the matrix of variances and covariances
of the plume related to its center of gravity. The transformation of M2 into a
diagonal matrix gives the variances along the main axis of the plume (assuming an
elliptical approximation). Accordingly, the spatial extent of the plume can in aver-
age be approximated by the square root of the diagonalized variance matrix. For the
horizontally layered system, the main axis are in horizontal and vertical direction.
The results of the spatial moments analysis are plotted in Figure 8. Qualitatively,
the main features of the discrete model are captured well. This demonstrates that
the proposed numerical model accounts for the anisotropic parameters. However,
quantitatively the horizontal spreading of the infiltrating non-wetting phase is un-
derestimated (Fig. 8a), whereas the vertical spreading is overestimated (Fig. 8b).
This might be due to gravity effects, but is not further investigated here as the
upscaling itself is not part of this work. Further, only negligible differences can be
observed in the moment analysis using the different grids. The total mass which
is injected is not plotted in Figure 8 but is equal for the compared simulations.
Differences between Figure 7a to 7c and Figure 7d are mainly caused by a different
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(a) grid A (b) grid B

(c) grid C (d) grid D

Figure 7. Saturation distributions of example 1 using the up-
scaled coarse scale functions on the different grids shown in Figures
6a-6d.

propagation along the upper boundary, where triangles instead of quadrilaterals
are used for grid D. The use of isotropic effective relative permeability functions
has been tested, but the results are not shown here. It can be observed that the
anisotropic distribution behavior of the discrete system is mainly caused by the
different entry pressures of the lenses and can not be covered just by a tensorial
absolute permeability. This is in accordance with the results of [18].

In a next test, we keep the domain of the previous example, but neglect gravity
(g = 0) and apply a diagonal pressure gradient comparable to a classical five-spot
problem. The grid is a cartesian grid consisting of 120×50 elements. We place
an injection well at the lower left corner and a production well at the upper right
corner and close all boundaries for flow. The shape of the domain has to remain
rectangular instead of quadratical, what is usually the case for a five-spot problem,
because the upscaled functions are derived for the whole rectangular domain. Still
the effect is a diagonal gradient which is not aligned with the grid axis. In a second
test we again close all boundaries and place injection wells at the lower left as well
as at the upper right corner and production wells at the lower right and upper left
corner. The sources are chosen in such a way that the pressure gradient is small
and capillary forces are not negligible. This should eliminate effects which may not
be captured by the upscaling method used in [18]. The results are shown in Figures
9a and 9b. In both cases the results using the upscaled relative permeability tensor
functions are in good agreement with the fine scale simulations. Further, there is
no difference between the non-wetting phase distributions of the two cases on the
lower left part of the domain. This shows that the gradient is approximated well
independent of the direction of the gradient in relation to the orientation of the
grid axis (structured grid).

4.2. Full relative permeability tensor. So far, all numerical test examples use
a diagonal tensor relative permeability derived from upscaling. Rotation of the
orientation of the lenses (Fig. 3) would result in non-diagonal, full tensor relative
permeability functions. However, upscaling of two-phase flow parameters is not
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Figure 8. Comparison of the results shown in Figures 5, 7a-7d
using spatial moment analysis.

part of this work. Thus, we use the same experimental setup than for the diagonal
tensor relative permeability functions (Fig. 2) but replace the relative permeability
function by the function derived in [24] which results from the consideration of
vertically segregated upscaling:

(43) Krα = Sα

(

1 0.9
2πSα

(1− cos(2πSα))
0.9

2πSα
(1− cos(2πSα)) S

1

2

α

)

, α ∈ {w, n} .
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(a) Source in the lower left corner

(b) Sources in the lower left and upper
right corner

Figure 9. Saturation distributions of the discrete lens model ap-
plying a diagonal pressure gradient. The solid lines are the con-
tours of the saturation distributions resulting from the upscaled
tensor functions.

Although this function is physically motivated, it has no physical meaning in the
sense it is used here. It can be seen as any artificially generated full tensor relative
permeability function to test the capabilities of the numerical model as well as to
show that there can be a notable influence of off-diagonal effects. Additionally,
compared to the previous examples where only the anisotropy ratio is saturation
dependent, the direction of the eigenvectors of the matrices resulting from Equation
(43) is saturation dependent. The simulations are carried out on two different grids,
grid A (Fig. 6a, structured) and grid B (6b, unstructured) which again consist of
60×50 elements. The results are plotted in Figures 10a and 10b. Comparing these
results with the results of the diagonal tensor case (Fig. 7a-7d) it is obvious that
there can be a huge influence of the off-diagonal effects. The infiltrating non-wetting
phase only spreads into the left side of the domain, whereas the spreading in the
diagonal case is symmetric. The results are further independent of the two different
kinds of grids chosen for these calculations.

5. Summary/Conclusions

Upscaling of two-phase flow in anisotropically structured porous media can result
in anisotropic large scale properties. It is common to use absolute permeability
tensors, but it has been shown that there exists also an anisotropy in the multi-phase
flow behavior. Thus, it is obvious that upscaling should also result in anisotropic
multi-phase properties, namely anisotropic relative permeabilities.

In this work we have considered the general case of an anisotropic, full tensor
phase permeability and have discussed the consequences for a splitting into the
product of absolute and relative phase permeability. The case of the product of
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(a) grid A

(b) grid B

Figure 10. Saturation distributions of example 3 on grid A (Fig.
6a) and B (Fig. 6b).

two full tensors (instead of a scalar and a tensor, what is usually assumed) requires
new concepts to solve the model equations numerically. We have introduced a new
numerical method using a cell centered finite volume technique with multipoint flux
approximation, which includes a special upwinding strategy to properly account for
the effects of the full tensor relative permeability functions.

For validation, different numerical experiments have been carried out and it has
been shown that the proposed method properly accounts for the anisotropy, also
in the case of a full (rotated) tensor. Further, the examples show that different
physical effects of two-phase flow, which means also capillary pressure and gravity
effects, are accounted for in a meaningful way and independent of the choice of the
(quadrilateral) numerical grid. The performance of the method is still sufficient,
although not as good as in the case of scalar relative permeabilities. The reason
is the more expensive upwinding procedure. However, the costs to determine the
upwind direction do not increase if the dimension is increased, which means the costs
of the upwinding become less important for three-dimensional problem settings.

If we think about a coarse scale model as a combination of an upscaling method
and a suitable numerical scheme, it is obvious that a wrong coarse-scale solution
compared to a given (averaged) fine-scale solution can either be introduced by
the upscaling or by the numerical scheme or by both of them. So far, upscaling
methods resulting in tensorial phase-dependent parameters could not be treated
numerically in a proper way. This makes it difficult to validate the quality of the
upscaling part alone because comparable results are those of the combined coarse
scale model. However, the development of a suitable numerical method can only be
the first step. The next step must be to use the method for a closer investigation
of different upscaling concepts, in order to obtain a better understanding of the
effects of anisotropic structures on different scales.
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