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A MULTILEVEL METHOD FOR SOLVING THE HELMHOLTZ

EQUATION : THE ANALYSIS OF THE ONE-DIMENSIONAL

CASE

S. ANDOUZE, O. GOUBET, AND P. POULLET

Abstract. In this paper we apply and discuss a multilevel method to solve a scattering problem.
The multilevel method belongs to the class of incremental unknowns method as in [10]; in this

work, the best performance was obtained with a coarsest grid having roughly two points per linear

wavelength. We analyze this method for a simple model problem following H. Yserentant [17]. In
this case, the main limitation to multilevel methods is closely linked to the indefiniteness of the

Helmholtz problem.
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1. Introduction

In this paper we are interested in applying the strategy introduced by H. Yserentant
[17] to solve an indefinite elliptic boundary value problem that comes from acoustics
[7], [6]. This problem, leading to a non-coercive bilinear form, reads as follows

−uxx − k2u = f, in ]0, 1[(1.1)

u(0) = 0,(1.2)

ux(1) = ıku(1).(1.3)

Here we adopt the notations ı =
√
−1, while the wavenumber k = ωL

c is a positive
real number (supposed larger than 1 in the sequel). Here some scaling has been
performed; this problem occurs when one considers a solution of the wave equation
utt − c2uxx = 0 that moves from the left to the right boundary, whose frequency
is ω and that satisfies some Sommerfeld radiation condition at +∞. For numerics,
one tracks this solution on a box [0, L], and after scaling in space, this condition
(1.3) replaces u(x) ∼ eıkx at +∞.

This one-dimensional problem belongs to exterior boundary value problems of
the form

−∆u− k2u = f in Ω(1.4)

u = g on Γ ⊂ ∂Ω(1.5)

Fu = 0 on ∂Ω(1.6)

where the operator F corresponds to the chosen absorbing boundary condition
(ABC), while the second equation depends of the (acoustic) properties of the scat-
terer. The Helmholtz problem at hand is expected to produce a solution with an
oscillatory behavior on the wavelength (λ = 2π/k) scale. The analysis conducted
hereafter should be extended to the two-dimensional or three-dimensional prob-
lem with an approximation of first order ABC without any other difficulties than
technical ones. Otherwise, if one considers the problem with Sommerfeld radiation
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365



366 S. ANDOUZE, O. GOUBET, AND P. POULLET

condition at infinity, one must use a different framework as weighted Sobolev spaces,
but working without the assumptions needed to validate the Poincaré inequality
might be hard.

Multilevel methods, like hierarchical basis [15, 16] for finite element approxi-
mation or incremental unknowns [12] in finite difference context, are effective for
the numerical solution of many partial differential equations. They seem being
almost so robust and powerful as classical multigrid methods for solving elliptic
partial differential equations [3]. Nevertheless, for large scales problems, multilevel
approaches do not apply straightforwardly and more involved method have to be
considered [9, 1, 8]. For some classes of problems like ours, it has been proven that
the effectiveness of classical multigrid methods often fails [13, 4, 5]. In particular,
the indefiniteness of the discrete problems is certainly the main reason for which
the coarsest grid must be not too coarse.

The multigrid methods by combining interpolation and pre and post-smoothing
catch step by step the harmonics of the solution whereas the multilevel methods
involve the projection of the solution onto a Krylov space in the multilevel basis.
Even if the approach of the latter looks quite far away from the classical multigrid
methods, we will prove that they have a similar limitation onto the sparsity of the
coarsest level of grid for indefinite discrete problems (this result has been pointed
out in [10]).

For the Helmholtz problem under consideration, despite the fact that the asso-
ciated bilinear form is not positive definite, one can exhibit a large subspace W of
the energy space with a finite co-dimension (which varies as k4), and such that the
bilinear form restricted to W becomes coercive. Hence, dealing with finite element
multilevel approximation of the equation, we develop the strategy introduced by H.
Yserentant to trap the bad behavior of the bilinear form on a finite element space
corresponding to a coarse grid approximation of the equation, and then to proceed
to multilevel analysis on finer grids. The significant drawback of our method is
that it does not apply to very high frequency problems since the magnitude of the
coarse grid behaves as k4.

The outline of this paper is as follows. In section 2, we introduce the one-
dimensional model problem and study its properties. The section 3 is devoted to
its approximation by multilevel finite element (which is similar to the incremental
unknowns in finite differences). One shows in particular the influence of the indef-
initeness of the problem onto the discrete problem. Computations of the condition
number of the stiffness matrix for the hierarchical basis are given in section 4, in
agreement with the analysis.

Let us complete this introduction by some notations. To treat the absorbing
boundary condition (1.3), we need to use complex valued functions. Furthermore,
to adapt the guidelines introduced in [17] to complex valued functions, we consider
L2(0, 1) the real-Hilbert space whose scalar product is

(u, v) = Re

∫ 1

0

u(x)v(x)dx = Re

∫
uv̄dx.(1.7)

Note that one omits to write generic constant that may vary from one line to another
one, but that is independent of k and of h0, h, denote respectively the mesh size
of the coarse and fine grid approximation of the problem. We also use the space
V = {u ∈ L2(0, 1);ux ∈ L2(0, 1) and u(0) = 0}. For the sake of conciseness, we
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denote respectively ‖u‖ = (u, u)
1
2 , ((u, v)) = (ux, vx) and |u| = ‖ux‖. It is well-

known that V equipped with the Poincaré semi-norm |.| is an Hilbert space and
that the following estimates are valid for any u in V

‖u‖+ ‖u‖L∞(0,1) ≤ |u| .(1.8)

Let us recall that the constants are still replaced by one, because the use of the
best constants in the Poincaré inequality and the Sobolev embedding is not of the
main interest here.

2. Model problem analysis

It is a standard procedure to prove that (1.1)-(1.2)-(1.3) is equivalent to solve
the following variational formulation:
find u in V such that, for all v in V ,

(2.1)

∫
uxvxdx− ıku(1)v(1)− k2

∫
uvdx =

∫
fvdx.

or, equivalently (by using v or ıv as test functions),

(2.2) b(u, v) ≡ ((u, v)) + Im(ku(1)v(1))− k2(u, v) = (f, v),

since we chose to deal with a real-Hilbert space.
We now state and prove

Proposition 2.1. The bilinear form b(., .) defined by (2.2) is continuous on V ×V .

Proof. Due to inequality (1.8), we have, for all u, v ∈ V ,

b(u, v) ≤ |u| |v|+ k ‖u‖L∞(0,1) ‖v‖L∞(0,1) + k2 ‖u‖ ‖v‖

≤ (1 + k + k2) |u| |v| .
(2.3)

�

Actually, b is not coercive but satisfies the following Gärding inequality (that
turns out to be an equality here). For all u in V

(2.4) b(u, u) = |u|2 − k2 ‖u‖2 .

Last not least, we prove

Proposition 2.2. For f ∈ L2(0, 1) and k > 0, the problem (2.2) has a unique
solution.

Proof. We give a short proof that relies on Fredholm alternative (see [2]). Set A
the unbounded operator defined as (Au, v) = ((u, v)) for any u, v in V . A is onto
and has a compact inverse. Set (Bu, v) = −kImu(1)v̄(1) + k2(u, v). Then B is
a compact perturbation of A, i.e A−1B is a compact operator. Hence either the
equation Au−Bu = f has a unique solution for any f or the homogeneous equation
Au − Bu = 0 has nonzero solutions. Let us check that the latter assertion is not
valid. If b(u, v) = 0 for all v then chosing v = ıu leads to u(1) = 0. Hence u satisfies
−uxx−k2u = 0 in D′(0, 1) supplemented with u(0) = u(1) = 0. This operator does
not have negative eigenvalues. Then u = 0. Then we know that there exists a
unique u ∈ V solving the equation. �
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Remark 2.3. Following [7], we know that the solution to (2.2) reads

(2.5) u(x) =

∫ 1

0

K(x, s)f(s)ds,

where K(x, s) = 1
ke

ık max(x,s) sin(kmin(x, s)). As a consequence for u, the solution
to (2.2), we have

(2.6) k ‖u‖+ |u| ≤ |f |.

We also have

Proposition 2.4. There exists a unique solution to the following adjoint problem

(2.7) Find u ∈ V such that, ∀v ∈ V, b(v, u) = (f, v).

Moreover the solution of (2.7) satisfies

(2.8) k ‖u‖+ |u| ≤ |f |.

Proof. The adjoint problem shares the same properties as the original problem. It
is related to b∗(u, v) = ((u, v)) − kIm(u(1)v̄(1)) − k2(u, v) = (f, v). The solution

is given by u(x) =
∫ 1

0
K(x, s)f(s)ds. The proof of the Proposition follows readily

(see [6] section 4.2). �

3. A multilevel finite element approximation

Following preliminary definitions of the previous section, we introduce the Galerkin
finite element approximation of our model problem with piecewise linear functions.
Then we introduce a multilevel decomposition using hierarchical basis of our prob-
lem and we prove some results concerning our indefinite elliptic boundary value
problems.

Let us recall for reader convenience some results from [7]. Let the stepsize
h = 1/(n + 1) for n an integer, and let on the interval [0, 1] a uniform mesh of
n + 2 nodes {xj = jh, j = 0, . . . , n + 1}. We define the space V h ⊂ V as the set
of functions of V such that their restriction to each interval [xj−1, xj ] is a linear
function.

The approximate model problem is then:

(3.1) find uh ∈ V h such that b(uh, vh) = (fh, vh) for all vh ∈ V h.

We follow here the strategy in [17] (see also [14, 9]). Let us introduce now
more precisely the multilevel finite element approximation by using linear basis
functions in 1D. Let P1 denote the space spanned by these functions. For a more
general setting in higher dimension, one can consider a family of nested uniform
triangulations [15]).

In the case of the interval [0, 1], we start with an initial coarsest triangulation
τ0 whose mesh size is h0 gathering the subintervals K0

j = [x0
j−1, x

0
j ] of the nodes

{0 = x0
0, . . . , x

0
n0 = 1}. Each interval K0

j is divided into two subintervals K1
l and

K1
l+1 which compose the τ1 and the process is recursively applied until the last level

d. Then we introduce the space

V h
0 = {vh ∈ C0([0, 1]), vh(0) = 0, and vh/K0

j
∈ P1, j = 0, . . . , n0},

and if Kl
j denotes the (j + 1)-th subinterval of the triangulation τl, we introduce

the space

V h
l = {vh ∈ C0([0, 1]), vh(0) = 0, and vh/Kl

j
∈ P1, j = 0, . . . , nl}.
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Owing to the construction of the nested subintervals, one recovers that h0 = 2dh
and that

V h
0 ⊂ V h

1 ⊂ · · · ⊂ V h
d−1 ⊂ V h

d .

One defines the interpolation operator relative to the j-th level of subdivision by

∀u ∈ C0([0, 1]), Iju ∈ V h
j Iju(x) = u(x), for allx ∈ {xj0, . . . , x

j
nj}.

Thus, we obtain the multilevel decomposition of the approximation space V h = V h
d ,

∀uh ∈ V h, uh = I0uh +

d∑
j=1

(Ijuh − Ij−1uh).

Furthermore, as for all uh ∈ V h,

∀x ∈ {xl0, . . . , xlnl}, (Ijuh − Ij−1uh)(x) = 0, for l ≤ j − 1,

one obtains straight the decomposition of V h
d in a direct sum

V h = V h
0 ⊕Wh

1 ⊕Wh
2 ⊕ · · · ⊕Wh

d , where Wh
j = V h

j+1 \ V h
j .

We now state

Theorem 3.1. Assume that the coarse mesh-size h0 satisfies h0k
4 is small enough.

Introduce (V h
0 )⊥ the orthogonal complementary of V h

0 with respect to b, i.e (V h
0 )⊥ =

{v ∈ V ; b(uh0 , v) = 0, for all uh0 ∈ V h
0 }. Then b/(V h

0 )⊥ is coercive. Moreover if
Ah denotes the stiffness matrix defined by b(uh, vh) = (Ahuh, vh) associated to the
problem under consideration, then preconditioning the underlined linear system with
the hierarchical basis associated to the multilevel finite element splitting leads to a
new system of size n = 1

h that separates into a well-conditioned elliptic system and

an invertible (non elliptic system) of size 1
h0

.

Proof. The proof of this Theorem is based on some results of [17]. The assumption
requires that the size of the coarse grid must be sufficient to catch the oscillations
characteristic of the solution of the Helmholtz problem. Throughout the proof we
assume without loss of generality that k ≥ 1.

The first step is devoted to prove that (V h
0 )⊥ satisfies a enhanced Poincaré

inequality and intensively uses the so-called Aubin-Nitsche trick. Consider u in
(V h

0 )⊥. Consider ϕ that solves the adjoint problem, where the right hand side f is
replaced by u,

(3.2) ∀v ∈ V, b(v, ϕ) = (u, v).

Specifying v = u in the previous equality and using the orthogonality property
leads to

(3.3) ∀ϕh
0 ∈ V h

0 , ‖u‖
2

= b(u, ϕ− ϕh
0 ).

By standard finite element theory we know that there exists a constant c∗ that does
not depend on h such that

(3.4) inf
ϕh

0∈V h
0

∣∣ϕ− ϕh
0

∣∣ ≤ c∗h0 ‖ϕxx‖ .

Then, using the continuity assumption on b we obtain

(3.5) ‖u‖2 ≤ (1 + k + k2) |u|
∣∣ϕ− ϕh

0

∣∣ ≤ c∗h0(1 + k + k2) |u| ‖ϕxx‖ .
Hence, since ‖ϕxx‖ ≤ ‖u‖+ k2 ‖ϕ‖ ≤ (1 + k) ‖u‖, due to the estimate (2.8), we

have that

(3.6) ‖u‖ ≤ 6c∗h0k
3 |u| .
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Consequently, for u in (V h
0 )⊥,

(3.7) b(u, u) = |u|2 − k2 ‖u‖2 ≥ (1− 36c2∗h
2
0k

8) |u|2 .

Hence the assumption reads 6c∗h0k
4 ≤

√
1
2 where c∗ is the best constant involved

in the P 1 finite element result.
We now move to the proof of the second part of the Theorem. Consider the

hierarchical basis associated to the multilevel decomposition. We denote such basis

as ψ1, ...ψm, ...ψn where ψ1, ...ψm is a basis for the coarse space V h
0 ; hence m ∼ 1

2dh
,

n ∼ 1
h

.

Solving the approximate problem b(uh, vh) = (f, vh), for all vh in V h, amounts
to solve the linear system AU = F where A is the matrix whose entries are b(ψk, ψj)
and where F is the vector Fj = (f, ψj). We split this matrix into blocks as

A =

(
A11 A12

A21 A22

)
,

where A11 is a m×m matrix corresponding to the restriction to the bilinear space to
the coarse space. Hence solving AU = F requires to solve (with obvious notations)
the system

A11u1 +A12u2 = f1,

A21u1 +A22u2 = f2.
(3.8)

To begin with we prove that the m×m matrix A11 is invertible. This is equivalent
to prove that the discrete problem

(3.9) ∀vh0
∈ V h

0 , b(uh0
, vh0

) = (f, vh0
),

has a unique solution. By denoting w0 the difference between two solutions uh0

and ũh0
of the problem (3.9), w0 belongs to (V h

0 )⊥.

Since 0 = b(w0, w0) ≥ 1
2 |w0|2, then w0 = 0. Therefore A11 has null kernel and thus

is invertible.
Solving AU = F is then equivalent to solve

(A22 −A21A
−1
11 A12)u2 = f2 −A21A

−1
11 f1,

A11u1 = f1 −A12u2.
(3.10)

Hence the second equation in (3.10) has small size with respect to the problem
under consideration, while the first one requires to invert the Schur matrix R =
A22 −A21A

−1
11 A12 which is symmetric and positive definite. Following [17] we now

compute its condition number.
The vector whose entries are (−A−1

11 A12u2, u2)T corresponds to a vector that
belongs to (V h

0 )⊥. Then, denoting the scalar product in Rn as u.v, we first obtain
the equality

(3.11) Ru2.u2 = A

(
−A−1

11 A12u2

u2

)
.

(
−A−1

11 A12u2

u2

)
= b(u− uh0

, u− uh0
).

Therefore, due to (2.3), (3.7) and the assumption k ≥ 1, we recover that

(3.12)
1

2
|u− uh0

|2 ≤ Ru2.u2 ≤ 3k2 |u− uh0
|2 .

Finally, we obtain that the condition number κ(R) = 6k2κ(Ã0) where Ã0 is the
matrix of the usual Laplacian preconditioned by the hierarchical basis. As we know
from [15] that κ(Ã0) = O(d2) where d is the number of refinement levels, the proof
is complete. �
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4. Numerical results

The analysis which has been given before, is confirmed by the following numerical
results. It is well known that the number of iterations required for convergence is
nearly proportional to the square root of the condition number of the stiffness
matrix; hence we study this last quantity for the model problem.

At the left picture of Fig. 1, we first observe the behavior of the condition num-
ber as the discretization is refined while the wavelength is kept fixed. Then, at the
right picture, we plot the condition number when the number of mesh points grows
proportionally with the wavelength. The curves of Fig.1 (a) represent the varia-
tion of condition number of the stiffness matrix which is obtained after successive
application of grid level of hierarchical basis (in other terms, setting a fixed value
of the wavenumber, and growing the coarsest mesh h0 by doubling its size). And
the result is that the condition number is improved only in the begining and up
to the limit of the coarse grid mesh reaches 0.3λ. Beyond this point, no further
improvement is observed and the condition number is getting even worse.

Similar results for the second type of refinements is obtained Fig.1 (b). Hier-
archical basis provide a preconditioner which performs well as long as the coarse
mesh is less or equal than λ/4.
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Figure 1. Condition number for the 1D Helmholtz equation on a
]0, 1[ domain, vs the coarse mesh size for k = 16 and various fine
mesh sizes (a), and using kh = 4 versus the coarse mesh size for
various values of the wavenumber (b).

5. Concluding remarks

Numerical results of Helmholtz problems in 2D showed that incremental un-
knowns preconditionning is an adapted and robust technique, but only when the
ratio between the coarse mesh and the wavelength is limited [10]. In this paper,
we develop an analysis of a 1D Helmholtz model problem to check the behavior of
our multilevel approach. The results which are obtained for this model problem
are similar to these of the 2D acoustic scattering one, explaining that this limit is
linked to the coercivity default of the bilinear form associated to the problem. More
specifically, the dimension of the coarsest approximation space must be sufficient
to catch the oscillations of the solutions, providing a bilinear form coercive on the
orthogonal of the coarsest approximation space. Therefore we acknowledge that
our method loses efficiency for very high frequency problems. An extension to this
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work shall treat the equation-based interpolation technique introduced recently in
[11].
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plications, Campus de Fouillole, BP 250, 97159 Pointe-à-Pitre cedex, Guadeloupe FWI
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