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MONOLITHIC AND PARTITIONED FINITE ELEMENT

SCHEMES FOR FSI BASED ON AN ALE DIVERGENCE-FREE

HDG FLUID SOLVER AND A TDNNS STRUCTURAL SOLVER

GUOSHENG FU

Abstract. We present novel (high-order) finite element schemes for the fluid-structure interaction

(FSI) problem based on an arbitrary Lagrangian-Eulerian divergence-free hybridizable discontinu-

ous Gakerkin (ALE divergence-free HDG) incompressible flow solver, a Tangential-Displacement-
Normal-Normal-Stress (TDNNS) nonlinear elasticity solver, and a generalized Robin interface

condition treatment. Temporal discretization is performed using the high-order backward differ-

ence formulas (BDFs). Both monolithic and strongly coupled partitioned fully discrete schemes
are obtained. Numerical convergence studies are performed for the flow and elasticity solvers,

and the coupled FSI solver, which verify the high-order space-time convergence of the proposed

schemes. Numerical results on classical two dimensional benchmark problems also showed good
performance of our proposed methods.

Key words. Divergence-free HDG, ALE, FSI, TDNNS, generalized Robin condition, partitioned

scheme.

1. Introduction

Fluid-structure interaction (FSI) describes a multi-physics phenomenon that in-
volves the highly non-linear coupling between a deformable or moving structure and
a surrounding or internal fluid. There has been intensive interest in numerically
solving FSI problems due to its wide applications in biomedical, engineering and
architecture fields [18,32,48].

Based on different temporal discretization strategies, the numerical procedure
to solve FSI problems can be broadly classified into two approaches, see, e.g., [76]:
the monolithic approach and the partitioned approach. The monolithic approach
[5,40,49,65,73,95] solves for the fluid flow and structural dynamics simultaneously
by a unified algorithm. Since the interfacial conditions are automatically satisfied in
the solution procedure, monolithic schemes allow for more rigorous analysis of dis-
cretization and solution techniques, and are usually more robust than partitioned
schemes. On the other hand, the partitioned approach [30, 34, 66] gains compu-
tational efficiency over the monolithic approach by solving the fluid and structure
sub-problems separately in a sequential manner, usually with the help of a proper
explicit coupling condition on the fluid-structure interface to separate the fluid and
structure solvers. But the design of efficient partitioned schemes that produce sta-
ble and accurate results remains a challenge, especially when the fluid and structure
have comparable densities, as it happens in hemodynamic applications, due to nu-
merical instabilities known as the added mass effect [17]. The design and analysis
of partitioned numerical methods that address the added mass effect remains an
active research area in the past decade, see, e.g., [1, 3, 4, 10, 14, 39] and references
cited therein.

The finite element method is one of the most popular choices for the numerical
simulation of FSI problems [6, 11, 12, 86]. Of particular relevance to the current
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contribution is the class of discontinuous Galerkin (DG) finite element schemes,
which has gained increased interest in the computational fluid dynamics community
[21,27,29] due to their distinctive features, such as the ability to achieve high-order
accuracy on complex geometries using unstructured meshes and meshes with general
polygonal/polyhedral elements, the flexibility in performing h- and p-adaptivity,
the local conservation property, and the upwinding stabilization mechanism for
stabilizing dominant convection effects.

One of the major difficulties in nonlinear FSI problems stems from the movement
of the fluid domain, which makes these problems computationally very challenging,
where the major bottleneck is a robust fluid flow solver on deforming domains.
Various techniques have been introduced for fluid problems with moving boundaries
and interfaces, which include the interface-tracking approaches, e.g., the arbitrary
Lagrangian-Eulerian (ALE) method [31,50] and the space-time method [59,85,89]
where the computational mesh tracks and fits with the moving interfaces, and the
interface-capturing approaches, e.g., the immersed boundary method [60, 72], the
immersed finite element method [57,94], the fictitious domain method [46], and the
extended/generalized finite element method [19,41], where the computational mesh
is static and does not fit to the moving interfaces. The current work focuses on the
ALE approach for the fluid solver; see, e.g., [38, 58, 70] for ALE-DG schemes for
compressible flow problems, and [36,90] for incompressible flow problems.

There have been a few ALE-DG fluid solver based schemes for FSI problems,
see, e.g., [37,42,71] where the nonlinear structure equations were discretized using
the standard conforming Galerkin (CG) method, and [54, 90] where the structure
equations were also discretized using DG methodologies. We also cite the related
work [2] on space-time DG FSI solvers. One major criticism of DG schemes for prob-
lems involve linear system solvers is their associated high computational cost when
compared to standard CG schemes, mainly due to a larger number of (element-
based) degrees of freedom (DOFs) and the element-element DOFs couplings in the
resulting linear system problem. The hybridizable discontinuous Galerkin (HDG)
methods [20, 25, 64] were introduced to try to address this criticism. Basically,
HDG schemes introduce facet-based DOFs on the mesh skeleton so that element-
element DOFs couplings in the standard DG schemes are replaced by facet-element
couplings, which result in a reduced globally coupled linear system involves facet-
based DOFs only after a static condensation procedure that locally eliminates the
(local) element-based DOFs. Hence the computational cost of HDG schemes are
usually much lower than that of the DG schemes, especially for high-order approx-
imations [53, 93]. Besides being computationally cheaper, the HDG methods also
produce more accurate approximations than DG methods for certain problems due
to their superconvergence property [22–24,74].

The first HDG scheme for FSI problems was introduced in [81], where the au-
thors combined the HDG incompressible flow and elasticity solvers [64] with a
monolithic ALE formulation. The method was further improved in [82] with a re-
duced computational cost that uses a more efficient elasticity HDG solver and a
linear finite element approximate for the ALE map. More recently, an ALE parti-
tioned scheme [55] based on an HDG formulation for the compressible fluid and a
CG formulation for the structure has been proposed for FSI problems with a weakly
compressible fluid.

For incompressible flow problems, numerical discretizations that yield point-wise
divergence-free velocity approximations have attracted increased attention [51], due
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to their exact mass conservation property. DG schemes with strongly mass conser-
vative velocity approximations were initially introduced in [26], where the key idea
is to use an H(div)-conforming velocity approximation that guarantees a point-wise
divergence-free velocity approximation. The H(div)-conforming DG schemes has
been extended to H(div)-conforming HDG schemes [28, 45, 56], where additional
DOFs on the mesh skeleton (facets) are used to approximate the tangential com-
ponent of velocity field. Very recently, the H(div)-conforming HDG scheme for in-
compressible flows has been applied to moving domain problems [43,61] and to FSI
problems [63] using the ALE framework. In particular, in [63] the authors discussed
in details the first realization of ALE formulation within H(div)-conforming finite
elements that use the Piola mapping. Therein, the structure solver was discretized
using the standard CG method. We also mention two recent publications [16, 52]
that promote the use of strongly mass conserving fluid solvers for FSI problems
within the immersogeometric analysis framework.

In this contribution, we present a novel HDG-based scheme to solve the nonlinear
FSI problem modeled by the incompressible Navier-Stokes equations in the fluid
domain and the equations for nonlinear hyperelasticity in the structure domain.
The fluid problem is discretized on the moving domain with an ALE divergence-free
HDG scheme, and the structure problem is discretized using a hybridized tangential-
velocity-normal-normal-stress (TDNNS) scheme recently introduced in [62]. The in-
terface coupling is treated via a generalized Robin condition following [8,13,15,79],
and both monolithic and partitioned fully discrete schemes are presented. We
further use high-order backward difference formulas (BDFs) for the temporal dis-
cretization. Salient features of the the proposed scheme include

• Guaranteed exactly divergence-free fluid velocity approximation through-
out on the moving mesh with the use of the ALE divergence-free HDG
solver for the fluid sub-problem.

• First realization of TDNNS structure solvers for FSI problems.
• First application of the generalized Robin interface condition in combina-
tion with the proposed advanced finite element discretizations, which lead
to a robust monolithic scheme and a robust strongly coupled partitioned
scheme.

• A reduced global linear system problem for facet-based DOFs only in each
linearization step, resulted from the static condensation procedure that
eliminates all element-based DOFs.

• High-order spatial and temporal accuracy.

The rest of the paper is organized as follows. In Section 2, we introduce the ALE
divergence-free HDG scheme for the moving domain incompressible Navier-Stokes
equations. In Section 3, we introduce TDNNS scheme for the equations of nonlinear
elasticity. In Section 4, we introduce the fully discrete monolithic and partitioned
schemes for the FSI problem by combing the spatial discretizations in the previous
two sections, where special attentions are paid to the interface treatment and ALE
mapping construction. Numerical results are presented in Section 5. We conclude
in Section 6.

2. The ALE divergence-free HDG scheme for incompressible Navier-
Stokes

In this section, we introduce the ALE divergence-free HDG scheme for the in-
compressible Navier-Stokes equations. We largely follow the work [43,63] to derive
the method.
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2.1. The ALE-Navier-Stokes equations. Consider the Navier-Stokes equa-

tions on a moving domain Ωf
t ⊂ Rd, d ∈ {2, 3}, for t ∈ [0, T ], given by a continuous

ALE map [65,75]:

ϕt : Ω
f
0 ⊂ Rd −→ Ωf

t , x(x0, t) = ϕt(x0), ∀t ∈ [0, T ],(1)

where Ωf
0 is the initial (bounded) fluid domain at time t = 0 with possibly curved

boundaries. In this section we assume that the ALE map ϕt in (1) is apriori given
to simplify the presentation.

The Navier-Stokes equations in ALE non-conservative form [65,75] are given as
follows:

ρf
∂uf

∂t

∣∣∣∣
x0

+ ρf (uf − ωf ) · ∇xu
f − divx(2µ

fDx(u
f )− pfI) = ρfff , in Ωf

t × [0, T ]

(2a)

divxu
f = 0, in Ωf

t × [0, T ](2b)

where Dx is the symmetric strain rate tensor

Dx(u) =
1

2
(∇xu+ (∇xu)

T ),

I is the identity tensor, uf (x, t) is the fluid velocity field, pf (x, t) is the pressure, ρf

is the (constant) fluid density, µf is the (constant) coefficient of dynamic viscosity,

ff is the body forces, and

ωf (x, t) =
∂x

∂t

∣∣∣∣
x0

=
∂ϕt

∂t
◦ ϕ−1

t (x)(3)

is the domain velocity. We assume the Navier-Stokes equations (2) are further
equipped with the following homogeneous Dirichlet boundary condition:

uf (x, t) = 0, ∀x ∈ ∂Ωt, t ∈ [0, T ].(4)

2.2. Mesh and finite element spaces.

2.2.1. Mesh and mappings. Let Tf,0
h := {K0} be a conforming simplicial trian-

gulation of the initial fluid domain Ωf
0 ⊂ Rd, where the element K0 = Φ0

K(K̂) is a
mapped simplex from the reference simplex element

K̂ := {x̂ = (x̂1, · · · , x̂d) : x̂i ≥ 0, ∀1 ≤ i ≤ d,

d∑
i=1

x̂i ≤ 1.}

We assume the mapping Φ0
K ∈ [Pm(K̂)]d, where Pm(K̂) is the space of polynomials

of degree at most m ≥ 1 on the reference element K̂. Moreover, let Tf,t
h := {Kt =

ϕt(K
0)} be the mapped triangulation of the deformed domain Ωf

t at time t, where
ϕt is the ALE map given in (1). Denoting the composite mapping Φt

K = ϕt ◦Φ0
K :

K̂ → Kt, we have Kt = Φt
K(K̂). We assume the mesh T

f,t
h is regular in the

sense that no elements with a degenerated or negative Jacobian determinant exist.
Without loss of generality, we further assume the ALE map (1) is a continuous
piecewise polynomial of degree m:

ϕt ∈ S
m
h := {v ∈ [H1(Ωf

0 )]
d : v ◦ Φ0

K(x̂) ∈ [Pm(K̂)]d, ∀K0 ∈ T
f,0
h }.(5)

For the reference d-dimensional simplex element K̂, we denote ∂K̂ as its bound-

ary, which consists of (d + 1) boundary facet {Êl := Ψ̂l(Ê)}d+1
l=1 , where Ψ̂l is the
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affine mapping from the reference (d − 1)-dimensional simplex element Ê to the

boundary facet Êl, where

Ê := {ẑ = (ẑ1, · · · , ẑd−1) : ẑi ≥ 0, ∀1 ≤ i ≤ d− 1,

d−1∑
i=1

ẑi ≤ 1.}

We need the following Jacobian matrices and their determinants:

F t
K :=∇x̂Φ

t
K ∈ Rd×d, J t

K := det(F t
K),(6a)

F t
0 :=∇x0ϕt ∈ Rd×d, J t

0 := det(F t
0),(6b)

F̂l :=∇ẑΨ̂l ∈ Rd×(d−1), Ĵl :=

√
det
(
(F̂l)T F̂l

)
.(6c)

A simple application of the chain rule implies that

F t
K = F t

0 F
0
K , J t

K = J t
0J

0
K .

We denote ∂Tf,t
h := {∂Kt} as the collection of element boundaries of the mesh

T
f,t
h , where ∂Kt = {Et

K,l}
d+1
l=1 is the boundary of element Kt, with Et

K,l := Φt
K(Êl)

being the mapped facet. Let n̂l be the normal direction of the reference boundary

facet Êl, and n
t
K,l be the normal direction of the physical boundary facet Et

K,l.
There holds

nt
K,l ◦ (Φt

K)−1 =
(F t

K)−T n̂l

∥(F t
K)−T n̂l∥

.

We denote E
f,t
h := {Et} as the mesh skeleton of Tf,t

h , which consists of all the

facets. Here Et := Ψt
E(Ê) with the mapping Φt

E constructed by composition: for
a facet Et = Et

T,l that is the l-th boundary facet of an element Kt, we denote

Ψt
E : Ê → Et as

Ψt
E := Φt

K ◦ Ψ̂l.

We note that if the facet Et happens to be an interior facet which is also the m-th

boundary facet of another element K̃, then there holds

Ψt
E = Φt

K ◦ Ψ̂l = Φt
K̃
◦ Ψ̂m.

Hence, the facet mapping Ψt
E is uniquely determined as it does not depend on

which associated volume element of Et is used. We now denote the following
surface Jacobian matrix, its Moore-Penrose pseudo inverse and determinant for the
mapping Ψt

E :

F t
E := ∇ẑΨ

t
E ∈ Rd×(d−1), (F t

E)
−1 :=

(
(F t

E)
TF t

E

)−1
(F t

E)
T ∈ R(d−1)×d,

J t
E :=

√
det ((F t

E)
TF t

E).

2.2.2. The finite element spaces. We first introduce the following (discontinu-

ous) finite element spaces on the mesh T
f,t
h :

W k,f
h := {w ∈ L2(Ωf

t ) : w|Kt = ŵ ◦ (Φt
K)−1, ŵ ∈ Pk(K̂), ∀Kt ∈ T

f,t
h },(7a)

V k,f
h := {v ∈ [L2(Ωf

t )]
d : v|Kt =

1

J t
K

F t
K

(
v̂ ◦ (Φt

K)−1
)
, v̂ ∈ [Pk(K̂)]d,(7b)

∀Kt ∈ T
f,t
h },

Σk,f
h := {σ ∈ [W k,f

h ]d×d : σ is symmetric}.(7c)
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Note that the standard pull-back mapping is used to define the scalar finite element

space W k,f
h and the symmetric tensor finite element space Σk,f

h , which will be

used to approximate the pressure field pf , and the strain rate tensor Dx(u
f ),

respectively. While the Piola mapping is used to define the vector finite element

space V k,f
h , which will be used to approximate the fluid velocity uf . The use of

Piola mapping in V k,f
h ensures a strong mass conservation for the HDG scheme (9)

on curved meshes, see Lemma 2.1 below.
We also need the following (hybrid) finite element spaces on the mesh skeleton

E
f,t
h :

W̃ k,f
h :={w̃ ∈ L2(Ef,t

h ) : w̃|Et = ŵ ◦ (Ψt
E)

−1, ŵ ∈ Pk(Ê), ∀Et ∈ E
f,t
h },(7d)

Ṽ
k,f

h :={ṽ ∈ [L2(Ef,t
h )]d : ṽ|Et = tng

(
(F t

E)
−T v̂ ◦ (Ψt

E)
−1
)
, v̂ ∈ [Pk(Ê)]d,(7e)

∀Et ∈ E
f,t
h },

where tng(v)|E := v − (v · nE)nE denotes the tangential component of the vector
v on the facet E, whose normal direction is nE . Note that the normal component

of functions in Ṽ
k,f

h vanishes on the whole mesh skeleton. Here the standard pull-

back mapping is used for the scalar skeleton space W̃ k,f
h , which will be used to

approximate the normal-normal component of the stress, n · (2µfDx(u
f )− pfI)n,

on the mesh skeleton, and the covariant mapping is used for the vector skeleton

space Ṽ
k,f

h , which preserves tangential continuity and will be used to approximate
the tangential component of fluid velocity, tng(uf ), on the mesh skeleton.

2.3. The divergence-free HDG scheme: spatial discretization. In this sub-
section, we focus on the spatial discretization of the equations (2). We work on the

physical deformed domain Ωf
t at a fixed time t ∈ [0, T ]. To introduce the scheme,

we first reformulate the equations (2) to the following first-order system:

ρf
∂uf

∂t

∣∣∣∣
x0

+ ρf (divxω
f )uf + divx(ρ

f (uf − ωf )⊗ uf − σf ) = ρfff ,(8a)

σf − (2µfϵf − pfI) = 0,(8b)

ϵf −Dx(u
f ) = 0,(8c)

divxu
f = 0.(8d)

Three local variables (defined on the mesh T
f,t
h ), namely, the pressure pfh, velocity

uf
h, and strain rate tensor ϵfh, and two global variables (defined on the mesh skeleton

E
f,t
h ), namely the normal-normal component of the stress σ̃f

h , and the tangential

component of the velocity ũf
h will be used in our scheme. We use polynomials of

degree k − 1 for the pressure approximation, and polynomials of degree k ≥ 1 for
the other variables, i.e.,

pfh ∈ W k−1,f
h , ϵfh ∈ Σk,f

h , uf
h ∈ V k,f

h , σ̃f
h ∈ W̃ k,f

h , ũf
h ∈ Ṽ

k,f

h ,

The spatial discretization of our HDG scheme for the equations (8) with homoge-

neous Dirichlet boundary conditions (4) reads as follows: Find (pfh, ϵ
f
h,u

f
h, σ̃

f
h , ũ

f
h) ∈
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W k−1,f
h ×Σk,f

h × V k,f
h × W̃ k,f

h × Ṽ
k,f

h with ũf
h|Γf

h
= 0 such that(

ρf
∂uf

h

∂t

∣∣∣∣∣
x0

,vfh

)
T

f,t
h

+
(
ρf (divxω

f )uf
h,v

f
h

)
T

f,t
h

(9a)

−
(
ρf (uf

h − ωf )⊗ uf
h,∇xv

f
h

)
T

f,t
h

+ 2µf
(
ϵfh,∇xv

f
h

)
T

f,t
h

−
(
pfh,divxv

f
h

)
T

f,t
h

−
〈
F̃ luxv − F̃ luxc, v

f
h

〉
∂Tf,t

h

=
(
ρfff ,vfh

)
T

f,t
h

,

2µf
(
ϵfh −Dx(u

f
h),G

f
h

)
T

f,t
h

+ 2µf
〈
tng(uf

h − ũf
h),G

f
hn
〉
∂Tf,t

h

= 0,

(9b)

(
divxu

f
h, q

f
h

)
T

f,t
h

= 0,(9c) 〈
uf
h · n, τ̃fh

〉
∂Tf,t

h

= 0,(9d) 〈
F̃ luxv − F̃ luxc, tng(ṽ

f
h)
〉
∂Tf,t

h

= 0,(9e)

for all (qfh ,G
f
h,v

f
h, τ̃

f
h , ṽ

f
h) ∈ W k−1,f

h × Σk,f
h × V k,f

h × W̃ k,f
h × Ṽ

k,f

h with ṽfh|Γf
h
=

0, where we write (η, ξ)
T

f,t
h

:=
∑

Kt∈T
f,t
h

∫
Kt η · ξdx as the volume integral, and

⟨η, ξ⟩∂Tf,t
h

:=
∑

Kt∈T
f,t
h

∫
∂Kt η · ξds as the element-boundary integral. Here the

viscous and convective numerical fluxes are defined as follows:

F̃ luxv := σ̃f
hn+ 2µf tng(ϵfhn)− αf tng(uf

h − ũf
h),(9f)

F̃ luxc := ρf (uf
h − ωf ) · n

(
(uf

h · n)n+ tng(ǔf,up
h )

)
,(9g)

where tng(uf,up
h ) is the following upwinding flux in the tangential direction:

tng(ǔf,up
h ) :=


tng(uf

h) if (uf
h −wf ) · n > 0,

tng(ũf
h) if (uf

h −wf ) · n ≤ 0,

and the (positive) stabilization parameter αf is taken to be αf = 2µf .
The following result shows that the fluid velocity approximation is globally di-

vergence free.

Lemma 2.1. The semi-discrete scheme (9) produces a globally divergence-free
velocity approximation which has a vanishing normal component on the domain

boundary, i.e., uf
h ∈ H0(div; Ω

f
t ), and divx u

f
h = 0.

Proof. To simplify the notation, we suppress the superscript t in the following

derivation. Since functions in the finite element space V k,f
h are transformed via

the Piola mapping, we have uf
h|K = 1

JK
FK

(
û ◦ (ΦK)−1

)
for some function û ∈

[Pk(K̂)]d. It is well-known [7] that the following property holds for Poila transfor-
mations:

divx(u
f
h) ◦ ΦK =

1

JK
divx̂(û),

which implies that∫
K

divx(u
f
h) q̂ ◦ (ΦK)−1dx =

∫
K̂

divx̂(û)q̂ dx̂,
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for any function q̂ on the reference element K̂. Since we have divx̂(û) ∈ Pk−1(K̂),

by the definition of the scalar finite element space W k−1,f
h , we can take the test

function qfh ∈ W k−1,f
h in (9c) such that qfh |K = divx̂(û) ◦ (ΦK)−1 and qfh = 0

elsewhere, which leads to

0 =

∫
K

divx(u
f
h) divx̂(û) ◦ (ΦK)−1 dx =

∫
K̂

(divx̂(û))
2 dx̂.

Hence,

divx(u
f
h)|K =

1

JK
divx̂(û) ◦ (ΦK)−1 = 0.(10)

Next, let us prove normal continuity of uf
h across interior element boundaries.

Let Eij ∈ E
f,t
h be an interior facet which is the l-th facet, EKi,l, of element Ki, and

the m-th facet, EKj ,m, of element Kj . Restricting the equation (9d) to the facet
Eij , we have

∫
EKi,l

(uf
h · nKi,l)τ̂ ◦ (ΨEij )

−1ds +

∫
EKj,m

(uf
h · nKj ,m)τ̂ ◦ (ΨEij )

−1ds = 0, ∀τ̂ ∈ P
k(Ê).

(11)

Let ûi and ûj be functions in [Pk(K̂)]d such that

uf
h|Ki =

1

JKi

FKi
ûi, uf

h|Kj
=

1

JKj

FKj
ûj .

A simple calculation yields

(uf
h · nKi,l) ◦ ΦKi

=
1

JKi∥(FKi)
−T n̂l∥

ûi · n̂l on Êl,(12)

where JKi
∥(FKi

)−T n̂l∥ = |Eij |/|Êl| is the ratio of facet measures. Hence, we have∫
EKi,l

(uf
h · nKi,l)τ̂ ◦ (ΨEij )

−1ds =

∫
Êl

(ûi · n̂l)τ̂ ◦ (Ψ̂l)
−1 dŝ =

∫
Ê

(
Ĵl(ûi · n̂l) ◦ Ψ̂l

)
τ̂ dŝ.

Substituting the above equation back to (11), we get∫
Ê

(
Ĵl(ûi · n̂l) ◦ Ψ̂l + Ĵm(ûj · n̂m) ◦ Ψ̂m

)
τ̂ dŝ = 0, ∀τ̂ ∈ Pk(Ê).

Since Ĵl(ûi · n̂l) ◦ Ψ̂l + Ĵm(ûj · n̂m) ◦ Ψ̂m ∈ Pk(Ê), it must be zero. Finally, by

equation (12) and the fact that Ĵl = |Êl|/|Ê|, we have

(
(uf

h · nKi,l)|Ki
+ (uf

h · nKi,l)|Kj

)
◦ΨEij

=
|Ê|
|Êij |

(Ĵl(ûi · n̂l) ◦ Ψ̂l + Ĵm(ûj · n̂m) ◦ Ψ̂m) = 0

(13)

Similarly, we can prove uf
h·n|Γf

h
= 0 by working on the equation (9d) on the domain

boundary. Combining the results (10) and (13), we readily get uf
h ∈ H0(div; Ω)

and divxu
f
h = 0. This completes the proof. □

To further simplify the notation, we denote the compound space and variables

Xk,f
h :=W k−1,f

h ×Σk,f
h × V k,f

h × W̃ k,f
h × Ṽ

k,f

h ,

Uf
h :=(pfh, ϵ

f
h,u

f
h, σ̃

f
h , ũ

f
h) ∈X

k,f
h , V f

h := (qfh ,G
f
h,v

f
h, τ̃

f
h , ṽ

f
h) ∈X

k,f
h ,
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and introduce the following operators associated with the scheme (9):

M
f
h(U

f
h, V

f
h) :=

(
ρfuf

h,v
f
h

)
T
f,t
h

,

(14a)

C
f
h

(
wf ;Uf

h, V
f
h

)
:=

(
−ρf (divxw

f )uf
h,v

f
h

)
T
f,t
h

−
(
ρfwf ⊗ uf

h,∇xv
f
h

)
T
f,t
h

(14b)

+
〈
F̃ luxc, tng(v

f
h − ṽf

h)
〉
∂T

f,t
h

+
〈
ρfwf · n(uf

h · n),vf
h · n

〉
∂T

f,t
h

,

A
f
h

(
Uf

h, V
f
h

)
:= 2µf

(
ϵfh,∇xv

f
h

)
T
f,t
h

−
(
pfh,divxv

f
h

)
T
f,t
h

−
〈
F̃ luxv, tng(v

f
h − ṽf

h)
〉
∂T

f,t
h

(14c)

+ 2µf
(
ϵfh −Dx(u

f
h),G

f
h

)
T
f,t
h

+ 2µf
〈
tng(uf

h − ũf
h),G

f
hn

〉
∂T

f,t
h

−
〈
σ̃f
h,v

f
h · n

〉
∂T

f,t
h

+
(
divxu

f
h, q

f
h

)
T
f,t
h

+
〈
uf

h · n, τ̃f
h

〉
∂T

f,t
h

,

F
f
h(V

f
h) :=

(
ρfff ,vf

h

)
T
f,t
h

.

(14d)

Then the scheme (9) can be expressed as the following compact form: find Uf
h ∈

Xk,f
h with ũf

h|Γf
h
= 0 such that

M
f
h(

∂Uf
h

∂t

∣∣∣∣∣
x0

, V f
h) + C

f
h

(
uf
h − ωf ;Uf

h, V
f
h

)
+A

f
h

(
Uf

h, V
f
h

)
= F

f
h(V

f
h),(15)

for all V f
h ∈Xk,f

h with ṽfh|Γf
h
= 0.

Energy stability of the semi-discrete scheme is given below.

Theorem 2.1. Let (pfh, ϵ
f
h,u

f
h, σ̃

f
h , ũ

f
h) ∈ W k−1,f

h ×Σk,f
h ×V k,f

h × W̃ k,f
h × Ṽ

k,f

h be
the solution to the scheme (9). The following energy identity holds:

1

2

d

dt

(
ρfuf

h,u
f
h

)
T
f,t
h

+2µf
(
ϵfh, ϵ

f
h

)
T
f,t
h

+

〈
γh

∣∣∣tng(uf
h − ũf

h)
∣∣∣2 , 1〉

∂T
f,t
h

=
(
ρfff ,vf

h

)
T
f,t
h

,

where the parameter γh := αf + ρf |(uf
h − ωf

h) · n| is positive.

Proof. Taking test functions in equations (9) as the trial functions, we get

T1 + T2 + T3 = F
f
h(v

f
h),(16)

where

T1 = M
f
h(

∂uf
h

∂t

∣∣∣∣∣
x0

,uf
h), T2 = C

f
h

(
uf
h − ωf ; (uf

h, ũ
f
h), (u

f
h, ũ

f
h)
)
,

T3 = A
f
h

(
(pfh, ϵ

f
h,u

f
h, σ̃

f
h , ũ

f
h), (p

f
h, ϵ

f
h,u

f
h, σ̃

f
h , ũ

f
h)
)
.

Using the well-known identity ∂
∂tJ

t
0 = J t

0 divxω
f , we get

T1 =
1

2

d

dt

(
J t
0ρ

fuf
h,u

f
h

)
T

f,0
h

− 1

2

(
J t
0(divxω

f )ρfuf
h,u

f
h

)
T

f,0
h

=
1

2

d

dt

(
ρfuf

h,u
f
h

)
T

f,t
h

− 1

2

(
ρf (divxω

f )uf
h,u

f
h

)
T

f,t
h

,
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Integration by parts yields that(
ρf (uf

h − ωf )⊗ uf
h,∇xu

f
h

)
T

f,t
h

= −1

2

(
ρfdiv(uf

h − ωf )uf
h,u

f
h

)
T

f,t
h

+
1

2

〈
ρf (uf

h − ωf ) · n uf
h,u

f
h

〉
∂Tf,t

h

=
1

2

(
ρf (divωf )uf

h,u
f
h

)
T

f,t
h

+
1

2

〈
ρf (uf

h − ωf ) · n tng(uf
h), tng(u

f
h)
〉
∂Tf,t

h

,

where we used the fact that uf
h ∈ H0(div; Ω

t
f ) and divxu

f
h = 0 in the last step.

Combining the above identity with the definition of T2, and the definition of the

upwinding flux ǔf,up
h and simplifying the terms, we get

T2 =
1

2

(
ρf (divωf )uf

h,u
f
h

)
T
f,t
h

+
1

2

〈
ρf

∣∣∣(uf
h − ωf ) · n

∣∣∣ tng(uf
h − ũf

h), tng(u
f
h − ũf

h)
〉
∂T

f,t
h

Simplifying the terms in T3, we obtain

T3 = 2µf
(
ϵfh, ϵ

f
h

)
T

f,t
h

+
〈
αf tng(uf

h − ũf
h), tng(u

f
h − ũf

h)
〉
∂Tf,t

h

.

The equality in Theorem 2.1 is then obtained by simply substituting the above
three terms back to equation (16). □

2.4. ALE divergence-free HDG scheme: temporal discretization. In this
subsection, we consider the temporal discretization for the semidiscrete scheme (9).

We work on the time derivative term in (9a), restricting to a single element

Kt ∈ T
f,t
h . Let

{
ψ̂i(x̂)

}N

i=1
be a set of basis functions for the space [Pk(K̂)]d, where

N = d
(
n+d
k

)
= dim[Pk(K̂)]d. Then the function uf

h, restricting to the element Kt,
can be expressed as

uf
h

∣∣∣
Kt

=
1

J t
K

F t
K

N∑
i=1

ui(t)ψ̂i ◦ (Φt
K)−1 =

1

J t
0

F t
0

N∑
i=1

ui(t)ψ
0
i ◦ (ϕt)

−1,

where ui : [0, T ] → R is the coefficient associated to the i-th basis, and

ψ0
i (x0) =

1

J0
K

F 0
Kψ̂i ◦ (Φ0

K)−1(x0)

is the mapped (time-independent) basis on the initial element K0. Applying the
chain rule, we get

∂uf
h

∂t

∣∣∣∣∣
x0

=
∂

∂t
(
1

Jt
0

F t
0)

N∑
i=1

ui(t)ψ
0
i ◦ (ϕt)

−1 + (
1

Jt
0

F t
0)

N∑
i=1

d

dt
ui(t)ψ

0
i ◦ (ϕt)

−1

(17)

=
(
∇xω

f − (divxω
f )I

) 1

Jt
0

F t
0

N∑
i=1

ui(t)ψ
0
i ◦ (ϕt)

−1 + (
1

Jt
0

F t
0)

N∑
i=1

d

dt
ui(t)ψ

0
i ◦ (ϕt)

−1

where the first term in the above right hand side is due to the use of the (time-
dependent) Piola mapping; see [63] for a similar derivation. Now time derivative
only appears in the coefficients ui in the above right hand side, which can be
discretized using a standard ODE solver. We use the backward difference formulas
(BDFs) in this work, assuming a constant time step size throughout. Alternatively,
one can apply variable time step size BDF schemes [33], or other stiff ODE solver
like the Crank-Nicolson method or the implicit Runge-Kutta methods [47].
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Table 1. BDF Coefficients

order m bm0 bm1 bm2 bm3 bm4 bm5 bm6
1 1 -1
2 3/2 -2 1/2
3 11/6 -3 3/2 -1/3
4 25/12 -4 3 -4/3 1/4
5 137/60 -5 5 -10/3 5/4 -1/5
6 49/20 -6 15/2 -20/3 15/4 -6/5 1/6

To simplify the notation, we denote uf,n
h as the solution uf

h with coefficients ui
evaluated at time tn = n∆t, where ∆t is the (constant) time step size, i.e.,

uf,n
h

∣∣∣
Kt

=
1

J t
0

F t
0

N∑
i=1

ui(t
n)ψ0

i ◦ (ϕt)
−1, ∀t ∈ [0, T ].

Then, the m-th order BDF (BDF[m]) time discretization of the term in (17) at
time tn is

Dm
t u

f,n
h :=

∑m
j=0 b

m
j u

j,n−j
h

∆t
+
(
∇xω

f,n − (divxω
f,n)I

)
uf,n
h ,(18)

where ωf,n = ωf (tn) is the mesh velocity at time tn, and the BDF coefficients bmj
for 1 ≤ m ≤ 6 are given in Table 1.

The fully discrete ALE divergence-free HDG scheme with BDF[m] time stepping

is obtained from the semidiscrete scheme (9) by replacing the term
∂uf

h

∂t (tn)
∣∣∣
x0

with

Dm
t u

f,n
h in (18), and evaluating all the other terms at time level tn: Given data

uf,n−j
h ∈ V k,f

h at time tn−j for j ∈ {1, 2, · · · ,m}, find Uf,n
h ∈Xk,f

h at time tn with

ũf,n
h |Γf

h
= 0 such that

M
f
h

(
Dm

t Uf,n
h , V f

h

)
+ C

f
h

(
uf,n
h − ωf,n;Uf,n

h , V f
h

)
+A

f
h

(
Uf,n

h , V f
h

)
= F

f
h(V

f
h).

(19)

for all V f
h ∈Xk,f

h with ṽfh|Γf
h
= 0.

Remark 2.1 (Semi-implicit convection treatment). The scheme (19) leads to a
nonlinear system due to a fully implicit treatment of the nonlinear convection term.
A slightly cheaper method is to treat the convection term semi-implicitly by replacing

the implicit convection velocity term uf,n
h −ωf,n in equation (19) with the following

extrapolation with a matching order

uf,n,∗m
h − ωf,n,

where

uf,n,∗m
h :=

m∑
j=1

cmj u
f,n−j
h(20)

is the m-th order extrapolation of uf,n
h from data {uf,n−j

h }mj=1 with the extrapolation
coefficients given in Table 2. This leads to a linear scheme with a similar stability
property as the original nonlinear scheme (19).
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Table 2. Extrapolation Coefficients

order m cm1 cm2 cm3 cm4 cm5 cm6
1 1
2 2 -1
3 3 -3 1
4 4 -6 4 -1
5 5 -10 10 -5 1
6 6 -15 20 -15 6 -1

3. The TDNNS scheme for nonlinear elasticity

In this section, we discretize the nonlinear elasticity equations within the La-
grangian framework using the recently introduced three-field Tangential-Displacement
and Normal-Normal-Stress (TDNNS) method [62]. Three different TDNNS ap-
proaches were introduced for nonlinear elastostatics in [62] based on different ap-
proximation variables. Here we focus on the F -based scheme [62] where the defor-
mation gradient serves as a new unknown. We refer to the references [67–69,83] for
the origin and analysis of the TDNNS method for linear elasticity problems.

3.1. The equations of elastodynamics. We consider the following nonlinear
elasticity problem with a hyperelastic material in a Hu-Washizu formulation [91]
on the fixed reference domain Ωs ∈ R for time t ∈ (0, T ]:

∂

∂t
d− us = 0,(21a)

ρs
∂

∂t
us − divP = ρsfs,(21b)

P − ∂Ψ(F )

∂F
= 0,(21c)

F −∇d− I = 0,(21d)

where d is the structure displacement field, us is the structure velocity (on reference
domain), F is the deformation gradient, P is the first Piola-Kirchhoff stress tensor,
and Ψ(F ) is the hyperelastic potential, where we use the following Saint Venant-
Kirchhoff model in the current work

Ψ(F ) :=
λs

2
tr(E)2 + µsE : E, E :=

1

2
(F TF − I),

with λs, µs being the two Lamé parameters. In this case, we have

∂Ψ

∂F
= F (λstr(E)I+ 2µsE).

The TDNNS scheme [62] is based on a splitting of the stress and deformation
tensors into a symmetric and skew-symmetric part:

P = P sym + P skw, F = F sym + F skw,

where Gsym := 1
2 (G + GT ) and Gskew := 1

2 (G − GT ) for a tensor G. Using
the above splitting, and taking the time derivative of equation (21d), we get the
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following set of equations that will be used in the discretization:

∂

∂t
d− us = 0,(22a)

ρs
∂

∂t
us − divP sym − divP skw = ρsfs,(22b)

P sym − (
∂Ψ(F )

∂F
)sym = 0, P skw = (

∂Ψ(F )

∂F
)skw,(22c)

∂

∂t
F sym − ϵ(u) = 0, F skw = (∇d)skw,(22d)

where ϵ(u) = (∇u)sym is the linearized strain tensor.
The TDNNS method use H(curl)-conforming vectorial finite elements to approx-

imate the velocity field us and displacement field d, whose tangential component
is continuous across element boundaries, and a symmetric tensorial finite element
space whose normal-normal component is continuous across element boundaries to
approximate the symmetric part of the stress tensor P sym. Moreover, a discontinu-
ous symmetric tensorial finite element space is used to approximate the symmetric
deformation gradient F sym. No finite element spaces are involved with the skew-
symmetric parts P skw and F skw, which will be directly obtained by the identities
in (22c) and (22d).

To improve efficiency of the scheme, the hybridization technique [67] is used to
break the normal-normal continuity of P sym and re-enforce it via the introduction
of a Lagrange multiplier which can be interpreted as normal displacements on the
mesh skeleton. Details of the finite element spaces and the TDNNS discretization
are given below.

3.2. Mesh and finite element spaces.

3.2.1. Mesh and mappings. We consider a similar mesh setting as that in Sec-
tion 2, except that the structure domain and the associated mesh do not move
over time. In particular, Ts

h := {K} is a conforming simplicial triangulation of the

structure domain Ωs ⊂ Rd, where the element K = ΦK(K̂) is a mapped simplex

from the reference simplex element K̂, ∂Ts
h := {∂K := ΦK(∂K̂)} is the collection of

element boundaries of the mesh Ts
h, and Es

h := {E := ΨE(Ê)} is the mesh skeleton,

where ΨE : Ê → E is the mapping between the reference surface element Ê and
the physical facet E.

3.2.2. The finite element spaces. We introduce the following finite element
spaces on the structure mesh Ts

h and its mesh skeleton Es
h:

Σk,s
h := {σ ∈ [L2(Ωs)]d×d

sym : σ|K =
1

J2
K

FK(σ̂ ◦ (ΦK)−1)FT
K , σ̂ ∈ [Pk(K̂)]d×d

sym , ∀K ∈ Ts
h},

(23a)

Λk,s
h := {λ ∈ [L2(Ωs)]d×d

sym : λ|K = F−T
K (λ̂ ◦ (ΦK)−1)F−1

K , λ̂ ∈ [Pk(K̂)]d×d
sym , ∀K ∈ Ts

h},
(23b)

V k,s
h :=

{
v ∈ H(curl; Ωs) : v|K = F−T

K

(
v̂ ◦ (ΦK)−1

)
, v̂ ∈ [Pk(K̂)]d, ∀K ∈ Ts

h

}
,

(23c)

Ṽ
k,s
h := {ṽ ∈ [L2(Es

h)]
d : ṽ|E = nrm

(
1

JE
FE v̂ ◦ (ΨE)−1

)
, v̂ ∈ [Pk(Ê)]d, ∀E ∈ Es

h},

(23d)

where nrm(v)|E := (v · nE)nE denotes the normal component of the vector v
on the facet E, whose normal direction is nE . Note that the covariant mapping

is used to define the H(curl)-conforming vector space V k,s
h , which will be used



280 G. FU

to approximate the structure displacement and velocity, and the Piola mapping

is used to define the hybrid Lagrange multiplier space Ṽ
k,s

h , which will be used
to approximate the normal component of structure velocity on the mesh skeleton.
Moreover, the doubly Piola mapping is used to define the symmetric tensor space

Σk,s
h , which will be used to approximate the symmetric stress tensor P sym, and the

doubly covariant mapping is used to define the symmetric tensor space Λk,s
h , which

will be used to approximate the symmetric deformation tensor F sym. The doubly
Piola mapping is a nature choice for P sym for the re-enforcement of the normal-
normal inter-element continuity, and the doubly covariant mapping for F sym was
motivated in [62] to ensure that F sym and the gradient ∇d are mapped in the same
way from the reference element to a physical element.

3.3. The TDNNS scheme: spatial discretization. In this subsection, we fo-
cus on the spatial discretization of the equations (22) with homogeneous Dirichlet
boundary conditions

d(x, t) = us(x, t) = 0, ∀x ∈ ∂Ωs, t ∈ [0, T ].(24)

We use polynomials of degree k ≥ 1 for all the variables. The spatial HDG

discretization reads as follows: Find (P sym,h,F sym,h,u
s
h, , ũ

s
h) ∈ Σk,s

h × Λk,s
h ×

V k,s
h × Ṽ

k,s

h with tng(us
h)|∂Ωs = 0, nrm(ũs

h)|∂Ωs = 0, such that(
ρs

∂us
h

∂t
,vsh

)
Ts

h

+ (P sym,h,∇vsh)Ts
h

(25a)

−⟨P sym,hn, nrm(vsh)⟩∂Ts
h
+

(
∂Ψ(F h)

∂F
, (∇vsh)skw

)
Ts

h

= (ρsfs, ξ)Ts
h
,(

∂Ψ(F h)

∂F
− P sym,h,Gh

)
Ts

h

= 0,(25b) (
∂F sym,h

∂t
−∇us

h,Qh

)
Ts

h

+ ⟨ nrm(us
h − ũs

h),Qhn⟩∂Ts
h

= 0,(25c)

⟨P sym,hn, nrm(ṽsh)⟩∂Ts
h

= 0,(25d)

for all (Qh,Gh,v
s
h, ṽ

s
h) ∈ Σk,s

h ×Λk,s
h ×V k,s

h ×Ṽ
k,s

h with tng(vsh)|∂Ωs = nrm(ṽsh)|∂Ωs =
0, where the full deformation gradient

F h := F sym,h + (∇dh)skw,(25e)

and the displacement field dh ∈ V k,s
h satisfies

∂dh
∂t

= us
h(25f)

We note that due to H(curl)-conformity of the space V k,s
h , the skew symmetric

tensor (∇dh)skw, which has a one-to-one correspondence to the curl operator, is
a regular L2-conforming function. When restricted to elastostatics problems, the
above variational scheme (25) is precisely the F -based TDNNS scheme introduced
in [62], which was formulated as an optimization problem of a saddle point La-
grangian.

To further simplify the notation, we denote the compound space and variables

Xk,s
h :=Σk,s

h ×Λk,s
h × V k,s

h × Ṽ
k,s

h ,

Us
h := (P sym,h,F sym,h,u

s
h, ũ

s
h) ∈X

k,s
h , V s

h := (Qh,Gh,v
s
h, ṽ

s
h) ∈X

k,s
h ,
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and introduce the following operators:

Ms
h (U

s
h, V

s
h) := (ρsus

h,v
s
h)Ts

h
+ (F sym,h,Qh)Ts

h
,(26a)

As
h (U

s
h, V

s
h) := (P sym,h,∇vsh)Ts

h
− ⟨P sym,hn, nrm(vsh − ṽsh)⟩∂Ts

h
(26b)

+

(
∂Ψ(F h)

∂F
, (∇vsh)skw +Gh

)
Ts

h

− (P sym,h,Gh)Ts
h

− (∇us
h,Qh)Ts

h
+ ⟨ nrm(us

h − ũs
h),Qhn⟩∂Ts

h
,

Fs
h(V

s
h) := (ρsfs,vsh)Ts

h
.(26c)

Then the scheme (25) can be expressed as the following compact form: find Us
h ∈

Xk,s
h with tng(us

h)|∂Ωs = nrm(ũs
h)|∂Ωs = 0, such that

Ms
h

(
∂Us

h

∂t
, V s

h

)
+As

h (U
s
h, V

s
h) = Fs

h(V
s
h),(27)

for all V s
h ∈Xk,s

h with tng(vsh)|∂Ωs = nrm(ṽsh)|∂Ωs = 0, where F h in (26b) is given
by equation (25e), with the displacement dh determined through equation (25f).

We have the following energy stability result of the scheme (25).

Theorem 3.1. Let (P h,F h,u
s
h, , ũ

s
h) ∈ Σk,s

h ×Λk,s
h × V k,s

h × Ṽ
k,s

h be the solution
to the scheme (25). Then the following energy identity holds:

d

dt
Es
h =

(
ρffs,us

h

)
Ts

h

,

where the elastic energy

Es
h :=

1

2
(ρsus

h,u
s
h)Ts

h
+ (Ψ(F h), 1)Ts

h
(28)

Proof. Taking the test functions (Qh,Gh,v
s
h, ṽ

s
h) = (P sym,h,

∂F sym,h

∂t ,us
h, ũ

s
h) in

the scheme (25) and adding, we get

1

2

d

dt
(ρsus

h,u
s
h)Ts

h
+

(
∂Ψ(F h)

∂F
,
∂F sym,h

∂t
+ (∇us

h)skw

)
Ts

h

= (ρsfs,us
h)Ts

h
.

By the equalities (25e)–(25f), we have

∂F h

∂t
=

∂F sym,h

∂t
+ (∇us

h)skw.

Hence,

(ρsfs,us
h)Ts

h
=

1

2

d

dt
(ρsus

h,u
s
h)Ts

h
+

(
∂Ψ(F h)

∂F
,
∂F h

∂t

)
Ts

h

=
d

dt
Es
h,

which concludes the proof. □

Remark 3.1 (reduced TDNNS schemes). When applied to linear elasostatics prob-
lems, the TDNNS scheme (25) was proven [69] to provide optimal convergence of
order k in the H(div div)-norm for the symmetric stress P sym,h and the H(curl)-
norm of the displacement dh. However, the L2-convergence rate in the symmetric
stress was also proven [67] to be of order k, which is numerically verified to be
sharp and is suboptimal as the space contains the whole polynomials of degree k
on each element. The work [67] suggests to reduce the local symmetric stress space
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such that its normal-normal component on the element boundary is a polynomial of
degree max(1, k − 1):

Σk,red
h := {σ ∈ Σk,s

h : (σn) · n|E ∈ Pmax(1,k−1)(E), ∀E ∈ Es
h}(29)

The companion Lagrange multiplier space for Σk,red
h is then Ṽ

max(1,k−1),s

h . The re-

duced TDNNS scheme uses Σk,red
h for P sym,h and Ṽ

max(1,k−1),s

h for ũs
h, which en-

joys the same convergence rates as the original TDNNS scheme with a reduced com-

putational cost whose globally coupled DOFs consist of those in V k,s
h and Ṽ

max(1,k−1),s

h

on the mesh skeleton. The order k convergence in L2 norm for the symmetric stress
is sharp for k ≥ 2 for this reduced TDNNS scheme as the associated space contains
full polynomials of degree k − 1 but not of degree k.

In two dimensions, [67] also suggests a non-conforming reduced TDNNS scheme

such that the displacement space V k,s
h is replaced by an H(curl)-non-conforming

space V k,nc
h which has the same local polynomial space of degree k as V k,s

h in each
element, but leaves the highest order edge basis function discontinuous across ele-

ment edges. The space V k,nc
h consists of less globally coupled DOFs, and more in-

ternal DOFs which can be eliminated locally. The non-conforming reduced TDNNS
scheme was also proven to provide the same convergence rates as the original
TDNNS scheme, with a further reduced computational cost. We note that this
non-conforming approach does not extend to three dimensions. We will numer-
ical exam the convergence behavior of the original TDNNS scheme (25) and the
non-conforming reduced TDNNS scheme, whose approximation spaces are

Σk,red
h ×Λk,s

h × V k,nc
h × Ṽ

max(1,k−1),s

h ,(30)

for nonlinear elasticity in two dimensions in the numerical results section.

3.4. The TDNNS scheme: temporal discretization. Since the semidiscrete
scheme (25) is constructed in the Lagrangian framework on a fixed domain, a stan-
dard method-of-lines approach can be readily used to discretize the time derivatives.
In particular, the BDF[m] temporal discretization is obtained from the scheme (25)
by replacing the time derivative terms in (25a), (25c), and (25f) by the correspond-
ing BDF approximations:

Dm
t ϕ

n
h :=

∑m
j=0 b

m
j ϕ

n−j
h

∆t
,(31)

where the BDF coefficients bmj are given in Table 1.

4. HDG for FSI: coupling and mesh movement

In this section, we introduce partitioned and monolithic FSI solvers by combing
the ALE divergence-free HDG scheme for fluids in Section 2 and the TDNNS scheme
for structure in Section 3. We mainly focus on the proper treatment of the fluid-
structure interface, and the construction of the ALE map in the fluid domain.

4.1. The FSI problem. We consider the interaction between an incompressible
viscous fluid and an elastic structure. We use the same notation as the previous
two sections. In particular, the Navier-Stokes equations (8) is considered on the

(moving) fluid domain Ωf
t , and the equations of nonlinear hypreelasticity (21) is

considered on the reference structure domain Ωs. We denote Γ0 = Ωf
0 ∩ Ωs as

the fluid-structure interface in the initial configuration, and denote Γt = ϕt(Γ0) as
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the deformed interface. The equations (8) and (21) are equiped with the following
coupling and boundary conditions:

uf = us ◦ (ϕt)
−1 on Γt,(32a)

(Pns) ◦ (ϕt)
−1 = − Jbσ

fnf on Γt,(32b)

uf = 0 on ∂Ωf
t \Γt,(32c)

d = us = 0 on ∂Ωs\Γ0,(32d)

where nf is the outward normal direction on the deformed interface Γt from the
fluid domain Ωf

t , n
s is the outward normal direction on the initial interface Γ0 from

the structure domain Ωs, and Jb is the surface Jacobian of the mapping from Γ0 to
Γt.

4.2. Semidiscrete scheme: a generalized Robin interface condition treat-
ment. The key to an efficient partitioned FSI solver is the proper treatment of the
interface conditions (32a) and (32b). It is well-known that the classical Dirichlet-
Neumann interface condition treatment, where (32a) serves as the Dirichlet bound-
ary condition for the fluid and (32b) as the Neumann boundary condition for the
structure, suffers from stability issues due to the so-called added mass effects when
it is used in a partitioned FSI solver when the fluid and structure have similar den-
sities. To make the overall scheme robust for partitioned FSI solvers, we follow the
novel ideas in [8, 13, 15, 79] to implement the interface conditions as the following
set of transmission conditions of Robin type:

αuf + σfnf = αus ◦ (ϕt)
−1 + σf,∗nf on Γt,(33a)

(αJbu
s + Pns) ◦ (ϕt)

−1 = αJbu
f,∗ − Jbσ

f,∗nf on Γt,(33b)

where α > 0 is a combination parameter, and uf,∗ and σf,∗ are proper approx-
imations to the fluid velocity and fluid stress to be specified later. We further
denote

Uf,∗
h := (pf,∗h , ϵf,∗h ,uf,∗

h , σ̃f,∗
h , ũf,∗

h ) ∈Xk,f
h

to be an approximation of Uf
h. Here (33a) is used as a Robin boundary condition

for the fluid, and (33b) is used as a Robin boundary condition for the solid. We

note that in a fully discrete scheme, taking Uf,∗
h to be extrapolations of data from

previous time steps would lead to a loosely coupled partitioned scheme, while taking

Uf,∗
h to be the unknonws Uf

h would lead to a fully coupled monolithlic scheme.

Details of the choices for Uf,∗
h will be discussed in the next subsection.

To simplify the notation, we define the following quantities on the interface Γ0:

us
h := tng(us

h) + nrm(ũs
h), vsh := tng(vsh) + nrm(ṽsh),

where us
h is the effective structure velocity on the interface Γ0. The spatial dis-

cretization of the fluid with boundary conditions (32c) and (33a) is adapted from

(15) and is given as follows: find Uf
h ∈Xk,f

h with ũf
h|∂Ωf\Γt

= 0 such that

M
f
h(

∂Uf
h

∂t

∣∣∣∣∣
x0

, V f
h) + C

f
h

(
uf
h − ωf ;Uf

h, V
f
h

)
+A

f
h

(
Uf

h, V
f
h

)
(34)

+I
f,R
h ((Uf

h, U
f,∗
h , Us

h), V
f
h) = F

f
h(V

f
h),
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for all V f
h ∈Xk,f

h with ṽfh|∂Ωf\Γt
= 0, where the interface operator

I
f,R
h ((Uf

h, U
f,∗
h , Us

h), V
f
h) :=

〈
1

α
(σ̃f

h − σ̃f,∗
h )− us

h ◦ (ϕt)
−1 · nf , τ̃fh

〉
Γt

(35)

+
〈
αtng

(
ũf
h − us

h ◦ (ϕt)
−1
)
− 2µf tng(ϵf,∗h nf ), tng(ṽfh)

〉
Γt

+
〈
α
(
uf
h − us

h ◦ (ϕt)
−1
)
· nf + (σ̃f

h − σ̃f,∗
h ),vfh · nf

〉
Γt

+

〈
tng
(
ũf
h − us

h ◦ (ϕt)
−1
)
+

1

α
2µf tng(ϵfhn

f − ϵf,∗h nf ), 2µf tng(Gnf )

〉
Γt

,

where the first two terms are obtained from the Robin boundary condition (33a) in
the normal and tangential directions, respective, and the last two terms are consist
terms that enhance the stability of the overall scheme.

The spatial discretization of the solid with boundary conditions (32d) and (33b)

is adapted from (27) and is given as follows: find Us
h ∈Xk,s

h with tng(us
h)|∂Ωf\Γt

=

0 and nrm(ũs
h)|∂Ωf\Γt

= 0 such that

Ms
h

(
∂Us

h

∂t
, V s

h

)
+As

h (U
s
h, V

s
h) + I

s,R
h ((Uf,∗

h , Us
h), V

s
h) = Fs

h(V
s
h),(36)

for all V s
h ∈ Xk,s

h with tng(vsh)|∂Ωf\Γt
= 0 and nrm(ṽsh)|∂Ωf\Γt

= 0, where the
interface operator

I
s,R
h ((Uf,∗

h , Us
h), V

s
h) :=

〈
σ̃f,∗
h nf + 2µf tng(ϵf,∗h nf ),vs

h ◦ (ϕt)
−1

〉
Γt

(37)

+
〈
α
(
us

h ◦ (ϕt)
−1 − nrm(uf,∗

h )− tng(ũf,∗
h )

)
,vs

h ◦ (ϕt)
−1

〉
Γt

is obtained from the Robin boundary condition (33b).
Stability of the coupled scheme (34)–(36) is documented in the following result.

Theorem 4.1. Let Uf
h ∈Xk,f

h and Us
h ∈Xk,s

h be the solution to the semi-discrete
coupled scheme (34)–(36). Then there holds

∂

∂t

(
1

2

(
ρfuf

h,u
f
h

)
T

f,t
h

+ Es
h

)
+ 2µf

(
ϵfh, ϵ

f
h

)
T

f,t
h

+

〈
γh

∣∣∣tng (uf
h − ũf

h

)∣∣∣2 , 1〉
∂Tf,t

h

(38)

+ Ih(U
f
h) +Dh(U

f
h, U

f,∗
h , Us

h) = F
f
h(V

f
h) + Fs

h(V
s
h) + Ih(U

f,∗
h ),

where the elastic energy Es
h is given in (28),

Ih(U
f
h) :=

〈
1

2α

(
|σ̃f

h |
2 + |2µf tng(ϵfhn

f )|2
)
+

α

2

(
|uf

h · nf |2 + |tng(ũf
h)|

2
)
, 1

〉
Γt

and

Dh(U
f
h, U

f,∗
h , Us

h) :

=
〈α
2

(
|(uf,∗

h − us
h ◦ (ϕt)

−1) · nf |2 + |tng(ũf,∗
h − us

h ◦ (ϕt)
−1)|2

)
, 1
〉
Γt

+

〈
1

2α
|αtng(ũf

h − us
h ◦ (ϕt)

−1) + 2µf tng(ϵfhn
f − ϵf,∗h nf )|2, 1

〉
Γt

+

〈
1

2α
|α(uf

h − us
h ◦ (ϕt)

−1) · nf + (σ̃f
h − σ̃f,∗

h )|2, 1
〉

Γt
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Proof. With an abuse of notation, we denote us
h := us

h ◦ (ϕt)
−1 as the structure

velocity on the deformed interface Γt. By definition, we have

I
f,R
h ((Uf

h, U
f,∗
h , Us

h), U
f
h) + I

f,R
h ((Uf,∗

h , Us
h), U

s
h) = In + It,

where

In =

〈
1

α
(σ̃f

h − σ̃f,∗
h ), σ̃f

h

〉
Γt

+
〈
α
(
uf
h − us

h

)
· nf ,uf

h · nf
〉
Γt

+
〈
(σ̃f

h − σ̃f,∗
h ), (uf

h − us
h) · n

f
〉
Γt

+
〈
α
(
us
h − uf,∗

h

)
· nf ,us

h · nf
〉
Γt

,

and

It =

〈
1

α
2µf tng(ϵfhn

f − ϵf,∗h nf ), 2µf tng(ϵfhn
f )

〉
Γt

+
〈
αtng

(
ũf
h − us

h

)
, tng(ũf

h)
〉
Γt

+
〈
2µf tng(ϵfhn

f − ϵf,∗h nf ), tng(ũf
h − us

h)
〉
Γt

+
〈
αtng

(
us
h − ũf,∗

h

)
, tng(us

h)
〉
Γt

.

The terms In and It can be treated in a similar way. In particular, after some
algebraic manipulation, there holds

In =

〈
1

2α
|σ̃f

h |
2 +

α

2
|uf

h · nf |2, 1
〉

Γt

−
〈

1

2α
|σ̃f,∗

h |2 + α

2
|uf,∗

h · nf |2, 1
〉

Γt

+
〈α
2
|(us

h − uf,∗
h ) · nf |2, 1

〉
Γt

+

〈
1

2α
|α(uf

h − us
h) · n

f + (σ̃f
h − σ̃f,∗

h )|2, 1
〉

Γt

,

and

It =

〈
1

2α
|2µf tng(ϵfhn

f )|2 +
α

2
|tng(ũf

h)|
2, 1

〉
Γt

−
〈

1

2α
|2µf tng(ϵf,∗h nf )|2 +

α

2
|tng(ũf,∗

h )|2, 1
〉

Γt

+
〈α

2
|tng(us

h − ũf,∗
h )|2, 1

〉
Γt

+

〈
1

2α
|αtng(ũf

h − us
h) + 2µf tng(ϵfhn

f − ϵf,∗h nf )|2, 1
〉

Γt

.

Combining these identities with the stability results in Theorem 2.1 and Theorem
3.1, we conclude the proof. □

4.3. Fully discrete schemes: monolithic and partitioned approaches. Fol-
lowing the previous two sections, we consider a BDF[m] temporal discretization.
The fully discrete scheme is obtained from the equations (34) –(36) by replacing
the time derivative terms using the corresponding BDF[m] discretizations (18) and

(31): find Uf
h ∈ Xk,f

h with ũf
h|∂Ωf\Γt

= 0 and Us
h ∈ Xk,s

h with tng(us
h)|∂Ωf\Γt

= 0

and nrm(ũs
h)|∂Ωf\Γt

= 0 such that

M
f
h(D

m
t Uf,n

h , V f
h) + C

f
h

(
uf,n
h − ωf ;Uf

h, V
f
h

)
+A

f
h

(
Uf,n

h , V f
h

)
(39a)

+I
f,R
h ((Uf,n

h , Uf,n,∗
h , Us,n

h ), V f
h) = F

f
h(V

f
h),

Ms
h (Dm

t Us,n
h , V s

h) +As
h (U

s,n
h , V s

h) + I
s,R
h ((Uf,n,∗

h , Us,n
h ), V s

h) = Fs
h(V

s
h),(39b)

for all V f
h ∈Xk,f

h with ṽfh|∂Ωf\Γt
= 0, and V s

h ∈Xk,s
h with tng(vsh)|∂Ωf\Γt

= 0 and

nrm(ṽsh)|∂Ωf\Γt
= 0, with the structure displacement given by

Dm
t d

n
h = us,n

h .(39c)

Here the choice of the ∗-variables in (35) and (37) has a strong impact on the effi-
ciency and robustness of the resulting fully discrete scheme. Taking the ∗-variables
as the solution unknowns:

Uf,n,∗
h := Uf,n

h(40)
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leads to a fully coupled monolithic scheme. In this case, the interface conditions
(33a) for the fluid simply reduce to a Dirichlet boundary condition uf = us ◦
(ϕt)

−1, and the associated operator (35) is then a weakly treatment of this Dirichlet
boundary condition. On the other hand, taking the ∗-variables as extrapolations
of previous data with a matching order:

Uf,n,∗
h :=

m∑
j=1

cmj Uf,n−j
h ,(41)

with the extrapolation coefficients cmj given in Table 2, leads to a loosely coupled
partitioned scheme where solid and fluid can be solved sequentially by first solving
the solid using the extrapolated interface data. The monolithic scheme has a better
stability property, while the partitioned scheme can be solved more efficiently in
each time step.

In practice, we propose to solve the monolithic scheme (39) with (40) sequentially
via a fixed point iteration on the ∗-variables, which lead to a strongly coupled
partitioned scheme [36,88] schematized in the following steps:

Step 1. Predict the structural displacement dh, and fluid solution unknowns Uf,∗
h

on the interface Γ0, using m-th order extrapolations as in (41).
Step 2. Update the fluid mesh configuration using the predicted structural displace-

ment by the ALE mapping in (45) below, and update the mesh velocity
using the BDF[m] formula.

Step 3. Solve the structural problem (39b) and (39c) using the predicted fluid so-
lution unknowns.

Step 4. Solve the fluid problem (39a) on the updated fluid mesh using the newly
obtained structural solution data.

Step 5. Check for convergence: continue to next time step if converged, otherwise
return to Step 3. The convergence is considered satisfied if

min{ei+1
u , ei+1

ũ , ei+1
ϵ , ei+1

σ̃ } ≤ η(42)

where

ei+1
u := ∥ui+1,⋆

h − uih∥/∥u
i+1,⋆
h ∥, ei+1

ũ := ∥ũi+1,⋆
h − ũih∥/∥ũ

i+1,⋆
h ∥,

ei+1
ϵ := ∥ϵi+1,⋆

h − ϵih∥/∥ϵ
i+1,⋆
h ∥, ei+1

σ̃ := ∥σ̃i+1,⋆
h − σ̃i

h∥/∥σ̃
i+1,⋆
h ∥,

denote the relative errors in l2-norm for the coefficient vectors of the fluid
velocity uf

h, the tangential fluid velocity ũf
h, the fluid strain rate tensor ϵfh,

and the fluid normal stress σ̃f
h , respectively, at the i-th coupling iteration

(•)i and the newly computed solution (•)i+1,⋆ from Step 4. The parameter
η is a user-defined stopping tolerance.
The convergence of this fixed-point scheme is accelerated via relaxation by
the Aitken’s ∆2 method [88]:

uf,i+1
h = ωi

u u
f,i+1,⋆
h + (1− ωi

u)u
f,i
h ,

ũf,i+1
h = ωi

ũ ũ
f,i+1,⋆
h + (1− ωi

ũ)ũ
f,i
h ,(43)

ϵf,i+1
h = ωi

ϵ ϵ
f,i+1,⋆
h + (1− ωi

ϵ)ϵ
f,i
h ,

σ̃f,i+1
h = ωi

σ̃ σ̃
f,i+1,⋆
h + (1− ωi

σ̃)σ̃
f,i
h ,

where the dynamic relaxation parameters ω are given by:

ωi+1
• = −ωi

•
ri+1
• · (ri+1

• − ri•)
∥ri+1

• − ri•∥2
, for • ∈ {u, ũ, ϵ, σ̃}, ∀i ≥ 0,(44)
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where we take ω0
• = 1 for the first iteration, and ri• := (•)i+1,⋆ − (•)i is the

difference of the coefficient vectors for the solution at i-th coupling iteration
and the newly computed solution from Step 4.

We denote the above iterative partitioned algorithm as ALG-SP. The monolithic
scheme, denoted as ALG-M, is to replace Step 3–5 in the above algorithm with the
fully coupled solver for the system (39a)–(39c) using implicit ∗-variables (40). We
note that for both schemes, we treat the geometric nonlinearity explicitly in Step 1-
2. Furthermore, we remark that ALG-SP with no sub-iteration is simply the loosely
coupled partitioned scheme using extrapolated ∗-values (41), which we denote as
ALG-P. When coupled with lowest order BDF[1] time stepping, it has been shown
in [13, 79] that a loosely coupled scheme with the same interface treatment as in
ALG-P is unconditionally energy stable. However, such stability result does not
hold for higher order time discretizations, and the sub-iterations in ALG-SP are
numerically observed to greatly enhance the stability of the partitioned scheme
ALG-P.

4.4. ALE mapping construction. The last ingredient for an implementable
scheme is the construction of the (unknown) ALE map (1), which, ideally, can
be used to handle large mesh deformations. Various moving mesh algorithms exist
in the literature [80,92]. Here we adopt the nonlinear elasticity model with a mesh-
Jacobian-based stiffening proposed in [80]. In particular, we compute the ALE map

ϕn
h ∈ Sk

h at time tn such that it satisfies the boundary conditions

ϕn
h(x0) = x0 + d

n
h(x0), ∀x0 ∈ Γ0, ϕn

h(x0) = x0, ∀x0 ∈ ∂Ωf
0\Γ0,(45a)

and (
1

J0
K

P a,∇x0ψh

)
T

f,0
h

= 0, ∀ψh ∈ Sk
h with ψh|∂Ωf

0
= 0,(45b)

where J0
K is the Jacobian determinant for the initial configuration given in (6), and

following [80], we use the logarithmic variation of the neo-Hookean material law

P a := F a(λalnJaC
−1
a + µa(I−C−1

a ))

where F a = ∇x0
ϕh, Ja = det(F a), Ca = F T

aF a. We take the artificial Lamé
parameters µa = 1 and λa = 1.5 so that the Poisson ration νa = λa

2(λa+µa)
= 0.3.

After the discrete ALE maps ϕn
h have been computed, the mesh velocity is obtained

by the BDF[m] formula:

ωf,n
h := Dm

h ϕ
n
h(46)

5. Numerical results

Our numerical simulations are performed using the open-source finite-element
software NGSolve [78], https://ngsolve.org/.

5.1. Example 1: Convergence study for the ALE fluid solver. We first
consider the incompressible Navier-Stokes equations (2) with ρf = 1 and ff = 0

(no source term) on a static 2D periodic domain Ωf
t = [0, 2π] × [0, 2π] with initial

conditions

uf (x, y, 0) = (cos(x) sin(y),− sin(x) cos(y)) , pf (x, y, 0) = −1

4
(cos(2x)+ cos(2y)).

The exact solution is given by the following Taylor-Green vortex solution:

uf (x, y, t) = (cos(x) sin(y)F (t),− sin(x) cos(y)F (t)),
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pf (x, y, t) = −1

4
(cos(2x) + cos(2y))F (2t),

where F (t) = exp(−2µf t). We take dynamic viscosity µf = 0.1, and final time at
t = 1.

In this example, we focus on verifying the accuracy of spatial approximation of
the HDG scheme (19). In particular, we consider the scheme (19) with polynomial
degree k ∈ {1, 2, 3, 4} combined with a high-order BDF[k + 2] time stepping. We
consider both the static mesh case, and the moving mesh case with a prescribed
ALE mapping

ϕt(x, y, t) = (x+ 0.5 sin(x) cos(y) sin(πt), y − 0.5 cos(x) sin(y) sin(πt).

For the moving mesh case, the ALE map is interpolated using functions in Sk
h,

which is the space of continuous piecewise polynomials of degree k defined in (5).
We consider a sequence of structured triangular meshes obtained by splitting the

square domain into N × N equal squares and then splitting each small square to
two triangles by connecting its diagonal line with negative slope, where N = 8× 2l

for l ∈ {0, 1, 2, 3}. On each mesh with size N , the (uniform) time step size is
taken to be ∆t = 1/N for k = 1, 2, and ∆t = 1/2N for k = 3, 4. We record the

L2-convergence rates of the strain rate tensor approximation ϵfh, pressure approx-

imation pfh, velocity approximation uf
h, divergence of the velocity approximation

div(uf
h), and a postprocessed velocity approximation u∗

h, which is (part of) the

solution to the following local problem: find (u∗
h,λh) ∈ [W k+1,f

h ]d × Λh such that

(Dx(u
∗
h),Dx(vh))Tf,t

h
+ (λh,vh)Tf,t

h
=
(
ϵfh,Dx(vh)

)
T

f,t
h

, ∀vh ∈ [W k+1,f
h ]d,

(u∗
h,µh)Tf,t

h
=
(
uf
h,µh

)
T

f,t
h

, ∀vh ∈ Λh,

where

Λh := {µ ∈ [L2(Tf
h)]

d : µ|K ∈ RM(K),∀K ∈ T
f
h},

with RM(K) := [P0(K)]d⊕ [P0(K)]×x being the space of rigid motions in element
K. The above postprocessing can be found, e.g., in [44].

The history of convergence for the static mesh case is recorded in Table 3, and
that for the moving mesh case is recorded in Table 4. From both tables, we observe

optimal L2-convergence rate of k in pressure pfh and k+1 in velocity uf
h, and machine

zero in the L2-norm of the divergence of velocity approximation for all polynomial

degree k. The convergence rate for the strain rate tensor ϵfh is slightly less than
k + 1. Moreover, the error in the postprocessed velocity u∗

h is always smaller than

that for uf
h, whose convergence rate is in between k + 1 and k + 2 for all cases,

which is a superconvergence property. We remark that due to the use of symmetric

tensor approximation ϵfh in the HDG formulation (19), the best theoretical result

on the L2-convergence rates for ϵfh and u∗
h one can prove is k + 1/2 and k + 1,

respectively, see, e.g., [44] for a similar analysis for linear elasticity problems. It is
clear that here the numerical results perform slightly better than the theory might
predict.

To summarize, the scheme (19) is numerically observed to provide (1) optimal
spatial convergence in the velocity and pressure approximations, (2) divergence-free
velocity approximations, (3) nearly optimal spatial convergence in the strain rate
tensor, and (4) superconvergence in the postprocessed velocity approximation.
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Table 3. Example 1: History of convergence of the L2-errors,
static mesh case. Here eϵ, ep, eu, eu∗ , and ediv, respectively, repre-

sents the L2-errors at final time t = 1 for the approximations ϵfh,

pfh, u
f
h, u

∗
h, and div(uf

h), respectively.

eϵ ep eu eu∗ ediv
k N Error Order Error Order Error Order Error Order Error

8 4.057e-01 – 3.916e-01 – 2.461e-01 – 1.326e-01 – 3.232e-16
1 16 1.309e-01 1.63 1.960e-01 1.00 6.278e-02 1.97 2.597e-02 2.35 3.372e-16

32 3.740e-02 1.81 9.766e-02 1.01 1.551e-02 2.02 5.000e-03 2.38 3.378e-16
64 1.001e-02 1.90 4.876e-02 1.00 3.848e-03 2.01 1.078e-03 2.21 3.463e-16
8 6.910e-02 – 7.318e-02 – 2.324e-02 – 9.966e-03 – 4.726e-16

2 16 1.072e-02 2.69 1.863e-02 1.97 2.948e-03 2.98 7.962e-04 3.65 4.490e-16
32 1.561e-03 2.78 4.680e-03 1.99 3.741e-04 2.98 6.681e-05 3.57 4.520e-16
64 2.149e-04 2.86 1.171e-03 2.00 4.738e-05 2.98 6.440e-06 3.37 4.572e-16
8 7.608e-03 – 9.475e-03 – 1.962e-03 – 9.267e-04 – 5.891e-16

3 16 6.284e-04 3.60 1.208e-03 2.97 1.236e-04 3.99 3.762e-05 4.62 5.735e-16
32 4.595e-05 3.77 1.516e-04 2.99 7.855e-06 3.98 1.361e-06 4.79 5.683e-16
64 3.151e-06 3.87 1.897e-05 3.00 4.994e-07 3.98 4.630e-08 4.88 5.816e-16
8 5.818e-04 – 9.373e-04 – 1.390e-04 – 5.710e-05 – 7.214e-16

4 16 2.127e-05 4.77 5.893e-05 3.99 4.396e-06 4.98 1.046e-06 5.77 7.057e-16
32 7.459e-07 4.83 3.698e-06 3.99 1.401e-07 4.97 1.781e-08 5.88 7.076e-16
64 2.506e-08 4.90 2.314e-07 4.00 4.451e-09 4.98 2.997e-10 5.89 7.111e-16

Table 4. Example 1: History of convergence of the L2-errors,
moving mesh case. Here eϵ, ep, eu, eu∗ , and ediv, respectively,
represent the L2-errors at final time t = 1 for the approximations

ϵfh, p
f
h, u

f
h, u

∗
h, and div(uf

h), respectively.

eϵ ep eu eu∗ ediv
k N Error Order Error Order Error Order Error Order Error

8 6.009e-01 – 4.035e-01 – 2.497e-01 – 1.637e-01 – 2.851e-16
1 16 2.053e-01 1.55 1.977e-01 1.03 6.042e-02 2.05 2.833e-02 2.53 3.325e-16

32 6.111e-02 1.75 9.786e-02 1.01 1.475e-02 2.03 4.707e-03 2.59 3.525e-16
64 1.682e-02 1.86 4.878e-02 1.00 3.650e-03 2.01 8.720e-04 2.43 3.487e-16
8 9.904e-02 – 7.374e-02 – 2.584e-02 – 1.671e-02 – 4.582e-16

2 16 1.532e-02 2.69 1.865e-02 1.98 3.028e-03 3.09 1.278e-03 3.71 4.723e-16
32 2.335e-03 2.71 4.680e-03 1.99 3.720e-04 3.02 9.326e-05 3.78 4.469e-16
64 3.356e-04 2.80 1.171e-03 2.00 4.677e-05 2.99 7.090e-06 3.72 4.525e-16
8 9.935e-03 – 9.510e-03 – 2.207e-03 – 1.419e-03 – 5.879e-16

3 16 8.035e-04 3.63 1.208e-03 2.98 1.266e-04 4.12 5.449e-05 4.70 5.847e-16
32 6.052e-05 3.73 1.516e-04 2.99 7.838e-06 4.01 1.996e-06 4.77 5.761e-16
64 4.235e-06 3.84 1.897e-05 3.00 4.964e-07 3.98 6.873e-08 4.86 5.778e-16
8 8.600e-04 – 9.294e-04 – 1.850e-04 – 1.360e-04 – 7.345e-16

4 16 2.984e-05 4.85 5.894e-05 3.98 4.667e-06 5.31 2.098e-06 6.02 7.033e-16
32 1.087e-06 4.78 3.698e-06 3.99 1.411e-07 5.05 3.560e-08 5.88 7.108e-16
64 3.774e-08 4.85 2.314e-07 4.00 4.434e-09 4.99 6.068e-10 5.87 7.064e-16

5.2. Example 2: Convergence study for the elastodynamics solver. We
now numerically verify the spatial approximation errors of the TDNNS elastody-
namics solver (25) and its non-conforming reduced version.
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Here we consider both the Saint Venant-Kirchhoff model (21), and the linear
elastodynamics model where ∂Ψ

∂F in (21c) is replaced by the following linearization

∂Ψ

∂F
= λstr(e)I+ 2µse, with e =

1

2
(F T + F − I).(47)

Note that for the linear case, the tensor P is symmetric.
We consider a 2D periodic domain Ωs = [0, 2π]×[0, 2π] with material parameters

ρs = 1, µs = 1, λs = 1. We take source term fs and initial data such that the
manufactured exact solution for the displacement is

d(x, y, t) = (cos(x) sin(y) sin(t),− sin(x) cos(y) sin(t)).

We take final time at t = 0.2.
We apply the TDNNS scheme (25) and the non-conforming reduced TDNNS

scheme with approximation spaces (30) with polynomial degree k ∈ {1, 2, 3, 4}
combined with a high-order BDF[k + 2] time stepping on a sequence of structured
triangular meshes obtained by splitting the square domain into N×N equal squares
and then splitting each small square to two triangles by connecting its diagonal line
with negative slope, where N = 8 × 2l for l ∈ {0, 1, 2, 3}. On each mesh with size
N , the (uniform) time step size is taken to be ∆t = 0.2/N when the polynomial
degree k = 1, ∆t = 0.1/N when k = 2, 3, and ∆t = 0.05/N when k = 4. The
original TDNNS scheme has 2(k + 1) globally coupled DOFs per edge, while the
non-conforming reduced TDNNS scheme has k+max(2, k) globally coupled DOFs
per edge, which is computationally more efficient.

We record the history of convergence of errors in the L2-norm at final time
t = 0.2 for the variables P sym,h,F sym,h, u

s
h, and dh. The results for the TDNNS

scheme are presented in Table 5 for the linear case and in Table 7 for the nonlinear
case, and those for the non-conforming reduced TDNNS scheme are presented in
Table 6 for the linear case and in Table 8 for the nonlinear case.

Comparing the results in Table 5 and Table 6 for the linear model, we observe
both methods provide the expected L2-convergence rates of order k for the tensor
variables P sym,h and F sym,h, and of order k + 1 for the velocity and displacement
variables us

h and dh. For a fixed polynomial degree k, the error magnitudes on the
final mesh for both methods are also comparable to each other.

Comparing the results in Table 7 and Table 8 for the nonlinear model, we observe
the convergence rates for the original TDNNS scheme is similar to the linear case,
which are of order k for the tensor variables P sym,h and F sym,h, and of order k+1 for
the velocity and displacement variables us

h and dh. However, the convergence rates
for the non-conforming reduced TDNNS scheme deteriorate slightly, noticeably on
the velocity and displacement fields for k ≥ 2. Comparing the error magnitudes on
the final mesh for the two methods, we find that the errors for all the variables for
the reduced scheme are roughly at most 3 times larger that those for the original
TDNNS scheme. Hence the reduced scheme is still highly competitive for the
nonlinear model due to its computational efficiency.

5.3. Example 3: Nonlinear elasticity with thin structures. Various bench-
mark tests for 3D large deformation nonlinear elastostatics problems have been
performed in [62] for the nonlinear TDNNS scheme. Excellent results were ob-
tained therein for problems involve thin structure or in the nearly incompressible
regime using highly anisotropic elements.

Here we present the results of the TDNNS scheme for three shell problems from
the benchmark examples in [84] to further highlight its excellent performance for
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Table 5. Example 2: History of convergence of the L2-errors for
the linear elastodynamics case for the TDNNS scheme (25). Here
eP , eF , eu, and ed, respectively, represents the L2-errors at final
time t = 0.2 for the approximations P sym,h, F sym,h, u

s
h, and dh,

respectively.

eP eF eu ed
k N Error Order Error Order Error Order Error Order

4 4.392e-01 – 1.908e-01 – 1.255e+00 – 2.552e-01 –
1 8 3.101e-01 0.50 1.530e-01 0.32 3.351e-01 1.90 6.837e-02 1.90

16 1.929e-01 0.68 9.640e-02 0.67 8.514e-02 1.98 1.722e-02 1.99
32 1.063e-01 0.86 5.313e-02 0.86 2.188e-02 1.96 4.308e-03 2.00
4 1.916e-01 – 8.779e-02 – 2.149e-01 – 4.452e-02 –

2 8 5.167e-02 1.89 2.504e-02 1.81 2.864e-02 2.91 5.844e-03 2.93
16 1.339e-02 1.95 6.477e-03 1.95 3.664e-03 2.97 7.022e-04 3.06
32 3.501e-03 1.94 1.696e-03 1.93 4.699e-04 2.96 8.733e-05 3.01
4 3.496e-02 – 1.566e-02 – 4.875e-02 – 1.005e-02 –

3 8 5.719e-03 2.61 2.758e-03 2.51 3.085e-03 3.98 5.466e-04 4.20
16 7.915e-04 2.85 3.826e-04 2.85 2.319e-04 3.73 3.377e-05 4.02
32 1.067e-04 2.89 5.182e-05 2.88 1.094e-05 4.41 2.108e-06 4.00
4 9.318e-03 – 4.193e-03 – 5.062e-03 – 1.041e-03 –

4 8 5.578e-04 4.06 2.676e-04 3.97 1.930e-04 4.71 3.356e-05 4.96
16 3.488e-05 4.00 1.663e-05 4.01 7.647e-06 4.66 1.006e-06 5.06
32 2.250e-06 3.95 1.076e-06 3.95 2.183e-07 5.13 3.140e-08 5.00

Table 6. Example 2: History of convergence of the L2-errors
for the linear elastodynamics case for the non-conforming reduced
TDNNS scheme with approximation spaces (30). Here eP , eF , eu,
and ed, respectively, represents the L2-errors at final time t = 0.2
for the approximations P sym,h, F sym,h, u

s
h, and dh, respectively.

eP eF eu ed
k N Error Order Error Order Error Order Error Order

4 4.543e-01 – 1.926e-01 – 1.028e+00 – 2.069e-01 –
1 8 3.185e-01 0.51 1.302e-01 0.57 2.752e-01 1.90 5.355e-02 1.95

16 2.461e-01 0.37 1.004e-01 0.38 1.024e-01 1.43 1.388e-02 1.95
32 1.304e-01 0.92 5.327e-02 0.91 1.644e-02 2.64 3.435e-03 2.01
4 2.013e-01 – 9.130e-02 – 2.105e-01 – 4.261e-02 –

2 8 6.138e-02 1.71 2.789e-02 1.71 3.239e-02 2.70 5.657e-03 2.91
16 2.044e-02 1.59 8.370e-03 1.74 5.521e-03 2.55 7.886e-04 2.84
32 4.393e-03 2.22 1.798e-03 2.22 4.658e-04 3.57 9.636e-05 3.03
4 3.790e-02 – 1.680e-02 – 5.176e-02 – 1.006e-02 –

3 8 7.165e-03 2.40 3.308e-03 2.34 3.309e-03 3.97 5.683e-04 4.15
16 8.457e-04 3.08 3.879e-04 3.09 2.216e-04 3.90 3.481e-05 4.03
32 1.023e-04 3.05 4.692e-05 3.05 1.166e-05 4.25 2.176e-06 4.00
4 9.860e-03 – 4.444e-03 – 5.217e-03 – 1.053e-03 –

4 8 6.153e-04 4.00 2.871e-04 3.95 1.985e-04 4.72 3.439e-05 4.94
16 3.661e-05 4.07 1.690e-05 4.09 7.454e-06 4.73 1.015e-06 5.08
32 2.290e-06 4.00 1.062e-06 3.99 2.308e-07 5.01 3.122e-08 5.02
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Table 7. Example 2: History of convergence of the L2-errors
for the nonlinear elastodynamics case for the TDNNS scheme (25).
Here eP , eF , eu, and ed, respectively, represents the L2-errors at
final time t = 0.2 for the approximations P sym,h, F sym,h, u

s
h, and

dh, respectively.

eP eF eu ed
k N Error Order Error Order Error Order Error Order

4 5.053e-01 – 1.919e-01 – 1.254e+00 – 2.552e-01 –
1 8 3.267e-01 0.63 1.548e-01 0.31 3.350e-01 1.90 6.835e-02 1.90

16 1.985e-01 0.72 9.714e-02 0.67 8.516e-02 1.98 1.722e-02 1.99
32 1.088e-01 0.87 5.343e-02 0.86 2.184e-02 1.96 4.306e-03 2.00
4 2.051e-01 – 8.828e-02 – 2.151e-01 – 4.451e-02 –

2 8 5.568e-02 1.88 2.544e-02 1.80 2.901e-02 2.89 5.848e-03 2.93
16 1.412e-02 1.98 6.582e-03 1.95 3.687e-03 2.98 7.038e-04 3.05
32 3.666e-03 1.95 1.720e-03 1.94 4.753e-04 2.96 8.769e-05 3.00
4 4.921e-02 – 1.691e-02 – 4.928e-02 – 1.005e-02 –

3 8 6.263e-03 2.97 2.840e-03 2.57 3.117e-03 3.98 5.472e-04 4.20
16 8.220e-04 2.93 3.885e-04 2.87 2.333e-04 3.74 3.388e-05 4.01
32 1.091e-04 2.91 5.228e-05 2.89 1.122e-05 4.38 2.109e-06 4.01
4 9.704e-03 – 4.291e-03 – 5.087e-03 – 1.043e-03 –

4 8 6.628e-04 3.87 2.863e-04 3.91 2.053e-04 4.63 3.381e-05 4.95
16 3.771e-05 4.14 1.725e-05 4.05 7.919e-06 4.70 1.020e-06 5.05
32 2.361e-06 4.00 1.100e-06 3.97 2.267e-07 5.13 3.175e-08 5.01

Table 8. Example 2: History of convergence of the L2-errors for
the nonlinear elastodynamics case for the non-conforming reduced
TDNNS scheme with approximation spaces (30). Here eP , eF , eu,
and ed, respectively, represents the L2-errors at final time t = 0.2
for the approximations P sym,h, F sym,h, u

s
h, and dh, respectively.

eP eF eu ed
k N Error Order Error Order Error Order Error Order

4 5.087e-01 – 1.940e-01 – 1.029e+00 – 2.069e-01 –
1 8 3.333e-01 0.61 1.315e-01 0.56 2.760e-01 1.90 5.356e-02 1.95

16 2.514e-01 0.41 1.008e-01 0.38 1.033e-01 1.42 1.391e-02 1.94
32 1.322e-01 0.93 5.375e-02 0.91 1.748e-02 2.56 3.475e-03 2.00
4 2.380e-01 – 9.954e-02 – 2.106e-01 – 4.259e-02 –

2 8 7.291e-02 1.71 3.006e-02 1.73 3.312e-02 2.67 5.656e-03 2.91
16 2.327e-02 1.65 9.008e-03 1.74 6.159e-03 2.43 8.023e-04 2.82
32 5.374e-03 2.11 2.067e-03 2.12 1.415e-03 2.12 1.218e-04 2.72
4 5.716e-02 – 1.894e-02 – 5.206e-02 – 1.006e-02 –

3 8 1.056e-02 2.44 4.173e-03 2.18 4.106e-03 3.66 5.812e-04 4.11
16 1.408e-03 2.91 5.582e-04 2.90 4.081e-04 3.33 4.036e-05 3.85
32 1.900e-04 2.89 7.640e-05 2.87 2.930e-05 3.80 3.170e-06 3.67
4 2.214e-02 – 8.465e-03 – 7.799e-03 – 1.095e-03 –

4 8 1.472e-03 3.91 5.710e-04 3.89 4.163e-04 4.23 4.063e-05 4.75
16 1.101e-04 3.74 4.361e-05 3.71 2.521e-05 4.05 2.008e-06 4.34
32 7.558e-06 3.87 3.010e-06 3.86 7.436e-07 5.08 8.200e-08 4.61
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thin structures. The shell problems are discretized using the 3D TDNNS scheme

(25) with a reduced stress spaceΣk,red
h and normal displacement space Ṽ

max(1,k−1),s

h

on hexahedral meshes with only one element in the thickness direction. We take
polynomials of degree k = 2 in the numerical simulations. The globally coupled
DOFs consists of 3 tangential displacement DOFs per edge, 12 tangential displace-
ment DOFs per face, and 4 normal displacement DOFs per face. The overall com-
putational cost is comparable to a conforming Galerkin method with polynomials
of degree 3 on the same mesh.

Example 3.1: Slit annular plate subjected to lifting line force. The prob-
lem consider a slit annular plate domain with inner radius Ri = 6, outer radius
Ro = 10, and thickness t = 0.03 that is clamped at one end of the slit and sub-
jected to a lifting force P at the other end; see left of Figure 1 for the domain under
maximum deformation. The lifting force with a maximum magnitude Pmax = 0.8
is applied as traction along vertical direction over the slit boundary. The material
parameters are E = 21×106 and ν = 0. A load incrementation algorithm with uni-
form 40 load steps is used to solve the nonlinear problem. The vertical deflections
at two end points of the slit are shown in Figure 1 for the TDNNS scheme on two
meshes, a coarse mesh with 2×10 hexahedral elements and a fine mesh with 3×15
hexahedral elements, along with reference data from [84] which use the S4R shell
elements on a quadrilateral mesh with 10× 80 elements. The computed results on
both meshes are in excellent agreements with the reference data.
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Figure 1. Example 3.1: Left: The slit plate domain under max-
imum deformation computed using the reduced TDNNS scheme
with k = 2 on a 15 × 3 hexahedral mesh. Right: Vertical deflec-
tions wA and wB at tips of the slit, A (interior slip tip) and B
(exterior slip tip). Reference solution computed with a 10 × 80
S4R shell elements is also displayed.

5.3.1. Example 3.2: Hemispherical shell subjected to alternating radial
forces. The hemispherical shell problem was considered in [84] among others. The
domain is a hemispherical shell with an 18o circular cutout at its pole. The material
properties considered are E = 6.825×107, ν = 0.3. The radius of the hemisphere is
R = 10 and its thickness is t = 0.04. The shell is subjected to four alternating radial
point forces, whose magnitude are Pmax = 400 each. Owing to symmetry, one-
quarter of the problem is used in the simulation and symmetry boundary conditions
are applied on the artificial boundaries; see left of Figure 2. Here the pulling
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point force on point A is implemented as a surface traction force concentrated
on the exterior bottom left corner quadrilateral surface element, and the pushing
point force on point B is implemented as a surface traction force concentrated
on the interior bottom right corner quadrilateral surface element. The deformed
geometry under maximum load is shown in the middle of Figure 2, and the radial
displacements at points A and B are shown in the right of Figure 2 for the reduced
TDNNS scheme with k = 2 on a coarse mesh with 8 × 8 hexahedral elements and
a fine mesh with 16× 16 hexahedral elements, along with reference data from [84]
which use the S4R shell elements on a quadrilateral mesh with 16 × 16 elements.
The computed results on both meshes are in good agreements with the reference
data. We note that there is a slightly underestimation of the displacement at point
B for the results on the coarse 8 × 8 mesh, which might due to the boundary
condition treatment using surface integrals for the point load.
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Figure 2. Example 3.2: Left: The initial hemispherical shell
geometry. The one-quarter computational domain is discretized
with a 16 × 16 hexahedral mesh. Middle: The deformed geome-
try under maximum load P = Pmax computed using the reduced
TDNNS scheme with k = 2 on the 16 × 16 mesh. Right: Radial
displacements at points A and B. Reference solution computed
with a 16× 16 S4R shell elements is also displayed.

5.3.2. Example 3.3: Pullout of an open-ended cylindrical shell. In our
last shell example, we consider an open-ended cylinder being pulled by a pair of
symmetric radial forces P whose maximum magnitude are Pmax = 40, 000. The
cylinder is of radius R = 4.953, length L = 10.35, and thickness t = 0.094. The
material properties considered are E = 10.5 × 106, ν = 0.3125. Owing to symme-
tries, one-eighth of the problem is used in the simulation and symmetry boundaries
are imposed on the artificial boundaries; see left of Figure 3 for the cylinder geom-
etry and a typical structured mesh for one-eighth of the domain. Here, similar to
Example 3.2, the pulling force at point A is implemented as a surface traction force
concentrated on the exterior top right corner quadrilateral surface element. The
deformed geometry under maximum load is shown in the middle of Figure 3, and
radial displacements at points A, B, and C are shown in the right of Figure 3 for
the reduced TDNNS scheme with k = 2 on a coarse mesh with 8 × 12 hexahedral
elements and a fine mesh with 12 × 18 hexahedral elements, along with reference
data from [84] which use the S4R shell elements on a quadrilateral mesh with 24×36
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elements. The computed results on both meshes are in good agreements with the
reference data.
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Figure 3. Example 3.3: Left: The initial cylindrical shell geom-
etry. The one-eighth computational domain is discretized with a
12× 18 hexahedral mesh. Middle: The deformed geometry under
maximum load P = Pmax computed using the reduced TDNNS
scheme with k = 2 on the 12 × 18 mesh. Right: Radial displace-
ments at points A, B and C. Reference solution computed with a
24× 36 S4R shell elements is also displayed.

5.4. Example 4: Convergence study for the FSI solver. We now numer-
ically verify the approximation errors of the FSI solvers (39). Here we consider
a linear FSI model where the nonlinear convection is ignored in the fluid and
linear elastodynamics is used in the structure. We consider a 2D fluid domain
Ωf = [0, 2π]× [0, 1.5π] with material parameters ρf = 1, µf = 0.1, and a structure
domain Ωs = [0, 2π] × [1.5π, 2π] with material parameters ρs = 1, µs = 1, λs = 1.
The interface is located at the horizontal line y = 1.5π. Periodic boundary condi-
tions are applied in the x-direction, and Dirichlet boundary conditions are applied
in the y-direction. We take source terms ff , fs and initial data such that the
manufactured exact solutions are

d(x, y, t) = (cos(x) sin(y) sin(t),− sin(x) cos(y) sin(t)),

uf (x, y, t) = us(x, y, t) = (cos(x) sin(y) cos(t),− sin(x) cos(y) cos(t)),

pf (x, y, t) = sin(x) sin(y) sin(t),

where a source term is also added in (33b) on the interface to account for stress
imbalance. We take final time at t = 0.5.

We apply the algorithms ALG-M, ALG-SP, and ALG-P using polynomial degree
k ∈ {1, 2, 3, 4} along with BDF[k + 1] time stepping on a sequence of structured
2 × N × N triangular meshes, with N = 8 × 2l for l ∈ {0, 1, 2, 3}. We take time
step size to be ∆t = c/N with c > 0 chosen properly for different algorithms and
polynomial degrees for stability considerations.

For polynomial degree k = 1 and BDF[2] time stepping, it was observed that
taking α ∈ [2, 20] leads to a stable partitioned algorithm ALG-P for long time
simulations under the time step restriction ∆t ≤ 0.2/N . In Table 9, we record

the history of convergence of L2-errors at final time t = 0.5 for the variables ϵfh,

pfh, u
f
h, P sym,h, u

s
h, and dh for the three algorithms with k = 1 and α = 10,
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where the stopping tolerance (42) for ALG-SP is taken to be η = 10−4. We take
∆t = 1/N for the three algorithms and also take ∆t = 0.2/N for ALG-P. We note
that, for ∆t = 1/N , both ALG-M and ALG-SP algorithms lead to stable long time
simulations, while the ALG-P algorithm leads to instability around time t = 2.5.
Such instability was not observed yet at t = 0.5 where the errors are recorded. From
Table 9, we observe optimal second-order (space-time) convergence for the variables

ϵfh, u
f/s
h , and dh, optimal first-order convergence in the pressure approximation pfh,

and sub-optimal first-order convergence in the structure stress P sym,h. The average
number of sub-iterations for ALG-SP decreases from 9.3 on the coarsest mesh with
N = 8 to 1.9 on the finest mesh with N = 64, which is expected as the time step
size is smaller on the finer mesh where the extrapolated data are more accurate.
Moreover, the error magnitudes are similar for ALG-M and ALG-SP with ∆t = 1/N ,
and for ALG-P with ∆t = 0.2/N . The errors for ALG-P with ∆t = 1/N are found
to be slightly larger than the other methods, which eventually lead to instability as
the simulation continues.

Table 9. Example 4: History of convergence of the L2-errors at
time t = 0.5 for ALG-M, ALG-IP2, and ALG-P. Polynomial degree
k = 1, BDF[2] time stepping. Here eϵ, ep, efu, eP , esu, and ed
respectively, represents the L2-errors for the approximations ϵfh,

pfh, u
f
h, P h,sym, u

s
h, and dh, respectively.

eϵ ep efu eP esu ed
N Error Order Error Order Error Order Error Order Error Order Error Order

ALG-M. k = 1,m = 2, α = 10, ∆t = 1/N .
8 2.665e-01 – 3.375e-01 – 1.987e-01 – 4.369e-01 – 1.178e-01 – 6.315e-02 –
16 8.178e-02 1.70 1.704e-01 0.99 5.111e-02 1.96 2.468e-01 0.82 2.941e-02 2.00 1.545e-02 2.03
32 2.267e-02 1.85 8.534e-02 1.00 1.292e-02 1.98 1.314e-01 0.91 7.570e-03 1.96 3.805e-03 2.02
64 5.965e-03 1.93 4.268e-02 1.00 3.245e-03 1.99 6.770e-02 0.96 1.924e-03 1.98 9.448e-04 2.01

ALG-SP with η = 10−4. k = 1,m = 2, α = 10, ∆t = 1/N .
Avg. # iter.: 9.3 for N = 8, 6.6 for N = 16, 5.0 for N = 32, and 1.9 for N = 64.

8 2.665e-01 – 3.375e-01 – 1.987e-01 – 4.369e-01 – 1.178e-01 – 6.315e-02 –
16 8.179e-02 1.70 1.704e-01 0.99 5.112e-02 1.96 2.468e-01 0.82 2.939e-02 2.00 1.544e-02 2.03
32 2.267e-02 1.85 8.534e-02 1.00 1.292e-02 1.98 1.314e-01 0.91 7.566e-03 1.96 3.804e-03 2.02
64 6.370e-03 1.83 4.268e-02 1.00 3.299e-03 1.97 6.770e-02 0.96 1.903e-03 1.99 9.344e-04 2.03

ALG-P. k = 1,m = 2, α = 10, ∆t = 1/N .
8 3.406e-01 – 3.371e-01 – 1.980e-01 – 4.486e-01 – 1.183e-01 – 6.158e-02 –
16 1.239e-01 1.46 1.704e-01 0.98 5.492e-02 1.85 2.486e-01 0.85 3.326e-02 1.83 1.520e-02 2.02
32 2.905e-02 2.09 8.533e-02 1.00 1.400e-02 1.97 1.318e-01 0.92 9.100e-03 1.87 3.815e-03 1.99
64 7.395e-03 1.97 4.268e-02 1.00 3.498e-03 2.00 6.776e-02 0.96 2.231e-03 2.03 9.569e-04 2.00

ALG-P. k = 1,m = 2, α = 10, ∆t = 0.2/N .
8 2.764e-01 – 3.372e-01 – 2.018e-01 – 5.282e-01 – 1.267e-01 – 5.949e-02 –
16 8.273e-02 1.74 1.706e-01 0.98 5.122e-02 1.98 2.701e-01 0.97 3.026e-02 2.07 1.470e-02 2.02
32 2.267e-02 1.87 8.536e-02 1.00 1.294e-02 1.98 1.374e-01 0.98 7.793e-03 1.96 3.672e-03 2.00
64 6.001e-03 1.92 4.268e-02 1.00 3.252e-03 1.99 6.921e-02 0.99 1.944e-03 2.00 9.189e-04 2.00

For polynomial degree k = 2, it was observed that taking α ∈ [10, 40] leads
to a stable partitioned algorithm ALG-P for long time simulations under the time
step restriction ∆t ≤ 0.1/N . For this case, the monolithic scheme ALG-M is also
found to be conditionally stable under the time step restriction ∆t ≤ 0.1/N . In
Table 10, we record the history of convergence of L2-errors at final time t = 0.5
for the three algorithms with k = 2, α = 20, and ∆t = 0.1/N , where the stopping
tolerance (42) for ALG-SP is taken to be η = 10−4. From Table 10, we observe

optimal third-order (space-time) convergence for the variables u
f/s
h , and dh, optimal

second-order convergence in the pressure approximation pfh, sub-optimal 2.74th

order of convergence in the fluid strain rate tensor ϵfh and sub-optimal second-order
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convergence in the structure stress P sym,h. Moreover, the error magnitudes for the
three methods are almost indistinguishable. It is interesting to observe that with
stopping tolerance η = 10−4, the average number of sub-iterations for ALG-SP is
0.0 on the two finer meshes with N = 32 and N = 64, which indicates that the
ALG-P solution is accurate enough for this tolerance.

Table 10. Example 4: History of convergence of the L2-errors at
time t = 0.5 for ALG-M, ALG-IP2, and ALG-P. Polynomial degree
k = 2, BDF[3] time stepping.

eϵ ep efu eP esu ed
N Error Order Error Order Error Order Error Order Error Order Error Order

ALG-M. k = 2,m = 3, α = 20, ∆t = 0.1/N .
8 4.989e-02 – 5.095e-02 – 2.124e-02 – 7.096e-02 – 1.343e-02 – 6.775e-03 –
16 7.355e-03 2.76 1.292e-02 1.98 2.722e-03 2.96 1.769e-02 2.00 1.617e-03 3.05 8.436e-04 3.01
32 1.098e-03 2.74 3.242e-03 1.99 3.458e-04 2.98 4.422e-03 2.00 1.952e-04 3.05 1.059e-04 2.99
64 1.640e-04 2.74 8.113e-04 2.00 4.364e-05 2.99 1.108e-03 2.00 2.549e-05 2.94 1.318e-05 3.01

ALG-SP with η = 10−4. k = 2,m = 3, α = 20, ∆t = 0.1/N .
Avg. # iter.: 1.3 for N = 8, 0.2 for N = 16, 0.0 for N = 32, and 0.0 for N = 64.

8 4.985e-02 – 5.095e-02 – 2.124e-02 – 7.096e-02 – 1.343e-02 – 6.775e-03 –
16 7.346e-03 2.76 1.292e-02 1.98 2.722e-03 2.96 1.769e-02 2.00 1.617e-03 3.05 8.436e-04 3.01
32 1.098e-03 2.74 3.242e-03 1.99 3.458e-04 2.98 4.422e-03 2.00 1.952e-04 3.05 1.059e-04 2.99
64 1.641e-04 2.74 8.113e-04 2.00 4.364e-05 2.99 1.108e-03 2.00 2.549e-05 2.94 1.318e-05 3.01

ALG-P. k = 2,m = 3, α = 20, ∆t = 0.1/N .
8 4.978e-02 – 5.095e-02 – 2.124e-02 – 7.096e-02 – 1.342e-02 – 6.775e-03 –
16 7.346e-03 2.76 1.292e-02 1.98 2.722e-03 2.96 1.769e-02 2.00 1.617e-03 3.05 8.436e-04 3.01
32 1.098e-03 2.74 3.242e-03 1.99 3.458e-04 2.98 4.422e-03 2.00 1.952e-04 3.05 1.059e-04 2.99
64 1.641e-04 2.74 8.113e-04 2.00 4.364e-05 2.99 1.108e-03 2.00 2.549e-05 2.94 1.318e-05 3.01

For polynomial degree k = 3, it was observed that a stable partitioned algo-
rithm ALG-P for long time simulations can only be obtained under a very restrictive
time step restriction ∆t ≤ 0.004/N . The monolithic scheme ALG-M was, however,
observed to be conditionally stable under the much milder time step restriction
∆t ≤ 0.075/N . In Table 11, we record the history of convergence of L2-errors at
final time t = 0.5 for the algorithms ALG-M, ALG-SP with η = 10−4, and ALG-SP
with η = 10−7, using k = 3, α = 40, and time step size ∆t = 0.075/N . The
algorithm ALG-P immediately leads to solution blow-ups with these choices of pa-
rameters, hence the associated results are not recorded. From Table 11, we observe
that the schemes ALG-M and ALG-SP with η = 10−7 produce very similar results
both in terms of orders of convergence and error magnitudes, with optimal forth-

order (space-time) convergence for the variables u
f/s
h and dh, optimal third-order

convergence in the pressure approximation pfh, sub-optimal 3.7th order of conver-

gence in the fluid strain rate tensor ϵfh and sub-optimal third-order convergence in
the structure stress P sym,h. The convergence results for ALG-SP with η = 10−4 are
similar to the other two methods on the first two set of meshes, but that on the
finer meshes with N = 32 and N = 64 are significantly less accurate due to the
use of a larger stopping tolerance. It is also interesting to observe that, similar to
the k = 3 case, the number of sub-iterations for ALG-SP with η = 10−7 (from 5.7
on the coarsest mesh to 1.4 on the finest mesh) is only slightly larger than that for
η = 10−4 (from 2.2 on the coarsest mesh to 1.2 on the finest mesh).

For polynomial degree k = 4, we couldn’t find a combination parameter α that
would lead to a stable partitioned algorithm ALG-P for long time simulations. For
this reason, we again only perform convergence studies for the monolithic scheme
ALG-M and the strongly coupled partitioned scheme ALG-SP. In Table 12, we record
the history of convergence of L2-errors at final time t = 0.5 for the three algorithms
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Table 11. Example 4: History of convergence of the L2-errors
at time t = 0.5 for ALG-M, ALG-IP3, and ALG-IP2. Polynomial
degree k = 3, BDF[4] time stepping.

eϵ ep efu eP esu ed
N Error Order Error Order Error Order Error Order Error Order Error Order

ALG-M. k = 3,m = 4, α = 40, ∆t = 0.075/N .
8 5.094e-03 – 5.653e-03 – 1.804e-03 – 7.852e-03 – 1.077e-03 – 5.598e-04 –
16 4.039e-04 3.66 7.170e-04 2.98 1.161e-04 3.96 1.047e-03 2.91 7.681e-05 3.81 3.510e-05 4.00
32 3.041e-05 3.73 8.994e-05 2.99 7.413e-06 3.97 1.350e-04 2.96 4.485e-06 4.10 2.256e-06 3.96
64 2.370e-06 3.68 1.125e-05 3.00 4.692e-07 3.98 1.709e-05 2.98 2.953e-07 3.92 1.409e-07 4.00

ALG-SP with η = 10−4. k = 3,m = 4, α = 40, ∆t = 0.075/N .
Avg. # iter.: 2.2 for N = 8, 1.5 for N = 16, 1.3 for N = 32, and 1.2 for N = 64.

8 5.140e-03 – 5.653e-03 – 1.804e-03 – 7.853e-03 – 1.087e-03 – 5.596e-04 –
16 4.181e-04 3.62 7.175e-04 2.98 1.160e-04 3.96 1.048e-03 2.91 8.134e-05 3.74 3.514e-05 3.99
32 1.885e-04 1.15 9.245e-05 2.96 7.809e-06 3.89 1.360e-04 2.95 1.120e-05 2.86 2.361e-06 3.90
64 8.099e-05 1.22 1.470e-05 2.65 9.942e-07 2.97 1.772e-05 2.94 1.883e-06 2.57 1.797e-07 3.72

ALG-SP with η = 10−7. k = 3,m = 4, α = 40, ∆t = 0.075/N .
Avg. # iter.: 5.7 for N = 8, 2.2 for N = 16, 1.6 for N = 32, and 1.4 for N = 64.

8 5.094e-03 – 5.653e-03 – 1.804e-03 – 7.852e-03 – 1.077e-03 – 5.598e-04 –
16 4.038e-04 3.66 7.170e-04 2.98 1.161e-04 3.96 1.047e-03 2.91 7.681e-05 3.81 3.510e-05 4.00
32 3.041e-05 3.73 8.994e-05 2.99 7.413e-06 3.97 1.350e-04 2.96 4.485e-06 4.10 2.256e-06 3.96
64 2.364e-06 3.69 1.125e-05 3.00 4.692e-07 3.98 1.709e-05 2.98 2.954e-07 3.92 1.409e-07 4.00

ALG-M, ALG-SP with η = 10−6, and ALG-SP with η = 10−8, using k = 4, α = 40,
and time step size ∆t = 0.075/N . From Table 12, we observe that ALG-M and
ALG-SP with η = 10−8 produce very similar results both in terms of order of con-
vergence and error magnitudes, with optimal fifth-order (space-time) convergence

for the variables u
f/s
h , and dh, optimal fourth-order convergence in the pressure

approximation pfh, sub-optimal 4.7th order of convergence in the fluid strain rate

tensor ϵfh and sub-optimal third-order convergence in the structure stress P sym,h.
The convergence results for ALG-SP with η = 10−6 are similar to the other two
methods on the first two set of meshes, but that on the finer meshes with N = 32
and N = 64 are less accurate due to the use of a larger stopping tolerance. It is also
interesting to observe that the number of sub-iterations for ALG-SP with η = 10−8

(from 7.6 on the coarsest mesh to 2.8 on the finest mesh) is slightly larger than that
for η = 10−6 (from 4.3 on the coarsest mesh to 2.7 on the finest mesh).

5.5. Example 5: Propagation of a pressure pulse. We consider the following
classical benchmark problem that describes the propagation of a pressure pulse in
a two-dimensional channel fluid flow interacting with a deformable wall. We follow

the setup in [9, Example 2]. The reference domain is Ωf
0 = (0, 6) × (0, 0.5) and

Ωs = (0, 6) × (0.5, 0.6), with Γ0 = (0, 6) × {y = 0.5} being the interface. The
fluid flow is governed by the Navier-Stokes equations (2) with ρf = 1, µf = 0.035,

and ff = 0. The elastic wall is governed by a linear elastodynamics model (21)
where the stress ∂Ψ

∂F in (21c) is given by the linear relationship in (47), and an

additional damping term βd is added to the left hand side of (21b) to act as a spring.
The parameters for the structure are ρs = 1.1, µs = 5.75 × 105, λs = 1.7 × 106,
β = 4× 106, and fs = 0. The following set of boundary conditions are used:

(σfn) · n = −pin(t), tng(uf ) = 0, on Γf
in := {x = 0} × (0, 0.5),

σfn = 0, on Γf
out := {x = 6} × (0, 0.5),

tng(σfn) = 0, uf · n = 0, on Γf
bot := (0, 6)× {y = 0},

d = 0, on Γs
dir := {x = 0} × (0, 0.5) ∪ {x = 6} × (0, 0.5),

(Pn) · n = 0, tng(d) = 0, on Γs
top := (0, 6)× {y = 0.6},
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Table 12. Example 4: History of convergence of the L2-errors
at time t = 0.5 for ALG-M, ALG-IP8, and ALG-IP2. Polynomial
degree k = 4, BDF[5] time stepping.

eϵ ep efu eP esu ed
N Error Order Error Order Error Order Error Order Error Order Error Order

ALG-M. k = 4,m = 5, α = 40, ∆t = 0.075/N .
8 3.703e-04 – 4.944e-04 – 1.283e-04 – 6.784e-04 – 8.026e-05 – 3.923e-05 –
16 1.411e-05 4.71 3.131e-05 3.98 4.132e-06 4.96 4.392e-05 3.95 2.259e-06 5.15 1.215e-06 5.01
32 5.152e-07 4.78 1.964e-06 4.00 1.317e-07 4.97 2.786e-06 3.98 7.680e-08 4.88 3.812e-08 4.99
64 2.017e-08 4.67 1.228e-07 4.00 4.167e-09 4.98 1.755e-07 3.99 2.350e-09 5.03 1.191e-09 5.00

ALG-SP with η = 10−6. k = 4,m = 5, α = 40, ∆t = 0.075/N .
Avg. # iter.: 4.3 for N = 8, 3.3 for N = 16, 3.0 for N = 32, and 2.7 for N = 64.

8 3.703e-04 – 4.944e-04 – 1.283e-04 – 6.784e-04 – 8.025e-05 – 3.923e-05 –
16 1.476e-05 4.65 3.131e-05 3.98 4.133e-06 4.96 4.392e-05 3.95 2.266e-06 5.15 1.215e-06 5.01
32 1.599e-06 3.21 1.969e-06 3.99 1.325e-07 4.96 2.787e-06 3.98 9.249e-08 4.61 3.817e-08 4.99
64 1.112e-06 0.52 1.523e-07 3.69 1.428e-08 3.21 1.924e-07 3.86 5.464e-08 0.76 2.920e-09 3.71

ALG-SP with η = 10−8. k = 4,m = 5, α = 40, ∆t = 0.075/N .
Avg. # iter.: 7.6 for N = 8, 4.1 for N = 16, 3.2 for N = 32, and 2.8 for N = 64.

8 3.703e-04 – 4.944e-04 – 1.283e-04 – 6.784e-04 – 8.026e-05 – 3.923e-05 –
16 1.411e-05 4.71 3.131e-05 3.98 4.132e-06 4.96 4.392e-05 3.95 2.259e-06 5.15 1.215e-06 5.01
32 5.148e-07 4.78 1.964e-06 4.00 1.317e-07 4.97 2.786e-06 3.98 7.680e-08 4.88 3.812e-08 4.99
64 2.207e-08 4.54 1.228e-07 4.00 4.171e-09 4.98 1.755e-07 3.99 2.445e-09 4.97 1.194e-09 5.00

where the pressure pulse on the inflow boundary Γf
in is given as follows:

pin(t) =


pmax

2

[
1− cos( 2πt

tmax
)
]

if t ≤ tmax,

0 if t > tmax,

where pmax = 1.333 × 104 and tmax = 3 millisecond (ms). Final time of the
simulation is T = 12 ms.

We apply the three algorithms ALG-M, ALG-SP with one sub-iteration (denoted
as ALG-PI1), and ALG-P with polynomial degree k = 1 on a structured mesh with
mesh size h = 0.1 that consists of 2 × (60 × 5) = 600 congruent triangles for the
fluid domain and 2 × (60 × 1) congruent triangles for the structure domain. The
time step size is taken to be ∆t = 10−1 ms, and the combination parameter is
α = 1000. For the temporal discretization, we use BDF2 for ALG-M and ALG-PI1,
and BDF1 for ALG-P. The loosely coupled scheme ALG-P is numerically observed
to be unstable with BDF2 time stepping, even when the time step size is decreased
by a factor of 10. Interestingly, with only one step sub-iteration, ALG-IP1 with
BDF2 time stepping produces a stable result. Figure 4 shows the flow rate (2/3 of
the horizontal fluid velocity) and mean pressure at bottom line y = 0, and interface
vertical displacement for the three schemes at times t = 4, 8, 12 ms. We observe
that the results for the iterative partitioned scheme ALG-IP1 and the monolithic
scheme ALG-M, both with BDF2 time stepping, are indistinguishable from each
other, while the results for the loosely partitioned scheme ALG-P produces less
accurate and more dissipative results due to a larger temporal errors from BDF1
time stepping.

5.6. Example 6: Flow past a cylinder with a flexible bar. In our last exam-
ple, we test the performance of the proposed FSI solvers on the classical benchmark
problem proposed by Turek and Hron [87] where reference data is available in [35].

The problem is a two-dimensional incompressbile channel flow around a rigid
cylinder with an attached nonlinearly elastic bar. The domain is depicted in Fig-
ure 5.

• The domain dimensions are: length L = 2.5, height H = 0.41.
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Figure 4. Example 5: Left: fluid flow rate along the bottom
line. Middle: mean pressure along bottom line. Right: vertical
displacement along the interface y = 0.5. Top row: t = 4 ms.
Middle row: t = 8 ms. Bottom row: t = 12 ms. Polynomial degree
k = 1. Mesh size h = 0.1. Time step size ∆t = 10−1ms.

• The circle center is positioned at C = (0.2, 0.2) (measured from the left
bottom corner of the channel) and the radius is r = 0.05.

• The elastic structure bar has length l = 0.35 and height h = 0.02, the right
bottom corner is positioned at (0.6, 0.19), and the left end is fully attached
to the fixed cylinder.

• The control point is A(t), fixed with the structure with A(0) = (0.6, 0.2).

Figure 5. Example 6: The domain for the FSI problem [87].

The fluid region is governed by the Navier-Stokes equations (8) with ff = 0, and the
elastic structure is governed by the equations for hyperelasticity (21) with fs = 0.
The coupling conditions (32a)–(32b) are used on the fluid-structure interface Γt,
and the following boundary conditions are used:

• A parabolic velocity profile is prescribed at the left channel inflow

uf (0, y, t) =

 uf (0, y)
1−cos(π

2 t)

2 if t < 2,

uf (0, y) otherwise,

where uf (0, y) = 1.5Ū y(H−y)
(H/2)2 = 61.5Ū 4.0

0.1681y(0.41− y).

• The stress-free boundary condition σfn = 0 is prescribed at the outflow.
• The no-slip condition (uf = 0, or d = us = 0) is prescribed on all the other
boundary parts.

Two test cases resulting in time periodic solutions are considered, which are
denoted as FSI2 and FSI3 in [87]. The associated material parameters are listed in
Table 13.

Table 13. Example 6: Parameter settings for the two test cases.

parameter ρs[103 kg
m3 ] λs[106 kg

ms2 ] µs[106 kg
ms2 ] ρf [103 kg

m3 ] µf [ kgms ] Ū [ms ]
FSI2 10 2.0 0.5 1 1 1
FSI3 1 8.0 2.0 1 1 2



ALE-DIV-FREE-HDG-TDNNS-FSI 301

Quantities of interest are

• The displacement of the control point A at the end of the beam structure
(see Figure 5).

• The lift and drag forces acting on the cylinder and the beam structure:

(FD, FL) =

∫
S

σfnds,

where S denotes the boundary between the fluid domain and the cylinder
together with the elastic structure.

We compare the computational results with the reference data provided in [35] after
a fully developed periodic flow is formed.

We apply ALG-M and ALG-SP with polynomial degree k = 3, BDF[2] time
stepping, and a combination parameter α = 5 × 104. The stopping tolerance for
ALG-SP is taken to be η = 5×10−5. For ALG-SP we replace the convection velocity

uf,n
h in the flow solver (39a) with the explicit extrapolation uf,n,∗

h , which leads to
a linear scheme for the fluid and further saves the computational cost. Two set of
meshes are used in the simulation. The coarse mesh, which contains 495 triangular
elements, is generated automatically from the geometry by NETGEN [77]. Curved
elements with polynomial degree k = 3 are used for elements near the cylinder. The
fine mesh is obtained from the coarse mesh by a uniform refinement; see Figure 6.

Figure 6. The computational meshes. Left: coarse mesh with 495
elements. Right: fine mesh with 1980 elements. Curved elements
with polynomial degree 3 are used near the cylinder.

For the FSI2 problem, we use two different time step sizes, a coarse time step
size ∆t = 4×10−3 and a fine time step size ∆t = 2×10−3, and stop the simulation
at time T = 15. For the FSI3 problem, due to a larger fluid velocity magnitude,
we use two smaller time step sizes, a coarse time step size ∆t = 2× 10−3 and a fine
time step size ∆t = 1× 10−3, and stop the simulation at time T = 10. The average
number of iterations for ALG-SP are recorded in Table 14, which are around 10 for
all the cases. The nonlinear systems are solved via the Newton’s method with a
stopping residual tolerance of 10−8, and a sparse direct solver is used for the linear
system in each Newton iterations. It was observed that the average number of
Newton iterations for all cases are around 4. The total run time for the partitioned
scheme ALG-SP is observed to be about 2–4 times more than that for the monolithic
scheme ALG-M using the same mesh and time step size.

Table 14. Example 6: Average number of iterations for ALG-SP
with k = 3, BDF[2] time stepping, α = 5× 104, and η = 5× 10−5.

∆t coarse mesh fine mesh
FSI2 4× 10−3 9.2 9.2

2× 10−3 7.4 7.4
FSI3 2× 10−3 13.1 13.4

1× 10−3 11.1 11.3
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For the FSI2 problem, a fully developed periodic flow is observed starting around
time t = 10; see Figure 7 for the quantities of interest computed on the fine mesh
with the fine time step size ∆t = 2 × 10−3, which also shows that ALG-M and
ALG-SP with η = 5 × 10−5 produces qualitatively similar results. The results for

Figure 7. Example 6: Time evolution of the quantities of in-
terest for FSI2. Discretization: ALG-M and ALG-SP with k = 3
and BDF[2] time stepping on the fine mesh with ∆t = 4 × 10−3.
Top left: x-component of displacement at point A; Top right: y-
component of displacement at point A; Bottom left: drag force;
Bottom right: lift force.

the fully developed flow are recorded in Table 15, which are observed to be in good
match with reference data from [35]. In particular, the results on a fixed mesh for
ALG-M and ALG-SP using the two different time step sizes are very close to each
other.

In Figure 8, we plot the quantities of interest of the computed solution for t ∈
[13.85, 14.55], where the flow has been fully developed, along with the reference
data provided in [35]. Here we again observe that the results for ALG-M (first
row) and ALG-SP (second row) are very close to each when the same discretization
parameters (mesh size and time step size) are used. Moreover, we also observe a
small phase error comparing with the reference data for the results on the fine mesh
(blue and magenta lines), and a slightly phase shift for the results on the coarse
mesh (red and green lines). Let us now briefly compare our results in Figure 8 with
those in [81], which proposed the first HDG-based monolithlic FSI solver. The most
accurate FSI2 result reported in [81] was shown in Figure 10 therein, which used
an HDG scheme with Q2 elements and BDF2 time stepping on a quadrilaterial
mesh with 4364 elements and 112277 global DOFs (the time step size was not
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Table 15. Example 6: Results for FSI2 in the fully developed
flow regime (t ≥ 10).

ALG-M
mesh ndof ∆t x-disp.[A] y-disp.[A] drag lift
coarse 5972 4× 10−3 -1.567e-2±1.351e-2 1.461e-3±8.387e-2 2.177e2±8.111e1 1.119e0±2.397e2

2× 10−3 -1.566e-2±1.335e-2 1.444e-3±8.410e-2 2.201e2±8.394e1 -1.903e0±2.505e2
fine 23392 4× 10−3 -1.537e-2±1.328e-2 1.274e-3±8.287e-2 2.163e2±7.884e1 1.476e0±2.369e2

2× 10−3 -1.536e-2±1.316e-2 1.255e-3±8.313e-2 2.184e2±8.137e1 -1.303e0±2.443e2

ALG-SP with η = 5× 10−5

mesh ndof ∆t x-disp.[A] y-disp.[A] drag lift
coarse 5972 4× 10−3 -1.572e-2±1.354e-2 1.468e-3±8.400e-2 2.179e2±8.138e1 1.154e0±2.401e2

2× 10−3 -1.567e-2±1.337e-2 1.455e-3±8.414e-2 2.201e2±8.399e1 -1.876e0±2.502e2
fine 23392 4× 10−3 -1.542e-2±1.331e-2 1.271e-3±8.302e-2 2.166e2±7.916e1 1.424e0±2.374e2

2× 10−3 -1.537e-2±1.317e-2 1.257e-3±8.317e-2 2.185e2±8.144e1 -1.121e0±2.442e2

ref[35] 76672 1× 10−3 -1.454e-2±1.248e-2 1.25e-3±8.07e-2 2.131e2±7.576e1 8.5e-1±2.344e2
304128 5× 10−4 -1.485e-2±1.270e-2 1.30e-3±8.16e-2 2.151e2±7.765e1 6.1e-1±2.378e2

reported therein). The results in [81, Figure 10] showed a maximual amplitude
error of 7% in the x-displacement and drag force, comparing with the reference
data in [35]. They also reported that their results were sensitive to the stabilization
parameter S used in the HDG discretizations. Our results on the fine mesh in
Figure 8, which contains 1980 triangular elements and 23392 global DOFs, are
closer to the reference data than those in [81, Figure 10] and have less than 5%
error (calculated from Table 15) in the x-displacement and drag force. Hence we
achieve better accuracy using less global DOFs, which is partly due to our use of
higher order spatial discretization with polynomial degree k = 3, the divergence-
free fluid velocity approximation, and a TDNNS structure solver without (sensitive)
tunable HDG stabilization parameters.

Figure 8. Example 6: The quantities of interest for FSI2 in the
fully developed flow regime for t ∈ [13.85, 14.55]. CC: coarse mesh
with coarse time step size, CF: coarse mesh with fine time step
size, FC: fine mesh with coarse time step size, FF: fine mesh with
fine time step size. Top row: ALG-M with k = 3 and BDF[2] time
stepping. Bottom row: ALG-SP with k = 3, BDF[2] time stepping,
and η = 5× 10−5. Dashed black line: reference solution from [35].

For the FSI3 problem, a fully developed periodic flow is observed starting around
time t = 5; see Figure 9 for the quantities of interest for t ∈ [0, 6] computed on
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Figure 9. Example 6: Time evolution of the quantities of in-
terest for FSI3 for t ∈ [0, 6]. Discretization: ALG-M and ALG-
SP with k = 3 and BDF[2] time stepping on the fine mesh with
∆t = 2×10−3. Top left: x-component of displacement at point A;
Top right: y-component of displacement at point A; Bottom left:
drag force; Bottom right: lift force.

the fine mesh with the fine time step size ∆t = 1× 10−3. The results for the fully
developed flow are recorded in Table 16, where those on the fine mesh are observed
to be in good match with reference data from [35], and those on the coarse mesh
are slightly off which suggests a relative large spatial approximation errors on the
coarse mesh.

In Figure 10, we plot the quantities of interest of the computed solution for
t ∈ [5.75, 6], where the flow has been fully developed, along with the reference
data provided in [35]. Here, surprisingly, we observe that the phase errors for both
schemes on the coarse mesh (red and green lines), comparing with the reference
data, are smaller than those on the fine mesh (blue and magenta lines). This
finding seems to contradict with the results in Table 16, which clearly suggest the
superior of fine mesh results in terms of the amplitude and mean values. Below
we give a brief explanation of this discrepancy. In Figure 11, we plot the evolution
of y-component of the displacement at point A for the monolithic scheme ALG-
M on the coarse and fine meshes for both FSI2 and FSI3. It is clearly observed
that the results for FSI2 on coarse and fine meshes are very close to each other,
and are also consistent with the reference data. However, for FSI3 on the lower
panel of Figure 11, we observe a very large difference for the coarse and fine mesh
solutions especially in the transition region when 3 ≤ t ≤ 5. The fine mesh solution
starts visible oscillation about 0.3 time unit earlier than the coarse mesh solution.
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Table 16. Example 6: Results for FSI3 in the fully developed
flow regime (t ≥ 5).

ALG-M
mesh ndof ∆t x-disp.[A] y-disp.[A] drag lift
coarse 5972 2× 10−3 -3.259e-3± 3.081e-3 1.296e-3± 3.745e-2 4.637e2± 3.084e1 5.510e0± 1.522e2

1× 10−3 -3.247e-3± 3.071e-3 1.300e-3± 3.742e-2 4.636e2± 3.115e1 5.193e0± 1.537e2
fine 23392 2× 10−3 -2.792e-3± 2.640e-3 1.390e-3± 3.440e-2 4.535e2± 2.620e1 2.532e0± 1.553e2

1× 10−3 -2.787e-3± 2.636e-3 1.399e-3± 3.439e-2 4.534e2± 2.649e1 2.465e0± 1.567e2

ALG-SP with η = 5× 10−5

mesh ndof ∆t x-disp.[A] y-disp.[A] drag lift
coarse 5972 2× 10−3 -3.253e-3± 3.079e-3 1.294e-3± 3.743e-2 4.635e2± 3.112e1 5.268e0± 1.540e2

1× 10−3 -3.247e-3± 3.072e-3 1.300e-3± 3.742e-2 4.636e2± 3.131e1 5.201e0± 1.543e2
fine 23392 2× 10−3 -2.788e-3± 2.639e-3 1.402e-3± 3.438e-2 4.533e2± 2.653e1 2.499e0± 1.565e2

1× 10−3 -2.792e-3± 2.641e-3 1.369e-3± 3.443e-2 4.534e2± 2.662e1 2.413e0± 1.5702

ref[35] 76672 5× 10−4 -2.78e-3± 2.62e-3 1.44e-3± 3.435e-2 4.591e2± 2.662e1 2.39e0± 1.507e2
304128 2.5× 10−4 -2.88e-3± 2.72e-3 1.47e-3± 3.499e-2 4.605e2± 2.774e1 2.50e0± 1.539e2

Figure 10. Example 6: The quantities of interest for FSI3 in
the fully developed flow regime for t ∈ [6, 6.25]. CC: coarse mesh
with coarse time step size, CF: coarse mesh with fine time step
size, FC: fine mesh with coarse time step size, FF: fine mesh with
fine time step size. Top row: ALG-M with k = 3 and BDF[2] time
stepping. Bottom row: ALG-SP with k = 3, BDF[2] time stepping,
and η = 5× 10−5. Dashed black line: reference solution from [35].

We note that FSI3 is a very challenging test case, and there is no recorded time-
accurate data that includes the transition time solution in the literature yet. The
reference data provided in [35] only recorded results from time t = 5 to t = 6.44.
On the other hand, since the fine mesh solution matches better with the reference
data in terms of the amplitude and mean values in Figure 11 (and in Table 16),
we believe our fine mesh results may be more reliable than the coarse mesh results,
which is partially confirmed by an additional mesh refinement study as shown in
Figure 12. In Figure 12, we present the time evolution of the y-component of the
displacement at point A and the lift force on a finer mesh obtained from a uniform
refinement of the fine mesh, together with those on the coarse and fine meshes. We
clearly observe that the results on the fine and finer meshes are on top of each other
while those on the coarse mesh is less accurate, which indicates a mesh convergence
might be reached on the fine mesh. A more compressive study of FSI3 including
the transition time accuracy will be investigated in our future work.
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Figure 11. Example 6: Evolution of y-displacement at point A
for FSI2 (top) and FSI3 (bottom). The time step size is ∆t = 2e−3
for FSI2 and ∆t = 1e− 3 for FSI3.

In conclusion, we observe that both the monolithic scheme ALG-M and the
strongly coupled partitioned scheme ALG-SP produce qualitatively good results
for the two benchmark tests.

6. Conclusion

We have presented high-order FSI solvers based on an ALE divergence-free HDG
discretization for the fluid sub-problem, a TDNNS discretization for the structure
sub-problem, and a generalized Robin interface treatment. Both monolithic and
strongly coupled partitioned schemes are obtained, which are numerically verified
to enjoy good stability properties. Numerical results showed that the proposed
methods meet the design order of accuracy both in space and time, and also showed
good performance of the methods for several two-dimensional benchmark examples.
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Figure 12. Example 6: Mesh refinement study for the time
evolution of the y-component of displacement at point A and the
lift force for FSI3. The finer mesh is obtained from the fine mesh
in Figure 6 by a uniform refinement. Discretization: ALG-M with
k = 3 and BDF[2] time stepping with ∆t = 1e− 3.
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[8] M. Bukač, A. Seboldt, and C. Trenchea, Refactorization of Cauchy’s method: a second-

order partitioned method for fluid-thick structure interaction problems, J. Math. Fluid Mech.,

23 (2021), pp. Paper No. 64, 25.
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