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CONVERGENCE ANALYSIS OF YEE-FDTD SCHEMES FOR 3D

MAXWELL’S EQUATIONS IN LINEAR DISPERSIVE MEDIA

PUTTHA SAKKAPLANGKUL AND VRUSHALI A. BOKIL

Abstract. In this paper, we develop and analyze finite difference methods for the 3D Maxwell’s

equations in the time domain in three different types of linear dispersive media described as Debye,
Lorentz and cold plasma. These methods are constructed by extending the Yee-Finite Difference
Time Domain (FDTD) method to linear dispersive materials. We analyze the stability criterion
for the FDTD schemes by using the energy method. Based on energy identities for the continuous

models, we derive discrete energy estimates for the FDTD schemes for the three dispersive models.
We also prove the convergence of the FDTD schemes with perfect electric conducting boundary
conditions, which describes the second order accuracy of the methods in both time and space. The
discrete divergence-free conditions of the FDTD schemes are studied. Lastly, numerical examples

are given to demonstrate and confirm our results.

Key words. Maxwell’s equations, Debye, Lorentz, cold plasma dispersive media, Yee scheme,
FDTD method, energy decay, convergence analysis.

1. Introduction

The finite difference time domain (FDTD) method by Kane Yee [50] is a nu-
merical technique for discretizing the time-dependent Maxwell’s equations in com-
putational electromagnetics and has been widely used in engineering, physics and
computational mathematics [47, 50]. Electromagnetic wave propagation in a mate-
rial is described by the three dimensional (3D) Maxwell’s equations, modeling the
evolution in space and time of the electric and magnetic fields, along with consti-
tutive laws, relations between electric and magnetic fluxes and fields, that describe
the response of the material to the propagating fields.

The FDTD method was first proposed for a linear dielectric (e.g., free space)
by K. S. Yee [50] in 1966, and is also referred to as the (classical) Yee scheme or
the Yee-FDTD method. The Yee scheme, as originally constructed, is an explicit
scheme for the discretization of the 3D Maxwell’s equations on structured staggered
space-time grids. The staggered discretization results in a second order accurate
method. The classical Yee scheme has been theoretically analyzed for stability and
dispersion error [47], convergence analysis and error estimates [40, 41], and has
been extended to discretize Maxwell’s equations with constitutive laws describing
electromagnetic wave propagation in a variety of materials [47].

In this paper, we focus on constitutive laws that do not include any magnetic
effects, i.e. the magnetic constitutive law is the same as that in free space (linear
dielectric). Previous work in this area includes extension of the Yee scheme to
conductive media [47], linear dispersive media [4, 10, 14, 26, 27, 28, 38, 43] using
constitutive laws that include models such as the Debye model for orientational
polarization [16, 28], Lorentz model for electronic polarization [26, 42], cold plasma
model [14, 51, 52] and the Cole-Cole [10, 13] model. In nonlinear optics, nonlinear
dispersive models in 1D for the Kerr and Raman effects have been constructed
and discretized within this FDTD approach [5, 20, 25]. There is a large literature
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on the construction of Yee type FDTD schemes for other applications including in
metamaterials [21, 34], micromagnetics [1, 45], plasmas [15, 39], among others. The
classical Yee scheme for a linear dielectric, and many of its extensions, leads to a
conditionally stable second order accurate scheme. The scheme may no longer be
fully explicit for some constitutive laws, and other complications can arise [5]. In
addition, there are extensions of the Yee schemes to higher than second order [5, 6]
and to extensions on unstructured meshes [17].

One of the areas in which the Yee scheme has been relatively less studied is
convergence analysis, while there are several papers on dispersion analysis of the Yee
and Yee type schemes. In our recent work [7], we presented Yee schemes and their
convergence analysis for the 2D Maxwell’s equations in Debye and Lorentz (linear)
dispersive media. The Yee scheme for both media was proved to be conditionally
stable under the same stability condition as the classical Yee scheme. We proved
that the proposed Yee scheme in both media is of second order convergent in time
and space by the energy method.

In this paper, we extend the convergence of Yee schemes for linear dispersive
media in two spatial dimensions to 3D. We consider three types of models for linear
dispersive materials; the (single pole) Debye model for orientational polarization
(Maxwell-Debye), the (single pole) Lorentz (Maxwell-Lorentz) and the isotropic
cold plasma (Maxwell-Cold Plasma) model. We focus on the construction and
analysis of the finite difference time domain methods based on the staggered Yee
grids for 3D Maxwell’s equations in these three linearly dispersive media. We show
that our fully discrete schemes are conditionally stable via the energy method, and
convergent with second order accuracy. Moreover, we use the energy technique to
analyze the discrete divergence for the discrete Maxwell’s equations in dispersive
media. The energy method is a powerful method used on both the continuous PDEs
and discrete finite difference methods by defining an energy associated with the
solution and then showing that the energy is non-increasing. Recently, the energy
technique has been applied for analyzing stability and convergence properties of
the Yee scheme in various dispersive media, applied in operator splitting FDTD
methods [8, 9, 11, 18, 49, 35, 36], finite element methods (FEM) and discontinuous
Galerkin (DG) methods (for example see [22, 29, 30, 31, 32, 33, 37, 48] and references
therein).

We present numerical experiments to illustrate our theoretical results by con-
structing exact solutions for Maxwell’s equations in these linearly dispersive media:
Debye, Lorentz and Cold plasma. We also investigate the discrete divergence prop-
erties of electric and magnetic flux densities for these dispersive media. Our analy-
sis shows that the numerical divergence satisfies discrete versions of the continuous
Gauss’s laws for the 3D Maxwell’s equations in dispersive media.

This paper is organized as follows. In Section 2, we present the 3D Maxwell’s
equations in three types of linearly dispersive media (Debye, Lorentz and isotropic
cold plasma) and then present their corresponding weak formulations. In addition,
we present energy decay results for these dispersive models that are available in
the literature [7, 31]. Section 3 details the staggered discretization in space and
time. The stability, discrete energy estimates and convergence analysis, including
the analysis of the discrete divergence property are presented in Sections 4, 5 and
6. Numerical experiments demonstrating our theoretical results are presented in
Section 7. We provide concluding remarks in Section 8.



526 P. SAKKAPLANGKUL AND V. A. BOKIL

2. Maxwell’s Equations in Dispersive Dielectrics

Let Ω ⊂ R3 be an open bounded domain. Let T > 0 be given. The time
dependent three dimensional (3D) Maxwell’s equations on Ω × [0, T ] in a charge
and source free vacuum are a system of vector PDEs governing the evolution in
space and time of the electric field E and the magnetic field H, which are given as
follows:

On Ω× (0, T ] we have

∂B

∂t
+ curl E = 0,(1a)

∂D

∂t
− curl H = 0,(1b)

div D = 0 = div B,(1c)

along with initial conditions

D(x, 0) = D0(x); B(x, 0) = B0(x), on Ω(1d)

where D is the electric flux density, B is the magnetic flux density, D0 and B0

are initial conditions on the electric field and the magnetic field, respectively.
All fields in (1) are 3D vector fields with components that are functions of po-
sition x = (x, y, z)T ∈ Ω and time t ∈ [0, T ], i.e., every vector field V(x, t) :=
(Vx(x, t), Vy(x, t), Vz(x, t))

T . The 3D operators, curl and div, are vector curl and
divergence operators respectively, operating on vector fields.

The boundary condition in this paper is assumed to be the perfect electric con-
ductor (PEC) boundary condition given as

n×E = 0, on ∂Ω,(2)

where the vector n is the outward unit normal vector to ∂Ω.
Both the electric and magnetic flux densities are related to the electric and

magnetic fields through the constitutive relations on Ω × [0, T ]. The constitutive
relations for a dispersive medium are given as

D = ϵ0ϵ∞E+P,(3a)

B = µ0H,(3b)

where ϵ0 is the electric permittivity of free space, µ0 is the magnetic permeability
of free space, and c0 = 1/

√
ϵ0µ0 is the speed of light in vacuum. We note that the

magnetic constitutive law is the same as that in vacuum; thus we neglect magnetic
effects. The vector field P is the electric (macroscopic) polarization field, and ϵ∞
is the permittivity at infinite frequency. The (linear, isotropic) vector polarization
field P in the constitutive relation (3a) is defined as a convolution in time with the
electric field given as

(4) P(x; t) =

∫ t

0

g(x; t− s)E(x; s)ds,

where g is the linear susceptibility kernel (or the dielectric response function) of
the dispersive medium [4, 7] which is a function of space and time. Equation (4)
describes the non-instantaneous (delayed or retarded) response of the dispersive
material [2]. The system of equations (1), (2), (3), and (4), fully describe the
propagation of an electromagnetic field in a linear, isotropic, dispersive medium.

In this paper, we focus on three of the most common models for linear dispersive
materials. These are, the Debye model for orientational polarization which describes
relaxation processes and is used to model polar materials [16, 43, 16, 28]; the Lorentz
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model [42] for electronic polarization which describes resonance phenomenon at the
atomic level [43, 26, 42]; and the isotropic cold plasma model for the absorption
and propagation of electromagnetic waves in non-magnetized materials [46, 44, 32].
Next, we describe these three models.

2.1. Maxwell-Debye Model and Energy Estimates. In this section, we con-
sider the case of the single-pole Debye dispersive model for orientational polarization
[28, 7, 53]. The linear susceptibility kernel g, defined in (4), takes on the form

(5) g(x; t) =
ϵ0ϵ∞(ϵq − 1)

τ
e−t/τ , x ∈ Ω,

in which ϵs is the static relative permittivity and ϵq := ϵs/ϵ∞ is the ratio of static
to infinite permittivities. The parameter τ is the relaxation time of the medium.
All parameters τ , ϵ∞, and ϵs are assumed to be constant within the medium. We
also have the physical conditions ϵs > ϵ∞, i.e., ϵq > 1, and τ > 0.

The time convolution in (4) for P with the susceptibility g given in (5) can be
converted into an ordinary differential equation (ODE) for the time evolution of
the polarization, given as

(6) τ
∂P

∂t
+P = ϵ0ϵ∞(ϵq − 1)E.

Combining the ODE in (6) with Maxwell’s equations (1) and the constitutive laws
(3), we arrive at the 3D Maxwell-Debye model in the form of three first order vector
differential equations:

3D Maxwell-Debye Model:

∂H

∂t
= − 1

µ0
curl E,(7a)

∂E

∂t
=

1

ϵ0ϵ∞
curl H− (ϵq − 1)

τ
E+

1

ϵ0ϵ∞τ
P,(7b)

∂P

∂t
=
ϵ0ϵ∞(ϵq − 1)

τ
E− 1

τ
P.(7c)

We assume the PEC boundary condition (2) on ∂Ω and the initial conditions (1d),
along with homogeneous initial conditions for the polarization, in the domain Ω ⊂
R3.

To show that the system (7) is well-posed, we construct a weak formulation. We
first define the following two functional spaces:

H(curl,Ω) = {u ∈
(
L2(Ω)

)3 | curl u ∈
(
L2(Ω)

)3},(8a)

H0(curl,Ω) = {u ∈ H(curl,Ω) | n× u = 0 on ∂Ω}.(8b)

Let (·, ·) denote the L2 inner products and ∥·∥2 denote the corresponding norm. The
weak formulation for the 3D Maxwell-Debye system can be constructed as follows
(see also [7]). Multiplying equation (7a), equation (7b) , and equation (7c) by test

functions µ0v ∈
(
L2(Ω)

)3
, ϵ0ϵ∞u ∈ H0(curl,Ω) , and

1

ϵ0ϵ∞(ϵq − 1)
w ∈

(
L2(Ω)

)3
,

respectively, and then integrating over the domain Ω ⊂ R3 and finally applying
Green’s formula for the curl operator

(curl H,u) = (H, curl u) , ∀u ∈ H0(curl,Ω),(9)

the weak formulation for the 3D Maxwell-Debye system of equations (7) is:
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3D Maxwell-Debye Variational Formulation: FindE ∈ C(0, T ;H0(curl,Ω))∩
C1(0, T ; (L2(Ω))3), and H,P ∈ C1(0, T ;

(
L2(Ω)

)3
) such that(

µ0
∂H

∂t
,v

)
= (−curl E,v) ,v ∈

(
L2(Ω)

)3
,(10a) (

ϵ0ϵ∞
∂E

∂t
,u

)
= (H, curl u)−

(
ϵ0ϵ∞(ϵq − 1)

τ
E,u

)
+

(
1

τ
P,u

)
,(10b)

u ∈ H0(curl,Ω),

(
1

ϵ0ϵ∞(ϵq − 1)

∂P

∂t
,w

)
=

(
1

τ
E,w

)
−
(

1

ϵ0ϵ∞(ϵq − 1)τ
P,w

)
,w ∈

(
L2(Ω)

)3
.

(10c)

The Maxwell-Debye model exhibits energy decay, as stated in the theorem below.

Theorem 2.1 (Maxwell-Debye Energy Decay). Let Ω ⊂ R3 and suppose that
the solutions of the weak formulation (10) for the 3D Maxwell-Debye system of
equations (7) satisfy the regularity conditions E ∈ C(0, T ;H0(curl,Ω)) ∩ C1(0, T ;

(L2(Ω))3), and H,P ∈ C1(0, T ;
(
L2(Ω)

)3
) along with the PEC boundary conditions

(2). Then the system exhibits energy decay,

ED(t) ≤ ED(0), ∀t ≥ 0,(11)

where the energy ED(t) is defined by

ED(t) =

(
µ0

∥∥∥ H(t)
∥∥∥2
2
+ ϵ0ϵ∞

∥∥∥ E(t)
∥∥∥2
2
+

1

ϵ0ϵ∞(ϵq − 1)

∥∥∥P(t)
∥∥∥2
2

) 1
2

.(12)

Proof. See [7, 29, 31]. �

2.2. Maxwell-Lorentz Model and Energy Estimates. The second model for
a dispersive medium that we consider is the single pole Lorentz model for electronic
polarization. The susceptibility kernel function for the Lorentz model (see [28, 7,
53]) is given as

(13) g(x; t) =
ϵ0ω

2
p

ν0
e−tλ sin(ν0t),

where ω0 is the resonance frequency of the medium, λ :=
1

2τ
is a damping frequency

with 1
τ the damping constant, the plasma frequency is ωp := ω0

√
ϵs − ϵ∞, and

ν0 :=
√
ω2
0 − λ2.

The time convolution for the electric polarization P with the susceptibility (13)
can be converted to a second order ODE in the form [27, 53]

(14)
∂2P

∂t2
+

1

τ

∂P

∂t
+ ω2

0P = ϵ0ωp
2E.

We define a new vector field, J =
∂P

∂t
, the polarization current density. With

this definition, combining the ODE in (14) with Maxwell’s equations (1) and the
constitutive laws (3), we arrive at the 3D Maxwell-Lorentz model written as
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3D Maxwell-Lorentz Model:
∂H

∂t
= − 1

µ0
curl E,(15a)

∂E

∂t
=

1

ϵ0ϵ∞
curl H− 1

ϵ0ϵ∞
J,(15b)

∂J

∂t
= −1

τ
J− ω2

0P+ ϵ0ωp
2E,(15c)

∂P

∂t
= J.(15d)

We assume the PEC boundary conditions (2) on ∂Ω and the initial conditions (1d),
along with homogeneous initial conditions for P and J, in the domain Ω ⊂ R3.
To show that the system (15) is well-posed, we construct a weak formulation as
follows:

3D Maxwell-Lorentz Variational Formulation:
Find E ∈ C(0, T ;H0(curl,Ω)) ∩ C1(0, T ; (L2(Ω))3), P,J,H ∈ C1(0, T ;

(
L2(Ω)

)3
)

such that (
µ0
∂H

∂t
,v

)
= − (curl E,v) , ∀v ∈

(
L2(Ω)

)3
,(16a) (

ϵ0ϵ∞
∂E

∂t
,u

)
= (H, curl u)− (J,u) , ∀u ∈ H0(curl,Ω),(16b) (

1

ϵ0ωp
2

∂J

∂t
,w

)
= −

(
1

ϵ0ωp
2τ

J,w

)
−
(

1

ϵ0ϵ∞(ϵq − 1)
P,w

)
(16c)

+ (E,w) , ∀w ∈
(
L2(Ω)

)3
,(

1

ϵ0ϵ∞(ϵq − 1)

∂P

∂t
,q

)
=

(
1

ϵ0ϵ∞(ϵq − 1)
J,q

)
, ∀q ∈

(
L2(Ω)

)3
.(16d)

The Maxwell-Lorentz model exhibits energy decay, as stated in the theorem below
(also see [31]).

Theorem 2.2 (Maxwell-Lorentz Energy Decay). Let Ω ⊂ R3 and suppose
that the solutions of the weak formulation (16) for the Maxwell-Lorentz system of
equations (15) satisfy the regularity conditions E ∈ C(0, T ;H0(curl,Ω)) ∩ C1(0, T ;

(L2(Ω))3), P,J,H ∈ C1(0, T ;
(
L2(Ω)

)3
), along with the PEC boundary conditions

(2). Then the system exhibits energy decay,

EL(t) ≤ EL(0), ∀ t ≥ 0,(17)

where the energy EL(t) is defined by

EL(t) =
(
µ0

∥∥∥ H(t)
∥∥∥2
2
+ ϵ0ϵ∞

∥∥∥ E(t)
∥∥∥2
2
+

1

ϵ0ϵ∞(ϵq − 1)

∥∥∥P(t)
∥∥∥2
2
+

1

ϵ0ωp
2

∥∥∥J(t)∥∥∥2
2

) 1
2

.

(18)

Proof. See [7, 31]. �
2.3. Maxwell-Cold Plasma: Model and Energy Estimates. The cold plasma
model is used to describe the propagation and absorption of electromagnetic waves
in isotropic non-magnetized cold plasma [46, 32]. The susceptibility kernel function
in isotropic cold plasma (see [53]) is given by

(19) g(x; t) =
ϵ0ω

2
p

νc
(1− e−tνc),
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where ωp is the plasma frequency of the medium, and νc is the collision frequency.
The time convolution for the electric polarization P with the susceptibility (19)

in the isotropic cold plasma model can be converted to a second order ODE in the
form [24, 23, 53]

(20)
∂2P

∂t2
+ νc

∂P

∂t
= ϵ0ω

2
pE.

By defining the polarization current density ∂P
∂t = J, as before, we can rewrite this

system as a first order ODE

(21)
∂J

∂t
= −νcJ+ ϵ0ω

2
pE.

The plasma model is a special case of the Lorentz model (15) with zero resonance
frequency. The 3D Maxwell-Cold Plasma equations of the non-magnetized cold
plasma are

3D Maxwell-Cold Plasma Model:
∂H

∂t
= − 1

µ0
curl E,(22a)

∂E

∂t
=

1

ϵ0ϵ∞
curl H− 1

ϵ0ϵ∞
J,(22b)

∂J

∂t
= −νcJ+ ϵ0ω

2
pE.(22c)

We note that, we do not need to include the polarization P in this model, rather
just the polarization current density J. Similar to the Debye and the Lorentz case,
the weak formulation for the Maxwell cold plasma system (22) reads

3D Maxwell-Cold Plasma Variational Formulation:
Find E ∈ C(0, T ;H0(curl,Ω)) ∩ C1(0, T ; (L2(Ω))3), J,H ∈ C1(0, T ;

(
L2(Ω)

)3
),

such that (
µ0
∂H

∂t
,v

)
= − (curl E,v) , ∀v ∈

(
L2(Ω)

)3
,(23a) (

ϵ0ϵ∞
∂E

∂t
,u

)
= (H, curl u)− (J,u) , ∀u ∈ H0(curl,Ω),(23b) (

1

ϵ0ω2
p

∂J

∂t
,w

)
= −

(
νc
ϵ0ω2

p

J,w

)
+ (E,w) , ∀w ∈

(
L2(Ω)

)3
.(23c)

The Maxwell-Cold Plasma model exhibits energy decay, as stated in the theorem
below.

Theorem 2.3 (Maxwell-Cold Plasma Energy Decay). Let Ω ⊂ R3 and sup-
pose that the solutions of the weak formulation (23) for the Maxwell-Cold Plasma
system of equations (22) satisfy the regularity conditions E ∈ C(0, T ;H0(curl,Ω))

∩ C1(0, T ; (L2(Ω))3), J ∈ C1(0, T ;
(
L2(Ω)

)3
), and H ∈ C1(0, T ;

(
L2(Ω)

)3
) along

with the PEC boundary conditions (2). Then the system exhibits energy decay,

EC(t) ≤ EC(0), ∀ t ≥ 0,(24)

where the energy EC(t) is defined by

EC(t) =
(
µ0

∥∥∥ H(t)
∥∥∥2
2
+ ϵ0ϵ∞

∥∥∥ E(t)
∥∥∥2
2
+

1

ϵ0ω2
p

∥∥∥J(t)∥∥∥2
2

) 1
2

.(25)

Proof. See [31]. �
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3. Discretization on Staggered Grids

In this section, we define spatial and temporal discretization in a standard way
(see for e.g. [3, 5, 7, 9, 11]) to obtain a staggered grid in space-time that we will call a
Yee grid or mesh. Here we consider a cubic spatial domain Ω = [0, a]×[0, b]×[0, c] ⊂
R3 for a, b, c > 0 and time interval [0, T ] with T > 0. Let I, J , K and N be positive
integers such that I = a/∆x, J = b/∆y, K = c/∆z, and N = T/∆t where △x,△y
and △z are spatial step sizes along the x, y, and z direction, respectively, and △t is
the time step size. Let ℓ, j, k, n ∈ N. We define grid points in the t, x, y, z directions
as

tn = n△t, tn+
1
2 =

(
n+

1

2

)
△t, n = 0, 1, 2, ..., N − 1, tN = N△t = T,

xℓ = ℓ△x, xℓ+ 1
2
=

(
ℓ+

1

2

)
△x, ℓ = 0, 1, 2, ..., I − 1, xI = I△x = a,

yj = j△y, yj+ 1
2
=

(
j +

1

2

)
△y, j = 0, 1, 2, ..., J − 1, yJ = J△y = b,

zk = k△z, zk+ 1
2
=

(
k +

1

2

)
△z, k = 0, 1, 2, ...,K − 1, zK = K△z = c.

To derive some of our results, we will sometimes consider the special case ∆x =
∆y = ∆z = h. In any case, we consistently use the notation Uh(t) for an appropriate
grid function which approximates a smooth scalar field components u(x, t) on a Yee
grid. We represent the discrete electric and magnetic vector field grid functions by,
Eh and Hh, respectively. For components of fields related to the electric field, i.e.,
Fκ,h where F ∈ {E,P, J} and κ ∈ {x, y, z}, we define the set of spatial grid points
on which these fields are discretized as follows:

ΩEx

h :=
{(
xℓ+ 1

2
, yj , zk

) ∣∣ 0 ≤ ℓ ≤ I − 1, 0 ≤ j ≤ J, 0 ≤ k ≤ K
}
,(26a)

Ω
Ey

h :=
{(
xℓ, yj+ 1

2
, zk

) ∣∣ 0 ≤ ℓ ≤ I, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K
}
,(26b)

ΩEz

h :=
{(
xℓ, yj , zk+ 1

2

) ∣∣ 0 ≤ ℓ ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K − 1
}
.(26c)

For magnetic field components, Hκ,h, the sets of spatial grid points on which these
fields are discretized are

ΩHx

h :=
{(
xℓ, yj+ 1

2
, zk+ 1

2

) ∣∣ 0 ≤ ℓ ≤ I, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K − 1
}
,(27a)

Ω
Hy

h :=
{(
xℓ+ 1

2
, yj , zj+ 1

2

) ∣∣ 0 ≤ ℓ ≤ I − 1, 0 ≤ j ≤ J, 0 ≤ k ≤ K − 1
}
,(27b)

ΩHz

h :=
{(
xℓ+ 1

2
, yj+ 1

2
, zk

) ∣∣ 0 ≤ ℓ ≤ I − 1, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K
}
.(27c)

Thus, all x components of Eh (and Ph and Jh) are discretized at grid points

on ΩEx

h and collectively form the set of degrees of freedom (DoF) of Ex,h, given

as {Ex,h
ℓ+1

2
,j,k
,
(
xℓ+ 1

2
, yj , zk

)
∈ ΩEx

h }. Similarly y components are discretized on

Ω
Ey

h , and z components on ΩEz

h . All x components of Hh are discretized on ΩHx

h , y

components on Ω
Hy

h , and z components on ΩHz

h . We denote ΩE
h := ΩEx

h ×Ω
Ey

h ×ΩEz

h

and ΩH
h = ΩHx

h × Ω
Hy

h × ΩHz

h .
We assume that the PEC boundary condition (2) is satisfied on the discrete Yee

mesh. We denote the set of all grid points on the boundary of the cubic spatial
domain Ω = [0, a] × [0, b] × [0, c] as ∂ΩE

h . Then the discrete analogue of the PEC
boundary condition, n×Eh = 0, on the Yee grid is that the degrees of freedom of
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the electric grid function Eh satisfy

Ex,h
ℓ+1

2
,0,k

= Ex,h
ℓ+1

2
,J,k

= Ex,h
ℓ+1

2
,j,0

= Ex,h
ℓ+1

2
,j,K

= 0,

Ey,h
0,j+1

2
,k
= Ey,h

I,j+1
2
,k
= Ey,h

ℓ,j+1
2
,0
= Ey,h

ℓ,j+1
2
,K

= 0,(28)

Ez,h
0,j,k+1

2

= Ez,h
I,j,k+1

2

= Ez,h
ℓ,0,k+1

2

= Ez,h
ℓ,J,k+1

2

= 0,

for any 0 ≤ ℓ ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K and for all time t.
We define the centered temporal difference operator, the discrete time averaging

operator as well as the centered spatial difference operators acting on grid functions
as follows. For Uh a discrete grid function approximating a smooth scalar field
component u(x, t), we have

Uγ
hα,β,κ

≈ u(α∆x, β∆y, κ∆z, γ∆t),

(29a)

δtU
γ
hα,β,κ

:=
U

γ+ 1
2

hα,β,κ
− U

γ− 1
2

hα,β,κ

∆t
,

(29b)

U
γ

hα,β,κ
:=

U
γ+ 1

2

hα,β,κ
+ U

γ− 1
2

hα,β,κ

2
,

(29c)

δxU
γ
hα,β,κ

:=
Uγ
h
α+1

2
,β,κ

− Uγ
h
α− 1

2
,β,κ

∆x
,

(29d)

δyU
γ
hα,β,κ

:=
Uγ
h
α,β+1

2
,κ
− Uγ

h
α,β− 1

2
,κ

∆y
,

(29e)

δzU
γ
hα,β,κ

:=
Uγ
h
α,β,κ+1

2

− Uγ
h
α,β,κ− 1

2

∆z
.

(29f)

The discrete grid inner products are defined as follows. Let ∆3 = ∆x∆y∆z.
For any fields related to the electric field denoted as Fh,Gh, which are defined on
ΩE

h , and for magnetic fields denoted by Uh,Vh, defined on ΩH
h , we define the inner

products

(Fh,Gh)E =∆3
I−1∑
ℓ=0

J−1∑
j=0

K−1∑
k=0

(
Fx,h

ℓ+1
2
,j,k
Gx,h

ℓ+1
2
,j,k

(30a)

+ Fy,h
ℓ,j+1

2
,k
Gy,h

ℓ,j+1
2
,k
+ Fz,h

ℓ,j,k+1
2

Gz,h
ℓ,j,k+1

2

)
,

(Uh,Vh)H =∆3
I−1∑
ℓ=0

J−1∑
j=0

K−1∑
k=0

(
Ux,h

ℓ,j+1
2
,k+1

2

Vx,h
ℓ,j+1

2
,k+1

2

(30b)

+ Uy,h
ℓ+1

2
,j,k+1

2

Vy,h
ℓ+1

2
,j,k+1

2

+ Uz,h
ℓ+1

2
,j+1

2
,k
Vz,h

ℓ+1
2
,j+1

2
,k

)
.

The discrete norms associated to the inner products are defined as

∥Fh∥2E = ∆3
I−1∑
ℓ=0

J−1∑
j=0

K−1∑
k=0

(
|Fx,h

ℓ+1
2
,j,k

|2 + |Fy,h
ℓ,j+1

2
,k
|2 + |Fz,h

ℓ,j,k+1
2

|2
)
,

(31a)

∥Uh∥2H = ∆3
I−1∑
ℓ=0

J−1∑
j=0

K−1∑
k=0

(
|Ux,h

ℓ,j+1
2
,k+1

2

|2 + |Uy,h
ℓ+1

2
,j,k+1

2

|2 + |Uz,h
ℓ+1

2
,j+1

2
,k
|2
)
.

(31b)
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Next, we define discrete spaces for the electric field, polarization and polarization
current density. Define the spaces

∨E
h := {Fh = (Fx,h, Fy,h, Fz,h), on ΩE

h , ∥Fh∥E <∞},(32)

∨E
h,0 := {Fh = (Fx,h, Fy,h, Fz,h) ∈ ∨E

h ;n× Fh = 0, on ∂ΩE
h }.(33)

Similarly, we define discrete spaces for the magnetic field as

∨H
h := {Uh = (Ux,h, Uy,h, Uz,h), on ΩH

h , ∥Uh∥H <∞}.(34)

The discrete curl operators, primary and dual, are then defined respectively, as

curlh :∨E
h → ∨H

h ,(35a)

c̃urlh :∨H
h → ∨E

h ,(35b)

such that

curlh Eh =
(
(δyEz,h − δzEy,h)ℓ,j+ 1

2 ,k+
1
2
, (δzEx,h − δxEz,h)ℓ+ 1

2 ,j,k+
1
2
,

(36a)

(δxEy,h − δyEx,h)ℓ+ 1
2 ,j+

1
2 ,k

)T

∈ ∨H
h ,

c̃urlhHh =
(
(δyHz,h − δzHy,h)ℓ+ 1

2 ,j,k
, (δzHx,h − δxHz,h)ℓ,j+ 1

2 ,k
,

(36b)

(δxHy,h − δyHx,h)ℓ,j,k+ 1
2

)T

∈ ∨E
h .

Summation (discrete integration) by parts (also see [3, 11]) yields the following
adjoint property of the discrete curl operator: for any Eh ∈ ∨E

h,0 and Hh ∈ ∨H
h , we

have that

(37) (curlh Eh,Hh)H = (Eh, c̃urlhHh)E .

The discrete curl operators (35) are represented in matrix form as [12, 9]

c̃urlh := curlh :=

 0 −δz δy
δz 0 −δx
−δy δx 0

 .(38)

In the next sections we construct and analyze Yee schemes for Debye, Lorentz
and cold plasma models described earlier.

4. Yee Scheme for the Maxwell-Debye System

Extensions of the Yee-FDTD schemes for the 3D Maxwell-Debye model (7)
should use a staggered leap-frog discretization in time and space for staggering elec-
tromagnetic field components. Using the notation developed in the previous section
we can write down the scalar form of a Yee-FDTD scheme as an update of discrete
electromagnetic field solutions at time tn = n∆t, n ∈ N to time tn+1 = (n + 1)∆t
as follows:
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3D Yee-FDTD Maxwell-Debye Scheme (Scalar form)

δtH
n
x,h

ℓ,j+1
2
,k+1

2

=
1

µ0

(
δzE

n
y,h

ℓ,j+1
2
,k+1

2

− δyE
n
z,h

ℓ,j+1
2
,k+1

2

)
,(39a)

δtH
n
y,h

ℓ+1
2
,j,k+1

2

=
1

µ0

(
δxE

n
z,h

ℓ+1
2
,j,k+1

2

− δzE
n
x,h

ℓ+1
2
,j,k+1

2

)
,(39b)

δtH
n
z,h

ℓ+1
2
,j+1

2
,k
=

1

µ0

(
δyE

n
x,h

ℓ+1
2
,j+1

2
,k
− δxE

n
y,h

ℓ+1
2
,j+1

2
,k

)
,(39c)

δtE
n+ 1

2

x,h
ℓ+1

2
,j,k

=
1

ϵ0ϵ∞

(
δyH

n+ 1
2

z,h
ℓ+1

2
,j,k

− δzH
n+ 1

2

y,h
ℓ+1

2
,j,k

)
(39d)

− (ϵq − 1)

τ
E

n+ 1
2

x,h
ℓ+1

2
,j,k

+
1

ϵ0ϵ∞τ
P

n+ 1
2

x,h
ℓ+1

2
,j,k
,

δtE
n+ 1

2

y,h
ℓ,j+1

2
,k
=

1

ϵ0ϵ∞

(
δzH

n+ 1
2

x,h
ℓ,j+1

2
,k
− δxH

n+ 1
2

z,h
ℓ,j+1

2
,k

)
(39e)

− (ϵq − 1)

τ
E

n+ 1
2

y,h
ℓ,j+1

2
,k
+

1

ϵ0ϵ∞τ
P

n+ 1
2

y,h
ℓ,j+1

2
,k
,

δtE
n+ 1

2

z,h
ℓ,j,k+1

2

=
1

ϵ0ϵ∞

(
δxH

n+ 1
2

y,h
ℓ,j,k+1

2

− δyH
n+ 1

2

x,h
ℓ,j,k+1

2

)
(39f)

− (ϵq − 1)

τ
E

n+ 1
2

z,h
ℓ,j,k+1

2

+
1

ϵ0ϵ∞τ
P

n+ 1
2

z,h
ℓ,j,k+1

2

,

δtP
n+ 1

2

x,h
ℓ+1

2
,j,k

=
ϵ0ϵ∞ (ϵq − 1)

τ
E

n+ 1
2

x,h
ℓ+1

2
,j,k

− 1

τ
P

n+ 1
2

x,h
ℓ+1

2
,j,k
,(39g)

δtP
n+ 1

2

y,h
ℓ,j+1

2
,k
=
ϵ0ϵ∞ (ϵq − 1)

τ
E

n+ 1
2

y,h
ℓ,j+1

2
,k
− 1

τ
P

n+ 1
2

y,h
ℓ,j+1

2
,k
,(39h)

δtP
n+ 1

2

z,h
ℓ,j,k+1

2

=
ϵ0ϵ∞ (ϵq − 1)

τ
E

n+ 1
2

z,h
ℓ,j,k+1

2

− 1

τ
P

n+ 1
2

z,h
ℓ,j,k+1

2

.(39i)

The scheme (39) can be rewritten in vector form as

3D Yee-FDTD Maxwell-Debye Scheme (Vector form)

δtH
n
h = − 1

µ0
curlh E

n
h,(40a)

δtE
n+ 1

2

h =
1

ϵ0ϵ∞
c̃urlhH

n+ 1
2

h − (ϵq − 1)

τ
E

n+ 1
2

h +
1

ϵ0ϵ∞τ
P

n+ 1
2

h ,(40b)

δtP
n+ 1

2

h =
ϵ0ϵ∞(ϵq − 1)

τ
E

n+ 1
2

h − 1

τ
P

n+ 1
2

h .(40c)

4.1. Stability Analysis of the Yee Scheme for Debye Media. In this section,
we prove a discrete energy property for the 3D Yee-FDTD Maxwell-Debye scheme
given in (40). We suppose a uniform mesh h = ∆x = ∆y = ∆z > 0. The
conditional stability of the 3D Yee-FDTD Maxwell-Debye scheme is given by the
following theorem which proves the decay of discrete energy in time.

Theorem 4.1 (Yee Stability-Debye). If the time step and uniform mesh spatial
step sizes satisfy the stability condition

c∞∆t

h
<

1√
3
,(41)



CONVERGENCE ANALYSIS OF YEE-FDTD SCHEMES 535

where c∞ = 1/
√
µ0ϵ0ϵ∞, then the discrete solutions of the 3D Yee-FDTD scheme

for the Maxwell-Debye equations (40) satisfy the discrete energy decay,

En+1
h,D ≤ En

h,D,(42)

for all n ≥ 0 where the discrete energy is defined as

En
h,D :=

(
µ0∥H

n− 1
2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Pn
h∥2E

ϵ0ϵ∞(ϵq − 1)
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H

) 1
2

.

(43)

Proof. Multiplying both sides of equation (39a) by ∆3 µ0H
n

x,h
ℓ,j+1

2
,k+1

2

, (39b) by

∆3 µ0H
n

y,h
ℓ+1

2
,j,k+1

2

, (39c) by ∆3 µ0H
n

z,h
ℓ+1

2
,j+1

2
,k
, summing each equation over all

spatial nodes, and adding all the results, we obtain

µ0

2∆t

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
= −

(
curlh E

n
h,Hh

n
)
H
.(44)

Next, multiplying both sides of equation (39d) by ∆3 ϵ0ϵ∞E
n+ 1

2

x,h
ℓ+1

2
,j,k

, (39e) by

∆3 ϵ0ϵ∞E
n+ 1

2

y,h
ℓ,j+1

2
,k
, (39f) by ∆3 ϵ0ϵ∞E

n+ 1
2

z,h
ℓ,j,k+1

2

, summing each equation over all

spatial nodes, and adding all the results, we obtain

ϵ0ϵ∞
2∆t

(
∥En+1

h ∥2E − ∥En
h∥2E

)
+
ϵ0ϵ∞(ϵq − 1)

τ
∥Eh

n+ 1
2 ∥2E−

1

τ

(
Ph

n+ 1
2 ,Eh

n+ 1
2

)
E

=
(
c̃urlhH

n+ 1
2

h ,Eh
n+ 1

2

)
E
.(45)

Finally, multiplying both sides of equation (39g) by
∆3

ϵ0ϵ∞(ϵq − 1)
P

n+ 1
2

x,h
ℓ+1

2
,j,k

,

(39h) by
∆3

ϵ0ϵ∞(ϵq − 1)
P

n+ 1
2

y,h
ℓ,j+1

2
,k
, (39i) by

∆3

ϵ0ϵ∞(ϵq − 1)
P

n+ 1
2

z,h
ℓ,j,k+1

2

, summing each

equation over all spatial nodes, and adding all the results, we obtain

∥Pn+1
h ∥2E − ∥Pn

h∥2E
2ϵ0ϵ∞(ϵq − 1)∆t

=
1

τ

(
Eh

n+ 1
2 ,Ph

n+ 1
2

)
E
− ∥Ph

n+ 1
2 ∥2E

ϵ0ϵ∞(ϵq − 1)τ
.(46)

Adding equations (44)-(46) and using a discrete analogue of integration by parts
[9], we obtain

µ0

2∆t

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
+
ϵ0ϵ∞
2∆t

(
∥En+1

h ∥2E − ∥En
h∥2E

)
+

∥Pn+1
h ∥2E − ∥Pn

h∥2E
2ϵ0ϵ∞(ϵq − 1)∆t

=−
(
curlh E

n
h,Hh

n
)
H
+

(
c̃urlhH

n+ 1
2

h ,Eh
n+ 1

2

)
E

− ϵ0ϵ∞(ϵq − 1)

τ
∥Eh

n+ 1
2 ∥2E +

2

τ

(
Ph

n+ 1
2 ,Eh

n+ 1
2

)
E
− ∥Ph

n+ 1
2 ∥2E

ϵ0ϵ∞(ϵq − 1)τ

=− 1

2

(
curlh E

n
h,H

n− 1
2

h

)
H
+

1

2

(
c̃urlhH

n+ 1
2

h ,En+1
h

)
E

− ∥ϵ0ϵ∞(ϵq − 1)Eh
n+ 1

2 −Ph
n+ 1

2 ∥2E
ϵ0ϵ∞(ϵq − 1)τ

.(47)
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We can convert equation (47) into the inequality

µ0

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
+ ϵ0ϵ∞

(
∥En+1

h ∥2E − ∥En
h∥2E

)
+

(
∥Pn+1

h ∥2E − ∥Pn
h∥2E

)
ϵ0ϵ∞(ϵq − 1)

≤ ∆t
(
c̃urlhH

n+ 1
2

h ,En+1
h

)
E
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H
.(48)

Using the definition of the discrete energy function (43), the inequality (48) becomes(
En+1
h,D

)2

≤
(
En
h,D

)2
,(49)

which applies for all n ≥ 0.
Of course, we need to prove that the function En

h,D defined in (43) defines an
“energy” i.e., that it takes on positive values for all n ≥ 0. We note that, in 3D
with the PEC boundary conditions, the following inequality [19, p. 51] holds

∥ curlh Eh∥H ≤ 2

√
1

∆x2
+

1

∆y2
+

1

∆z2
∥Eh∥E .(50)

Assuming a uniform mesh, inequality (50) becomes

∥ curlh Eh∥H ≤ 2
√
3

h
∥Eh∥E .(51)

Using Young’s inequality and the inequality (51) we have that

µ0∥H
n− 1

2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Pn
h∥2E

ϵ0ϵ∞(ϵq − 1)
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H

≥ µ0∥H
n− 1

2

h ∥2H + ϵ0ϵ∞∥En
h∥2E −∆t

[
µ0

∆t
∥Hn− 1

2

h ∥2H +
3∆t

h2µ0
∥En

h∥2E
]

≥ ϵ0ϵ∞

(
1− 3∆t2

h2µ0ϵ0ϵ∞

)
∥En

h∥2E .(52)

Assuming no trivial solutions, the discrete energy function (52) is positive when

3∆t2

h2µ0ϵ0ϵ∞
< 1 ⇔ 3c2∞∆t2

h2
< 1.(53)

Thus, under the stability condition (41) we have discrete energy decay as indicated
in (49). �

Remark 4.1. The stability condition on a nonuniform spatial mesh is given by

c∞∆t

√
1

∆x2
+

1

∆y2
+

1

∆z2
< 1.(54)

Remark 4.2. The stability results based on energy decay for the 3D Yee-FDTD
Maxwell-Debye scheme given in (43) in Theorem 4.1 extend the 2D results in The-
orem 4.1 [7] with stability conditions that are different in 3D versus 2D. We note
that the discrete energy function En

h,D can be expressed in two different ways.

En
h,D = µ0∥H

n− 1
2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Pn
h∥2E

ϵ0ϵ∞(ϵq − 1)
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H

=
(
µ0H

n− 1
2

h −∆t curlh E
n
h,H

n− 1
2

h

)
H
+ ϵ0ϵ∞∥En

h∥2E +
∥Pn

h∥2E
ϵ0ϵ∞(ϵq − 1)

.(55)



CONVERGENCE ANALYSIS OF YEE-FDTD SCHEMES 537

From equation (40a), we have µ0

(
H

n+ 1
2

h −H
n− 1

2

h

)
= −∆t curlh E

n
h. Thus, (55)

becomes

En
h,D = µ0∥H

n− 1
2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Pn
h∥2E

ϵ0ϵ∞(ϵq − 1)
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H

= µ0

(
H

n+ 1
2

h ,H
n− 1

2

h

)
H
+ ϵ0ϵ∞∥En

h∥2E +
∥Pn

h∥2E
ϵ0ϵ∞(ϵq − 1)

.(56)

4.2. Error Estimates and Convergence of the Yee Scheme for the Maxwell-
Debye Model. In this section, we present a convergence analysis of the Yee scheme
for the Maxwell-Debye model (40) . There are two ingredients needed for a con-
vergence analysis; the stability analysis in the previous section and analysis of
truncation errors. We first present a truncation error analysis below.

Lemma 4.1. Suppose that the solutions to the 3D Maxwell-Debye model (7) satisfy
the regularity conditions E,H ∈ C3

(
[0, T ]; [C3

(
Ω
)
]3
)
, and P ∈ C3

(
[0, T ]; [C

(
Ω
)
]3
)
.

Let ξmwα
be truncation errors for the Yee scheme for the 3D Maxwell-Debye model

(39) or equivalently (40), where w ∈ {H,E, P}, m ∈ {n, n+ 1
2}, and α ∈ {x, y, z}.

Then for any α ∈ {x, y, z},

max
{∣∣ξnHα

∣∣ , ∣∣∣ξn+ 1
2

Eα

∣∣∣ , ∣∣∣ξn+ 1
2

Pα

∣∣∣} ≤ CD

(
∆x2 +∆y2 +∆z2 +∆t2

)
,(57)

where CD is a constant that does not depend on the mesh sizes.

Proof. Consider equation (39a) of the Yee scheme for the 3D Maxwell-Debye model
(39) given as

1

∆t

(
H

n+ 1
2

x,h
ℓ,j+1

2
,k+1

2

−H
n− 1

2

x,h
ℓ,j+1

2
,k+1

2

)(58)

=
1

µ0∆z

(
En

y,h
ℓ,j+1

2
,k+1

− En
y,h

ℓ,j+1
2
,k

)
− 1

µ0∆y

(
En

z,h
ℓ,j+1,k+1

2

− En
z,h

ℓ,j,k+1
2

)
.

Substituting the exact solution of the Maxwell-Debye model (7) in the above and
expanding using Taylor approximations around tn = n∆t in time and the spatial
grid point (xℓ, yj+ 1

2
, zk+ 1

2
) we obtain the truncation error in the form

ξnHx
ℓ,j+1

2
,k+1

2

=
∆t2

24
∂3tHx(xℓ, yj+ 1

2
, zk+ 1

2
, th1 )−

∆z2

24µ0
∂3zEy(xℓ, yj+ 1

2
, zh1 , t

n)

+
∆y2

24µ0
∂3yEz(xℓ, y

h
1 , zk+ 1

2
, tn) +O(∆t4 +∆y4 +∆z4),(59)

where tn−
1
2 ≤ th1 ≤ tn+

1
2 , yj− 1

2
≤ yh1 ≤ yj+ 1

2
, zk− 1

2
≤ zh1 ≤ zk+ 1

2
. Following a

similar procedure, the truncation errors of equation (39b)-(39c) are

ξnHy
ℓ+1

2
,j,k+1

2

=
∆t2

24
∂3tHy(xℓ+ 1

2
, yj , zk+ 1

2
, th2 )−

∆x2

24µ0
∂3xEz(x

h
1 , yj , zk+ 1

2
, tn)

+
∆z2

24µ0
∂3zEx(xℓ+ 1

2
, yj , z

h
2 , t

n) +O(∆t4 +∆x4 +∆z4),(60)

ξnHz
ℓ+1

2
,j+1

2
,k

=
∆t2

24
∂3tHz(xℓ+ 1

2
, yj+ 1

2
, zk, t

h
3 )−

∆y2

24µ0
∂3yEx(xℓ+ 1

2
, yh2 , zk, t

n)

+
∆x2

24µ0
∂3xEy(x

h
2 , yj+ 1

2
, zk, t

n) +O(∆t4 +∆x4 +∆y4).(61)
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where tn−
1
2 ≤ th2 , t

h
3 ≤ tn+

1
2 , xℓ− 1

2
≤ xh1 , x

h
2 ≤ xℓ+ 1

2
, yj− 1

2
≤ yh2 ≤ yj+ 1

2
, zk− 1

2
≤

zh2 ≤ zk+ 1
2
.

We follow a similar procedure for the other electromagnetic field components in
equations (39d)-(39f) to get the truncation errors

ξ
n+ 1

2

Ex
ℓ+1

2
,j,k

=∆t2
[
1

24
∂3tEx(xℓ+ 1

2
, yj , zk, t

e
1) +

(ϵq − 1)

8τ
∂2tEx(xℓ+ 1

2
, yj , zk, t

e
2)

− 1

8τϵ0ϵ∞
∂2t Px(xℓ+ 1

2
, yj , zk, t

e
3)

]
− ∆y2

24ϵ0ϵ∞
∂3yHz(xℓ+ 1

2
, ye1, zk, t

n+ 1
2 )

+
∆z2

24ϵ0ϵ∞
∂3zHy(xℓ+ 1

2
, yj , z

e
1, t

n+ 1
2 ) +O(∆t4 +∆y4 +∆z4),(62a)

ξ
n+ 1

2

Ey
ℓ,j+1

2
,k

=∆t2
[
1

24
∂3tEy(xℓ, yj+ 1

2
, zk, t

e
4) +

(ϵq − 1)

8τ
∂2tEy(xℓ, yj+ 1

2
, zk, t

e
5)

− 1

8τϵ0ϵ∞
∂2t Py(xℓ, yj+ 1

2
, zk, t

e
6)

]
− ∆z2

24ϵ0ϵ∞
∂3zHx(xℓ, yj+ 1

2
, ze2, t

n+ 1
2 )

+
∆x2

24ϵ0ϵ∞
∂3xHz(x

e
1, yj+ 1

2
, zk, t

n+ 1
2 ) +O(∆t4 +∆x4 +∆z4),(62b)

ξ
n+ 1

2

Ez
ℓ,j,k+1

2

=∆t2
[
1

24
∂3tEz(xℓ, yj , zk+ 1

2
, te7) +

(ϵq − 1)

8τ
∂2tEz(xℓ, yj , zk+ 1

2
, te8)

− 1

8τϵ0ϵ∞
∂2t Pz(xℓ, yj , zk+ 1

2
, te9)

]
− ∆x2

24ϵ0ϵ∞
∂3xHy(x

e
2, yj , zk+ 1

2
, tn+

1
2 )

+
∆y2

24ϵ0ϵ∞
∂3yHx(xℓ, y

e
2, zk+ 1

2
, tn+

1
2 ),(62c)

and in (39g)-(39i) as

ξ
n+ 1

2

Px
ℓ+1

2
,j,k

=∆t2
[
1

24
∂3t Px(xℓ+ 1

2
, yj , zk, t

p
1)−

ϵ0ϵ∞(ϵq − 1)

8τ
∂2tEx(xℓ+ 1

2
, yj , zk, t

p
2)

+
1

8τ
∂2t Px(xℓ+ 1

2
, yj , zk, t

p
3)

]
+O(∆t4),(63a)

ξ
n+ 1

2

Py
ℓ,j+1

2
,k

=∆t2
[
1

24
∂3t Py(xℓ, yj+ 1

2
, zk, t

p
4)−

ϵ0ϵ∞(ϵq − 1)

8τ
∂2tEy(xℓ, yj+ 1

2
, zk, t

p
5)

+
1

8τ
∂2t Py(xℓ, yj+ 1

2
, zk, t

p
6)

]
+O(∆t4),(63b)

ξ
n+ 1

2

Pz
ℓ,j,k+1

2

=∆t2
[
1

24
∂3t Pz(xℓ, yj , zk+ 1

2
, tp7)−

ϵ0ϵ∞(ϵq − 1)

8τ
∂2tEz(xℓ, yj , zk+ 1

2
, tp8)

+
1

8τ
∂2t Pz(xℓ, yj , zk+ 1

2
, tp9)

]
+O(∆t4),(63c)

where tn−
1
2 ≤ ter, t

p
r ≤ tn+

1
2 , xℓ− 1

2
≤ xes ≤ xℓ+ 1

2
, yj− 1

2
≤ yes ≤ yj+ 1

2
, and zk− 1

2
≤

zes ≤ zk+ 1
2
for r = {1, 2, .., 9} and s = {1, 2}. From the assumed regularity of the

exact solution, we can bound the truncation errors to obtain the bound in (57). �
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To prove the convergence of the Yee scheme for the 3D Maxwell-Debye model,
we first define the error functions

Hn
h = Hn

h −H(tn),(64a)

En
h = En

h −E(tn),(64b)

Pn
h = Pn

h −P(tn),(64c)

where H(tn),E(tn),P(tn) are the exact solutions to the Maxwell-Debye model in
(7), while Hn

h,E
n
h,P

n
h are the solutions to the corresponding Yee scheme in (39) or

(40).
The error functions in (64) satisfy the following error equations:

δtH
n
h = − 1

µ0
curlh E

n
h − ξ⃗ n

H ,(65a)

δtE
n+ 1

2

h =
1

ϵ0ϵ∞
c̃urlhH

n+ 1
2

h − ϵq − 1

τ
E
n+ 1

2

h +
1

τ
P
n+ 1

2

h − ξ⃗
n+ 1

2

E ,(65b)

δtP
n+ 1

2

h =
ϵ0ϵ∞(ϵq − 1)

τ
E
n+ 1

2

h − 1

τ
P
n+ 1

2

h − ξ⃗
n+ 1

2

P ,(65c)

where ξ⃗ m
w =

(
ξmwx

, ξmwy
, ξmwz

)
, w ∈ {H,E, P} and m ∈ {n, n + 1/2} are the local

truncation errors as defined in Lemma 4.1. The convergence of the Yee scheme (39)
or (40) for the 3D Maxwell-Debye model is given by the following result:

Theorem 4.2. Suppose that the solutions to the 3D Maxwell-Debye model (7)
satisfy the regularity conditions E,H ∈ C3

(
[0, T ]; [C3

(
Ω
)
]3
)
, and P ∈ C3

(
[0, T ];

[C
(
Ω
)
]3
)
. Let ξnwα

or ξ
n+ 1

2
wα be truncation errors of the Yee scheme (39) or (40)

for the 3D Maxwell-Debye model where w ∈ {H,E, P} and α ∈ {x, y, z} satisfying
Lemma 4.1. If the stability condition (41) is satisfied, then for any fixed T > 0
there exists a positive constant C depending on the medium parameters, the Courant
number ν = c∞∆t/h , but otherwise independent of the mesh parameters, such that
the energy of the error at time tn = n∆t, defined by

Rn
h,D =

(
µ0∥H

n− 1
2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Pn
h∥2E

ϵ0ϵ∞(ϵq − 1)
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H

) 1
2

,

(66)

satisfies the bound

Rn
h,D ≤ R0

h,D + CT
(
∆x2 +∆y2 +∆z2 +∆t2

)
.(67)

Proof. We use the energy method and follow the proof of Theorem 4.1. Multiplying

(65a) by ∆3 µ0H
n

h, (65b) by ∆3 ϵ0ϵ∞E
n+ 1

2

h , and (65c) by ∆3

ϵ0ϵ∞(ϵq−1)P
n+ 1

2

h , summing

each equation over all spatial nodes, we obtain

µ0

(
δtH

n
h ,H

n

h

)
H

= −
(
curlh E

n
h,H

n

h

)
H
− µ0

(
ξ⃗ n
H ,H

n

h

)
H
,(68a)

ϵ0ϵ∞

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E
=

(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E
− ϵ0ϵ∞(ϵq − 1)

τ
∥En+ 1

2

h ∥2E

+
1

τ

(
P
n+ 1

2

h ,E
n+ 1

2

h

)
E
− ϵ0ϵ∞

(
ξ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
,(68b)

1

ϵ0ϵ∞(ϵq − 1)

(
δtP

n+ 1
2

h ,P
n+ 1

2

h

)
E
=

1

τ

(
E
n+ 1

2

h ,P
n+ 1

2

h

)
E
− 1

τϵ0ϵ∞(ϵq − 1)
∥Pn+ 1

2

h ∥2E

− 1

ϵ0ϵ∞(ϵq − 1)

(
ξ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E
.(68c)



540 P. SAKKAPLANGKUL AND V. A. BOKIL

We add all the results in (68) to obtain

µ0

(
δtH

n
h ,H

n

h

)
H
+ ϵ0ϵ∞

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E
+

1

ϵ0ϵ∞(ϵq − 1)

(
δtP

n+ 1
2

h ,P
n+ 1

2

h

)
E

= −
(
curlh E

n
h,H

n

h

)
H
+
(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E

− ϵ0ϵ∞(ϵq − 1)

τ
∥En+ 1

2

h ∥2E +
2

τ

(
E
n+ 1

2

h ,P
n+ 1

2

h

)
E
− 1

τϵ0ϵ∞(ϵq − 1)
∥Pn+ 1

2

h ∥2E

− µ0

(
ξ⃗ n
H ,H

n

h

)
H
− ϵ0ϵ∞

(
ξ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
− 1

ϵ0ϵ∞(ϵq − 1)

(
ξ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E

= −
(
curlh E

n
h,H

n

h

)
H
+
(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E

− 1

τϵ0ϵ∞(ϵq − 1)
∥ϵ0ϵ∞(ϵq − 1)E

n+ 1
2

h − P
n+ 1

2

h ∥2E

− µ0

(
ξ⃗ n
H ,H

n

h

)
H
− ϵ0ϵ∞

(
ξ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
− 1

ϵ0ϵ∞(ϵq − 1)

(
ξ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E

≤ −
(
curlh E

n
h,H

n

h

)
H
+
(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E

− µ0

(
ξ⃗ n
H ,H

n

h

)
H
− ϵ0ϵ∞

(
ξ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
− 1

ϵ0ϵ∞(ϵq − 1)

(
ξ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E
.

(69)

The first two terms on the right hand side in the last inequality can be rewritten
as

−
(
curlh E

n
h,H

n

h

)
H
+
(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E

= −
(
curlh E

n
h,H

n

h

)
H
+

(
H

n+ 1
2

h , curlh E
n+ 1

2

h

)
H

(70)

=
1

2

(
H

n+ 1
2

h , curlh E
n+1
h

)
H
− 1

2

(
H

n− 1
2

h , curlh E
n
h

)
H
.

Combining the last two steps we get

µ0

(
δtH

n
h ,H

n

h

)
H
+ ϵ0ϵ∞

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E
+

1

ϵ0ϵ∞(ϵq − 1)

(
δtP

n+ 1
2

h ,P
n+ 1

2

h

)
E

≤ 1

2

(
H

n+ 1
2

h , curlh E
n+1
h

)
H
− 1

2

(
H

n− 1
2

h , curlh E
n
h

)
H

− µ0

(
ξ⃗ n
H ,H

n

h

)
H
− ϵ0ϵ∞

(
ξ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
− 1

ϵ0ϵ∞(ϵq − 1)

(
ξ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E
.

(71)

Using the definition of the energy of the error (66) in equation (71) we obtain the
inequality(
Rn+1

h,D

)2

−
(
Rn

h,D

)2
≤ 2∆t

∣∣∣∣∣∣∣µ0

(
ξ⃗ n
H ,H

n

h

)
H
+ ϵ0ϵ∞

(
ξ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
+

(
ξ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E

ϵ0ϵ∞(ϵq − 1)

∣∣∣∣∣∣∣
≤ C1∆tmax

{
∥ξ⃗ n

H∥H , ∥ξ⃗
n+ 1

2

E ∥E , ∥ξ⃗
n+ 1

2

P ∥E
}(

∥Hn

h∥H + ∥En+ 1
2

h ∥E + ∥Pn+ 1
2

h ∥E
)
,

(72)
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where C1 is a constant depending on µ0, ϵ0, ϵ∞, ϵq. Applying Young’s inequality
with 0 < γ ≤ 4, and equation (51), we obtain(

curlh E
n
h,H

n− 1
2

h

)
H

≤ γµ0

4∆t
∥Hn− 1

2

h ∥2H +
12∆t

h2γµ0
∥En

h∥2E .(73)

From the definition of the energy of the error in equation (66), we have the inequality(
Rn

h,D

)2
= µ0∥H

n− 1
2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Pn
h∥2E

ϵ0ϵ∞(ϵq − 1)
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H

≥ µ0

(
1− γ

4

)
∥Hn− 1

2

h ∥2H + ϵ0ϵ∞

(
1− 12∆t2

γϵ0ϵ∞µ0h2

)
∥En

h∥2E +
∥Pn

h∥2E
ϵ0ϵ∞(ϵq − 1)

.(74)

If the stability condition (41),
c∞∆t

h
<

1√
3
, is satisfied, all terms on the right

side (74) are nonnegative and for n ≥ 0, we have

Rn
h,D ≥ C2

(
∥Hn− 1

2

h ∥H + ∥En
h∥E + ∥Pn

h∥E
)
,(75)

where C2 = min

{√
µ0

(
1− γ

4

)
,

√
ϵ0ϵ∞

(
1− 12∆t2

γϵ0ϵ∞µ0h2

)
,

1√
ϵ0ϵ∞(ϵq − 1)

}
. From

(72) and (75), we therefore obtain(
Rn+1

h,D

)2

−
(
Rn

h,D

)2
≤ C1∆tmax

{
∥ξ⃗ n

H∥H , ∥ξ⃗
n+ 1

2

E ∥E , ∥ξ⃗
n+ 1

2

P ∥E
}(

∥Hn

h∥H + ∥En+ 1
2

h ∥E + ∥Pn+ 1
2

h ∥E
)

≤ C1C2∆tmax
{
∥ξ⃗ n

H∥H , ∥ξ⃗
n+ 1

2

E ∥E , ∥ξ⃗
n+ 1

2

P ∥E
}(

Rn+1
h,D +Rn

h,D

)
.

(76)

Dividing by Rn+1
h,D +Rn

h,D and rearranging terms in (76), we obtain

Rn+1
h,D −Rn

h,D ≤ C∆tmax
{
∥ξ⃗ n

H∥H , ∥ξ⃗
n+ 1

2

E ∥E , ∥ξ⃗
n+ 1

2

P ∥E
}

≤ C∆t
(
∆x2 +∆y2 +∆z2 +∆t2

)
(77)

where C = CDC1C2 is a constant depending on medium parameters, the Courant
number ν = c∞∆t/h, and the constant γ. Recursively applying the inequality (77)
from n to 0 and using the fact that T = N∆t, we have

Rn
h,D −R0

h,D ≤ Cn∆t
(
∆x2 +∆y2 +∆z2 +∆t2

)
≤ CT

(
∆x2 +∆y2 +∆z2 +∆t2

)
.(78)

�

4.3. Discrete Divergence: Yee Scheme for the Maxwell-Debye Model. In
this section, we define the discrete divergence operators and show that the electric
and magnetic grid functions in the Yee scheme satisfies discrete divergence-free
conditions.

We first define the vertex and cell-centered discrete meshes [9]

τdivEh := {(xi, yj , zk)|0 ≤ i ≤ I, 0 ≤ j ≤ J, 0 ≤ k ≤ K} ,
(79a)

τdivHh :=
{
(xi+ 1

2
, yj+ 1

2
, zk+ 1

2
)|0 ≤ i ≤ I − 1, 0 ≤ j ≤ J − 1, 0 ≤ k ≤ K − 1

}
.

(79b)
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Let Fh = (Fx,h, Fy,h, Fz,h) be an electromagnetic grid function. We define the
discrete divergence operator, divh as

divhFh := δxFx,h + δyFy,h + δzFz,h.(80)

As the discrete derivative operators commute, we can show that,

divh(curlh Fh) = 0.(81)

Theorem 4.3. The discrete divergence of the solutions to the Yee scheme (39) or
(40) for the 3D Maxwell-Debye model is preserved at all time levels n ≥ 0, i.e., we
have the identities,

divhD
n
h = divhD

0
h,(82a)

divhB
n+ 1

2

h = divhB
1
2

h ,(82b)

where the vector fields Dh and Bh are defined on the meshes τdivEh and τdivHh ,
respectively.

Proof. From the Yee scheme for the Maxwell-Debye model (40), applying the oper-
ator ϵ0ϵ∞∆t divh on both sides of equation (40b) and applying the operator ∆t divh
on both sides of equation (40c) and summing the resulting equations, we obtain

divh(ϵ0ϵ∞En+1
h ) + divh(P

n+1
h )− divh(ϵ0ϵ∞En

h)− divh(P
n
h)

=∆t divh(c̃urlhH
n+ 1

2

h ).(83)

Applying the operator µ0∆t divh on both sides of the equation (40a), we obtain

divh(µ0H
n+ 1

2

h )− divh(µ0H
n− 1

2

h ) = −∆t divh(curlhE
n
h).(84)

As the discrete divergence operator is linear, using the identities,Dh = ϵ0ϵ∞Eh+Ph

and Bh = µ0Hh, equation (83) and equation (84) can be written as

divhD
n+1
h − divhD

n
h = 0,(85a)

divhB
n+ 1

2

h − divhB
n− 1

2

h = 0.(85b)

We apply the equation (85) recursively from time level n to obtain (82a) and (82b),
respectively. �
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5. Yee Scheme for the Maxwell-Lorentz System

The fully discrete Yee scheme for the 3D Maxwell-Lorentz system (15) can be
constructed as

δtH
n
x,h

ℓ,j+1
2
,k+1

2

=
1

µ0

(
δzE

n
y,h

ℓ,j+1
2
,k+1

2

− δyE
n
z,h

ℓ,j+1
2
,k+1

2

)
,(86a)

δtH
n
y,h

ℓ+1
2
,j,k+1

2

=
1

µ0

(
δxE

n
z,h

ℓ+1
2
,j,k+1

2

− δzE
n
x,h

ℓ+1
2
,j,k+1

2

)
,(86b)

δtH
n
z,h

ℓ+1
2
,j+1

2
,k
=

1

µ0

(
δyE

n
x,h

ℓ+1
2
,j+1

2
,k
− δxE

n
y,h

ℓ+1
2
,j+1

2
,k

)
,(86c)

δtE
n+ 1

2

x,h
ℓ+1

2
,j,k

=
1

ϵ0ϵ∞

(
δyH

n+ 1
2

z,h
ℓ+1

2
,j,k

− δzH
n+ 1

2

y,h
ℓ+1

2
,j,k

)
− 1

ϵ0ϵ∞
J
n+ 1

2

x,h
ℓ+1

2
,j,k
,(86d)

δtE
n+ 1

2

y,h
ℓ,j+1

2
,k
=

1

ϵ0ϵ∞

(
δzH

n+ 1
2

x,h
ℓ,j+1

2
,k
− δxH

n+ 1
2

z,h
ℓ,j+1

2
,k

)
− 1

ϵ0ϵ∞
J
n+ 1

2

y,h
ℓ,j+1

2
,k
,(86e)

δtE
n+ 1

2

z,h
ℓ,j,k+1

2

=
1

ϵ0ϵ∞

(
δxH

n+ 1
2

y,h
ℓ,j,k+1

2

− δyH
n+ 1

2

x,h
ℓ,j,k+1

2

)
− 1

ϵ0ϵ∞
J
n+ 1

2

z,h
ℓ,j,k+1

2

,(86f)

δtJ
n+ 1

2

x,h
ℓ+1

2
,j,k

= −1

τ
J
n+ 1

2

x,h
ℓ+1

2
,j,k

− ω2
0P

n+ 1
2

x,h
ℓ+1

2
,j,k

+ ϵ0ωp
2E

n+ 1
2

x,h
ℓ+1

2
,j,k
,(86g)

δtJ
n+ 1

2

y,h
ℓ,j+1

2
,k
= −1

τ
J
n+ 1

2

y,h
ℓ,j+1

2
,k
− ω2

0P
n+ 1

2

y,h
ℓ,j+1

2
,k
+ ϵ0ωp

2E
n+ 1

2

y,h
ℓ,j+1

2
,k
,(86h)

δtJ
n+ 1

2

z,h
ℓ,j,k+1

2

= −1

τ
J
n+ 1

2

z,h
ℓ,j,k+1

2

− ω2
0P

n+ 1
2

z,h
ℓ,j,k+1

2

+ ϵ0ωp
2E

n+ 1
2

z,h
ℓ,j,k+1

2

,(86i)

δtP
n+ 1

2

x,h
ℓ+1

2
,j,k

= J
n+ 1

2

x,h
ℓ+1

2
,j,k
,(86j)

δtP
n+ 1

2

y,h
ℓ,j+1

2
,k
= J

n+ 1
2

y,h
ℓ,j+1

2
,k
,(86k)

δtP
n+ 1

2

z,h
ℓ,j,k+1

2

= J
n+ 1

2

z,h
ℓ,j,k+1

2

.(86l)

Then the scheme (86) can be written as follows

δtH
n
h = − 1

µ0
curlh E

n
h,(87a)

δtE
n+ 1

2

h =
1

ϵ0ϵ∞
c̃urlhH

n+ 1
2

h − 1

ϵ0ϵ∞
J
n+ 1

2

h ,(87b)

δtJ
n+ 1

2

h = −1

τ
J
n+ 1

2

h − ω2
0P

n+ 1
2

h + ϵ0ωp
2E

n+ 1
2

h ,(87c)

δtP
n+ 1

2

h = J
n+ 1

2

h .(87d)

5.1. The Stability Analysis of the Yee Scheme for Lorentz Media. In this
section, we show that the solution of the fully discrete scheme (86) satisfies the
energy decay property by the following theorem.

Theorem 5.1. If the time step and uniform mesh spatial step sizes satisfy the
stability condition

c∞∆t

h
<

1√
3
,(88)
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where c∞ = 1/
√
µ0ϵ0ϵ∞, then the discrete solutions of the 3D Yee-FDTD scheme

for the Maxwell-Lorentz equations (87) satisfy the discrete energy decay,

En+1
h,L ≤ En

h,L,(89)

for all n ≥ 0 where a discrete energy is defined by

En
h,L =

(
µ0∥H

n− 1
2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Jn
h∥2E

ϵ0ωp
2

+
∥Pn

h∥2E
ϵ0ϵ∞(ϵq − 1)

−∆t
(
curlh E

n
h,H

n− 1
2

h

)
H

) 1
2

.(90)

Proof. Multiplying (86a) by ∆3 µ0H
n

x,h
ℓ,j+1

2
,k+1

2

, (86b) by ∆3 µ0H
n

y,h
ℓ+1

2
,j,k+1

2

,

(86c) by ∆3 µ0H
n

z,h
ℓ+1

2
,j+1

2
,k
, summing each equation over all spatial nodes, and

adding all the results, we obtain

µ0

2∆t

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
= −

(
curlh E

n
h,H

n

h

)
H
.(91)

Secondly, multiplying (86d) by ∆3 ϵ0ϵ∞E
n+ 1

2

x,h
ℓ+1

2
,j,k

, (86e) by ∆3 ϵ0ϵ∞E
n+ 1

2

y,h
ℓ,j+1

2
,k
,

(86f) by ∆3 ϵ0ϵ∞E
n+ 1

2

z,h
ℓ,j,k+1

2

, summing each equation over all spatial nodes, and

adding all the results, we obtain

ϵ0ϵ∞
2∆t

(
∥En+1

h ∥2E − ∥En
h∥2E

)
=

(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E
−
(
J
n+ 1

2

h ,E
n+ 1

2

h

)
E
.(92)

Next, multiplying (86g) by
∆3

ϵ0ωp
2
J
n+ 1

2

x,h
ℓ+1

2
,j,k

, (86h) by
∆3

ϵ0ωp
2
J
n+ 1

2

y,h
ℓ,j+1

2
,k
, (86i) by

∆3

ϵ0ωp
2
J
n+ 1

2

z,h
ℓ,j,k+1

2

, summing each equation over all spatial nodes, and adding all the

results, we obtain

∥Jn+1
h ∥2E − ∥Jn

h∥2E
2∆tϵ0ωp

2
= −∥Jn+ 1

2

h ∥2E
τϵ0ωp

2
− ω2

0

ϵ0ωp
2

(
P

n+ 1
2

h ,J
n+ 1

2

h

)
E
+
(
E

n+ 1
2

h ,J
n+ 1

2

h

)
E
.

(93)

Finally, multiplying (86j) by
∆3 P

n+ 1
2

x,h
ℓ+1

2
,j,k

ϵ0ϵ∞(ϵq − 1)
, (86k) by

∆3 P
n+ 1

2

y,h
ℓ,j+1

2
,k

ϵ0ϵ∞(ϵq − 1)
, and (86l)

by
∆3

ϵ0ϵ∞(ϵq − 1)
P

n+ 1
2

z,h
ℓ,j,k+1

2

, summing each equation over all spatial nodes, and fi-

nally adding all the results, we obtain

1

2ϵ0ϵ∞(ϵq − 1)∆t

(
∥Pn+1

h ∥2E − ∥Pn
h∥2E

)
=

1

ϵ0ϵ∞(ϵq − 1)

(
J
n+ 1

2

h ,P
n+ 1

2

h

)
E
.(94)
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Adding all equations (91)-(94) and using a discrete analogue of integration by parts
[9], we obtain

µ0

2∆t

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
+
ϵ0ϵ∞
2∆t

(
∥En+1

h ∥2E − ∥En
h∥2E

)
+

(
∥Jn+1

h ∥2E − ∥Jn
h∥2E

)
2∆tϵ0ωp

2
+

(
∥Pn+1

h ∥2E − ∥Pn
h∥2E

)
2ϵ0ϵ∞(ϵq − 1)∆t

=−
(
curlh E

n
h,H

n

h

)
H
+
(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E
− 1

τϵ0ωp
2
∥Jn+ 1

2

h ∥2E

=− 1

2

(
curlh E

n
h,H

n− 1
2

h

)
H
+

1

2

(
c̃urlhH

n+ 1
2

h ,En+1
h

)
E
− 1

τϵ0ωp
2
∥Jn+ 1

2

h ∥2E .(95)

We can convert equation (95) into the inequality

µ0

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
+ ϵ0ϵ∞

(
∥En+1

h ∥2E − ∥En
h∥2E

)
+

(
∥Jn+1

h ∥2E − ∥Jn
h∥2E

)
ϵ0ωp

2
+

(
∥Pn+1

h ∥2E − ∥Pn
h∥2E

)
ϵ0ϵ∞(ϵq − 1)

≤∆t
(
c̃urlhH

n+ 1
2

h ,En+1
h

)
E
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H
.(96)

Using the definition of the discrete energy function (90), the inequality (96) becomes(
En+1
h,L

)2

≤
(
En
h,L

)2
,(97)

which applies for all n ≥ 0.
We follow a similar procedure to the Debye case to confirm conditional stability

by showing that En
h,L is a discrete energy function. By the inequality (51), we have

µ0∥H
n− 1

2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Jn
h∥2E

ϵ0ωp
2

+
∥Pn

h∥2E
ϵ0ϵ∞(ϵq − 1)

−∆t
(
curlh E

n
h,H

n− 1
2

h

)
H

≥ ϵ0ϵ∞

(
1− 3∆t2

h2µ0ϵ0ϵ∞

)
∥En

h∥2E .(98)

Thus, the discrete energy function (90) is positive when

3∆t2

h2µ0ϵ0ϵ∞
< 1 ⇔ 3c2∞∆t2

h2
< 1,(99)

so the stability condition (88) holds. �
Remark 5.1. The stability condition on nonuniform spatial meshes for the 3D
Yee-FDTD Maxwell-Lorentz scheme is identical to the stability criterion in Remark
4.1.

5.2. Error Estimates and Convergence of the Yee Scheme for the Maxwell-
Lorentz Model. In this section, we first analyze the truncation errors in the Yee
scheme for the Maxwell-Lorentz model and then prove convergence of the scheme.

Lemma 5.1. Suppose that the solutions to the 3D Maxwell-Lorentz model (15)
satisfy the regularity conditions E,H ∈ C3

(
[0, T ]; [C3

(
Ω
)
]3
)
, and J,P ∈ C3

(
[0, T ];

[C
(
Ω
)
]3
)
. Let ψm

wα
be truncation errors for the Yee scheme for the 3D Maxwell-

Lorentz model, (86) or equivalently (87), where w ∈ {H,E, J, P}, m ∈ {n, n+ 1
2},

and α ∈ {x, y, z}. Then for any α ∈ {x, y, z},

max
{∣∣ψn

Hα

∣∣ , ∣∣∣ψn+ 1
2

Eα

∣∣∣ , ∣∣∣ψn+ 1
2

Jα

∣∣∣ , ∣∣∣ψn+ 1
2

Pα

∣∣∣} ≤ CL

(
∆x2 +∆y2 +∆z2 +∆t2

)
,(100)
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where CL is a constant and does not depend on the mesh sizes.

Proof. From equation (86a), its scalar form is

(101)
1

∆t

(
H

n+ 1
2

x,h
ℓ,j+1

2
,k+1

2

−H
n− 1

2

x,h
ℓ,j+1

2
,k+1

2

)
=

1

µ0∆z

(
En

y,h
ℓ,j+1

2
,k+1

− En
y,h

ℓ,j+1
2
,k

)
− 1

µ0∆y

(
En

z,h
ℓ,j+1,k+1

2

− En
z,h

ℓ,j,k+1
2

)
.

We substitute in the exact solutions and perform the Taylor expansions to obtain
truncation errors in the form

ψn
Hx

ℓ,j+1
2
,k+1

2

=
∆t2

24
∂3tHx(xℓ, yj+ 1

2
, zk+ 1

2
, th1 )−

∆z2

24µ0
∂3zEy(xℓ, yj+ 1

2
, zh1 , t

n)

+
∆y2

24µ0
∂3yEz(xℓ, y

h
1 , zk+ 1

2
, tn) +O(∆t4 +∆y4 +∆z4),(102)

where tn−
1
2 ≤ th1 ≤ tn+

1
2 , yj− 1

2
≤ yh1 ≤ yj+ 1

2
, zk− 1

2
≤ zh1 ≤ zk+ 1

2
. Following a

similar procedure, the truncation errors of equation (86b)-(86c) are

ψn
Hy

ℓ+1
2
,j,k+1

2

=
∆t2

24
∂3tHy(xℓ+ 1

2
, yj , zk+ 1

2
, th2 )−

∆x2

24µ0
∂3xEz(x

h
1 , yj , zk+ 1

2
, tn)

+
∆z2

24µ0
∂3zEx(xℓ+ 1

2
, yj , z

h
2 , t

n) +O(∆t4 +∆x4 +∆z4),(103)

ψn
Hz

ℓ+1
2
,j+1

2
,k

=
∆t2

24
∂3tHz(xℓ+ 1

2
, yj+ 1

2
, zk, t

h
3 )−

∆y2

24µ0
∂3yEx(xℓ+ 1

2
, yh2 , zk, t

n)

+
∆x2

24µ0
∂3xEy(x

h
2 , yj+ 1

2
, zk, t

n) +O(∆t4 +∆x4 +∆y4),(104)

where tn−
1
2 ≤ th2 , t

h
3 ≤ tn+

1
2 , xℓ− 1

2
≤ xh1 , x

h
2 ≤ xℓ+ 1

2
, yj− 1

2
≤ yh2 ≤ yj+ 1

2
, zk− 1

2
≤

zh2 ≤ zk+ 1
2
. We follow a similar procedure for the other electromagnetic field

components in (86d)-(86f) as

ψ
n+ 1

2

Ex
ℓ+1

2
,j,k

= ∆t2
[
1

24
∂3tEx(xℓ+ 1

2
, yj , zk, t

e
1) +

1

8ϵ0ϵ∞
∂2t Jx(xℓ+ 1

2
, yj , zk, t

e
2)

]
− ∆y2

24ϵ0ϵ∞
∂3yHz(xℓ+ 1

2
, ye1, zk, t

n+ 1
2 ) +

∆z2

24ϵ0ϵ∞
∂3zHy(xℓ+ 1

2
, yj , z

e
1, t

n+ 1
2 )

+O(∆t4 +∆y4 +∆z4),(105a)

ψ
n+ 1

2

Ey
ℓ,j+1

2
,k

= ∆t2
[
1

24
∂3tEy(xℓ, yj+ 1

2
, zk, t

e
3) +

1

8ϵ0ϵ∞
∂2t Jy(xℓ, yj+ 1

2
, zk, t

e
4)

]
− ∆z2

24ϵ0ϵ∞
∂3zHx(xℓ, yj+ 1

2
, ze2, t

n+ 1
2 ) +

∆x2

24ϵ0ϵ∞
∂3xHz(x

e
1, yj+ 1

2
, zk, t

n+ 1
2 )

+O(∆t4 +∆x4 +∆z4),(105b)

ψ
n+ 1

2

Ez
ℓ,j,k+1

2

= ∆t2
[
1

24
∂3tEz(xℓ, yj , zk+ 1

2
, te5) +

1

8ϵ0ϵ∞
∂2t Jz(xℓ, yj , zk+ 1

2
, te6)

]
− ∆x2

24ϵ0ϵ∞
∂3xHy(x

e
2, yj , zk+ 1

2
, tn+

1
2 ) +

∆y2

24ϵ0ϵ∞
∂3yHx(xℓ, y

e
2, zk+ 1

2
, tn+

1
2 )

+O(∆t4 +∆x4 +∆y4),(105c)
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and in (86g)-(86i) as

ψ
n+ 1

2

Jx
ℓ+1

2
,j,k

=
∆t2

24

[
∂3t Jx(xℓ+ 1

2
, yj , zk, t

j
1) + 3∂2t Jx(xℓ+ 1

2
, yj , zk, t

j
2)

+ 3ω2
0∂

2
t Px(xℓ+ 1

2
, yj , zk, t

j
3)− 3ϵ0ωp

2Ex(xℓ+ 1
2
, yj , zk, t

j
4)

]
+O(∆t4),(106a)

ψ
n+ 1

2

Jy
ℓ,j+1

2
,k

=
∆t2

24

[
∂3t Jy(xℓ, yj+ 1

2
, zk, t

j
5) + 3∂2t Jy(xℓ, yj+ 1

2
, zk, t

j
6)

+ 3ω2
0∂

2
t Py(xℓ, yj+ 1

2
, zk, t

j
7)− 3ϵ0ωp

2Ey(xℓ, yj+ 1
2
, zk, t

j
8)

]
+O(∆t4),(106b)

ψ
n+ 1

2

Jz
ℓ,j,k+1

2

=
∆t2

24

[
∂3t Jz(xℓ, yj , zk+ 1

2
, tj9) + 3∂2t Jz(xℓ, yj , zk+ 1

2
, tj10)

+ 3ω2
0∂

2
t Pz(xℓ, yj , zk+ 1

2
, tj11)− 3ϵ0ωp

2Ez(xℓ, yj , zk+ 1
2
, tj12)

]
+O(∆t4),(106c)

and finally in (86j)-(86l) as

ψ
n+ 1

2

Px
ℓ+1

2
,j,k

=
∆t2

24

[
∂3t Px(xℓ+ 1

2
, yj , zk, t

p
1)− 3∂2t Jx(xℓ+ 1

2
, yj , zk, t

p
2)
]
+O(∆t4),

(107a)

ψ
n+ 1

2

Py
ℓ,j+1

2
,k

=
∆t2

24

[
∂3t Py(xℓ, yj+ 1

2
, zk, t

p
3)− 3∂2t Jy(xℓ, yj+ 1

2
, zk, t

p
4)
]
+O(∆t4),

(107b)

ψ
n+ 1

2

Pz
ℓ,j,k+1

2

=
∆t2

24

[
∂3t Pz(xℓ, yj , zk+ 1

2
, tp5)− 3∂2t Jz(xℓ, yj , zk+ 1

2
, tp6)

]
+O(∆t4).

(107c)

where tn−
1
2 ≤ ter, t

j
r, t

p
r ≤ tn+

1
2 , xℓ− 1

2
≤ xes ≤ xℓ+ 1

2
, yj− 1

2
≤ yes ≤ yj+ 1

2
, and

zk− 1
2
≤ zes ≤ zk+ 1

2
for r = {1, 2, .., 12} and s = {1, 2}. From the assumed regularity

of the exact solution, we can bound the truncation errors to obtain the bound in
(100). �

To prove the convergence of the Yee scheme for the 3D Maxwell-Lorentz model,
we follow a similar procedure to the convergence analysis in Theorem 4.2. We use
the error functions (64) and define the additional one

J n
h = Jn

h − J(tn).(108)

In combining these variables (64) and (108), we arrive at the error equations of
the Yee scheme for the 3D Maxwell-Lorentz model:

δtH
n
h = − 1

µ0
curlh E

n
h − ψ⃗n

H ,(109a)

δtE
n+ 1

2

h =
1

ϵ0ϵ∞
c̃urlhH

n+ 1
2

h − 1

ϵ0ϵ∞
J
n+ 1

2

h − ψ⃗
n+ 1

2

E ,(109b)

δtJ
n+ 1

2

h = −1

τ
J
n+ 1

2

h − ω2
0P

n+ 1
2

h + ϵ0ωp
2E

n+ 1
2

h − ψ⃗
n+ 1

2

J ,(109c)

δtP
n+ 1

2

h = J
n+ 1

2

h − ψ⃗
n+ 1

2

P ,(109d)

where ψ⃗m
w =

(
ψm
wx
, ψm

wy
, ψm

wz

)
, w ∈ {H,E, J, P} and m ∈ {n, n + 1/2}. The con-

vergence property of the Yee scheme for the 3D Maxwell-Lorentz model is given by
the following result:
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Theorem 5.2. Suppose that the solutions to the 3D Maxwell-Lorentz model (15)
satisfy the regularity conditions Eh,Hh ∈ C3

(
[0, T ]; [C3

(
Ω
)
]3
)
, and Jh,Ph ∈

C3 ([0, T ]; [C
(
Ω
)
]3
)
. Let ψn

wα
or ψ

n+ 1
2

wα be truncation errors of the Yee scheme,
(86) or equivalently (87), for the 3D Maxwell-Lorentz model where w ∈ {H,E, J, P}
and α ∈ {x, y, z} satisfying Lemma 5.1. Assuming the stability condition (88) is
satisfied and letting the Courant number ν = c∞∆t/h, then for any fixed T > 0

there exists a positive constant C̃ depending on the medium parameters, the Courant
number, but independent of the mesh parameters, such that

Rn
h,L ≤ R0

h,L + C̃T
(
∆x2 +∆y2 +∆z2 +∆t2

)
,(110)

where the energy of the error at time tn = n∆t is defined by

Rn
h,L =

(
µ0∥H

n− 1
2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Jnh∥2E
ϵ0ωp

2
+

∥Pn
h∥2E

ϵ0ϵ∞(ϵq − 1)

−∆t
(
curlh E

n
h,H

n− 1
2

h

)
H

)1/2

.(111)

Proof. We again apply the energy method as has been used in the proof of The-

orem 4.1 and Theorem 4.2. Multiplying (109a) by ∆3 µ0H
n

h, multiplying (109b)

by ∆3 ϵ0ϵ∞E
n+ 1

2

h , multiplying (109c) by
∆3

ϵoωp
2
J
n+ 1

2

h , and multiplying (109d) by

∆3

ϵ0ϵ∞(ϵq − 1)
P
n+ 1

2

h and finally summing each over all spatial nodes, we obtain

µ0

(
δtH

n
h ,H

n

h

)
H

= −
(
curlh E

n
h,H

n

h

)
H
− µ0

(
ψ⃗n
H ,H

n

h

)
H
,(112a)

ϵ0ϵ∞

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E
=

(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E
−

(
J
n+ 1

2

h ,E
n+ 1

2

h

)
E

− ϵ0ϵ∞

(
ψ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
,(112b)

1

ϵ0ωp
2

(
δtJ

n+ 1
2

h , J
n+ 1

2

h

)
E
= − 1

τϵ0ωp
2
∥Jn+

1
2

h ∥2E − ω2
0

ϵ0ωp
2

(
P
n+ 1

2

h , J
n+ 1

2

h

)
E

+
(
E
n+ 1

2

h , J
n+ 1

2

h

)
E
− 1

ϵ0ωp
2

(
ψ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E
,(112c)

(
δtP

n+ 1
2

h ,P
n+ 1

2

h

)
E

ϵ0ϵ∞(ϵq − 1)
=

1

ϵ0ϵ∞(ϵq − 1)

[(
J
n+ 1

2

h ,P
n+ 1

2

h

)
E
−
(
ψ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E

]
.

(112d)

We add all the results in (112) to obtain

µ0

(
δtH

n
h ,H

n

h

)
H
+ ϵ0ϵ∞

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E

+

(
δtJ

n+ 1
2

h , J
n+ 1

2

h

)
E

ϵ0ωp
2

+

(
δtP

n+ 1
2

h ,P
n+ 1

2

h

)
E

ϵ0ϵ∞(ϵq − 1)

=−
(
curlh E

n
h,H

n

h

)
H
+
(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E
− ∥Jn+

1
2

h ∥2E
τϵ0ωp

2
− µ0

(
ψ⃗n
H ,H

n

h

)
H
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− ϵ0ϵ∞

(
ψ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
−

(
ψ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E

ϵ0ωp
2

−

(
ψ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E

ϵ0ϵ∞(ϵq − 1)

≤−
(
curlh E

n
h,H

n

h

)
H
+

(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E

− µ0

(
ψ⃗n
H ,H

n

h

)
H
− ϵ0ϵ∞

(
ψ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E

−

(
ψ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E

ϵ0ωp
2

−

(
ψ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E

ϵ0ϵ∞(ϵq − 1)
.(113)

Using the identity (70), we get

µ0

(
δtH

n
h ,H

n

h

)
H
+ ϵ0ϵ∞

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E

+

(
δtJ

n+ 1
2

h , J
n+ 1

2

h

)
E

ϵ0ωp
2

+

(
δtP

n+ 1
2

h ,P
n+ 1

2

h

)
E

ϵ0ϵ∞(ϵq − 1)

≤1

2

(
H

n+ 1
2

h , curlh E
n+1
h

)
H
− 1

2

(
H

n− 1
2

h , curlh E
n
h

)
H

− µ0

(
ψ⃗n
H ,H

n

h

)
H
− ϵ0ϵ∞

(
ψ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E

−

(
ψ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E

ϵ0ωp
2

−

(
ψ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E

ϵ0ϵ∞(ϵq − 1)
.(114)

Thus from equation (114) we have that(
Rn+1

h,L

)2

−
(
Rn

h,L

)2 ≤2∆t

∣∣∣∣∣µ0

(
ψ⃗n
H ,H

n

h

)
H
+ ϵ0ϵ∞

(
ψ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E

+

(
ψ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E

ϵ0ωp
2

+

(
ψ⃗

n+ 1
2

P ,P
n+ 1

2

h

)
E

ϵ0ϵ∞(ϵq − 1)

∣∣∣∣∣
≤C̃1∆tmax

{
∥ψ⃗n

H∥H , ∥ψ⃗
n+ 1

2

E ∥E , ∥ψ⃗
n+ 1

2

J ∥E , ∥ψ⃗
n+ 1

2

P ∥E
}

·
(
∥Hn

h∥H + ∥En+ 1
2

h ∥E + ∥Jn+
1
2

h ∥E + ∥Pn+ 1
2

h ∥E
)
,(115)

where C̃1 is a constant depending on µ0, ϵ0, ϵ∞, ϵq. Applying Young’s inequality
and equation (51), for γ > 0, we obtain(

curlh E
n
h,H

n− 1
2

h

)
H

≤ γµ0

4∆t
∥Hn− 1

2

h ∥2H +
12∆t

h2γµ0
∥En

h∥2E .(116)

From the definition of the energy of the error given in (111), we have

µ0∥H
n− 1

2

h ∥2H + ϵ0ϵ∞∥En
h∥2E +

∥Jnh∥2E
ϵ0ωp

2

+
∥Pn

h∥2E
ϵ0ϵ∞(ϵq − 1)

−∆t
(
curlh E

n
h,H

n− 1
2

h

)
H

≥µ0

(
1− γ

4

)
∥Hn− 1

2

h ∥2H + ϵ0ϵ∞

(
1− 12∆t2

γϵ0ϵ∞µ0h2

)
∥En

h∥2E

+
∥Jnh∥2E
ϵ0ωp

2
+

∥Pn
h∥2E

ϵ0ϵ∞(ϵq − 1)
.(117)
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If the stability condition (88) is satisfied, then for some γ ≤ 4, all terms on the
right side (117) are nonnegative, and for n ≥ 0 we have

Rn
h,L ≥ C̃2

(
∥Hn− 1

2

h ∥H + ∥En
h∥E + ∥Jnh∥E + ∥Pn

h∥E
)

(118)

where C̃2 = min

{√
µ0

(
1− γ

4

)
,

√
ϵ0ϵ∞

(
1− 12∆t2

γϵ0ϵ∞µ0h2

)
, 1√

ϵ0ωp
2
, 1√

ϵ0ϵ∞(ϵq−1)

}
.

From (115) and (118), we therefore obtain(
Rn+1

h,L

)2

−
(
Rn

h,L

)2
≤ C̃1C̃2∆tmax

{
∥ψ⃗n

H∥H , ∥ψ⃗
n+ 1

2

E ∥E , ∥ψ⃗
n+ 1

2

J ∥E , ∥ψ⃗
n+ 1

2

P ∥E
}(

Rn+1
h,L +Rn

h,L

)
.

(119)

Dividing by Rn+1
h,L +Rn

h,L and rearranging terms in (119), we obtain

Rn+1
h,L −Rn

h,L ≤ C̃∆tmax
{
∥ψ⃗n

H∥H , ∥ψ⃗
n+ 1

2

E ∥E , ∥ψ⃗
n+ 1

2

J ∥E , ∥ψ⃗
n+ 1

2

P ∥E
}

≤ C̃∆t
(
∆x2 +∆y2 +∆z2 +∆t2

)
(120)

where C̃ = CLC̃1C̃2 is a constant depending on medium parameters, the Courant
number ν = c∞∆t/h, and the constant γ. Recursively applying the inequality (120)
from n to 0 and using the fact that T = N∆t, we have

Rn
h,L −R0

h,L ≤C̃n∆t
(
∆x2 +∆y2 +∆z2 +∆t2

)
≤C̃T

(
∆x2 +∆y2 +∆z2 +∆t2

)
.(121)

�

5.3. Discrete Divergence Constraints of the Yee Scheme for the Maxwell-
Lorentz Model. As a result of divergence-conserved property of the Maxwell-
Debye model, in this section we show that the similar property holds for the
Maxwell-Lorentz model.

Theorem 5.3. Suppose that the solutions to the 3D Maxwell-Lorentz model (15)
are as given in Theorem 5.2. Then discrete divergence of the Yee scheme for the
3D Maxwell-Lorentz model, (86) or equivalently (87), is preserved for all time levels
n ≥ 0, i.e., satisfies the identities

divhD
n
h = divhD

0
h,(122a)

divhB
n+ 1

2

h = divhB
1
2

h ,(122b)

where the vector fields Dh and Bh are defined on the meshes τdivEh and τdivHh ,
respectively.

Proof. The proof of this theorem is the same as the proof of Theorem 4.3 for the
case of the Debye medium. �
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6. Development of the Yee Scheme for the Maxwell-Cold Plasma System

The fully discrete Yee scheme applied to the the 3D Maxwell-Cold Plasma sys-
tems reads

δtH
n
x,h

ℓ,j+1
2
,k+1

2

=
1

µ0

(
δzE

n
y,h

ℓ,j+1
2
,k+1

2

− δyE
n
z,h

ℓ,j+1
2
,k+1

2

)
,(123a)

δtH
n
y,h

ℓ+1
2
,j,k+1

2

=
1

µ0

(
δxE

n
z,h

ℓ+1
2
,j,k+1

2

− δzE
n
x,h

ℓ+1
2
,j,k+1

2

)
,(123b)

δtH
n
z,h

ℓ+1
2
,j+1

2
,k
=

1

µ0

(
δyE

n
x,h

ℓ+1
2
,j+1

2
,k
− δxE

n
y,h

ℓ+1
2
,j+1

2
,k

)
,(123c)

δtE
n+ 1

2

x,h
ℓ+1

2
,j,k

=
1

ϵ0

(
δyH

n+ 1
2

z,h
ℓ+1

2
,j,k

− δzH
n+ 1

2

y,h
ℓ+1

2
,j,k

)
− 1

ϵ0
J
n+ 1

2

x,h
ℓ+1

2
,j,k
,(123d)

δtE
n+ 1

2

y,h
ℓ,j+1

2
,k
=

1

ϵ0

(
δzH

n+ 1
2

x,h
ℓ,j+1

2
,k
− δxH

n+ 1
2

z,h
ℓ,j+1

2
,k

)
− 1

ϵ0
J
n+ 1

2

y,h
ℓ,j+1

2
,k
,(123e)

δtE
n+ 1

2

z,h
ℓ,j,k+1

2

=
1

ϵ0

(
δxH

n+ 1
2

y,h
ℓ,j,k+1

2

− δyH
n+ 1

2

x,h
ℓ,j,k+1

2

)
− 1

ϵ0
J
n+ 1

2

z,h
ℓ,j,k+1

2

,(123f)

δtJ
n+ 1

2

x,h
ℓ+1

2
,j,k

= −νcJ
n+ 1

2

x,h
ℓ+1

2
,j,k

+ ϵ0ω
2
pE

n+ 1
2

x,h
ℓ+1

2
,j,k
,(123g)

δtJ
n+ 1

2

y,h
ℓ,j+1

2
,k
= −νcJ

n+ 1
2

y,h
ℓ,j+1

2
,k
+ ϵ0ω

2
pE

n+ 1
2

y,h
ℓ,j+1

2
,k
,(123h)

δtJ
n+ 1

2

z,h
ℓ,j,k+1

2

= −νcJ
n+ 1

2

z,h
ℓ,j,k+1

2

+ ϵ0ω
2
pE

n+ 1
2

z,h
ℓ,j,k+1

2

.(123i)

Then the scheme (123) can be written as follows

δtH
n
h = − 1

µ0
curlh E

n
h,(124a)

δtE
n+ 1

2

h =
1

ϵ0
c̃urlhH

n+ 1
2

h − 1

ϵ0
J
n+ 1

2

h ,(124b)

δtJ
n+ 1

2

h = −νcJ
n+ 1

2

h + ϵ0ω
2
pE

n+ 1
2

h .(124c)

6.1. The Stability Analysis of the Yee Scheme for Cold Plasma Media.
In this section, we show that the solution of the fully discrete scheme (123) satisfies
the energy decay property by the following theorem.

Theorem 6.1. If the time step and uniform mesh spatial step sizes satisfy the
stability condition

c∞∆t

h
<

1√
3
,(125)

where c∞ = 1/
√
µ0ϵ0, then the discrete solutions of the 3D Yee -FDTD Maxwell-

Cold Plasma equations satisfy the discrete energy decay,

En+1
h,C ≤ En

h,C ,(126)

for all n ≥ 0 where a discrete energy is defined by

En
h,C =

(
µ0∥H

n− 1
2

h ∥2H + ϵ0∥En
h∥2E +

∥Jn
h∥2E

ϵ0ω2
p

−∆t
(
curlh E

n
h,H

n− 1
2

h

)
H

) 1
2

.(127)
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Proof. Multiplying (123a) by ∆3 µ0H
n

x,h
ℓ,j+1

2
,k+1

2

, multiplying (123b) by

∆3 µ0H
n

y,h
ℓ+1

2
,j,k+1

2

, multiplying (123c) by ∆3 µ0H
n

z,h
ℓ+1

2
,j+1

2
,k
and finally summing

each over all spatial nodes, and adding all the results, we obtain

µ0

2∆t

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
= −

(
curlh E

n
h,H

n

h

)
H
.(128)

Next, multiplying (123d), (123e) and (123f) by ∆3 ϵ0E
n+ 1

2

x,h
ℓ+1

2
,j,k

, ∆3 ϵ0E
n+ 1

2

y,h
ℓ,j+1

2
,k

and ∆3 ϵ0E
n+ 1

2

z,h
ℓ,j,k+1

2

respectively, and finally summing each over all spatial nodes,

and adding all the results, we obtain

ϵ0
2∆t

(
∥En+1

h ∥2E − ∥En
h∥2E

)
=

(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E
−
(
J
n+ 1

2

h ,E
n+ 1

2

h

)
E
.(129)

Finally, multiplying (123g), (123h) and (123i) by
∆3

ϵ0ω2
p

J
n+ 1

2

x,h
ℓ+1

2
,j,k

,
∆3

ϵ0ω2
p

J
n+ 1

2

y,h
ℓ,j+1

2
,k

and
∆3

ϵ0ω2
p

J
n+ 1

2

z,h
ℓ,j,k+1

2

and finally summing each over all spatial nodes, and adding all

the results, we obtain

1

2∆tϵ0ω2
p

(
∥Jn+1

h ∥2E − ∥Jn
h∥2E

)
= − νc

ϵ0ω2
p

∥Jn+ 1
2

h ∥2E +
(
E

n+ 1
2

h ,J
n+ 1

2

h

)
E
.(130)

Adding all equations (128)-(130) and using a discrete analogue of integration by
parts [9], we obtain

µ0

2∆t

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
+

ϵ0
2∆t

(
∥En+1

h ∥2E − ∥En
h∥2E

)
+

(
∥Jn+1

h ∥2E − ∥Jn
h∥2E

)
2∆tϵ0ω2

p

= −
(
curlh E

n
h,H

n

h

)
H
+
(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E
− νc
ϵ0ω2

p

∥Jn+ 1
2

h ∥2E

= −1

2

(
curlh E

n
h,H

n− 1
2

h

)
H
+

1

2

(
c̃urlhH

n+ 1
2

h ,En+1
h

)
E
− νc
ϵ0ω2

p

∥Jn+ 1
2

h ∥2E .

(131)

We convert equation (131) into an inequality

µ0

(
∥Hn+ 1

2

h ∥2H − ∥Hn− 1
2

h ∥2H
)
+ ϵ0

(
∥En+1

h ∥2E − ∥En
h∥2E

)
+

(
∥Jn+1

h ∥2E − ∥Jn
h∥2E

)
ϵ0ω2

p

≤ ∆t
(
c̃urlhH

n+ 1
2

h ,En+1
h

)
E
−∆t

(
curlh E

n
h,H

n− 1
2

h

)
H
.(132)

We follow a similar procedure to the Debye case to confirm conditional stability
by showing that En

h,C is a discrete energy function. By the inequality (51), we have

µ0∥H
n− 1

2

h ∥2H + ϵ0∥En
h∥2E +

∥Jn
h∥2E

ϵ0ω2
p

−∆t
(
curlh E

n
h,H

n− 1
2

h

)
H

≥ ϵ0ϵ∞

(
1− 3∆t2

h2µ0ϵ0

)
∥En

h∥2E .(133)

Thus, the discrete energy function (127) is positive when

3∆t2

h2µ0ϵ0
< 1 ⇔ 3c2∞∆t2

h2
< 1,(134)

so the stability condition (125) holds. �
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6.2. Error Estimates and Convergence of the Yee Scheme for the Maxwell-
Cold Plasma Model. In this section, we first analyze the truncation errors in
the Yee scheme for the Maxwell-Cold Plasma model and prove convergence of the
scheme.

Lemma 6.1. Suppose that the solutions to the Maxwell-Cold Plasma model (22)

satisfies the regularity conditions E,H ∈ C3
(
[0, T ]; [C3

(
Ω
)
]3
)
, and J ∈ C3

(
[0, T ];

[C
(
Ω
)
]3
)
. Let ϕmwα

be truncation errors for the Yee scheme for the Maxwell-Cold

Plasma model, (123) or equivalently (124), where w ∈ {H,E, J}, m ∈ {n, n + 1
2},

and α ∈ {x, y, z}. Then for any α ∈ {x, y, z},

max
{∣∣ϕnHα

∣∣ , ∣∣∣ϕn+ 1
2

Eα

∣∣∣ , ∣∣∣ϕn+ 1
2

Jα

∣∣∣} ≤ CC

(
∆x2 +∆y2 +∆z2 +∆t2

)
,(135)

where CC is a constant and does not depend on the mesh sizes.

Proof. We follow a similar procedure to Lemma 5.1. �

To prove the convergence of the Yee scheme for the 3D Maxwell-Cold Plasma
model, we follow the similar procedure to the convergence analysis in Theorem 5.2.

In combining variables (64) and (108), we arrive at the error equations of the
Yee scheme for the 3D Maxwell-Cold Plasma model:

δtH
n
h = − 1

µ0
curlh E

n
h − ϕ⃗nH ,(136a)

δtE
n+ 1

2

h =
1

ϵ0
c̃urlhH

n+ 1
2

h − 1

ϵ0
J
n+ 1

2

h − ϕ⃗
n+ 1

2

E ,(136b)

δtJ
n+ 1

2

h = −νcJ
n+ 1

2

h + ϵ0ω
2
pE

n+ 1
2

h − ϕ⃗
n+ 1

2

J ,(136c)

where ϕ⃗mw =
(
ϕmwx

, ϕmwy
, ϕmwz

)
, w ∈ {H,E, J} and m ∈ {n, n + 1/2}. The conver-

gence property of the Yee scheme for the Maxwell-Cold Plasma model is given by
the following result.

Theorem 6.2. Suppose that the solutions to the Maxwell-Cold Plasma model (22)

satisfy the regularity conditions Eh,Hh ∈ C3
(
[0, T ]; [C3

(
Ω
)
]3
)
, and Jh ∈ C3

(
[0, T ];

[C
(
Ω
)
]3
)
. Let ϕmwα

be truncation errors of the Yee scheme for the Maxwell-Cold

Plasma model, (123) or equivalently (124), where w ∈ {H,E, J}, m ∈ {n, n + 1
2},

and α ∈ {x, y, z} satisfying Lemma 6.1. Assuming the stability condition (125) is
satisfied and letting the Courant number ν = c∞∆t/h, then for any fixed T > 0

there exists a positive constant Ĉ depending on the medium parameters, the Courant
number, but independent of the mesh parameters, such that

Rn
h,C ≤ R0

h,C + ĈT
(
∆x2 +∆y2 +∆z2 +∆t2

)
,(137)

where the energy of the error at time tn = n∆t is defined by

Rn
h,C =

(
µ0∥H

n− 1
2

h ∥2H + ϵ0∥En
h∥2E +

∥Jnh∥2E
ϵ0ω2

p

−∆t
(
curlh E

n
h,H

n− 1
2

h

)
H

)1/2

.(138)

Proof. We follow a similar process, the energy method, that has been used in the

proof of Theorem 5.2. Multiplying (136a) by ∆3 µ0H
n

h and summing overall spatial

nodes, multiplying (136b) by ∆3 ϵ0E
n+ 1

2

h , multiplying (136c) by
∆3

ϵ0ω2
p

J
n+ 1

2

h and
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summing overall spatial nodes, we obtain

µ0

(
δtH

n
h ,H

n

h

)
H

=−
(
curlh E

n
h,H

n

h

)
H
− µ0

(
ϕ⃗nH ,H

n

h

)
H
,(139a)

ϵ0

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E
=
(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E

−
(
J
n+ 1

2

h ,E
n+ 1

2

h

)
E
− ϵ0

(
ϕ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
,(139b)

1

ϵ0ω2
p

(
δtJ

n+ 1
2

h , J
n+ 1

2

h

)
E
=− νc

ϵ0ω2
p

∥Jn+
1
2

h ∥2E

+
(
E
n+ 1

2

h , J
n+ 1

2

h

)
E
− 1

ϵ0ω2
p

(
ϕ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E
.(139c)

We add all the results in (139) to obtain

µ0

(
δtH

n
h ,H

n

h

)
H
+ ϵ0

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E
+

(
δtJ

n+ 1
2

h , J
n+ 1

2

h

)
E

ϵ0ω2
p

= −
(
curlh E

n
h,H

n

h

)
H
+

(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E
− νc
ϵ0ω2

p

∥Jn+
1
2

h ∥2E

− µ0

(
ϕ⃗nH ,H

n

h

)
H
− ϵ0

(
ϕ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
−

(
ϕ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E

ϵ0ω2
p

≤ −
(
curlh E

n
h,H

n

h

)
H
+

(
c̃urlhH

n+ 1
2

h ,E
n+ 1

2

h

)
E

− µ0

(
ϕ⃗nH ,H

n

h

)
H
− ϵ0

(
ϕ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
−

(
ϕ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E

ϵ0ω2
p

.(140)

Using the identity (70), we get

µ0

(
δtH

n
h ,H

n

h

)
H
+ ϵ0

(
δtE

n+ 1
2

h ,E
n+ 1

2

h

)
E
+

(
δtJ

n+ 1
2

h , J
n+ 1

2

h

)
E

ϵ0ω2
p

≤ 1

2

(
H

n+ 1
2

h , curlh E
n+1
h

)
H
− 1

2

(
H

n− 1
2

h , curlh E
n
h

)
H

− µ0

(
ϕ⃗nH ,H

n

h

)
H
− ϵ0

(
ϕ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
−

(
ϕ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E

ϵ0ω2
p

.(141)

Thus from equation (141) we have that(
Rn+1

h,C

)2

−
(
Rn

h,C

)2
≤2∆t

∣∣∣∣∣∣∣µ0

(
ϕ⃗nH ,H

n

h

)
H
+ ϵ0

(
ϕ⃗

n+ 1
2

E ,E
n+ 1

2

h

)
E
+

(
ϕ⃗

n+ 1
2

J , J
n+ 1

2

h

)
E

ϵ0ω2
p

∣∣∣∣∣∣∣
≤Ĉ1∆tmax

{
∥ϕ⃗nH∥H , ∥ϕ⃗

n+ 1
2

E ∥E , ∥ϕ⃗
n+ 1

2

J ∥E
}

·
(
∥Hn

h∥H + ∥En+ 1
2

h ∥E + ∥Jn+
1
2

h ∥E
)
,(142)
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where Ĉ1 is a constant depending on µ0, ϵ0, ϵq. Applying Young’s inequality and
equation (51), for γ > 0, we obtain(

curlh E
n
h,H

n− 1
2

h

)
H

≤ γµ0

4∆t
∥Hn− 1

2

h ∥2H +
12∆t

h2γµ0
∥En

h∥2E .(143)

The the definition of the energy of the error given in (138), we have(
Rn

h,C

)2
= µ0∥H

n− 1
2

h ∥2H + ϵ0∥En
h∥2E +

∥Jnh∥2E
ϵ0ω2

p

−∆t
(
curlh E

n
h,H

n− 1
2

h

)
H

≥ µ0

(
1− γ

4

)
∥Hn− 1

2

h ∥2H + ϵ0

(
1− 12∆t2

γϵ0µ0h2

)
∥En

h∥2E +
∥Jnh∥2E
ϵ0ω2

p

.(144)

If the stability condition (125) is satisfied, then for some γ ≤ 4, all terms on the
right side (144) are nonnegative, and for n ≥ 0 we have

Rn
h,C ≥ Ĉ2

(
∥Hn− 1

2

h ∥H + ∥En
h∥E + ∥Jnh∥E

)
(145)

where Ĉ2 = min

{√
µ0

(
1− γ

4

)
,

√
ϵ0

(
1− 12∆t2

γϵ0µ0h2

)
, 1√

ϵ0ω2
p

, 1√
ϵ0(ϵq−1)

}
. From (142)

and (145), we therefore obtain(
Rn+1

h,C

)2

−
(
Rn

h,C

)2
≤Ĉ1Ĉ2∆tmax

{
∥ϕ⃗nH∥H , ∥ϕ⃗

n+ 1
2

E ∥E , ∥ϕ⃗
n+ 1

2

J ∥E
}(

Rn+1
h,C +Rn

h,C

)
.(146)

Dividing by Rn+1
h,C +Rn

h,C and rearranging terms in (146), we obtain

Rn+1
h,C −Rn

h,C ≤ Ĉ1Ĉ2∆tmax
{
∥ϕ⃗nH∥H , ∥ϕ⃗

n+ 1
2

E ∥E , ∥ϕ⃗
n+ 1

2

J ∥E
}

≤ Ĉ∆t
(
∆x2 +∆y2 +∆z2 +∆t2

)
(147)

where Ĉ = CcĈ1Ĉ2 is a constant depending on medium parameters, the Courant
number ν = c∞∆t/h, and the constant γ. Recursively applying the inequality (120)
from n to 0 and using the fact that T = N∆t, we have

Rn
h,C −R0

h,C ≤ Ĉn∆t
(
∆x2 +∆y2 +∆z2 +∆t2

)
≤ ĈT

(
∆x2 +∆y2 +∆z2 +∆t2

)
.

(148)

�
6.3. Discrete Divergence Constraints of the Yee Scheme for the Maxwell-
Cold Plasma Model. In this section we analyze the properties of the discrete
divergence for the 3D Yee-FDTD Maxwell-Cold Plasma equations. Due to lack of
information about the polarization, the divergence of the electric flux density is not
well defined. We now consider only the divergence of the magnetic flux density in
the following theorem.

Theorem 6.3. Suppose that the solutions to the 3D Maxwell-Cold Plasma model
(22) are as given in Theorem 6.2. Then discrete divergence of the magnetic flux
density in the Yee scheme for the 3D Maxwell-Cold Plasma model, (123) or equiv-
alently (124), is preserved for all time levels n ≥ 0, i.e., satisfies the identity

(149) divhB
n+ 1

2

h = divhB
1
2

h

where the vector field Bh is defined on the mesh τdivHh .

Proof. The proof of this theorem is the same as the proof of Theorem 4.3 for the
case of the Debye medium. �
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7. Numerical Experiments

In this section, we numerically investigate the Yee scheme for the three different
linear dispersive media presented in the paper. To numerically demonstrate the
convergence of our Yee schemes, we consider the domain Ω = [0, 1] × [0, 1] × [0, 1]
with the PEC boundary conditions (28). We demonstrate our convergence results
on a uniform mesh, ∆x = ∆y = ∆z = h. The parameters of the linear model are
chosen as µ0 = 1, ϵ0 = 1, ϵ∞ = 1, ω0 = 1, τ = 1, ϵq = 2, and T = 1. By considering
exact solutions and relative errors for different wave numbers k = (kx, ky, kz)

T

be a wave vector, with corresponding wave number, |k| =
√
k2x + k2y + k2z , where

(kx, ky, kz)
T = π(k̃x, k̃y, k̃z)

T and k̃x, k̃y, k̃z are integer constants.
We also numerically demonstrate the satisfaction of the discrete divergence prop-

erty of the magnetic induction.

7.1. Yee Scheme for the Maxwell-Debye Model. In this section, we present
numerical results for the Yee scheme for the 3D Maxwell-Debye system (39).

We consider an exact solution of the 3D Maxwell-Debye system (7) given in the
form

Hx(x, y, z; t) =
|k|2

π
e−θt sin(kxx) cos(kyy) cos(kzz),(150a)

Hy(x, y, z; t) =
|k|2

π
e−θt cos(kxx) sin(kyy) cos(kzz),(150b)

Hz(x, y, z; t) =
|k|2

π
e−θt cos(kxx) cos(kyy) sin(kzz),(150c)

Ex(x, y, z; t) = − θ

π
(ky − kz)e

−θt cos(kxx) sin(kyy) sin(kzz),(150d)

Ey(x, y, z; t) = − θ

π
(kz − kx)e

−θt sin(kxx) cos(kyy) sin(kzz),(150e)

Ez(x, y, z; t) = − θ

π
(kx − ky)e

−θt sin(kxx) sin(kyy) cos(kzz),(150f)

Px(x, y, z; t) = −βD(θ, |k|)
π

(ky − kz)e
−θt cos(kxx) sin(kyy) sin(kzz),(150g)

Py(x, y, z; t) = −βD(θ, |k|)
π

(kz − kx)e
−θt sin(kxx) cos(kyy) sin(kzz),(150h)

Pz(x, y, z; t) = −βD(θ, |k|)
π

(kx − ky)e
−θt sin(kxx) sin(kyy) cos(kzz),(150i)

where the function βD(θ, |k|) := ϵ0ϵ∞(ϵq − 1)θ − ϵ0ϵ∞τθ
2 − τ |k|2 and θ is a real

number. The relationship between the wave number k and the parameter θ can be
represented by the equation

ϵ0ϵ∞τ
2θ3 − ϵ0ϵ∞ϵqτθ

2 + τ2|k|2θ − τ |k|2 = 0.(151)

In particular, for k = π(1, 2,−3)T , θ ≈ 1.007289596494, and for k = 2π(1, 2,−3)T ,
θ ≈ 1.001812580410. Here the exact solution (150) satisfies the PEC boundary
conditions on the boundary of the domain Ω for the wave vectors as chosen in
Table 1.
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7.1.1. Computation of Energy Errors. The energy of the exact solution (150)
as defined in Theorem 2.1 can be computed to be

ED(t) =
|k|
2π
e−θt

√
3

2
(|k|2 + θ2 − β2

D(θ, |k|)).(152)

The values of the Courant number ν, and the wave vector k that are used in our
numerical experiments are given in Table 1. We compute numerical errors in the
discrete solution by computing relative energy error defined as

ErrorD(h) = max
0≤n≤N

{ Rn
h,D

ED(tn)

}
,(153)

with Rn
h,D as defined in Theorem 4.2.

Table 1 gives the discrete energy error for the Yee scheme for the 3D Maxwell-
Debye model for various cases. We test our schemes for different Courant numbers
and different wave vectors k. The largest time step used is ∆t = 0.02, and this value
is successively decreased by half to run four simulations. Figure 1 illustrates that
the convergence errors are all second order. This is consistent with the conclusion
in Theorem 4.2.

Figure 1. Discrete energy errors for the 3D Yee-FDTD Maxwell-
Debye scheme with varying CFL number.

7.1.2. Convergence of Discrete Divergence. We show that the discrete diver-
gence of both the electric flux density, Dh, and magnetic flux density, Bh, in the
Yee scheme for the 3D Maxwell-Debye model is preserved. We compute the error
in the discrete divergence as

Err(divhD) = max
0≤n≤N

∥divhDn
h − divhD

0
h∥E ,(154a)

Err(divhB) = max
0≤n≤N−1

∥divhB
n+ 1

2

h − divhB
1
2

h ∥H .(154b)

The errors (154) in the discrete divergence of solutions for the Maxwell-Debye
model are given in Table 2. We see that the errors presented are all negligible
compared to the discrete energy errors.
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Table 1. Discrete energy errors for the Maxwell-Debye model.

Wave Vector k = π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

ErrorD Rate ErrorD Rate ErrorD Rate
50 2.789×10−2 - 6.422×10−3 - 1.012×10−3 -
100 6.432×10−3 -2.117 1.576×10−3 -2.027 2.524×10−4 -2.003
200 1.588×10−3 -2.018 3.953×10−4 -1.996 6.357×10−5 -1.989
400 3.971×10−4 -2.000 9.924×10−5 -1.994 1.598×10−5 -1.992

Wave Vector k = 2π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

ErrorD Rate ErrorD Rate ErrorD Rate
50 7.347×10−2 - 1.540×10−2 - 2.285×10−3 -
100 1.387×10−2 -2.405 3.405×10−3 -2.177 5.337×10−4 -2.098
200 3.367×10−3 -2.043 8.238×10−4 -2.047 1.312×10−4 -2.024
400 8.240×10−4 -2.031 2.049×10−4 -2.007 3.279×10−5 -2.001

Table 2. Discrete divergence errors for the Maxwell-Debye model.

Wave Vector k = π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

Err(divhD) Err(divhB) Err(divhD) Err(divhB) Err(divhD) Err(divhB)
50 5.02×10−13 5.84×10−14 1.33×10−12 1.22×10−13 3.24×10−12 2.89×10−13

100 2.05×10−12 1.71×10−13 3.56×10−12 3.41×10−13 9.46×10−12 8.25×10−13

200 4.70×10−12 4.71×10−13 1.08×10−11 9.38×10−13 2.70×10−11 2.35×10−12

400 1.51×10−11 1.33×10−12 3.08×10−11 2.66×10−12 7.75×10−11 6.66×10−12

Wave Vector k = 2π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

Err(divhD) Err(divhB) Err(divhD) Err(divhB) Err(divhD) Err(divhB)
50 5.88×10−12 4.76×10−13 1.00×10−11 5.35×10−13 2.66×10−11 1.19×10−12

100 1.21×10−11 7.16×10−13 3.00×10−11 1.39×10−12 7.53×10−11 3.33×10−12

200 4.33×10−11 1.95×10−12 7.90×10−11 3.80×10−12 2.13×10−10 9.40×10−12

400 1.19×10−10 5.38×10−12 2.45×10−10 1.07×10−11 6.15×10−10 2.67×10−11

7.1.3. Example of Yee Scheme for the Maxwell-Debye Model with the
Non-uniform Mesh. For non-uniform meshes, we use the same parameters as
the linear model for the Yee scheme for the 3D Maxwell-Debye system. Here we
start using the following mesh parameters

∆t = 0.02, ∆x = 0.2, ∆y = 0.1, ∆z = 0.25,(155)

and these values are successively decreased by half to run four simulations. The
stability condition based on these parameters satisfies equation (54). The discrete
energy error for the Maxwell-Debye model is given in Table 3 and Figure 2. We let
λh represent the scaling of the number of intervals in the mesh. Figure 2 illustrates
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that the convergence errors for the non-uniform mesh are of second order, which
agrees with the conclusion in Theorem 4.2.

Table 3. Discrete energy errors for the Maxwell-Debye model
with non-uniform meshes.

∆t ∆x ∆y ∆z k = π(1, 2,−3)T k = 2π(1, 2,−3)T

Error Rate Error Rate
0.02 0.2 0.1 0.25 5.274×10−2 - 1.872×10−1 -
0.01 0.1 0.05 0.125 1.143×10−2 -2.21 4.033×10−2 -2.22
0.005 0.05 0.025 0.0625 2.782×10−3 -2.04 9.868×10−3 -2.03
0.0025 0.025 0.0125 0.03125 6.932×10−4 -2.01 2.380×10−3 -2.05
0.00125 0.0125 0.00625 0.015625 1.734×10−4 -2.00 5.891×10−4 -2.01

Figure 2. Discrete energy errors for the Maxwell-Debye model
with non-uniform meshes where λh represents a multiple of mesh
sizes.

Moreover, the discrete divergence of both electric flux density for the Maxwell-
Debye model are given in Table 4 which also supports our theoretical result in
(4.29).

7.2. Yee Scheme for the Maxwell-Lorentz Model. In this section, we test
the proposed Yee scheme for the Maxwell-Lorentz system (86). The experiment is
performed by using a uniform mesh on the domain Ω = [0, 1] × [0, 1] × [0, 1] with
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Table 4. Discrete divergence errors for the Maxwell-Debye model
with non-uniform meshes.

∆t ∆x ∆y ∆z k = π(1, 2,−3)T k = 2π(1, 2,−3)T

Err(divhD) Err(divhB) Err(divhD) Err(divhB)

0.02 0.2 0.1 0.25 5.69×10−13 9.71×10−14 1.37×10−11 6.34×10−13

0.01 0.1 0.05 0.125 3.13×10−12 2.12×10−13 2.10×10−11 1.07×10−12

0.005 0.05 0.025 0.0625 7.45×10−12 6.48×10−13 5.69×10−11 2.67×10−12

0.0025 0.025 0.0125 0.03125 2.25×10−11 1.83×10−12 1.82×10−10 7.43×10−12

0.00125 0.0125 0.00625 0.015625 6.32×10−11 5.12×10−12 4.87×10−10 2.08×10−11

the PEC boundary conditions (28). The parameters in this section are chosen by
µ0 = 1, ϵ0 = 1, ϵ∞ = 1, ω0 = 1, τ = 0.4, ϵq = 2, and T = 1.

The analytic solutions of the 3D Maxwell-Lorentz system (15) are

Hx(x, y, z; t) =
|k|2

π
e−θt sin(kxx) cos(kyy) cos(kzz),(156a)

Hy(x, y, z; t) =
|k|2

π
e−θt cos(kxx) sin(kyy) cos(kzz),(156b)

Hz(x, y, z; t) =
|k|2

π
e−θt cos(kxx) cos(kyy) sin(kzz),(156c)

Ex(x, y, z; t) = − θ

π
(ky − kz)e

−θt cos(kxx) sin(kyy) sin(kzz),(156d)

Ey(x, y, z; t) = − θ

π
(kz − kx)e

−θt sin(kxx) cos(kyy) sin(kzz),(156e)

Ez(x, y, z; t) = − θ

π
(kx − ky)e

−θt sin(kxx) sin(kyy) cos(kzz),(156f)

Px(x, y, z; t) = −αL(θ, |k|)
π

(ky − kz)e
−θt cos(kxx) sin(kyy) sin(kzz),(156g)

Py(x, y, z; t) = −αL(θ, |k|)
π

(kz − kx)e
−θt sin(kxx) cos(kyy) sin(kzz),(156h)

Pz(x, y, z; t) = −αL(θ, |k|)
π

(kx − ky)e
−θt sin(kxx) sin(kyy) cos(kzz),(156i)

Jx(x, y, z; t) = −βL(θ, |k|)
π

(ky − kz)e
−θt cos(kxx) sin(kyy) sin(kzz),(156j)

Jy(x, y, z; t) = −βL(θ, |k|)
π

(kz − kx)e
−θt sin(kxx) cos(kyy) sin(kzz),(156k)

Jz(x, y, z; t) = −βL(θ, |k|)
π

(kx − ky)e
−θt sin(kxx) sin(kyy) cos(kzz),(156l)

where the function αL(θ, |k|) :=
(
ϵ0ϵ∞θ

3 − ϵ0ϵ∞
τ

θ2 + (ϵ0ωp
2 + |k|2)θ − |k|2

τ

)
/ω2

0

and βL(θ, |k|) := ϵ0ϵ∞θ
2 + |k|2, and θ is a real number. The relationship between

the wave number |k|2 and the parameter θ can be expressed as follows

ϵ0ϵ∞θ
4 − ϵ0ϵ∞

τ
θ3 +

(
ϵ0ϵ∞ω

2
0 + |k|2 + ϵ0ωp

2
)
θ2 − |k|2

τ
θ + ω2

0 |k|2 = 0.(157)

In particular, for k = π(1, 2,−3)T with the corresponding parameter θ ≈ 0.5012108,
and for k = 2π(1, 2,−3)T with the corresponding parameter θ ≈ 0.500301839402.
Here the exact solution (156) satisfies the PEC boundary conditions on the bound-
ary of the domain Ω provided that the wave vector is chosen as above.
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7.2.1. Computation of Energy Errors. The exact energy, defined in Theorem
2.2, for the solutions (156) can be calculated to be

EL(t) =
|k|
2π
e−θt

√
3

2

[
|k|2 + θ2 + β2

L

(
1 +

1

θ2

)]
.(158)

We compute numerical errors for the discrete solution by defining the numerical
error as

ErrorL(h) = max
0≤n≤N

{ Rn
h,L

EL(tn)

}
(159)

where Rn
h,L is defined in Theorem 111.

The results of the discrete energy error for the 3D Maxwell-Lorentz model are
given in Figure 3 and Table 5. Similarly to the numerical simulation in Section
7.1 with different values of wave vectors k, we take the largest time step sizes
to be ∆t = 0.02, and these values are successively decreased by half to run four
simulations. In Table 5, it is obvious that the discrete energy errors decay for several
values of the Courant number ν and the wave vector k. Figure 3 and Table 5 also
confirm the energy decay property of the Yee scheme by showing that convergence
rates are all of second order, which is in agreement with the conclusion in Theorem
5.2. Moreover, if the Courant number is increasing, then it improves the error of
the scheme but the order of accuracy remains the same.

Figure 3. A comparison of the errors for the Yee scheme in the
Lorentz medium with varying CFL conditions.

7.2.2. Convergence of Discrete Divergence. We determine the numerical dis-
crete divergence properties for both the electric Dh and the magnetic Bh flux
densities by calculating the formula defined in (154). Table 6 presents the discrete
divergence errors of solutions to the Yee scheme for the 3D Maxwell-Lorentz model.
All errors are relatively small.

7.3. Yee Scheme for the Maxwell-Cold Plasma Model. In this section, we
test the proposed Yee scheme for the Maxwell-Cold Plasma system (123). The
experiment is performed by using a uniform mesh on the domain Ω = [0, 1]× [0, 1]×
[0, 1] with the PEC boundary conditions (28). The parameters in this section are
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Table 5. Discrete energy errors for the Maxwell-Lorentz model.

Wave Vector k = π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

Error Rate Error Rate Error Rate
50 1.213×10−2 - 2.814×10−3 - 4.422×10−4 -
100 2.780×10−3 -2.125 6.823×10−4 -2.044 1.088×10−4 -2.023
200 6.821×10−4 -2.027 1.700×10−4 -2.007 2.719×10−5 -2.001
400 1.701×10−4 -2.004 4.248×10−5 -1.999 6.808×10−6 -1.998

Wave Vector k = 2π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

Error Rate Error Rate Error Rate
50 3.265×10−2 - 6.812×10−3 - 1.009×10−3 -
100 6.128×10−3 -2.414 1.497×10−3 -2.186 2.343×10−4 -2.106
200 1.468×10−3 -2.062 3.597×10−4 -2.057 5.727×10−5 -2.033
400 3.583×10−4 -2.035 8.914×10−5 -2.013 1.425×10−5 -2.007

Table 6. Discrete divergence errors for the Maxwell-Lorentz model.

Wave Vector k = π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

Err(divhD) Err(divhB) Err(divhD) Err(divhB) Err(divhD) Err(divhB)
50 7.43×10−13 7.38×10−14 2.05×10−12 1.52×10−13 6.07×10−12 3.52×10−13

100 3.10×10−12 1.95×10−13 6.87×10−12 4.01×10−13 1.62×10−11 1.00×10−12

200 8.76×10−12 5.70×10−13 1.87×10−11 1.13×10−12 4.67×10−11 2.83×10−12

400 2.52×10−11 1.61×10−12 5.22×10−11 3.22×10−12 1.33×10−10 8.03×10−12

Wave Vector k = 2π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

Err(divhD) Err(divhB) Err(divhD) Err(divhB) Err(divhD) Err(divhB)
50 9.40×10−12 4.67×10−13 1.40×10−11 6.64×10−13 4.65×10−11 1.44×10−12

100 3.26×10−11 1.00×10−12 5.61×10−11 1.70×10−12 1.27×10−10 4.04×10−12

200 5.70×10−11 2.32×10−12 1.40×10−10 4.56×10−12 3.75×10−10 1.13×10−11

400 1.92×10−10 6.48×10−12 4.02×10−10 1.29×10−11 1.05×10−9 3.21×10−11

chosen similarly to the case of Maxwell-Lorentz model i.e. µ0 = 1, ϵ0 = 1, ϵ∞ =
1, ω0 = 1, νc = 2.5, ϵq = 2, and T = 1. The following analytic solutions of the 3D
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Maxwell-Cold Plasma system (22) are

Hx(x, y, z; t) =
|k|2

π
e−θt sin(kxx) cos(kyy) cos(kzz),(160a)

Hy(x, y, z; t) =
|k|2

π
e−θt cos(kxx) sin(kyy) cos(kzz),(160b)

Hz(x, y, z; t) =
|k|2

π
e−θt cos(kxx) cos(kyy) sin(kzz),(160c)

Ex(x, y, z; t) = − θ

π
(ky − kz)e

−θt cos(kxx) sin(kyy) sin(kzz),(160d)

Ey(x, y, z; t) = − θ

π
(kz − kx)e

−θt sin(kxx) cos(kyy) sin(kzz),(160e)

Ez(x, y, z; t) = − θ

π
(kx − ky)e

−θt sin(kxx) sin(kyy) cos(kzz),(160f)

Jx(x, y, z; t) = −βC(θ, |k|)
π

(ky − kz)e
−θt cos(kxx) sin(kyy) sin(kzz),(160g)

Jy(x, y, z; t) = −βC(θ, |k|)
π

(kz − kx)e
−θt sin(kxx) cos(kyy) sin(kzz),(160h)

Jz(x, y, z; t) = −βC(θ, |k|)
π

(kx − ky)e
−θt sin(kxx) sin(kyy) cos(kzz),(160i)

where the function βC(θ, |k|) := ϵ0θ
2+|k|2, and θ is a real number. The relationship

between the wave number |k| and the parameter θ can be expressed as follows

ϵ0θ
3 − ϵ0νcθ

2 +
(
ϵ0ω

2
p + |k|2

)
θ − |k|2νc = 0.(161)

In particular, for k = π(1, 2,−3)T with the corresponding parameter θ ≈ 2.4827988,
and for k = 2π(1, 2,−3)T with the corresponding parameter θ ≈ 2.495535120632.
Here the exact solution (160) satisfies the PEC boundary conditions on the bound-
ary of the domain Ω provided that the wave vector is chosen as above.

7.3.1. Computation of Energy Errors. The exact energy (160) defined in The-
orem 2.3 can be calculated to be

EC(t) =
|k|
2π
e−θt

√
3

2
[|k|2 + θ2 + β2

C ].(162)

We compute numerical errors for the discrete solution by defining the numerical
error as

ErrorC(h) = max
0≤n≤N

{ Rn
h,C

EC(tn)

}
,(163)

where Rn
h,C is defined in Theorem 6.2.

The results of the discrete energy error for the Yee scheme for the 3D Maxwell-
Cold Plasma model are given in Figure 4 and Table 7. Similarly to the numerical
simulation in Section 7.1 we take the largest time step sizes to be ∆t = 0.02, and
these values are successively decreased by half to run four simulations. In Table 7,
it is obvious that the discrete energy errors decay for several values of the Courant
number ν and the wave vector k. Figure 4 and Table 7 also confirm the energy
decay property of the Yee scheme by showing that convergence errors of the energy-
decayed finite-difference time-domain scheme for different space and time sizes are
all of second order, which is in agreement with the conclusion in Theorem 6.2.
Moreover, if the Courant number is increasing, then it improves the error of the
scheme but the order of accuracy remains the same, which exhibits the second order
of the Yee scheme with respect to a O(h2) reference.
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Figure 4. A comparison of the discrete energy errors for the Yee
scheme in a Cold Plasma medium with varying CFL conditions.

Table 7. Discrete energy errors for the Maxwell-Cold Plasma model.

Wave Vector k = π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

Error Rate Error Rate Error Rate
50 1.329×10−1 - 3.298×10−2 - 5.260×10−3 -
100 3.095×10−2 -2.102 7.509×10−3 -2.136 1.247×10−3 -2.076
200 7.277×10−3 -2.089 1.815×10−3 -2.049 3.043×10−4 -2.035
400 1.782×10−3 -2.030 4.476×10−4 -2.020 7.517×10−5 -2.017

Wave Vector k = 2π(1, 2,−3)T

N ν = 0.1 ν = 0.2 ν = 0.5

Error Rate Error Rate Error Rate
50 4.004×10−1 - 8.515×10−2 - 1.113×10−2 -
100 7.727×10−2 -2.373 1.559×10−2 -2.450 2.671×10−3 -2.059
200 1.602×10−2 -2.270 4.007×10−3 -1.960 6.497×10−4 -2.039
400 3.985×10−3 -2.001 9.922×10−4 -2.014 1.605×10−4 -2.017

7.3.2. Convergence of Discrete Divergence. We determine the numerical dis-
crete divergence properties for the magnetic Bh flux densities by calculating the
formula defined in (154). Table 8 presents the discrete divergence errors of solutions
to the Yee scheme for the 3D Maxwell-Cold Plasma model. All errors are relatively
small.

7.4. Comparison of Discrete Divergence across all Models. In this sec-
tion, we compare the discrete divergence of the Maxwell’s equations in all linearly
dispersive media over the long time computation. Here we focus on the discrete
divergence of the magnetic flux density and set T = 200 and ∆t = 0.02. For each
the CFL number ν and the wave vector k, we compute the norm of the discrete
divergence of the magnetic field, ∥divhBn+ 1

2 ∥H , plotted against the time level n.
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Table 8. Discrete divergence errors for the Maxwell-Cold Plasma
model where k1 = π(1, 2,−3)T and k2 = 2π(1, 2,−3)T .

Err(divhB)

N ν = 0.1 ν = 0.2 ν = 0.5

k1 k2 k1 k2 k1 k2

50 5.87×10−14 3.47×10−13 8.34×10−14 3.99×10−13 1.95×10−13 7.98×10−13

100 1.10×10−13 5.47×10−13 2.30×10−13 9.29×10−13 5.60×10−13 2.24×10−12

200 3.12×10−13 1.29×10−12 6.34×10−13 2.55×10−12 1.60×10−12 6.37×10−12

400 9.04×10−13 3.58×10−12 1.81×10−12 7.21×10−12 4.55×10−12 1.81×10−11

Figure 5 shows that the discrete divergence is proportional to the wave number
squared. Moreover, when the CFL number increases, the discrete divergence grows
rapidly, but will be controlled under 2×10−12 for both cases of wave vectors. How-
ever, the discrete divergence for the Debye model grows linearly when the CFL
number is small, while the others grow slowly and are controlled. This means that
the convergence of discrete divergence for all models confirms our theoretical anal-
ysis when the CFL number is large enough, while the divergence is overestimated
in our theoretical analysis when the CFL number is small, at least for long time
computation.

Figure 5. A comparison of the discrete divergence for the Yee
scheme in all medium with varying CFL conditions. First row:
the wave vector k = π(1, 2,−3)T ; Second row: the wave vector
k = 2π(1, 2,−3)T . First column: ν = 0.1; Second column: ν = 0.2;
Third column: ν = 0.5.
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8. Conclusions

In this paper, we have constructed and analyzed finite difference time domain
(FDTD) methods coupled to Debye, Lorentz and cold isotropic plasma linear disper-
sive media based on the Yee scheme for the time-dependent Maxwell’s equations
in three-dimensional space. We began with the model formulation, followed by
construction of the weak formulations of Maxwell’s equations in the linear disper-
sive media and energy estimates for the continuous models. Based on the energy
method, we have presented accuracy, stability and convergence analysis of the Yee
scheme for each of the three linear dispersive models considered in this paper. It
was shown that the Yee scheme are conditionally stable under the same condition
as that of the classical Yee scheme for 3D Maxwell’s equations in a non-dispersive
dielectric. Our convergence analysis indicated that the fully discrete schemes are of
second order accuracy in both time and space. In addition, the discrete divergence
of the scheme is also studied and it is proved that the Yee scheme satisfies the
discrete divergence-free conditions in the numerical grid, an important aspect of
any numerical approximation for Maxwell’s equations. Finally, numerical experi-
ments are presented that demonstrate our theoretical results. We construct exact
solutions for each of the three linear dispersive media with the PEC boundary con-
ditions and confirm the energy decay properties, second order accuracy and discrete
analogues of the divergence free nature of the magnetic flux density.
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