
4. Special Solutions and Stability

Most PDEs in science and engineering are nonlinear. They cannot be solved either explicitly or semi-
explicitly (separation of variables, transform methods, Green’s functions, etc.). For these equations one
important strategy is to explicitly find special solutions, and then try to study the behavior of solutions close
to these solutions through “linearization” – Replacing the equation by a linear equation which approximates
the original equation when u is close enough to the special solution.

4.0. Approximate solutions and stability for ODEs.
We start from the initial value problem of first order ODE system:

ẋ =F (x, t), x(0)= x0 (4.1)

where x = (x1, 	 , xn) and x0 = (x01, 	 , x0n). Recall that the initial value problem of a single ordinary
differential equations of order n

F

(

x, ẋ , ẍ ,	 ,
dnx

dtn
, t

)

= 0, x(0)= x01, ẋ(0)= x02,	 (4.2)

can be reduced to a first order system through setting

x1 = x, x2 = ẋ , x3 = ẍ ,	 (4.3)

If the function F (x, t) does not explicitly involve the variable t, we say the system is “autonomous”. For
example, the Lorenz system (the simplest example for chaotic behavior)

ẋ = 10(y − x), ẏ =x (28− z)− y, ż = x y − 8

3
z (4.4)

is an autonomous system with x =(x, y, z) and

F (x) =







10(y − x)
x (28− z)− y

x y − 8

3
z





. (4.5)

Autonomous systems are easier to analyze than non-autonomous ones, although the latter can always to
transformed to the former – at the cost of linear systems may be transformed to nonlinear ones.

The study of an autonomous nonlinear systems often proceed as follows:

1. Find the stationary solutions – solutions that are independent of the variable t;

2. Study the stability around these solutions to deduce local behaviors of solutions;

3. Try to conclude global behavior based on local ones.

It should be noted that the above analysis is usually done in the “phase space”, that is the x space, a solution
is then represented as a curve in the phase space. This would not be possible if the ODE system is not-
autonomous.

4.0.1. Stationary solutions.
A stationary solution is a solution that is a constant, that is ẋ = 0. Recalling the system ẋ = F (x), we

see that any stationary solution must be a root to the equation

F (x)= 0 (4.6)

and the converse is also true: If a constant vector solves F (c)=0, then x(t)= c is a solution to the system.

Example 4.1. For the Lorenz system,

ẋ = 10(y − x), ẏ =x (28− z)− y, ż = x y − 8

3
z (4.7)



we can find all stationary solutions by solving

10 (y − x) = 0 (4.8)

x (28− z)− y = 0 (4.9)

x y − 8

3
z = 0. (4.10)

This gives

x = y =±6 2
√

, z = 27. (4.11)

Thus there are two stationary solutions:

(x, y, z) =
(

6 2
√

, 6 2
√

, 27
)

; (x, y, z)=
(

−6 2
√

,−6 2
√

, 27
)

. (4.12)

The integral curves of these two solutions in the x-y-z space are simply the two dots at the above locations.

4.0.2. Linearization and stability analysis.
The key fact in the study of linear ODE systems is that, if the system is linear with constant-coefficients,

then we can solve it explicitly (On the other hand, once the coefficients involve the variable, in general no
simple formula is available).

Theorem 4.2. Consider a linear ODE system with constant-coefficients,

ẋ1 = a11 x1 +
 + a1n xn (4.13)

ẋ2 = a21x1 +
 + a2n xn (4.14)� � �
ẋn = an1 x1 +
 + ann xn. (4.15)

Or in matrix form

ẋ = Ax, A=





a11 
 a1n� 
 �
an1 
 ann



. (4.16)

Then unique solution is given by

x(t)= eAt x0 (4.17)

where x0 is the initial condition.

Recall that the matrix exponential is defined as follows:

eB = I + B +
B2

2
+
 +

Bn

n!
+
 =

∑

n=0

∞

Bn

n!
. (4.18)

From this we easily see that

d

dt
[eAt x0] =

d

dt

[

∑

n=0

∞

An tn

n!

]

x0

=
∑

n=1

∞

An tn−1

(n− 1)!
x0

= A

[

∑

n=0

∞

(A t)n

n!
x0

]

= A [eAt x0]. (4.19)

and

[eAt x0]t=0 =
∑

n=0

∞

An 0n

n!
x0 = Ix0 = x0. (4.20)

The advantage of writing the solution in matrix form is the following:



Lemma 4.3. If A =P−1 B P where P is an n×n nonsingular matrix, then

eAt = P−1 eBt P . (4.21)

Proof. We have, by definition,

eAt =
∑

n=0

∞

An tn

n!

=
∑

n=0

∞

(P−1 B P )n tn

n!

=
∑

n=0

∞

P−1 Bn P tn

n!

=
∑

n=0

∞

P−1

(

Bn tn

n!

)

P

= P−1

[

∑

n=0

∞

Bn tn

n!

]

P

= P−1 eBt P . (4.22)

Thus ends the proof. �

Thus for example, if the matrix A is diagonalizable, that is we can find P such that A=P−1





λ1 

λn



P ,

then

eAt = P−1







eλ1t 

eλnt





P (4.23)

and the solution now becomes

x(t) =P−1







eλ1t 

eλnt





Px0 (4.24)

whose behavior is particular easy to understand if we introduce a new coordinate system

y = Px. (4.25)

In this new coordinate system we have

y(t)=







eλ1t y01�
eλnt y0n





. (4.26)

We see that the behavior of y depends on the signs of the real parts of the eigenvalues λ1, 	 , λn. More
specifically, if only one of the initial values y0i is nonzero, then |y | increases when ℜλi > 0 and decreases
when ℜλi < 0, it stays the same when ℜλi = 0.

For a general n×n matrix A, the best we can do is to reduce it to Jordan canonical form:

A= P−1





J1 

Jk



P (4.27)

where each “Jordan block” is of the form

Ji =









λi 1
λi 

 1

λi









(4.28)



where all the empty entries are 0’s. It turns out that we can explicitly calculate

eJit = eλit

















1 t
t2

2

 tm

m!

1 
 
 �
 
 t2

2
 t

1

















(4.29)

where m is the size of the Jordan block.
Thus the solution to

ẋ = Ax, x(0)= x0 (4.30)

reads

x(t)= P−1







eJ1t 

eJkt





Px0. (4.31)

If we introduce y = Px we have

y(t)=







eJ1t 

eJkt





y0. (4.32)

We see that we still have

• If all ℜλi < 0, then the all solutions are “attracted” to the origin;

• If one ℜλi > 0, then some (in fact, most) solutions are “moving away” from the origin and towards
infinity.

Therefore we have the following important observation: The stability of a linear system of ODEs with
constant coefficients

ẋ = Ax, x(0)= x0 (4.33)

is determined by the signs of the real parts of the eigenvalues of A.

Remark 4.4. Note that for a linear system, the only stationary solution is the origin.

How can we apply this understanding of the linear system to nonlinear systems? The basic idea is
linearization, that is, around each stationary solution we find a linear system that approximates the nonlinear
system there. Naturally, we linearize as follows.

Linearization. Let x(t)= x0 be a stationary solution for an autonomous system

ẋ =F (x). (4.34)

Then the linearization at x0 is given by

ẏ = Ay (4.35)

where y =x−x0 and

A=









∂F1

∂x1


 ∂F1

∂xn� 
 �
∂Fn

∂x1


 ∂Fn

∂xn









(4.36)

where the matrix is evaluated at x0, so A is a constant matrix.

Once this is done, we can study the eigenvalues of the matrix A and obtain the local behavior of the
solutions. In particular, if all the eigenvalues has negative real parts, we say the system is linearly stable
at x0; If at least one eigenvalue has positive real part, we say the system is linearly unstable at x0.

Example 4.5. Study

ẋ = x− y, ẏ = 1− x y. (4.37)



Solution. First we find stationary solutions:

x− y = 0, 1−x y =0� (1, 1), (−1,−1). (4.38)

• Linearize at (1, 1): We can easily calculate the Jacobian matrix to be

A =

(

1 −1
−1 −1

)

. (4.39)

Let ξ = x− 1, η = y − 1 we obtain the local linearized system

d

dt

(

ξ

η

)

=

(

1 −1
−1 −1

)(

ξ

η

)

. (4.40)

Solving

det (λ I −A)= 0 (4.41)

gives the eigenvalues as ± 2
√

which gives a saddle.

• Linearize at (−1,−1). This time

A =

(

1 −1
1 1

)

(4.42)

and the eigenvalues are 1± i. Thus the stationary solution (1, 1) is unstable.

4.0.3. From local to global.
This is tricky but sometimes can be done. One key fact is that integral curves cannot meet one another

unless at a point representing a stationary solution (or at infinity).

4.0.4. PDEs?.
For PDEs, there are many more types of special solutions, with stationary solutions the simplest type. In

particular, one can look for “self-similar” solutions such as u(x, y)=Φ(ξ) with ξ =xa yb, or “travelling wave”
solutions such as u(x, t)= Φ(x− c t).

In principle, we can carry out the above around all types of special solutions. However the linearized
equation is often too hard to study when linearizing around non-stationary solutions. Therefore in the
following we will only focus on linearization around stationary solutions.

References.

• Terence Tao, “Nonlinear Dispersive Equations: Local and Global Analysis”, §1.1.

Exercises.

Exercise 4.1. Consider a non-autonomous system ẋ =F (x, t). Introduce a new variable xn+1= t to make it autonomous.

Show with an example that a linear system may be transformed to a nonlinear one through the above process.

Exercise 4.2. Consider an autonomous system in Rn, that is x= (x1,	 , xn),

ẋ = F (x). (4.43)

Prove that if two integral curves touch, the intersection point must be a stationary solution.

Exercise 4.3. (Properties of matrix exponentials) Let A, B be n ×n matrices.

a) Prove that if A B = B A, then

eA eB = eA+B = eB eA. (4.44)

b) Let J =











λ 1

λ 

 1

λ











be a Jordan block. Calculate eJt explicitly (Hint: use a)).

Exercise 4.4. Consider the linear ODE system

ẋ = A(t) x, x(0)= x0. (4.45)

Explain why in general

exp

[
∫

0

t

A(s) dx

]

x0 (4.46)

is not a solution.



4.1. Stationary solutions and stability analysis.

4.1.1. Evolution equations.

For evolutionary PDEs, in particular the autonomous type

ut −Lu = F (u) (4.47)

the stationary solutions solve

−Lu= F (u). (4.48)

We can study its stability around these stationary solutions by turning it into an linear ODE system of
infinite dimension through eigenfunction expansion.

Consider the following problem

ut − uxx =λ u (1− u2), u(0, t)= 0, u(π, t) =0. (4.49)

First we try to find stationary solution u =u(x). These solutions solve

uxx = λu (1−u2) (4.50)

which is still too hard to solve4.1 so we settle with constant solutions:

u = 0, 1,−1. (4.51)

• Around 0. The linearization is achieved by setting u=0+ε w and discard all the terms of order higher
than ε. Substituting u = εw into the equation we obtain

ε wt − ε wxx =λ ε w (1− ε2 w2) (4.52)

which gives the linearized equation

wt−wxx = λw. (4.53)

Now recall that the eigenfunctions for this problem are

sin (n x). (4.54)

So write

w(x, t)=
∑

n=1

∞

wn(t) sin (n x) (4.55)

and substitute into the equation, we have

ẇn = (λ−n2) wn (4.56)

Thus if λ 6 1, then the 0 solution is stable.

However if λ > 1, some wn will be increasing and eventually the neglected term λ ε2 w3 may not
be small compared to the linear terms anymore.

• Around 1. We set u = 1+ εw and substitute into the equation to reach

ε wt − ε wxx = λ (1 + ε w) (−ε w) (2+ ε w) (4.57)

which gives

wt −wxx =−2 λw. (4.58)

4.1. The study of the higher dimension analog △u =u (1−u2) is an active research area as of now.



This leads to

ẇn = (−2λ−n2)wn (4.59)

which gives stability for λ > 0.

Remark 4.6. If we consider constant solutions u= u(t), then the equation becomes an ODE

u̇ = λu (1−u2) (4.60)

which can be easily analyzed.

4.1.2. Normal modes analysis.

For more general problems, it may not be possible or easy to figure out the set of eigenfunctions to use.
In these cases, the method of “normal modes analysis” is very useful.

Consider a linear PDE with two variables x, t. Assume that t plays the role of “time” and takes values
in (0,∞). Then it is natural to apply Fourier transform in x and Laplace transform in t.

a(k, λ)= c

∫

0

∞

e−λt

[
∫

−∞

∞

e−ikx u(x, t) dx

]

dt (4.61)

where c is the normalization factor whose exact value is not important here. From the inverse transform
formulas we see that the solution is a linear combination of functions of the form

a(k, λ) exp [i k x+ λ t]. (4.62)

Now after the transform the equation becomes an algebraic equation involving k, λ. Solving this equation
would gives a relation λ= λ(k). Therefore the solution is a combination of “normal modes”:

a(k) exp [i k x+ λ(k) t]. (4.63)

The idea of normal modes analysis is then to simply require

u(x, t)= a(k) exp [i k x +λ(k) t] (4.64)

to solve the equation and try to understand stability by studying the growth/decay of these “normal mode
solutions”.

Note that, in (4.64), k ∈R but both a(k) and λ(k) may be complex.

Let’s consider the linear second order equation

A uxx + 2 B uxt + Cutt +D ux +E ut + F u= 0. (4.65)

It is clear that the only constant solution is u= 0.4.2

We consider a “normal mode” type solution:

u(x, t)= a(k) exp [i k x + λ(k) t]. (4.66)

Substituting (4.66) into the equation we obtain

Cλ2 + (2 iB k + E) λ+ (−Ak2 + i D k + F ) =0. (4.67)

This is a quadratic equation and can be solved to give λ = λ(k).

4.2. Note that we only discuss the homogeneous equation here. Since if the “forcing” term G is present, then it is not possible
to have a constant solution anymore.



Recalling (4.66) we see that

|u(x, t)|= |a(k)| exp [ℜλ(k) t]. (4.68)

If we consider the behavior of this solution when t increases from 0, then clearly we should study the number

Ω = sup
k∈R

[ℜλ(k)]. (4.69)

Theorem 4.7.

• If Ω = +∞, then the problem is not well-posed. In the sense that the dependence of the solution to

the initial condition is not continuous. In other words, the solution grows arbitrarily fast in arbitrarily

short time.

• If Ω∈ (0,∞), then the problem is well-posed, but the equation is “unstable”, in the sense that solutions

grow and becomes unbounded as t� ∞.

• If Ω∈ (−∞, 0), then the problem is well-posed and the solution decays to 0 as t� ∞. In this case

we say the equation is asymptotically stable.

• If Ω∈ (−∞, 0], we say the equation is neutrally stable.

Proof.

• The case Ω = +∞. Take

u(x, 0)=
1

λ2(k)
eikx. (4.70)

Then we have

u(x, t)=
1

λ2(k)
exp [i k x +λ(k) t] (4.71)

which gives

ut(x, 0)=
1

λ(k)
eikx. (4.72)

We have

|u(x, 0)|= 1

|λ(k)2| , |ut(x, 0)|= 1

|λ(k)| , |u(x, t)|= 1

|λ(k)2| exp [ℜλ(k) t]. (4.73)

If we can show that |λ(k)|6 C ℜλ(k) for some C, then u(x, 0), ut(x, 0) can be arbitrary small while
u(x, t) arbitrary large.

• The case Ω ∈ (0, ∞). The well-posedness part is hard to prove. But we can easily see that some
solutions are unbounded: If Ω > 0 then there is k0∈R such that ℜλ(k0)> 0. Then

|a(k0)|exp[ℜλ(k0) t]� ∞ (4.74)

as t� ∞.

• Similar arguments show that when Ω∈ (−∞, 0) the solutions tends to 0 as t� ∞.

�

Example 4.8. (Well/ill-posedness of elliptic, parabolic, hyperbolic equations) Consider the
equation

uxx + utt + ρ u = 0 (4.75)



where ρ is a constant. Then we obtain

λ(k)=± k2− ρ
√

. (4.76)

We see that Ω = +∞ no matter how large ρ is. Therefore the initial value problem is ill-posed.

If instead we consider the parabolic equation

ρ uxx + ut = 0 (4.77)

then we have

λ(k)= ρ k2 (4.78)

which is ill-posed only when ρ > 0.

Finally we consider the hyperbolic equation

utt − uxx + ρ u = 0 (4.79)

which gives

λ(k)=±i k2 + ρ
√

(4.80)

We have ℜλ(k)=0 except for may be finite many k’s. Thus Ω<+∞ and the Cauchy problem is well-posed.

Example 4.9. Consider the equation

uxx + 2uxt + utt =0 (4.81)

which gives

λ(k)=−i k� Ω =0. (4.82)

So the problem is neutrally stable.

In fact this equation can be explicitly solved:

u(x, t)= a eik(x−t) + b t eik(x−t) (4.83)

So we see that in the neutrally stable case the solution still may be unbounded.

Example 4.10. Consider the Telegrapher’s equation

utt − γ2 uxx +2 µ ut =0. (4.84)

This gives

λ(k)=−µ± µ2− γ2 k2
√

. (4.85)

Since µ > 0 we see that λ(k) 6 0. But no matter what µ is, we have λ(0) = 0 so Ω = 0. The equation is
neutrally stable.

References.

• Erich Zauderer, “Partial Differential Equations of Applied Mathematics”, 2ed, §3.5, §4.7.

Exercises.

Exercise 4.5. Analyze the well/ill-posedness of

uxx + utt + ut = 0 (4.86)

using normal modes analysis.



4.2. Self-similar solutions.

Consider a PDE involving two variables x, t. A self-similar solution would be of the form

u(x, t) =Φ(ξ) (4.87)

where ξ(x, t) usually is of the form xa tb.

4.2.1. Simple examples.

In simple cases the form of ξ(x, t) can be guessed.

Example 4.11. (Rarefaction wave) We consider the scalar conservation law

ut + f(u)x =0 (4.88)

and try to find self-similar solutions of the form

u(x, t) =U(ξ), ξ =
x

t
. (4.89)

Substituting this ansatz into the equation we have

−ξ U ′+ f ′(U)U ′ =0 � f ′(U) = ξ� U = r(ξ) (4.90)

where r is the inverse function of f ′.

In other words

u(x, t)= r
(

x

t

)

. (4.91)

Remark 4.12. One can “guess” the form of the self-similar ansatz ξ =
x

t
through dimensional analysis.

Consider the change of variables x= λx′, t = µ t′. Let u′(x′, t′)= u(x, t). Then

ut = µ−1 ut′
′ , f(u)x = λ−1 f(u)x′. (4.92)

We see that the equation does not change as long as λ = µ. In this case the ratio x/t does not change.
Therefore we should try using x/t as the new variable.

Example 4.13. (Porous medium) The porous medium equation reads

ut −△(uγ)= 0 (4.93)

with u > 0 and γ > 1.

We look for a solution having the form

u(x, t) =
1

tα
v
(

x

tβ

)

. (4.94)

Substituting into the equation we obtain

α t−(α+1) v(y)+ β t−(α+1) y ·Dv(y) + t−(αγ+2β)△(vγ)(y) =0. (4.95)

Since the idea of introducing the self-similar ansatz is to simplify the equation (by reducing the number of
variables), we try to cancel the t terms, by setting

α + 1 =α γ + 2 β. (4.96)

Then the equation reduces to

α v + β y ·Dv +△(vγ)= 0. (4.97)

This is still a PDE with n variables. To be able to solve it, we consider only the radial symmetric solution

v(y)= w(|y |). (4.98)

Then the equation for w is

α w + β r w ′+ (wγ)′′+
n− 1

r
(wγ)′= 0. (4.99)



Now if we further set

α = n β, (4.100)

we have (after multiplying the equation by rn−1)

(rn−1 (wγ)′)′+ β (rn w)′= 0 � rn−1(wγ)′+ β rn w = a. (4.101)

To settle a, we assume that w decays at infinity, that is w,w ′� 0 as r�∞. This leads to a=0. Therefore

(wγ)′=−β rw. (4.102)

This gives

−β r w = γ wγ−1 w ′ � − β r = γ wγ−2 w ′ � (wγ−1)′=−γ − 1

γ
β r. (4.103)

consequently

wγ−1 = b− γ − 1

2 γ
β r2 (4.104)

which is

w =max







(

b− γ − 1

γ
β r2

)
1

γ−1

, 0







. (4.105)

Finally, returning to the original variables, we have the Barenblatt solution

u(x, t)=







1

tα

(

b− γ − 1

2 γ
β
|x|2
t2β

)
1

γ−1

, 0







. (4.106)

4.2.2. Dimension analysis.
For more complicated problems, dimension analysis can be used to obtain the correct form of self-

similarity.
The rationale behind dimension analysis is the understanding that physics should be invariant under a

change of the units of measurement. For example, consider a simple pendulum of length l. We would like to
know its period θ. Write

θ = u(l, m, g) (4.107)

where l is the length of the pendulum, m is the mass of the bob, and g is the gravity acceleration. Now if
we decrease the unit of length by a factor L, the unit of mass by a factor M and the unit of time by a factor
T , then we should have

T θ = u

(

L l, Mm,
L

T 2
g

)

(4.108)

This means

u(l, m, g)= T−1 u

(

L l, Mm,
L

T 2
g

)

(4.109)

for all L, M , T . Taking L= T = 1 shows that u is independent of m, so we have

u(l, g)= T−1 u

(

L l,
L

T 2
g

)

. (4.110)

Now taking T = 1, we see that u= Φ(ξ) where ξ =
l

g
. This gives

Φ(ξ)= T−1 Φ(T 2 ξ). (4.111)

To find Φ we take
d

dT
:

0=− 1

T 2
Φ(T 2 ξ)+ 2 Φ′(T 2 ξ). (4.112)

Now set T = 1:

2Φ′=Φ� Φ = c ξ
√

. (4.113)



Thus finally we have

θ = c l/g
√

. (4.114)

The value c can be determined from experiments.

Example 4.14. (Ground-water mound) Suppose that in a porous stratum over an underlying horizontal
impermeable bed, water of a finite volume V is supplied instantaneously through a well of very small radius
(for the sake of modelling, say the radius is 0) at time t=0. Then the water will form a mound whose height
is decreasing with time. Our task is to figure out the shape of this mound.

Let k, m be the permeability and porosity (the relative volume of the pores), and let ρ be the water
density, µ the dynamic viscosity, g the gravity accleration.

We further introduce the parameters

κ =
k ρ g

2 m µ
, Q =

V

2π m
. (4.115)

Since the well has zero radius, we can assume the solution only depends on the radius r and the time t, that
is the shape of the mound is given by

h = h(r, t). (4.116)

It turns out that, if we consider the function u = ρ g h(r, t), then it satisfies the Boussinesq equation

ut = a
1

r
(r (u2)r)r, (4.117)

where the factor

a =
k

2m µ
=

κ

ρ g
. (4.118)

The initial conditions and boundary conditions are

u(r, 0) =0 r � 0; 2 πm

∫

0

∞

r u(r, 0) dr = ρ g V ; (4.119)

u(∞, t)= 0. (4.120)

Our task now is to find the self-similar solution.
To do this, we first need to figure out what the self-similarity looks like. Applying dimensional analysis

we find two dimensionless variables:

Π=
u(a t)1/2

(ρ g Q)1/2
=

h (κ t)1/2

Q1/2
; Π1 =

r

(ρ gQ a t)1/4
=

r

(Qκ t)1/4
(4.121)

where recall that

Q =
V

2π m
, κ = a ρ g. (4.122)

This gives

u = ρ g h =
ρ gQ1/2

(κ t)1/2
Φ(ξ), ξ = Π1 =

r

(Q κ t)1/4
. (4.123)

Substituting into (4.117) we obtain the equation for Φ as

d2(Φ2)

dξ2
+

1

ξ

d(Φ2)

dξ
+

ξ

4

dΦ

dξ
+

Φ

2
= 0. (4.124)

To solve it, notice that if we multiply the equation by ξ, we get

ξ
d2(Φ2)

dξ2
+

d(Φ2)

dξ
+

ξ2

4

dΦ

dξ
+

ξ

2
Φ = 0 (4.125)

which can be written as
d

dξ

[

ξ
d(Φ2)

dξ
+

ξ2

4
Φ

]

= 0. (4.126)



Integrating, we have

ξ
d(Φ2)

dξ
+

ξ2

4
Φ =C1 (4.127)

If we assume that Φ as well as its derivatives all tend to 0 as r�∞ with t fixed (which becomes ξ� ∞)
then clearly C1 = 0. The equation simplifies to (assuming Φ� 0)

Φ′+
ξ

8
= 0� Φ = (ξf

2 − ξ2)/16 (4.128)

for some constant ξf. Similar to the previous example, we impose the decay condition by “glueing” this Φ
with the trivial solution Φ = 0:

Φ =

{

(ξf
2 − ξ2)/16 ξ 6 ξf

0 ξ > ξf

(4.129)

Here the constant ξf can be determined using the initial condition (4.119):

V = 2π m

∫

0

∞

r h(r, t) dr =
Q1/2

[

Q1/2 (κ t)1/2
]

2 πm

(κ t)1/2

∫

0

ξf

ξ Φ(ξ) dξ = V

∫

0

ξf

ξ Φ(ξ) dξ. (4.130)

This leads to

1=
ξf
4

64
� ξf = 8

√
. (4.131)

Summarizing, the solution is

Φ =

{

(8− ξ2)/16 ξ 6 8
√

0 ξ > 8
√ . (4.132)

and the shape of the mound is given by

h(r, t)=max

{

0,
Q1/2

(κ t)1/2

[

8− r2

(Qκ t)1/2

]}

. (4.133)
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Exercises.

Exercise 4.6. (Dimension function is always power law) The following justifies the restriction to functions of the

form Lα Mβ T γ when doing dimensional analysis.

Consider a physical relation

a = φ(L, M, T ) (4.134)

where L, M , T stands for length, mass, time measured using some original units. Now let L1, M1, T1 and L2, M2, T2 be the

numerical values of length, mass, time under two different sets of units. The numercal values of a are a1, a2 respectively.

So we have

a1 =a
φ(L1, M1, T1)
φ(L, M , T )

, a2 = a
φ(L2, M2, T2)
φ(L, M, T )

. (4.135)

If we assume that there is no preferred units, then we have

a2

a1

= φ(L2/L1, M2/M1, T2/T1). (4.136)

Combining the above we reach
φ(L2, M2, T2)
φ(L1, M1, T1)

= φ(L2/L1, M2/M1, T2/T1) (4.137)

for all L1, M1, T1 and L2, M2, T2. Prove that φ must take the form

φ(L, M , T )= Lα Mβ T γ (4.138)

for some constants α, β, γ.



4.3. Traveling waves.

Example 4.15. (Solitons) Consider the KdV equation

ut +6 u ux + uxxx = 0. (4.139)

We look for solutions of the form

u(x, t)= v(x−σ t). (4.140)

Substituting into the equation we have

−σ v ′+ 6 v v ′ + v ′′′= 0. (4.141)

Integrating once

−σ v + 3 v2 + v ′′= a. (4.142)

To integrate further, we multiply the equation by v ′

−σ v v ′+ 3 v2 v ′+ v ′ v ′′= 0 � (v ′)2

2
=−v3 +

σ

2
v2 + a v + b. (4.143)

We try to find solutions which decay to 0, this leads to a = b =0. And the equation becomes

v ′=±v (σ − 2 v)1/2. (4.144)

Note that, if we let s→−s, then v ′ changes sign but the RHS does not. Therefore once we solve the equation
for one sign, setting s→−s would give us the solution to the equation with the opposite sign.

We take the minus sign. Let v =
σ

2
w2. Then the equation for w is

w ′=− σ
√

2
w (1−w2)1/2. (4.145)

Now inspired by (1−w2)1/2 and keeping in mind that we need w decay at infinity, we set

w = sech θ =
2

eθ + e−θ
, θ > 0. (4.146)

We have

w ′=−2 (eθ − e−θ)

(eθ + e−θ)2
θ ′, (1−w2)1/2 =

eθ − e−θ

eθ + e−θ
. (4.147)

Substituting into the equation we obtain

θ ′=
σ

√

2
� θ(s)=

σ
√

2
(s− c) (4.148)

where c is a constant.
Putting everything together we have

u(x, t)=
σ

2
sech2

(

σ
√

2
(x− σ t− c)

)

. (4.149)

Note that there is no restriction on σ. In other words, there exists traveling wave solutions for each speed σ.

Example 4.16. Consider the viscous conservation law

ut + f(u)x − a uxx =0 in R× (0,∞) (4.150)

where a > 0 and f is uniformly convex that is f ′′> δ0 > 0 for some constant δ0.
We look for travelling wave solutions. Set u= v(x− σ t), the equation becomes

−σ v ′+ F (v)′− a v ′′=0. (4.151)

Integrating, we have

−σ v + F (v)− a v ′=−b. (4.152)

This gives
dv

ds
=

F (v)− σ v + b

a
� ds

dv
=

a

F (v)−σ v + b
. (4.153)



Therefore v is defined implicitly by the formula

s =

∫

c

v(s) a

F (z)−σ z + b
dz (s∈R), (4.154)

where b and c are constants.

It turns out that we can find a traveling wave satisfying

lim
s→−∞

v(s)=ul, lim
s→∞

v(s) =ur (4.155)

for ul > ur, if and only if

σ =
F (ul)−F (ur)

ul − ur
. (4.156)

• ”Only if”. Let s→±∞, naturally we require v ′→ 0. thus

−σ ul +F (ul)=−b, − σur +F (ur) =−b. (4.157)

The conclusion then follows.

• ”If”. Let σ =
F (ul)−F (ur)

ul −ur
for some ul >ur. We try to show lims→−∞v(s)=ul, lims→∞v(s)=ur. First

observe that for this σ, we have

F (ul)−σ ul = F (ur)− σur. (4.158)

Setting this value to be −b, we have

F (ul)− σul + b =F (ur)−σ ur + b =0. (4.159)

Next recall that F is uniformly convex, which means F (z) − σ z + b can have at most two distinct
roots. Therefore ul and ur are the only ones.

Again due to the uniform convexity of F , it must be that F > 0 for v < ur and v > ul, F < 0 for
v ∈ (ur, ul). We also have

[F (z)− σ z + b]′= F ′(z)−σ (4.160)

which is positive at ul and negative at ur.

Putting these together, we have

∫

c

ul a

F (z)− σ z + b
dz =−∞,

∫

c

ur a

F (z)− σ z + b
dz =∞ (4.161)

which means exactly

lim
s→−∞

v(s)=ul, lim
s→∞

v(s) =ur (4.162)

Finally we study the limiting behavior of a� 0. We will show that

If we denote the above traveling wave solution of (4.150) ua, with ua(0, 0)=
ul + ur

2
, then as

a ց 0, ua converges to the shock solution.

To see this, first note that, va(s) cannot “cross” ul or ur. In other words, either va(s)>ul, or va(s) 6ur,
or va(s)∈ [ur, ul]. To see this, assume the contrary. Wlog assume va has values above and below ul. Then
as va→ul as s→−∞, there is s0 such that va reaches maximum vmax

a >ul. At this point, we have (va)′= 0
and therefore vmax solves

−σ z +F (z) =−b. (4.163)

But as −σ z +F (z) is uniformly convex (thus strictly convex), there can be at most two solutions. As ul and
ur already solve it, we obtain contradiction.4.3

4.3. From this it is clearly see that in the condition ua(0, 0)=
ul + ur

2
, the RHS can be replaced by any value in (ur, ul), as

the purpose is just to restrict all v in [ul, ur].



Next we show that, in fact for all s finite, v(s)∈ (ur, ul). To see this, study the formula

s=

∫

c

v(s) ε

F (z)− σ z + b
dz. (4.164)

As F is strictly convex, the behavior of the denominator close to ul and ur is like (z − z0)
−1. And thus if

v(s)= ul or ur, necessarily s =∓∞.
Finally, fix any s� 0 finite, we have

s

a
=

∫

c

v(s) 1

F (z)−σ z + b
dz. (4.165)

When aց0, the LHS →∓∞, consequently v(s)→ul or ur at every s. Thus we see that as aց0, va converges

to v =

{

ul s < 0
ur x > 0

at every s� 0.

Example 4.17. (A bistable equation) Consider the reaction-diffusion equation

ut − uxx = f(u) (4.166)

with f having a “cubic-like” shape

0

a 1

f(u)

u

We further assume that
∫

0

1

f(z) dz > 0. (4.167)

If we omit the uxx term, then we see that 0 and 1 are stable fixed points, while a is unstable. Thus we try
to find a traveling wave solution satisfying u(−∞)= 0, u(+∞)= 1.

Setting u(x, t)= v(x−σ t), the equation becomes

−σ v ′− v ′′ = f(v) (4.168)

Our task is to show that one can find σ such that the desired solution exists. Thus this is a
nonlinear “eigenvalue” problem.

Now let w = v ′, we have the following ODE system

v ′ = w, (4.169)

w ′ = −σw − f(v). (4.170)



This system has three fixed points: (0, 0), (a, 0), (1, 0). Linearize at any fixed point we have

v ′ = w (4.171)

w ′ = −f ′ v − σw (4.172)

whose eigenvalue equation is

λ2 + σλ + f ′ =0. (4.173)

with eigenvectors

w = λ v. (4.174)

Now at 0 and 1, we have f ′ < 0 which means we have one positive eigenvalue and one negative eigenvalue
with corresponding eigenvectors as follows:

On the other hand, at (a, 0) we have two cases:

i. σ > 0. In this case both eigenvalues are positive.

ii. σ < 0. In this case both eigenvalues are negative.

The two cases are illustrated as follows:

σ > 0 σ < 0

From this analysis we know that there is one trajectory starting from (0, 0) into the first quadrant. Now
the task is to show the existence of σ such that this trajectory ends at (1, 0).

Notice that if we set

E(v, w)7 w2

2
+

∫

0

v

f(z) dz. (4.175)

then
d

dt
E =−σ w2

{

60 σ > 0
>0 σ < 0

. (4.176)

Drawing the levelsets of E(v, w), we see that if σ > 0, then the solution (v(t), w(t)) is contained inside the
levelset E(v, w)= 0 and is not possible to reach (1, 0).

Now we consider the case σ < 0. In this case we have

d

dt
E > 0 (4.177)

with “=” only when w = 0 or σ = 0.
Now recall the equation for v which is

v ′=w. (4.178)



If the solution curve stays outside the level set E(v,w)=0, we have w >0 therefore v ′>0. This implies that
(v(t), w(t)) has to cross the vertical line L: v = a + ε for some ε > 0 which may be very small.

On the other hand, similar analysis for (v(t), w(t)) starting from (1, 0) (with t decreasing) shows that it
also has to reach L.

Now our task is to show that there is σ <0 such that two curves – one from (0,0) and the other from (1,0)
will meet at the same point on L which means they have to belong to the same solution. In the following
we denote the intersection of the left curve with L by wL(σ) and that of the right curve with L by wR(σ).
All we need to do is to show that there is σ < 0 such that wL(σ)=wR(σ). As wL, wR are clearly continuous
functions of σ, we try to apply intermediate value theorem.

First notice that wL(0)< wR(0) because the assumption
∫

0

1
f(z) dz > 0.

On the other hand, we observe that as σ decreases, wL(σ) is increasing while wR(σ) is decreasing. More
specifically, along any solution curve,

dw

dv
=

−σw − f(v)

w
=−σ − f(v)

w
>−σ − C

w
(4.179)

where C is an upper bound for f(v). From this we see that for any β > 0 there is Σ < 0 such that for all
σ <Σ,

dw

dv
> β. It’s clear now that by taking σ negative enough, we have wL(σ)> wR(σ).

Summarizing the above, we see that there exists a travelling wave solution with u(−∞)=0, u(+∞)=1.

Remark 4.18. For σ > 0 naturally one should assume
∫

0

1
f(z) dz < 0. Does the proof still work?
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