
3. Separation of Variables

3.0. Basics of the Method.
In this lecture we review the very basics of the method of separation of variables in 1D.

3.0.1. The method.
The idea is to write the solution as

u(x, t) =
∑

n

Xn(x)Tn(t). (3.1)

whereXn(x) Tn(t) solves the equation and satisfies the boundary conditions (but not the initial condition(s)).
We give a summary using heat equation here. Given equation

∂u

∂t
= β

∂2u

∂x2
+P (x, t), 0<x<L; u(x, 0) = f(x), + boundary conditions (3.2)

1. Require X(x) T (t) to solve the homogeneous equation

∂u

∂t
= β

∂2u

∂x2
(3.3)

which leads to eigenvalue problem for X :

X ′′−KX = 0 +boundary conditions. (3.4)

Solve it to get Xn and Kn. Note that the natural range of n is not always 1, 2, 3,	
2. Expand

f(x)=
∑

n

fnXn. (3.5)

Expand

P (x, t)=
∑

n

pn(t)Xn. (3.6)

3. Solve

Tn
′ − βKnTn = pn(t), Tn(0)= fn (3.7)

to obtain Tn.

4. Write down the solution

u(x, t) =
∑

n

Tn(t)Xn(x). (3.8)

We understand that changes should be made when the equation is different.

3.0.2. Examples.

Example 3.1. (Simplest case) Solve

∂u

∂t
=3

∂2u

∂x2
, 0<x<π; u(0, t) =u(π, t)= 0, u(x, 0)= sin x− 4 sin 3 x. (3.9)

Solution. We follow the procedure:

1. Obtain Xn;

a. Separate variables. Recall that X(x) T (t) must solve the equation. This gives

X(x)T ′(t) =3X ′′(x)T (t)� T ′(t)
T (t)

= 3
X ′′(x)
X(x)

. (3.10)

So we have the equations for T and X :

T ′(t)− 3KT (t) =0; X ′′(x)−KX(x)= 0. (3.11)



b. Boundary conditions for the X equation:

u(0, t) =0� X(0)= 0; u(π, t)= 0� X(π)= 0. (3.12)

c. Solve for Xn: (It’s important to be able to solve the eigenvalue problem from scratch. You may
be required to write down every detail – instead of just write Xn = 
 from memory – in the
exam.)

The eigenvalue problem is

X ′′−KX = 0, X(0)=X(π)= 0. (3.13)

We discuss the three cases:

i. K > 0. General solution is

X =C1 e
K

√
x +C2 e

− K
√

x. (3.14)

Applying the initial conditions we conclude C1 =C2 = 0.

ii. K = 0. General solution is

X =C1 +C2x. (3.15)

Applying the initial conditions we conclude C1 =C2 = 0.

iii. K < 0. General solution is

X =C1 cos
(

−K
√

x
)

+C2 sin
(

−K
√

x
)

. (3.16)

Applying initial conditions we conclude that C1 =C2 = 0 unless K =−n2.

So the eigenvalues are

Kn =−n2, n= 1, 2, 3,	 (3.17)

with eigenfunctions

C sin (nx). (3.18)

Thus we take3.1

Xn = sin (nx). (3.19)

2. Expand f(x);

f(x)= sinx− 4 sin 3x=X1− 4X3. (3.20)

Thus we have

f1 =1, f3 =−4, all other fn =0. (3.21)

3. Solve Tn;
Now we have both equation and initial condition for Tn:

Tn
′ − 3KnTn =0, Tn(0)= fn. (3.22)

This gives

Tn(t) =Tn(0) e3Knt = fn e
3Knt. (3.23)

Clearly if fn =0 then Tn = 0. So the only nonzero ones are

T1(t)= f1 e
3K1t =1 · e3(−1)t = e−3t; (3.24)

T3(t)= f3 e
3K3t =−4 e−27t. (3.25)

4. Write down solution.
We have

u(x, t)=
∑

n=1

∞
Tn(t)Xn(x)= e−3t sinx− 4 e−27t sin 3 x. (3.26)

3.1. This is just for convenience. There is some freedom in choosing Xn here. For example, taking Xn=2 sinn x is also OK.



Example 3.2. (Equation with Source) Solve

∂u

∂t
=3

∂2u

∂x2
+ et sinx, 0<x<π; u(0, t)= u(π, t) =0, u(x, 0)= sinx− 4 sin 3x. (3.27)

Solution. We try to solve this problem using the same Xn’s. Recall that we assume

u(x, t) =
∑

Tn(t)Xn(x) (3.28)

with Xn
′′− 3KnXn =0. Substitute this u(x, t) into the equation we reach

∑

n=1

∞
[Tn

′ − 3KnTn]Xn = t sinx= etX1. (3.29)

Absorbing the tX1 term into the left hand side we reach

[T1
′− 3K1T1− et]X1 +

∑

n=2

∞
[Tn

′ − 3KnTn]Xn =0 (3.30)

This leads to

T1
′− 3K1T1− et =0; Tn

′ − 3KnTn = 0, n > 1. (3.31)

• Solve T1 from

T1
′− 3K1T1− et =0, T1(0)= 1. (3.32)

As K1 =−1 the above is

T1
′+ 3T = et, T1(0)= 1 (3.33)

The equation is linear with general solution

T1(t)=
1

4
et +Ce−3t. (3.34)

Using the initial condition we reach

C =
3

4
� T1(t)=

1

4
et +

3

4
e−3t. (3.35)

• Tn, n > 1 remains the same as in the previous example:

T3(t)=−4 e−27t, Tn(t)= 0 for n� 3. (3.36)

So finally

u(x, t)=
∑

n=1

∞
Tn(t)Xn(x)=

(

1

4
et +

3

4
e−3t

)

sinx− 4 e−27t sin 3x. (3.37)

Example 3.3. (Dirichlet boundary condition) Find the solution to the heat flow problem

∂u

∂t
= 5

∂2u

∂x2
, 0<x<π, t > 0 (3.38)

u(0, t)= u(π, t) = 0, t > 0 (3.39)

u(x, 0) = f(x)= 1− cos 2 x, 0<x<π. (3.40)

Solution. We use separation of variables.

1. Separate the variables.
Write u=X(x)T (t), the equation becomes

T ′X =5X ′′T� T ′

5T
=
X ′′

X
=K. (3.41)

The equations for X is

X ′′−KX = 0, X(0)=X(π)= 0; (3.42)

The left hand side of the equation for T is

T ′− 5KT =
 . (3.43)



2. Solve the eigenvalue problem

X ′′−KX = 0, X(0)=X(π)= 0; (3.44)

As we have solved it before, we omit the details (You need to include the details in the exam though).
The eigenvalues are −n2, n=1, 2, 3,	 , and the corresponding eigenfunctions are

bn sin (nx), n=1, 2, 3,	 (3.45)

So Kn =−n2, Xn = sin (nx).

3. Expand the initial condition. We have

1− cos 2x=u(x, 0)=
∑

n=1

∞
bn sin (nx). (3.46)

Thus all we need to do is to find the Fourier sine series for 1− cos2 x. As the interval is [0, π] we have
T =π. We compute for n=1, 2, 3,	

bn =
2

π

∫

0

π

(1− cos 2 x) sin (nx) dx

=
2

π

∫

0

π

sin (nx) dx− 2

π

∫

0

π

sin (nx) cos (2 x) dx

= − 2

nπ
cos (nx)N 0π −1

π

∫

[sin (n+ 2)x+ sin (n− 2)x] dx

=
2

nπ
[1− (−1)n]− 1

π

∫

0

π

sin (n+2)x dx− 1

π

∫

0

π

sin (n− 2)x dx. (3.47)

We evaluate
∫

0

π

sin (n+ 2)x dx=− 1

n+ 2
cos (n+ 2)xN 0π =

1− (−1)n+2

n+ 2
. (3.48)

For the last term, there are two cases.

• If n= 2, then sin (n− 2)x=0 and
∫

0

π

sin (n− 2)x dx= 0. (3.49)

• If n� 2, we compute
∫

0

π

sin (n− 2)xdx=− 1

n− 2
cos (n− 2)xN 0π =

1− (−1)n−2

n− 2
. (3.50)

Putting everything together, we have

bn =



















(

2

n
− 1

n+2

)

1− (−1)n

π
n= 2

(

2

n
− 1

n− 2
− 1

n+ 2

)

1− (−1)n

π
n� 2

. (3.51)

Noticing that, when n is even, we have 1− (−1)n = 0. Thus the above formula can be simplified by
setting n= 2 k− 1 to

b2k−1 =

(

2

2 k− 1
− 1

2 k− 3
− 1

2 k+1

)

2

π
, k=1, 2, 3,	 (3.52)

As P (x, t)= 0 here, the expansion is trivial:

0 =
∑

n=1

∞
0 sinnx. (3.53)

4. Solve the equation for T . As pn(t) =0 for all n, Tn satisfies

Tn
′ + 5n2Tn = 0� Tn = cn e

−5n2t. (3.54)



5. Putting everything together, the solution is given by

u(x, t)=
∑

k=1

∞ (

2

2 k− 1
− 1

2 k− 3
− 1

2 k+ 1

)

2

π
e−5(2k−1)2t sin ((2 k− 1)x). (3.55)

Example 3.4. (Neumann boundary condition) Solve

∂u

∂t
= 3

∂2u

∂x2
, 0<x<π, t > 0 (3.56)

∂u

∂x
(0, t) =

∂u

∂x
(π, t) = 0, t > 0, (3.57)

u(x, 0) = x, 0<x<π. (3.58)

Solution. We use separation of variables.

1. Separate the variables.
Write u(x, t)=X(x)T (t). Then the equation leads to

T ′X = 3X ′′T� T ′

3T
=
X ′′

X
=K (3.59)

which gives

X ′′−KX =0, X ′(0)=X ′(π)=0, (3.60)

and

T ′− 3KT =
 . (3.61)

Note that 
 comes from the expansion of P (x, t) (=0 for this particular problem).
Now Solve the eigenvalue problem

X ′′−KX =0, X ′(0)=X ′(π)=0, (3.62)

We discuss the three cases.

a. K < 0. The general solution is

X =C1 cos
(

−K
√

x
)

+C2 sin
(

−K
√

x
)

. (3.63)

We compute

X ′=− −K
√

C1 sin
(

−K
√

x
)

+ −K
√

C2 cos
(

−K
√

x
)

. (3.64)

The boundary conditions then lead to

−K
√

C2 = 0, (3.65)

− −K
√

C1 sin
(

−K
√

π
)

+ −K
√

C2 cos
(

−K
√

π
)

= 0. (3.66)

Thus C2 = 0, and −K
√

=n. Consequently the eigenvalues are

Kn =−n2, n= 1, 2, 3,	 (3.67)

with corresponding

Xn = cos (nx). (3.68)

b. K = 0. The general solution is

X =C1 +C2x (3.69)

the boundary conditions then gives C2 = 0 which means 0 is an eigenvalue and the
corresponding eigenfunctions are X0 = 1.

c. K > 0. The general solution is

X =C1 e
K

√
x +C2 e

− K
√

x. (3.70)

The boundary conditions leads to

K
√

C1− K
√

C2 = 0 (3.71)

K
√

e K
√

πC1− K
√

e− K
√

πC2 = 0. (3.72)



Solving it gives C1 =C2 = 0. Therefore there is no positive eigenvalues.

Summarizing, the eigenvalues are

Kn =−n2, n= 0, 1, 2, 3,	 (3.73)

Xn = cos (nx), n= 0, 1, 2, 3,	
2. Expand f(x). We have

x=
a0

2
+
∑

n=1

∞
an cos (nx). (3.74)

All we need to do is to find the cosine series for x: 0<x<π. We compute

a0 =
2

π

∫

0

π

x dx= π, (3.75)

an =
2

π

∫

0

π

x cos (nx) dx=
2

nπ

[

x sin (nx)N 0π −
∫

0

π

sin (nx) dx

]

=
2 [(−1)n− 1]

n2 π
. (3.76)

Note that (−1)n − 1= 0 for all n even. Thus we have

a2k =0, a2k−1 =− 4

(2 k− 1)2π
. (3.77)

3. Solve the equation for Tn:

Tn
′ + 3n2Tn = 0, Tn(0)=



















π

2
n= 0

0 n even

− 4

n2π
n odd

� Tn =



















π

2
n= 0

0 n even

− 4

n2π
e−3n2t n odd

. (3.78)

4. Summarizing, we have

u(x, t)=
π

2
−
∑

k=1

∞
4

(2 k− 1)2π
e−3(2k−1)2t cos ((2 k− 1)x). (3.79)

Example 3.5. (Other boundary conditions) Solve

ut = κuxx 0<x< l, t > 0 (3.80)

u(x, 0) = f(x) 06 x6 l, (3.81)

u(0, t) = 0 t> 0, (3.82)

ux(l, t) = −hu(l, t). t> 0. (3.83)

Here h> 0.
Solution. Applying the method of separation of variables, we reach

X ′′−λX =0, X(0)= 0, hX(l)+X ′(l) =0. (3.84)

We discuss the cases:

i. λ> 0. The general solution is

Ae λ
√

x +Be− λ
√

x. (3.85)

Now

X(0)= 0 � A+B=0 (3.86)

hX(l)+X ′(l) =0 � (

h+ λ
√ )

e λ
√

lA+
(

h− λ
√ )

e− λ
√

lB= 0. (3.87)

The two equations can be written
(

1 1
(

h+ λ
√ )

e λ
√

l
(

h− λ
√ )

e− λ
√

l

)

(

A

B

)

=

(

0
0

)

. (3.88)



For the solution to be non-zero, we have to have

0= det

(

1 1
(

h+ λ
√ )

e λ
√

l
(

h− λ
√ )

e− λ
√

l

)

=
(

h− λ
√ )

e− λ
√

l −
(

h+ λ
√ )

e λ
√

l. (3.89)

As h> 0 and λ
√

> 0, this is not possible.

ii. λ= 0. The general solution is

A+Bx (3.90)

The boundary conditions lead to

A= 0, hA+ (h l+1)B= 0 � A=B= 0. (3.91)

iii. λ< 0. The general solution is

A cos
(

−λ
√

x
)

+B sin
(

−λ
√

x
)

. (3.92)

Now

X(0)= 0 � A= 0, (3.93)

hX(l)+X ′(l)= 0 � h sin
(

−λ
√

l
)

+ −λ
√

cos
(

−λ
√

l
)

= 0. (3.94)

Therefore the solution is of the form X = sin (px) with p satisfying

tan (p l)=−p/h. (3.95)

It is easy to see that the solutions form an infinite series

0< p1< p2<
 <
 (3.96)

Therefore our solution to the PDE can be written as

∑

1

∞
bn e

−κpn
2 t sin (pnx) (3.97)

where bn is determined by

f(x)=
∑

1

∞
bn sin (pnx). (3.98)

Now how should we determine bn? And furthermore how can we know whether the infinite sum gives the
solution – or equivalently whether similar properties as those hold for the Fourier series hold for our series
with sin (pnx)? Keep in mind that it is not possible to obtain a formula for the pns.

We compute, for n� m,
∫

0

l

sin (pnx) sin (pmx) dx =
1

2

∫

0

l

[cos (pn− pm) x− cos (pn + pm)x] dx

=
1

2

[

sin (pn − pm) l

pn − pm
− sin (pn + pm) l

pn + pm

]

=
1

2

[

sin (pn l) cos (pm l)− sin (pm l) cos (pn l)

pn − pm

−sin (pn l) cos (pm l)+ sin (pm l) cos (pn l)

pn + pm

]

. (3.99)

Now using the fact that

h sin (pn l)+ pn cos (pn l) =0 � sin(pn l)=−pn

h
cos (pn l) (3.100)

we have
∫

0

l

sin (pnx) sin (pmx) dx = 0. (3.101)



Therefore we can determine bn by

bn =

∫

0

l

f(x) sin (pnx) dx

∫

0

l

sin2 (pnx) dx

. (3.102)

Example 3.6. (Wave equation)

∂2u

∂t2
= 4

∂2u

∂x2
+ x t, 0<x<π, t > 0 (3.103)

u(0, t)= 0 , u(π, t)= 1 t > 0 (3.104)

u(x, 0) = x, 0<x<π, (3.105)
∂u

∂t
(x, 0) = 1, 0<x<π. (3.106)

Remark. Note that trying to find a “steady-state solution” first would fail this time: No w(x) can possibly
satisfy

4wxx + x t= 0, w(0) =0, w(π)= 1. (3.107)

Furthermore, any effort of finding w(x, t) such that

wtt = 4wxx + x t, w(0, t)= 0, w(π, t)= 1 (3.108)

in hope of v=u−w satisfying the simple system

∂2v

∂t2
= 4

∂2v

∂x2
, 0<x<π, t> 0 (3.109)

v(0, t)= 0 , v(π, t)= 0 t > 0 (3.110)

u(x, 0) = x−w(x, 0), 0<x<π, (3.111)
∂u

∂t
(x, 0) = 1− ∂w

∂t
(x, 0), 0<x<π. (3.112)

does not make much sense as solving the w equation is not really easier than solving the original u equation.
In summary, in such general case, it is not possible to take care of the boundary conditions and the source

term in one single step. They have to be dealt with separately.

Solution.

• Step 0. Take care of boundary conditions.
We find w(x) satisfying wxx =0, w(0)=0, w(π)=1. This is easy: w(x)=x/π. Now set v=u−w,

we reach

∂2v

∂t2
= 4

∂2v

∂x2
+x t, 0<x<π, t > 0 (3.113)

v(0, t)= 0 , v(π, t)= 0 t > 0 (3.114)

u(x, 0) = x−x/π, 0<x<π, (3.115)
∂u

∂t
(x, 0) = 1, 0<x<π. (3.116)

• Step 1. Find the eigenvalue problem and solve it.
Applying separation of variables, we found out that the eigenvalue problem is

X ′′−λX =0, X(0) =X(π)= 0 (3.117)

which leads to (details omitted due to having been done several times before)

λn =−n2, Xn =An sin (nx), n=1, 2, 3,	 (3.118)

• Step 2. Find out equations for Tn.
We write

v(x, t)=
∑

n=1

∞
TnXn =

∑

n=1

∞
Tn(t) sin (nx) (3.119)



Note that the arbitrary constant An has been “absorbed” into Tn(t).
Substitute into the equation:

∂2v

∂t2
=
∑

n=1

∞
Tn

′′(t) sin (nx); (3.120)

∂2v

∂x2
=
∑

n=1

∞
Tn(t) [sin (nx)]′′=−

∑

n=1

∞
n2Tn(t) sin (nx); (3.121)

Therefore the equation becomes

x t=
∂2v

∂t2
− 4

∂2v

∂x2
=
∑

n=1

∞
[Tn

′′ +4n2Tn] sin (nx). (3.122)

On the other hand, at t=0 we have
(

1− 1

π

)

x= v(x, 0) =
∑

n=1

∞
Tn(0) sin (nx); (3.123)

and

1 =
∂v

∂t
(x, 0) =

∑

n=1

∞
Tn

′(0) sin (nx). (3.124)

Therefore, if we expand x t,
(

1− 1

π

)

x, 1 into their Fourier Sine series:

x t =
∑

n=1

∞
hn(t) sin (nx); (3.125)

(

1− 1

π

)

x =
∑

n=1

∞
an sin (nx); (3.126)

1 =
∑

n=1

∞
bn sin (nx); (3.127)

then Tn satisfies the initial value problem

Tn
′′+ 4n2Tn = hn(t); Tn(0) = an, Tn

′(0)= bn. (3.128)

Now we compute:

◦ hn(t):

hn(t) =
2

π

∫

0

π

(x t) sin (nx) dx

=
2 t

π

∫

0

π

x sin (nx) dx

=
2 t

π

(

− 1

n

)
∫

0

π

xdcos (nx)

= − 2 t

n π

[

x cos (nx)|0π −
∫

0

π

cos (nx) dx

]

= − 2 t

n π
[π (−1)n − 0]

= (−1)n+1 2

n
t. (3.129)

◦ an:

an =
2

π

∫

0

π
(

1− 1

π

)

x sin (nx) dx

=

(

1− 1

π

)[

2

π

∫

0

π

x sin (nx) dx

]

=

(

1− 1

π

)

(−1)n+1 2

n

= (−1)n+1 2 (π− 1)

nπ
. (3.130)



Note that we have taken advantage of the fact that an =
(

1− 1

π

)

hn(t)/t.

◦ bn:

bn =
2

π

∫

0

π

sin (nx) dx=− 2

nπ
[(−1)n− 1] =

2

nπ
[(−1)n+1 + 1]. (3.131)

Summarizing, Tn satisfies

Tn
′′+ 4n2Tn =(−1)n+1 2

n
t; Tn(0)= (−1)n+1 2 (π− 1)

nπ
; Tn

′(0)=
2

nπ
[(−1)n+1 + 1]. (3.132)

• Solve Tn.

As Tn satisfies “nonhomogeneous 2nd order linear constant coefficient equation”, we have to solve
the corresponding homogeneous equation

T ′′+4n2T = 0 (3.133)

first to get its general solution, and then find a particular solution of Tn
′′ + 4 n2 Tn = (−1)n+1 2

n
t.

Inspecting the right hand side, we conclude that the best approach to get the particular solution
should be “undetermined coefficients”.

◦ T ′′+ 4n2 T =0. The general solution is

T =C1 cos (2n t)+C2 sin (2n t). (3.134)

◦ Particular solution. The correct form is

Tp =At. (3.135)

Substitute into the equation we easily obtain

Tp =
(−1)n+1

2n3
t. (3.136)

Thus Tn has to be of the form

Tn =C1 cos (2n t)+C2 sin (2n t)+
(−1)n+1

2n3
t. (3.137)

Now enforce the initial conditions:

Tn(0)= (−1)n+1 2 (π− 1)

nπ
� C1 =(−1)n+1 2 (π− 1)

nπ
; (3.138)

Tn
′(0)=

2

nπ
[(−1)n+1 + 1]� 2nC2 +

(−1)n+1

2n3
=

2

nπ
[(−1)n+1 + 1] (3.139)

which gives

C1 = (−1)n+1 2 (π− 1)

nπ
, C2 =

1

n2π
[(−1)n+1 + 1]− (−1)n+1

4n4
. (3.140)

Therefore

Tn(t) = (−1)n+1 2 (π− 1)

nπ
cos (2 n t) +

(

1

n2 π
[(−1)n+1 + 1] − (−1)n+1

4n4

)

sin (2 n t) +

(−1)n+1

2n3
t. (3.141)

• Write down the solution. We have

v(x, t) =
∑

n=1

∞ [

(−1)n+1 2 (π− 1)

nπ
cos (2 n t) +

(

1

n2π
[(−1)n+1 + 1] − (−1)n+1

4n4

)

sin (2 n t) +

(−1)n+1

2n3
t

]

sin (nx), (3.142)



and

u(x, t) = v(x, t) + w(x) =
x

π
+
∑

n=1

∞ [

(−1)n+1 2 (π− 1)

nπ
cos (2 n t) +

(

1

n2π
[(−1)n+1 + 1] −

(−1)n+1

4n4

)

sin (2n t) +
(−1)n+1

2n3
t

]

sin (nx). (3.143)

3.0.3. Discussions.

The success of the above method relies on the following:

1. The process of separating the variables leads to a certain eigenvalue problem;

2. This eigenvalue problem yields a sequence of eigenvalues, and each eigenvalue has a one-dimensional
eigenspace – that is any two eigenfunctions of the same eigenvalue are linearly dependent;

3. It is possible to expand any reasonably smooth function into a (infinite) linear combination of these
eigenfunctions.

The first is easy to verify. The second and third though are not obvious at all. When the eigenfunctions
are sin

n π x

L
or cos

n π x

L
, we have seen in earlier PDE courses that 2. can be shown by directly solving the

eigenvalue problem, while 3. follows from the theory of Fourier sine/cosine series. In the general case, we
need the so-called Sturm-Liouville theory, which will be discussed in sections 3.2 and 3.3.

Exercises.

Exercise 3.1. Consider the Telegrapher’s equation

uxx = utt +λ ut (3.144)

(recall that λ > 0) over the interval x∈ [0, L] subject to conditions

u(0, t)= u(L, t) =0; u(x, 0) = f(x), ut(x, 0)= h(x). (3.145)

Use the method of separation of variables to study the limiting behavior of u as t�∞.

Exercise 3.2. Consider the heat equation with Dirichlet boundary condition:

ut = κ uxx, u(0, t)= u(π, t)= 0. (3.146)

Now consider the semi-discretization of the equation: Replace uxx by
u(x + h, t)− 2 u(x, t) + u(x −h, t)

h2
. If we set Ui(t)=u(i h,

t) where h= L/n, the equation becomes an ODE system:

Ut =A U, U0(t) =Un(t)= 0 (3.147)

with U =







U0(t)�
Un(t)






, and A =

κ

h2











−2 1
1 −2 1  

1 −2











(aij =







−2 i = j

1 |i− j |= 1
0 |i− j |> 1

).

a) Show that U (m) with Uj
(m)

= sin
(

m
j π

n

)

is an eigenvector of the matrix A.

b) Show that any solution to (3.147) can be obtained as follows: Set U =
∑

vm(t) U (m) and solve an ODE for vm(t).

c) By taking limit n�∞, formally justify the method of separation of variables for (3.146).

Exercise 3.3. Consider the arbitrary linear first order PDE:

a(x, y) ux + b(x, y) uy + c(x, y) u = d(x, y). (3.148)

For what a� d is this equation solvable through separation of variables? Describe the solution procedure and use it to

solve the equation

x ux + y uy = u. (3.149)

Exercise 3.4. Consider an arbitrary linear second order PDE:

a(x, y) uxx + b(x, y) uxy + c(x, y) uyy + d(x, y) ux + e(x, y) uy + f(x, y) u = g(x, y). (3.150)

For what a� g is this equation solvable through separation of variables?



3.1. Higher Dimensional Problems and Special Functions.

3.1.1. Rectangular domains.

Example 3.7. Find a formal solution to the initial-boundary value problem

∂u

∂t
=

∂2u

∂x2
+
∂2u

∂y2
, 0<x<π, 0< y<π, t > 0 (3.151)

∂u

∂x
(0, y, t) =

∂u

∂x
(π, y, t) =0, 0< y <π, t> 0 (3.152)

u(x, 0, t) = u(x, π, t) =0, 0<x<π, t> 0 (3.153)

u(x, y, 0) = y, 0<x<π, 0< y<π. (3.154)

Solution. We follow the procedure of separation of variables.

1. Separate the variables. Write u(x, y, t)=X(x)Y (y)T (t). Substitute into the equation, we have

T ′XY =TX ′′Y +TXY ′′. (3.155)

Divide both sides by TXY :
T ′

T
=
X ′′

X
+
Y ′′

Y
. (3.156)

As the left hand side only depends on t while the right hand side is independent of t, both sides have
to be constant. Applying the same argument one more time, we conclude that

X ′′

X
=λ,

Y ′′

Y
= µ,

T ′

T
=λ+ µ. (3.157)

The equations for X,Y , T are then

X ′′−λX =0, X ′(0)=X ′(π)= 0; (3.158)

Y ′′− µY = 0, Y (0)=Y (π)= 0; (3.159)

T ′− (λ+ µ) T =0. (3.160)

2. Solve the eigenvalue problems. Now there are two eigenvalue problems. We solve them one by one.

i. Solve Xn.

X ′′−λX =0, X ′(0)=X ′(π)= 0; (3.161)

We have eigenvalues λn =−n2, n= 0, 1, 2,	 and eigenfunctions Xn = an cos (nx), n= 1, 2, 3.

ii. Solve Ym.

Y ′′− µY = 0, Y (0)=Y (π)= 0; (3.162)

We have eigenvalues µm =−m2, m= 1, 2, 3,	 and eigenfunctions Ym = bm sin (my), m= 1, 2,
3,	

3. Solve Tn,m. We have

Tn,m
′ + (n2 +m2)Tn,m =0� Tn,m =Tn,m(0) e−(n2+m2)t. (3.163)

4. Write

u(x, y, t) =
∑

n=0

∞
∑

m=1

∞
cnm cos (nx) sin (my) e−(n2+m2)t. (3.164)

5. Compute the coefficients. We have

u(x, y, 0)=
∑

n=0

∞
∑

m=1

∞
cnm cos (nx) sin (my) e−(n2+m2)t. (3.165)



To determine the coefficients, we first need to understand the integrations
∫

0

π ∫

0

π

cos (nx) sin (my) cos (n′x) sin (m′ y) dxdy. (3.166)

We compute
∫

0

π ∫

0

π

cos (nx) sin (my) cos (n′x) sin (m′ y) dx dy =

[
∫

0

π

cos (nx) cos (n′ x) dx

]

·

·
[
∫

0

π

sin (my) sin (m′ y) dy

]

. (3.167)

Recall that for n, n′∈{0, 1, 2, 3,	 } we have

∫

0

π

cos (nx) cos (n′x) dx=















π n=n′= 0
π

2
n=n′� 0

0 n� n′
, (3.168)

and for m,m′∈{1, 2, 3,	 }
∫

0

π

sin (my) sin (m′ y) dy=







π

2
m=m′

0 m� m′
(3.169)

Therefore

∫

0

π ∫

0

π

cos (nx) sin (my) cos (n′x) sin (m′ y) dxdy=























π2

2
n=n′= 0,m=m′

π2

4
n=n′� 0,m=m′

0 n� n′ or m� m′

. (3.170)

As a consequence,

∫

0

π ∫

0

π

u(x, y, 0) cos (nx) sin (my) dx dy=















π2

2
c0m n= 0

π2

4
cnm n= 1, 2, 3,	 . (3.171)

Now we compute
∫

0

π ∫

0

π

y sin (my) dxdy = π

∫

0

π

y sin (my) dy

= − π

m

∫

0

π

y dcos (my)

= − π

m

[

y cos (my)N 0π −∫
0

π

cos (my) dy

]

= −π
2

m
(−1)m. (3.172)

Thus

c0m =
2

m
(−1)m+1. (3.173)

∫

0

π ∫

0

π

y cos (nx) sin (my) dxdy =

[
∫

0

π

cos (nx) dx

][
∫

0

π

y sin (my) dy

]

=0. (3.174)

Therefore

cnm = 0, n= 1, 2, 3,	 ;m= 1, 2, 3,	 (3.175)

Summarizing, we have

u(x, y, t)=
2

m

∑

m=1

∞
(−1)m+1 e−m2t sin (my). (3.176)



3.1.2. Laplace’s equations in polar and spherical coordinates.
We consider Laplace’s equation in the unit disc and unit ball.

Example 3.8. (Polar) Solve

uxx + uyy = 0, x2 + y2< 1; u= f(θ) x2 + y2 =1. (3.177)

Solution. We get
r2R′′

R
+
rR′

R
=−Θ′′

Θ
=λ. (3.178)

This leads to

Θ′′+λΘ =0; Θ(0)= Θ(2π), Θ′(0)= Θ′(2 π) (3.179)

and

r2R ′′+ rR′−λR= 0; R(0) bounded;R(1)= f(θ). (3.180)

The Θ equation is easily solved, giving

λn =n2, n=0, 1, 2, 3,	 (3.181)

Θ0 =1, Θn1 = cosn θ, Θn2 = bn sinn θ. (3.182)

Substituting the λn’s into the R equation and expanding f(θ) into Fourier series

f(θ)=
a0

2
+
∑

n=1

∞
[an cosn θ+ bn sinn θ], (3.183)

we obtain updated R equation as

r2R0
′′+ rR0

′ = 0, R0(0) bounded, R0(1)=
a0

2
; (3.184)

r2Rni

′′

+ rRni
′ −n2R= 0, Rni(0) bounded, Rni(1)=

{

an i= 1
bn i= 2

. (3.185)

Notice that the R equation is Cauchy-Euler, which means it can be solved by setting R= rα with α satisfying

α (α− 1)+α−n2 =0� α1,2 =±n. (3.186)

When n= 0, we have a repeated root, therefore the general solution for R0 is

R0(r)=C1 +C2 ln r. (3.187)

The boundary conditions then dictates that C2 = 0, C1 =
a0

2
; Similarly, we have Rn1(r) = an rn and

Rn2(r) = bn r
n.

Summarizing, the solution to the problem is

u(r, θ)=
a0

2
+
∑

n=1

∞
rn [an cosn θ+ bn sinn θ] (3.188)

where an, bn comes from (3.183), the Fourier expansion of f .

Example 3.9. (Spherical with rotational symmetry) We consider the Laplace equation

uxx +uyy + uzz = 0, u= f on x2 + y2 + z2 = 1. (3.189)

It is clear that we should turn to spherical coordiantes

x= r cos θ sin ϕ, y= r cos θ cos ϕ, z= r cos ϕ (3.190)

where θ is the angle (on x-y plane) from the x axis (that is tan θ= y/x), and ϕ the vertical angle from the
z axis (that is cos ϕ= z/r). Clearly 0<θ6 2π, 06 ϕ6 π.

The equation now becomes

urr +
2

r
ur +

1

r2

[

uϕϕ + (cot ϕ) uϕ +
1

sin2ϕ
uθθ

]

= 0, u(1, θ, ϕ)= f(θ, ϕ). (3.191)



We first consider the case where f has rotational symmetry, that is f = f(ϕ). Then it is reasonable to expect
u= u(r, ϕ).

The problem now reduces to

urr +
2

r
ur +

1

r2
[uϕϕ +(cot ϕ) uϕ] = 0, 0<r< 1, 0< ϕ<π (3.192)

u(1, ϕ) = f(ϕ), 0< ϕ<π (3.193)

Let u(r, ϕ) =R(r)Φ(ϕ), we reach

r2R′′+ 2 rR′−λR= 0, R,R′ bounded as r� 0 +; (3.194)

Φ′′+ cot ϕΦ′+λΦ = 0. (3.195)

The Φ equation, under the change of variable x= cos ϕ, becomes

(1− x2) y ′′− 2x y ′+λ y=0, − 1<x< 1. (3.196)

where y(x)6 Φ(ϕ).
The reasonable boundary condition for the y equations should be y, y ′ remain bounded as x� 1− and

x� −1 + .
It turns out that such boundary condition already determines a list of eigenvalues and eigenfunctions:

λn =n (n+1), n= 0, 1, 2,	 ; Pn =
1

2nn!

dn

dxn
[(x2− 1)n]. (3.197)

These Pn’s are called Legendre polynomials.
With λn’s known, we can easily solve Rn = rn. So the solution is

u(r, ϕ) =
∑

n=0

∞
an r

nPn(cos ϕ) (3.198)

where an comes from the expansion

f(ϕ)=
∑

n=0

∞
anPn(cos ϕ). (3.199)

with

an =

∫

0

π
f(ϕ)Pn(cos ϕ) sin ϕdϕ
∫

0

π
Pn

2(cosϕ) sinϕ dϕ
. (3.200)

Example 3.10. (Spherical, general case) Now we consider the general case

urr +
2

r
ur +

1

r2

[

uϕϕ + (cot ϕ) uϕ +
1

sin2ϕ
uθθ

]

= 0, u(1, θ, ϕ)= f(θ, ϕ). (3.201)

Setting u(r, θ, ϕ)=R(r)Θ(θ)Φ(ϕ), we reach

r2R′′ +2 rR′−λR = 0, (3.202)

Θ′′+ µΘ = 0, (3.203)

Φ′′ + cot ϕΦ′+

(

λ− µ
1

sin2ϕ

)

Φ = 0. (3.204)

Here R,Φ subject to similar boundary conditions as in the last example, while Θ enjoys the periodic boundary
condition.

It is clear that Θ should be solved first to yield

µm =m2, m= 0, 1, 2,	 (3.205)

with eigenfunctions 1 (for m= 0) and cosmθ, sinmθ for m= 1, 2, 3,	 .
Taking the change of variable x= cos ϕ and set y(x)6 Φ(ϕ) we reach

(1− x2) y ′′− 2 x y ′+

(

λ− m2

1− x2

)

y=0, − 1<x< 1. (3.206)



This is called associated Legendre’s equation. The eigenvalues are still n (n + 1), n = 0, 1, 2, 	 while the
(bounded) eigenfunctions are now the associated Legendre functions of first kind

Pn
m(x)6 (−1)m (1− x2)m/2 dm

dxm
Pn(x) (3.207)

where Pn(x) are the Legendre polynomials in the last example. Note that the above formula gives Pn
m(x)=0

when m>n.
The solution now reads

u(ρ, θ, ϕ) =
∑

n=0

∞
∑

m=0

n

rn [anm cos (mθ) + bnm sin (mθ)]Pn
m(cosϕ) (3.208)

with anm, bnm given by

anm =

∫

0

π ∫

0

2π
f(θ, ϕ)Pn

m(cos ϕ) cos (mθ) sinϕdθdϕ
∫

0

π ∫

0

2π [Pn
m(cos ϕ) cos (mθ)]2 sinϕdθ dϕ

; (3.209)

bnm =

∫

0

π ∫

0

2π
f(θ, ϕ)Pn

m(cos ϕ) sin (mθ) sinϕdθdϕ
∫

0

π ∫

0

2π [Pn
m(cos ϕ) sin (mθ)]2 sinϕdθ dϕ

. (3.210)

Remark 3.11. Note that we can expand any function defined on the sphere by cos (m θ) Pn
m(cos ϕ) and

sin (mθ)Pn
m(sin ϕ). This is called “spherical harmonics” expansion.

3.1.3. Heat equation in the cylinder.

Example 3.12. Consider the heat equation in a 2D disc x2 + y2 6 1:

ut = κ (uxx +uyy) (3.211)

u(x, y, 0) = f(x, y) (3.212)

u(x, y, t) = 0 x2 + y2 = 1. (3.213)

Solution. Due to the special geometry of the domain, it is natural to consider the problem using polar
coordinates (r, θ) satisfying

x= r cosθ, y= r sinθ. (3.214)

Now we change the variables from x, y to r, θ. Differentiating the above relation we have

(cosθ) rx − r (sinθ) θx = 1 (3.215)

(cosθ) ry − r (sinθ) θy = 0 (3.216)

(sinθ) rx + r (cosθ) θx = 0 (3.217)

(sinθ) ry + r (cosθ) θy = 1 (3.218)

consequently

rx =
x

r
, ry =

y

r
, rxx =

1

r
− x2

r3
, ryy =

1

r
− y2

r3
; (3.219)

θx =−sinθ

r
=− y

r2
, θy =

cosθ

r
=
x

r2
, θxx =

2 x y

r4
, θyy =−2x y

r4
Therefore

uxx = urr
x2

r2
− urθ

2 x y

r3
+ uθθ

y2

r4
+ur

(

1

r
− x2

r3

)

+ uθ
2 x y

r4
, (3.220)

uyy = urr
y2

r2
+ urθ

2x y

r3
+uθθ

x2

y4
+ur

(

1

r
− y2

r3

)

+ uθ

(

−2 x y

r4

)

. (3.221)

The equation and the initial-boundary conditions in polar coordinate form are

ut = κ

(

urr +
1

r
ur +

1

r2
uθθ

)

(3.222)

u(r, θ, 0) = f(r, θ) (3.223)

u(1, θ, t) = 0. (3.224)



We apply separation of variables to solve this equation.
First we try to find non-trivial “basic” solutions of the form

u(r, θ, t)=R(r)Θ(θ)T (t). (3.225)

Substituting this into the equation we reach

R(r) Θ(θ)T ′(t)= κ

(

R′′(r)Θ(θ)+
1

r
R′(r)Θ(θ)+

1

r2
R(r)Θ′′(θ)

)

T (t). (3.226)

Dividing both sides by R(r) Θ(θ)T (t) we reach

T ′(t)
T (t)

= κ

(

R′′(r)
R(r)

+
1

r

R ′(r)
R(r)

+
1

r2
Θ′′(θ)
Θ(θ)

)

. (3.227)

As the LHS only involves t and the RHS only r, θ there is a constant λ such that

T ′(t)
T (t)

=−κλ (3.228)

and
R′′(r)
R(r)

+
1

r

R′(r)
R(r)

+
1

r2
Θ′′(θ)
Θ(θ)

=−λ. (3.229)

Multiply both sides by r2 we have

r2R′′(r)
R(r)

+
rR′(r)
R(r)

+λ r2 =
Θ′′(θ)
Θ(θ)

. (3.230)

The LHS only involves r and the RHS only θ. Thus there is a constant µ such that

Θ′′(θ)
Θ(θ)

= µ,
r2R′′(r)
R(r)

+
rR′(r)
R(r)

+λ r2 =−µ. (3.231)

As Θ(θ) is obviously 2π periodic, we have

µ=−n2, n=1, 2, 3,	 (3.232)

and

Θ(θ) =A cos (nθ)+B sin (n θ). (3.233)

On the other hand, the equation for R now becomes

r2R′′+ rR′ +(λ r2−n2)R= 0, (3.234)

with the boundary condition

R(1)= 0, R(0) bounded. (3.235)

The general solution is

R(r)=C1 Jn

(

λ
√

r
)

+C2Yn

(

λ
√

r
)

(3.236)

with Jn, Yn Bessel functions of the first and second kinds. It turns out that Yn(r) is unbounded as r� 0+ ,
therefore we have

Rn(r)= Jn

(

λ
√

r
)

. (3.237)

Applying the boundary condition R(1)= 0 gives

Rn,k(r) =Jn(αn,k r), λn,k =αn,k
2 . (3.238)

Now we expand

f(r, θ) =
∑

n,k

an,kRn,k(r) cos (nθ)+ bn,kRn,k sin (n θ). (3.239)

and the solution is given by
∑

n,k

[an,kRn,k(r) cos (n θ)+ bn,kRn,k sin (nθ)] e−λn,kt (3.240)



3.1.4. Discussions.
We see that similar to the 1D situation, the success of the above method relies on the following:

1. The process of separating the variables leads to a certain eigenvalue problem;

2. This eigenvalue problem yields a sequence of eigenvalues, and each eigenvalue has a one-dimensional
eigenspace – that is any two eigenfunctions of the same eigenvalue are linearly dependent;

3. It is possible to expand any reasonably smooth function into a (infinite) linear combination of these
eigenfunctions.

In the higher dimensional case, it is quite unclear which weight we should use for the expansion formulas.

Reference.

• John M. Davis, “Introduction to Applied Partial Differential Equations”, Chap. 5, 6.

Exercises.

Exercise 3.5. Consider the boundary value problem for u(x, y) in the annular region:

uxx +uyy = 0 ρ2 < x2 + y2 < 1; u(x, y)=

{

f x2 + y2 = ρ2

g x2 + y2 =1
. (3.241)

Obtain the formula for the solution using separation of variables.

Exercise 3.6. Consider the Laplace equation in the disc x2 + y2 < ρ2, with boundary condition u = f . Using separation

of variables, derive Poisson’s formula:

u(r, θ)=
ρ2− r2

2 π

∫

0

2π f(ϕ)

ρ2− 2 ρ r cos (θ − ϕ) + r2
dϕ. (3.242)

Can we obtain a similar formula for solutions of the above annulus problem?

Exercise 3.7. Using Poisson’s formula (3.242) to prove the following mean value property:

u(0, θ) =
1

2 π

∫

0

2π

f(ϕ) dϕ. (3.243)

Then establish the following maximum principle:

If uxx + uyy = 0 for (x, y)∈Ω⊆R
2, and u= f on ∂Ω, then maxΩu =max∂Ωf .

Can this line of argument be used to prove the uniqueness of the classical solution to uxx +uyy = g in Ω, u= f on ∂Ω?

Why?

Exercise 3.8. Consider the equation

r2 R′′+ r R′+ (λ r2−n2) R = 0, R(0) bounded, R(1)= 0. (3.244)

a) Prove that there are no negative eigenvalues.

b) Prove that λ = 0 is not an eigenvalue.

c) Let λk� λl be eigenvalues, prove that the eigenfunctions Rk(r), Rl(r) satisfy

∫

0

1

Rk(r) Rl(r) r dr = 0. (3.245)

Exercise 3.9. Let n∈N. Consider the equation

(1− x2) y ′′− 2 x y ′+ n(n +1) y = 0, − 1 < x < 1 (3.246)

Use power series method to show that the general solution is y = c1 Pn + c2 Qn where Pn is a polynomial of degree n, and

Qn is unbounded at 1− and −1 + .

Exercise 3.10. Solve the vibrating drum:

utt = uxx + uyy =urr + r−1 ur + r−2 uθθ. (3.247)

with

u(r, θ, 0)= f(r), ut(r, θ, 0)= 0, u(1, θ, t)= 0. (3.248)

(Ans:
∑

cn J0(kn r) cos (kn t)).



3.2. Sturm-Liouville theory.

First recall how we prove convergence for the 1D cases. This relies on the explicit formula for partial
sums and cannot be easily generalized.

3.2.1. Sturm-Liouville problems.

The standard Sturm-Liouville (SL) problem is of the form

(p(x) y ′)′+ q(x) y+λ r(x) y = 0, a <x< b (3.249)

α0 y(a) +α1 y
′(a) = 0, (3.250)

β0 y(b)+ β1 y
′(b) = 0. (3.251)

where all the functions and numbers are real. For simplicity we assume the coefficients are as smooth as we
need.

The problem is called

− regular when p, q, r are bounded on [a, b] (that is the interval a6x6 b), p, r >0 for all a6x6 b, and
α0, α1 real, not both 0, and β0, β1 real, not both 0.

− singular when any one or more of the following happens

→ The interval (a, b) is infinite, that is either a=−∞ or b= +∞ or both occurs.

→ p(x)=0 for some x∈ [a, b] or r(x)= 0 for some x∈ [a, b].

→ One or several coefficient function becomes ∞ at a or b, or both.

Example 3.13. We check the systems we have dealt with

−
y ′′+λ y=0, y(0)= y(l) =0 (3.252)

We have

a= 0, b= l; p(x)= 1, q(x)= 0, r(x)= 1; α0 = 1, α1 =0, β0 = 1, β1 = 0. (3.253)

The system is a regular SL problem.

−
y ′′+λ y= 0, y ′(0)= y ′(l)= 0 (3.254)

We have

a= 0, b= l; p(x)= 1, q(x)= 0, r(x)= 1; α0 = 0, α1 =1, β0 = 0, β1 = 1. (3.255)

This is also a regular SL problem.

−
y ′′+λ y= 0, y(0)= 0, y ′(l)=−h y(l). (3.256)

We have

a= 0, b= l; p(x)= 1, q(x)= 0, r(x)= 1; α0 = 1, α1 = 0, β0 = h, β1 =1. (3.257)

−
x2 y ′′+ x y ′+(λx2−n2) y= 0, y(0) bounded, y(1) =0. (3.258)

At first sight this problem is not an SL problem. However we can transform it through the following
operations:

We search for a multiplier h(x) such that

h(x) [x2 y ′′ +x y ′+ (λx2−n2) y] = (p y ′)′+ q y+λ r y. (3.259)



Comparing the two sides, we have

h(x)x2 = p(x), h(x)x= p(x)′ (3.260)

which leads to

p(x)′=
1

x
p(x) � p(x)= x � h(x)=

1

x
. (3.261)

Thus we see that the equation is equivalent to

(x y ′)′− n2

x
y+λx y=0 (3.262)

which corresponds to

a=0, b=1; p(x)= x, q(x) =−n
2

x
, r(x)= x; β0 =1, β1 = 0. (3.263)

This is a singular SL problem.

Any λ that the problem has non-trivial solutions is called an eigenvalue, the corresponding solutions are
called eigenfunctions.

3.2.2. Properties of regular Sturm-Liouville problems.

We see from the following theorem that the solutions to a SL problem enjoy similar properties as the

functions sin
( n π

l
x
)

and cos
( n π

l
x
)

in the Fourier series. More specifically we have the following theorem.

Theorem 3.14. A regular SL problem has the following properties.

1. About eigenvalues:

• It has nonzero solutions for a countably infinite set of values of λ, called “eigenvalues” of the
problem.

• These eigenvalues are all real.

• The set of eigenvalues does not have any limit points in R.

• These eigenvalues are bounded from below if α0 α1 6 0 and β0 β1 > 0. These eigenvalues are
bounded from below by 0 if furthermore q6 0.

In summary, if we have α0 α1 6 0 and β0 β1 > 0, then then eigenvalues can be enumerated as:
λ1 6λ2 6
 .

2. About eigenfunctions:

a) For each fixed eigenvalue λn, the solution space is one-dimensional. That is, there is ϕn such
that all other solutions for the same λ is a multiple of ϕn.

b) (Orthogonality)

∫

a

b

ϕn(x) ϕm(x) r(x) dx= 0 for any n� m.

c)

(Bessel’s inequality) If ϕn’s are chosen such that

∫

a

b

ϕn(x)2 r(x) dx= 1 (3.264)

We have the following Bessel’s inequality

∫

a

b

f(x)2 r(x) dx>
∑

n=1

∞
|cn|2. (3.265)



d) (Completeness)

• c1) The only continuous function f on [a, b] with

∫

a

b

f(x) ϕn(x) r(x) dx=0 for all n is

f ≡ 0.

• c2) For any f having two continuous derivatives on [a, b] and satisfying the boundary
conditions, the infinite sum

∑

n=1

∞
cnϕn (3.266)

where

cn =

∫

a

b

f(x) ϕn(x) r(x) dx

∫

a

b

ϕn(x)2 r(x) dx

(3.267)

converges absolutely uniformly to f(x). By “absolutely uniformly” we mean

∑

1

∞
|cn| |ϕn|<∞ (3.268)

and the convergence to f is uniform.

• c3) (Parseval’s equality) If a function f(x) is continuous and ϕn’s are chosen such
that

∫

a

b

ϕn(x)2 r(x) dx= 1 (3.269)

We have the following
∫

a

b

f(x)2 r(x) dx=
∑

n=1

∞
|cn|2. (3.270)

Remark 3.15. We note that the “completeness” part is quite schizophrenia – f(x) is continuous in one line
but required to be twice continuously differentiable in the next. This will be resolved in later sections when
we take a higher, functional analytic, point of view.

Example 3.16. We check the systems we have dealt with

−
y ′′+λ y=0, y(0)= y(l) =0 (3.271)

We have r(x)= 1, therefore the eigenfunctions satisfy

∫

0

l

ϕn(x) ϕm(x) dx= 0 n� m (3.272)

and the expansion reads

f(x) =
∑

cnϕn, cn =

∫

0

l
f(x) ϕn(x)dx

∫

0

l [ϕn(x)]2 dx
. (3.273)

−
y ′′+λ y= 0, y ′(0)= y ′(l)= 0 (3.274)

We have again r(x)=1, thus although the eigenfunctions are now different, the orthogonality relation
and expansion formula remain the same as above.



−
y ′′+λ y= 0, y(0)= 0, y ′(l)=−h y(l). (3.275)

We have r(x)=1. Thus the orthogonality relation and expansion formula remain the same – although
we cannot write the explicit formulas for the eigenfunctions anymore!

− Bessel functions.

x2 y ′′+ x y ′+(λx2−n2) y= 0, y(0) bounded, y(1) =0. (3.276)

Recall that by multiplication of h(x)= 1/x the problem is turned into the Sturm-Liouville form

(x y ′)′− n2

x
y+λx y=0 (3.277)

Although this problem is singular, it turns out that its eigenvalues/eigenfunctions enjoy similar
properties as those in the regular case. In particuar, we have the orthogonality relation and expansion
formulas:

∫

0

1

ϕn(x) ϕm(x)x dx= 0, cn =

∫

0

1
f(x) ϕn(x) xdx

∫

0

1 [ϕn(x)]2x dx
. (3.278)

− Legendre functions.

[(1− x2) y ′]′+λ y=0, − 1<x< 1. (3.279)

As p(x)= 1− x2 vanishes at both ends, the boundary conditions should be taken as

y, y ′ remain bounded as x→±1. (3.280)

The eigenvalues are λn =n (n+ 1). Here r(x)= 1, so the corresponding eigenfunctions satisfy

∫

−1

1

Pm(x)Pn(x) dx= 0, n� m. (3.281)

− Hermite functions.

u′′− 2x u′+λu=0, −∞<x<∞ (3.282)

To write this problem into a SL problem, we multiply the equation by e−x2

to obtain

(

e−x2

u′)′+λ e−x2

u= 0, −∞<x<∞. (3.283)

This is a regular S-L problem. Now that we have p(x) = e−x2

which tends to 0 as x → ±∞, the
boundary conditions should be

u, u′ remain bounded as x→±∞. (3.284)

The eigenvalues are λn =2 n for nonnegative integers n. Since r(x)= e−x2

, the orthogonality property
reads

∫

−∞

∞
Hn(x)Hm(x) e−x2

dx= 0, n� m. (3.285)

Proof. (Of the easy parts of theorem 3.14) The proofs for some of the above claims are more technical.
We postpone them to the next lecture and only prove the easy ones (those in blue) here.

1. Properties of the eigenvalues.

• These eigenvalues are all real.



Let λ be an eigenvalue and let ϕ be a corresponding eigenfunction. We compute

0 =

∫

a

b

[(p y ′)′+ q y+λ r y] ȳ dx

=

∫

a

b

(p y ′)′ ȳ +

∫

a

b

q |y |2 +λ

∫

a

b

r |y |2

= (p y ′) ȳ N ab −∫
a

b

p y ′ ȳ ′+

∫

a

b

q |y |2 +λ

∫

a

b

r |y |. (3.286)

On the other hand, taking the complex conjugate of

(p y ′)′+ q y+λ r y=0 (3.287)

we obtain

(p ȳ ′)′+ q ȳ + λ̄ r ȳ = 0. (3.288)

In other words, λ̄ is also an eigenvalue with eigenfunction ȳ . Multiplying this equation by y

and integrate, we have

0 =

∫

a

b

[(p ȳ ′)′+ q ȳ + λ̄ r ȳ ] y

=

∫

a

b

(p ȳ ′)′ y+

∫

a

b

q |y |2 + λ̄

∫

a

b

r |y |2

= (p ȳ ′) y N ab −∫
a

b

p y ′ ȳ ′+

∫

a

b

q |y |2 + λ̄

∫

a

b

r |y |2. (3.289)

Combining the above, we reach

(λ− λ̄ )

∫

a

b

r |y |2 = p(b) [y ′(b) ȳ (b)− ȳ ′(b) y(b)]− p(a) [y ′(a) ȳ (a)− ȳ ′(a) y(a)]. (3.290)

Using the boundary conditions

α0 y(a) +α1 y
′(a) = 0, (3.291)

β0 y(b)+ β1 y
′(b) = 0. (3.292)

we see that

y ′(b) ȳ (b)− ȳ ′(b) y(b)= 0, y ′(a) ȳ (a)− ȳ ′(a) y(a) =0. (3.293)

Therefore

(λ− λ̄ )

∫

a

b

r |y |2 dx=0 (3.294)

which leads to λ= λ̄ , or λ is real.

• These eigenvalues are bounded from below if α0 α1 6 0 and β0 β1 > 0. These eigenvalues are
bounded from below by 0 if furthermore q6 0.

We have

0 =

∫

a

b

[(p y ′)′+ q y+λ r y] ȳ dx

=

∫

a

b

(p y ′)′ ȳ +

∫

a

b

q |y |2 +λ

∫

a

b

r |y |2

= (p y ′) ȳ N ab −∫
a

b

p y ′ ȳ ′+

∫

a

b

q |y |2 +λ

∫

a

b

r |y |2.

= p(b) y ′(b) ȳ (b)− p(a) y ′(a) ȳ (a)−
∫

a

b

[p |y ′|2− q |y |2] +λ

∫

a

b

r |y |2. (3.295)



Thus

λ=

{

−p(b) y ′(b) ȳ (b)+ p(a) y ′(a) ȳ (a)+
∫

a

b
[p |y ′|2− q |y |2]

}

∫

a

b
r |y |2

. (3.296)

Using the boundary conditions we have

−p(b) y ′(b) ȳ (b) = p(b)
β0

β1
|y(b)|2, (3.297)

p(a)y ′(a) ȳ (a)=−p(a) α0

α1
|y(a)|2. (3.298)

When α0α1 6 0 and β0 β1 > 0, both terms are non-negative which means

λ>
−
∫

a

b
q |y |2

∫

a

b
r |y |2

. (3.299)

If furthermore q6 0, we see that λ> 0 too.

2. Properties of eigenfunctions.

• For each fixed eigenvalue λ, the solution space is one-dimensional. That is, there is yλ such
that all other solutions for the same λ is a multiple of yλ.

Fix λ. Let y(x) and z(x) be two eigenfunctions. That is

(p(x) y ′)′+ q(x) y+λ r(x) y = 0, a <x< b (3.300)

α0 y(a) +α1 y
′(a) = 0, (3.301)

β0 y(b)+ β1 y
′(b) = 0. (3.302)

and

(p(x) z ′)′+ q(x) z+λ r(x) z = 0, a<x< b (3.303)

α0 z(a) +α1 z
′(a) = 0, (3.304)

β0 z(b)+ β1 z
′(b) = 0. (3.305)

Multiplying the y equation by z and z equation by y, and subtract, we have

0 = (p y ′)′ z − (p z ′)′ y= (p (y ′ z − z ′ y))′. (3.306)

We conclude that

p(x) (y ′ z − z ′ y)(x) = p(a) (y ′ z − z ′ y)(a). (3.307)

As y, z both satisfy the boundary conditions, we have

p(a) (y ′(a) z(a)− z ′(a) y(a))= 0 (3.308)

which leads to

p (y ′ z − z ′ y) =0 � y ′ z − z ′ y= 0 (3.309)

for all a6x6 b as p(x)> 0.

Finally,

y ′ z − z ′ y= 0 � y ′

y
=
z ′

z
� ln y− ln z= constant � y/z= constant. (3.310)

• (Orthogonality)

∫

a

b

ϕn(x) ϕm(x) r(x) dx= 0 for any n� m.

It suffices to show that if λ, µ are two distinct eigenvalues, and y, z the corresponding

eigenfunctions, then
∫

a

b
y z r dx=0.



Using the equations we have

∫

a

b

[(p y ′)′+ q y+λ r y] z − [(p z ′)′+ q z+ µ r z] y dx= 0. (3.311)

After using the boundary conditions, we can show that

LHS= (λ− µ)

∫

y z r dx. (3.312)

Therefore

(λ− µ)

∫

a

b

y(x) z(x) r(x) dx= 0. (3.313)

As λ� µ, we have
∫

a

b

y(x) z(x) r(x) dx= 0. (3.314)

• (Bessel’s inequality) From orthogonality we have

06

∫

a

b
[

f(x)−
∑

n=1

N

cnϕn

]

2

r(x)dx=

∫

a

b

f(x)2 r(x) dx−
∑

n=1

N

|cn|2. (3.315)

Taking limit n� ∞ we obtain Bessel’s inequality. �

Exercises.

Exercise 3.11. Write the following equations into S-L form and discuss whether they are regular or singular. Determine

what is the orthogonality relation their eigenfunctions should satisfy.

a) Legendre’s equation:

(1− x2) y ′′− 2 x y ′+ λ y = 0, − 1 < x < 1 (3.316)

b) Chebyshev’s equation

(1− x2) y′′− x y ′+ λ y = 0, − 1 < x < 1 (3.317)

c) Laguerre’s equation

x y′′+ (1− x) y ′+ λ y = 0, 0 < x <∞ (3.318)

d) Hermite’s equation

y ′′− 2 x y ′+ λ y = 0, −∞< x <∞ (3.319)

e) Bessel’s equation of order n

x2 y ′′+ x y ′+ (λ x2−n2) y = 0, 0 < x < 1. (3.320)

Exercise 3.12. Give any second order equation

a(x) y′′+ b(x) y ′+ c (x) y =0. (3.321)

Prove that there exists a multiplier h(x) such that

h(x) [a(x) y ′′+ b(x) y ′+ c (x) y] = (p(x) y ′)′+ q(x) y. (3.322)

Note that the term of first order derivative disappears.

Exercise 3.13. (Davis) Consider the S-L problem

(p y ′)′+ q y + λ y = 0, a < x < b, y(a)= 0, y(b)= 0. (3.323)

Show that if p(x) >0, q(x) 6M , then any eigenvalue λ >−M .

References.

• Anthony W. Knapp, “Advanced Real Analysis”, §1.3.

• John M. Davis, “Introduction to Applied Partial Differential Equations”, Chap. 4.



3.3. Proof of the Theorem (Difficult parts).
Recall that we are studying regular Sturm-Liouville problems:

(p(x) y ′)′+ q(x) y+λ r(x) y = 0, a <x< b (3.324)

α0 y(a) +α1 y
′(a) = 0, (3.325)

β0 y(b)+ β1 y
′(b) = 0. (3.326)

with p, q, r are bounded on [a, b] (that is the interval a6 x6 b), p, r > 0 for all a6 x6 b, and α0, α1 real,
not both 0, and β0, β1 real, not both 0.

We would like to prove:

• It has nonzero solutions for a countably infinite set of values of λ. These eigenvalues are all real. The
set of eigenvalues does not have any limit points.

• For any f having two continuous derivatives on [a, b] and satisfying the boundary conditions, the
infinite sum

∑

n=1

∞
cnϕn (3.327)

where

cn =

∫

a

b

f(x) ϕn(x) r(x) dx

∫

a

b

ϕn(x)2 r(x) dx

(3.328)

converges absolutely uniformly to f(x). By “absolutely uniformly” we mean

∑

1

∞
|cn| |ϕn|<∞ (3.329)

and the convergence to f is uniform.

• The only continuous function f on [a, b] with

∫

a

b

f(x) ϕn(x) r(x) dx= 0 for all n is f ≡ 0.

• If ϕn’s are chosen such that
∫

a

b

ϕn(x)2 r(x) dx= 1 (3.330)

We have the following Parseval-type relation

∫

a

b

f(x)2 r(x) dx=
∑

n=1

∞
|cn|2. (3.331)

To do these we need to first transform the equation to an equivalent integral equation.

3.3.1. Equivalent integral equation.
First we show that there is a function G(x; ξ) satisfying: y=

∫

a

b
G(x, ξ) f(ξ) dξ solves

(p(x) y ′)′+ q(x) y+ f(x) = 0, a <x< b (3.332)

α0 y(a)+α1 y
′(a) = 0, (3.333)

β0 y(b)+ β1 y
′(b) = 0. (3.334)

Such a function is called the “Green’s function” to the problem. We do this through explicit construction.
The basic idea is as follows. We try to find a solution to

(p(x) y ′)′+ q(x) y+ δ(x− ξ) = 0, a <x<b (3.335)

α0 y(a) +α1 y
′(a) = 0, (3.336)

β0 y(b)+ β1 y
′(b) = 0. (3.337)

and call this solution G(x, ξ). Then it is clear that y =
∫

a

b
G(x, ξ) f(ξ) dξ is the solution to the original

problem. The proof of this is left as an exercise.



Since δ(x− ξ)= 0 for x� ξ, we see that (Here we fix ξ, so ′ stands for x derivative)

(p(x)G′)′+ q(x)G=0 a<x< ξ, ξ <x< b. (3.338)

Now by the theory of 2nd order ODE, there is y1(x) satisfying

(p(x) y ′)′+ q(x) y= 0, α0 y(a)+α1 y
′(a)= 0 (3.339)

and y2(x) satisfying

(p(x) y ′)′+ q(x) y=0, β0 y(b)+ β1 y
′(b)= 0 (3.340)

We assume y1, y2 are linearly independent. Then we know the general solution to (p y ′)′ + q y = 0 is
C1 y1 +C2 y2. Therefore

G(x, ξ)=

{

C1(ξ) y1(x)+C2(ξ) y2(x) a<x< ξ

D1(ξ) y1(x) +D2(ξ) y2(x) ξ <x<b
. (3.341)

Since y1, y2 are linearly independent, y2, y1 cannot satisfy the boundary condition at a, b respectively.
Consequently C2 =D1 =0.

To accomodate the δ(x− ξ) term, we integrate, for any ε> 0:

∫

ξ−ε

ξ+ε

[(p(x)G′)′ + q(x)G] dx+

∫

ξ−ε

ξ+ε

δ(x− ξ) dx= 0 (3.342)

which leads to

p(ξ+ ε)G′(ξ+ ε, ξ)− p(ξ − ε)G′(ξ − ε, ξ)+

∫

ξ−ε

ξ+ε

q(x)Gdx+ 1= 0. (3.343)

Now take the limit ε� 0, As q,G are bounded, the integral term�0. Using (3.341) we reach

p(ξ) [C1 y1
′ −D2 y2

′] =−1. (3.344)

Together with the continuity of G at x= ξ:

C1 y1−D2 y2 =0 (3.345)

we obtain

C1 =
−y2

p [y1
′ y2− y1 y2

′]
, D2 =

−y1
p [y1

′ y2− y1 y2
′]
. (3.346)

Thus we obtain

G(x, ξ)=



















− y2(ξ) y1(x)

p [y1
′ y2− y1 y2

′]
a<x< ξ

− y1(ξ) y2(x)

p [y1
′ y2− y1 y2

′]
ξ <x< b

. (3.347)

It turns out that G(x, ξ)=G(ξ, x). (See exercise)
Now we turn back to the Sturm-Liouville problem

(p(x) y ′)′+ q(x) y+λ r(x) y = 0, a <x< b (3.348)

α0 y(a) +α1 y
′(a) = 0, (3.349)

β0 y(b)+ β1 y
′(b) = 0. (3.350)

We see that the solution can be written as

y(x)=λ

∫

a

b

G(x, ξ) r(ξ) y(ξ) dξ (3.351)

Now set z(x)= r1/2(x) y(x) and k(x, ξ)= r(x)1/2G(x, ξ) r(ξ)1/2, we reach

z(x)=λ

∫

a

b

k(x, ξ) z(ξ) dξ. (3.352)

If we denote the operator

K[z]6 ∫

a

b

k(x, ξ) z(ξ) dξ (3.353)



then we have

K[z] = µ z (3.354)

where µ=λ−1.
It is clear that: The integral form problem (3.354) and the original Sturm-Liouville problem share

eigenfunctions, and have one-to-one correspondence between eigenvalues. Therefore in the following we
study the integral form.

Remark 3.17. Note that there may be a problem if λ = 0 (and λ < 0 during the following proofs). This
is easily fixed. Since all (possible) eigenvalues are bounded below, we can find a number c and change the
equation to

(p y ′)′+ (q− c r) y+ (λ+ c) r y=0. (3.355)

Thus the new eigenvalues are λ+ c which are all positive.

Remark 3.18. Also note that the orthogonality relations

∫

a

b

yn(x) ym(x) r(x)dx=0 (3.356)

becomes
∫

a

b

zn(x) zm(x) dx= 0 (3.357)

since zn(x)= r(x)1/2 yn(x), zm(x)= r(x)1/2 ym(x).

3.3.2. Some notations.
Now we introduce some notations to simplify the following presentation. Later we will see that these can

be greatly generalized.

• Inner product: Let z, z̃ be two real functions, then their “inner product” is defined as

(z, z̃ )6 ∫

a

b

z(x) z̃ (x) dx. (3.358)

Inner product is the infinite dimensional generalization of dot product for vectors.

• L2 Norm: We define the L2 norm as

‖z‖= (z, z)1/2. (3.359)

Remark 3.19. Norms are generalizations of length of vectors, which in turn generalizes absolute
value for numbers. Thus a basic requirement should be ‖z‖> 0, and ‖z‖=0� z=0. This explains
the requirement r(x)> 0.

• Orthogonality: Two functions z, z̃ are said to be “orthogonal” if (z, z̃ )= 0.

• Linear operators and self-adjointness.
A linear operator is a mapping K:L2� L2 such that

K(a z1 + b z2)= aK[z1] + bK[z2]; (3.360)

The operator is self-adjoint if

(Kz1, z2)= (z1,Kz2). (3.361)

Self-adjoint operator is a generalization of symmetric (Hermitian if complex) matrices.

• Norm of operators.
The norm of an operator is defined as

‖K‖6 sup
‖f ‖=1

‖Kf ‖= sup
f� 0

‖Kf ‖
‖f ‖ . (3.362)



An operator is said to be bounded if its norm is finite. From definition we have, for any f ,

‖Kf ‖6 ‖K‖ ‖f ‖. (3.363)

• Cauchy-Schwarz inequality. Let (·, ·) be an inner product, and ‖·‖ the associated norm. Then

|(f , g)|6 ‖f ‖ ‖g‖. (3.364)

We can show that our operator

Kf6 ∫

a

b

k(x, ξ) f(ξ) dξ (3.365)

is a linear, self-adjoint, bounded operator.

3.3.3. Eigenvalues are countable and isolated.
In this section we show that the eigenvalues are countable and have no limit point(s), in other words, the

eigenvalues (assuming it’s bounded below) can be listed 0<λ1<λ2<λ3<
 .
From the duscussion in the last section we see that it suffices to show that the eigenvalues of (3.354) can

be listed as µ1> µ2>
 > 0, with 0 the only possible limit point.
This is done in several steps.

1. There is at least one eigenvalue.
Consider m6 sup‖z‖=1 (K[z], z) where the supreme is taken over all continuous functions with

∫

a

b
z2 = 1. Since k(x, ξ) is a bounded function, m∈R. We show that m= µ1.
By definition of sup there is {zn} satisfying ‖zn‖ = 1 and (K[zn], zn)� m. All we need to do

is to show that there is a subsequence of zn converging uniformly. However this turns out to be not
easy. So we apply the following trick: Instead of showing zn→ an eigenfunction, we show K[zn]→
an eigenfunction.

• The idea is to try to apply the following

Theorem 3.20. (Arzela-Ascoli) Let {fn(x)} be a sequence of functions that are

◦ Uniformly bounded: There isM>0 such that |fn(x)|6M for all n∈N and all x∈ [a,b].

◦ Equicontinuous: For any ε > 0, there is δ > 0 such that |x1 − x2| < δ� |fn(x1) −
fn(x2)|<ε holds for all n∈N and all x1, x2∈ [a, b].

Then there is a subsequence fnk
(x) converging uniformly to some continuous function f(x).

That is for any ε>0, there isK∈N such that for all k>N, and all x∈ [a,b], |fnk
(x)− f(x)|<ε.

• First we show that K[zn] is uniformly bounded. This follows from the inequality

|K[zn]|6
∫

a

b

|k(x, ξ)| |zn(ξ)| dξ6

(

∫

a

b

k(x, ξ)2 dξ

)

1/2
(

∫

a

b

|zn(ξ)|2 dξ

)

1/2

(3.366)

and the boundedness of k.

• Next we show that K[zn] is equicontinuous, that is for any ε > 0 there is δ > 0 such that
whenever |x1− x2|<δ, |K[zn](x1)−K[zn](x2)|<ε.

To see this we write

|K[zn](x1)−K[zn](x2)| =

∣

∣

∣

∣

∣

∫

a

b

[k(x1, ξ)− k(x2, ξ)] zn(ξ) dξ

∣

∣

∣

∣

∣

6

∫

a

b

|k(x1, ξ)− k(x2, ξ)| |zn(ξ)| dξ

6

(

∫

a

b

|k(x1, ξ)− k(x2, ξ)|2 dξ

)

1/2
(

∫

a

b

|zn(ξ)|2 dξ

)

1/2

=

(

∫

a

b

|k(x1, ξ)− k(x2, ξ)|2 dξ

)

1/2

. (3.367)



Since k is continuous over [a, b]× [a, b], it is uniformly continuous, thus there is δ >0 such that
whenever |x1− x2|<δ, |k(x1, ξ)− k(x2, ξ)|< ε

b − a
√ .

• Therefore there is a subsequence znk
such that K[znk

] converges uniformly to some function
ϕ. We now show that ϕ must be an eigenfunction with eigenvalue m. We have

‖K[znk
]−mznk

‖2 = (K[znk
]−mznk

,K[znk
]−mznk

)

= (K[znk
],K[znk

])− 2m (K[znk
], znk

)+m2� ‖ϕ‖2−m2 (3.368)

This implies ‖ϕ‖2 >m2> 0� ϕ� 0.
Since K is bounded, to show Kϕ=mϕ, all we need

0= ‖Kϕ−mϕ‖= lim
k�∞

‖K[K[znk
]]−mK[znk

]‖� ‖K[znk
]−mznk

‖� 0. (3.369)

We re-visit

‖K[znk
]−mznk

‖2 = (K[znk
],K[znk

])− 2m (K[znk
], znk

)+m2 6m2 (3.370)

All we need to show is ‖K[znk
]‖6m.

• Proof of ‖Kf ‖6m ‖f ‖. It suffices to prove ‖Kf ‖6m for all ‖f ‖6 1.
Take any f , g with ‖f ‖ = ‖g‖ = 1. We have (K(f − g), (f − g)) > 0 (see exercise) which

leads to

(Kf , f)+ (Kg, g)− 2 (Kf , g)> 0� (Kf , g)6m. (3.371)

This holds for all f , g with ‖f ‖ = ‖g‖ = 1. Now take g =
Kf

‖Kf ‖ leads to ‖Kf ‖ 6 m. Thus
‖K[znk

]‖6m as desired.

2. The eigenvalues cannot have nonzero limit point(s).
Assume the contrary. We have

K[znj
] =λj znj

(3.372)

with λj� λ > 0. Then without loss of generality, we can assume λj > λ/2 for all j. Now since znj

are orthogonal to one another, we have

‖K[znj
]−K[znk

]‖=λj
2 +λk

2 >λ2/2. (3.373)

On the other hand we know that there is a subsequence converging uniformly. Contradiction.

3.3.4. Generalized Fourier expansion.
In this section we show that the eigenfunctions can be used to expand a general twice continuously

differentiable function.

• First we show that if there is a continuous function f such that (f , zn)=
∫

a

b
f(x) zn(x) dx=0 for all

eigenfunctions zn, then f(x) =0.
Assume not. Then consider all such functions. Name this set by H . Without loss of generality,

we assume zn’s are normalized, that is ‖zn‖=1.
We first show that if f ∈H then so does Kf :

(Kf , zn)= (f ,Kzn)=λn (f , zn)= 0. (3.374)

Note that we have used the self-adjointness of K.
Next we show that if fm∈H , ‖fm − f ‖� 0, then f ∈H . To see this we use Cauchy-Schwarz:

|(f , zn)|= |(fm − f , zn)|6 ‖fm − f ‖ ‖zn‖= ‖fm− f ‖� 0. (3.375)

Therefore we can repeat the argument of existence of eigenvalues to show that supf∈H,‖f ‖=1 (Kf ,

f)> 0 (because (Kf , f)> 0 for all f � 0) is an eigenvalue with some eigenfunction f̃ . But then there

must be n such that f̃ = zn which leads to
(

f̃ , zn

)� 0, contradiction.



• Next we show the Parseval relation. By Bessel’s inequality, we have the convergence of
∑

cn zn with

cn =
(f , zn)

‖zn‖2
. Now f −∑ cn zn satisfies

(

f −
∑

cn zn, zn

)

=0 (3.376)

thus we have f =
∑

cn zn which leads to Parseval’s equality.

• Finally we show that if f ∈C2 (and satisfies the boundary conditions) then the expansion converges
uniformly. Notice that every such f can be written as K[g] with g continuous. Then

∑

n=M

N

|(f , zn) zn|=
∑

n=M

N

µn |gn zn|� 0 (3.377)

uniformly because µn� 0. This means the sequence
∑

n=M

N (f , zn) zn is Cauchy (uniformly in x)
and convergence follows.

Exercises.

Exercise 3.14. Show that if G(x, ξ) solves

(p(x) y ′)′+ q(x) y + δ(x− ξ) = 0, a < x < b (3.378)

α0 y(a) + α1 y ′(a) = 0, (3.379)

β0 y(b) + β1 y ′(b) = 0. (3.380)

then y =
∫

a

b
G(x, ξ) f(ξ) dξ solves

(p(x) y ′)′+ q(x) y + f(x) = 0, a < x < b (3.381)

α0 y(a) +α1 y ′(a) = 0, (3.382)

β0 y(b)+ β1 y ′(b) = 0. (3.383)

Exercise 3.15. Calculate Green’s functions for the following problems.

a) y ′′= 0, y(0)= y(1) = 0.

b) y ′′= 0, y(0) = y ′(1)= 0.

Exercise 3.16. In the construction of Green’s function, we need the solutions to

(p(x) y ′)′+ q(x) y = 0, α0 y(a)+ α1 y ′(a) = 0 (3.384)

and

(p(x) y ′)′+ q(x) y = 0, β0 y(b)+ β1 y ′(b) = 0 (3.385)

to be linearly independent. What happens if that’s not the case?

Exercise 3.17. Prove that the Green’s function G(x, ξ) as defined in (3.347) is symmetric: G(x, ξ)=G(ξ, x). (Hint: Show

that p [y1
′ y2− y1 y2

′ ] is constant).

Exercise 3.18. Show K is linear, self-adjoint, bounded.

Exercise 3.19. Let K be defined as

Kf 6 ∫

a

b

k(x; ξ) f(ξ) dξ (3.386)

where

k(x; ξ)= r(x)1/2 G(x; ξ) r(ξ)1/2 (3.387)

with G(x; ξ) the Green’s function for the operator

−(p y′)′+ q y with boundary conditions y(a)= y(b)= 0 (3.388)

in the sense that the solution to

−(p y ′)′+ q y = f , y(a)= y(b) = 0 (3.389)

is given by

y(x)=

∫

a

b

G(x; ξ) f(ξ) dξ. (3.390)

Assume p, q >0. Show that K is a non-negative operator, that is (Kz, z) >0 for all continuous functions z.

References.

• Anthony W. Knapp, “Advanced Real Analysis”, Chap. 2.

• Kôsaku Yosida, “Lectures on Differential and Integral Equations”, Chap. 2.



3.4. Higher Dimensional Problems.
In contrast to Section 3.1, here we consider higher dimensional equations in an irregular domain instead

of regular ones like rectangle, disc, sphere, etc. Note that the shared property of those “regular” domains is
that they are either rectangular or can be tranformed to a rectangular domain through change of variables.
In this case one can still formulate the eigenvalue problems and study their properties, but usually one cannot
write explicit formulas for the eigenfunctions anymore.

3.4.1. Higher dimensional separation of variables.
In the following we use the notation x = (x1, 	 , xn). We consider the following equation in higher

dimensions: Let Ω be a domain in Rn, let L be a linear differential operator of the following form:

L[u] =−
∑

i,j=1

n

(p(x)uxj
)xi

+ q(x)u=−∇ · (p∇u)+ q u (3.391)

For example, when p= 1, q= 0, L is the usual Laplace operator

L[u] =−△u. (3.392)

We will the reason for the negative sign later.
Then we set up the equation as

ut +L[u] = 0 Ω×R+, u(x, 0)= f(x) (3.393)

with certain boundary conditions.
Now we can apply the idea of separation of variables. Since Ω is a general domain, there is usually no

change of variables to map it to a rectangular one, therefore we can only write T (t)X(x) and try to require
it to solve the equation. Substituting into the equation we reach

T ′(t)X(x) +T (t)L[X ] = 0� L[X ]−λX =0, T ′(t)+λT (t)= 0. (3.394)

From our understanding of the method, we expect the eigenvalue problem

L[X]−λX = 0, boundary conditions (3.395)

to have countably many eigenvalues which can be listed by their sizes: λ1<λ2<
 and for each eigenvalue
we expect to have one Xi(x). These Xi(x) are orthogonal in the sense that

∫

Ω

Xn(x)Xm(x) dx = 0 m� n (3.396)

and complete in the sense that for any reasonably smooth f(x), we can write

f(x)=
∑

n=1

∞
fnXn(x) with fn =

∫

Ω
f(x)Xn(x) dx
∫

Ω
Xn(x)2 dx

. (3.397)

Then the final solution should be

u(x, t) =
∑

n=1

∞
fn e

−λntXn(x). (3.398)

Before we proceed, we have to point out that some of the above expectations are not realistic. For example,
in higher dimensions, it may happen that more than one linearly independent eigenfunctions correspond to
one same eigenvalue λ. To see this, recall the heat equation in rectangular domain

ut =uxx + uyy, 0<x<π, 0< y<π. (3.399)

We know that the eigenvalues are m2 + n2 with eigenfunctions sin n x sin m x. But clearly there is the

possibility that m1
2 +n1

2 =m2
2 +n2

2.
Now we introduce the boundary conditions:

α(x)u+ β(x)
∂u

∂n
= 0 on ∂Ω. (3.400)



This looks complicated but is in fact a natural generalization of the 1D boundary conditions

α1u(a, t)+ β1ux(a, t)=α2u(b, t) + β2ux(b, t)= 0. (3.401)

Example 3.21. Consider the heat equation in cylinder (Example 3.12). The eigenfunctions are Xn,k,1(x,
y)=Rn,k(r) cos (n θ),Xn,k,w(x, y)=Rn,k sin (n θ). Where Rn,k(r)=Jn(αn,k r) with Jn Bessel function of the
first kind. It is important to notice that these eigenfunctions are orthogonal:

∫

x2+y261

Xn,k,i(x, y)Xm,l,j(x, y) dxdy=0 (3.402)

unless n=m, k= l, i= j. Note that the weight r for the orthogonality relation of Jn follows from change of
variables to polar coordinates.

As in the 1D case, we turn to a more abstract setting. We define the following inner product:

(u, v)6 ∫

Ω

u(x) v(x) dx (3.403)

which induces to the norm

‖u‖6 (
∫

Ω

u(x)2 dx

)

1/2

. (3.404)

Recall that in 1D what we actually study is the inverse operator L−1 defined through Green’s function. Such
explicit definition is not possible anymore. Nevertheless, it turns out that L−1 is still well-defined under the
following conditions:

• There is p0> 0 such that p(x)> p0 for all x∈Ω.

• q(x)> 0 for all x∈Ω.

• α(x) β(x)> 0 for all x∈ ∂Ω.

The proof of this fact is beyond this course. Let K =L−1. We will only explicitly use K in a few places in
the following discussions.

Remark 3.22. Under the above assumptions the operator L = −∇ · (p ∇) + q is “uniformly elliptic”. A
paradigm uniformly elliptic operator is −△. In appropriate setting, uniformly elliptic operators enjoy the
same nice properties as −△.

Similar to the situation in 1D, a few simple facts can be easily derived.

• The operatos L,K are self-adjoint. We check

(L[u], v) =

∫

Ω

[−∇ · (p∇u)+ q u] v

=

∫

Ω

p∇u · ∇v+ q u v−
∫

∂Ω

p n · ∇u v

=

∫

Ω

p∇u · ∇v+ q u v−
∫

∂Ω

p v
∂u

∂n

=

∫

Ω

[−∇ · (p∇v)+ q v]u+

∫

∂Ω

p

[

u
∂v

∂n
− v

∂u

∂n

]

= (u, L[v]). (3.405)

Note that the boundary term vanishes due to the boundary condition (3.400).
The self-adjointness of K easily follows as

(K[u], v)= (K[u], L(K[v]))= (L(K[u]),K[v])= (u,K[v]). (3.406)

Remark 3.23. We see that after integration by parts twice, [−∇ · (p ∇u) + q u] v becomes
[−∇ · (p∇v)+ q v]. If we ignore the boundary terms, we already have (L[u], v) = (u, L[v]). Such L is
said to be “formally self-adjoint”. More generally, the “formal adjoint” of a differential operator L can
be defined through

(L[u], v)= (u, L∗[v]) +boundary terms. (3.407)



Thus an operator is self-adjoint if

1. It is formally self-adjoint;

2. The boundary condition is appropriate.

• All eigenvalues (if any) are non-negative.

λ ‖u‖2 =λ (u, u) = (L[u], u)

=

∫

Ω

[p |∇u|2 + q u2] dx−
∫

∂Ω

p u
∂u

∂n
dA

=

∫

Ω

[p |∇u|2 + q u2] dx +

∫

∂Ω

p
α

β
u2 dA> 0. (3.408)

• Eigenfunctions corresponding to different eigenvalues are orthogonal.

Let L[u] =λ u, L[v] = µ v with λ� µ. Then we have

λ (u, v) = (L[u], v)= (u, L[v]) = µ (u, v)� (u, v) =0. (3.409)

Note that as the eigenspaces may not be one-dimensional, we cannot yet conclude the existence of an
orthogonal system of eigenfunctions ordered by their corresponding eigenvalues. To do that we need
two things:

1. For each eigenspace we can find a orthogonal basis;

2. Each eigenspace is finite dimensional.

The first can be done using the following Gram-Schmidt orthogonalization procedure, the second
needs some deeper properties of compact operators.

3.4.2. Gram-Schmidt orthogonalization.
Recall that now it is possible to have more than one linearly independent eigenfunctions corresponding

to one single eigenvalue. Then there is no way to prove that they must be orthogonal. However, given a set
of linearly independent functions, we can always “orthogonalize” them through the following Gram-Schmidt
process.

Let u1,	 , un be a set of linearly independent functions. We define

v1 =
u1

‖u1‖
; (3.410)

v2 =
u2− (u2, v1) v1

‖u2− (u2, v1) v1‖
; (3.411)

v3 =
u3− (u3, v1) v1− (u3, v2) v2

‖u3− (u3, v1) v1− (u3, v2) v2‖
; (3.412)� �

It is easy to see that v1,	 , vn now form a set of orthonormal functions, that is

‖vi‖=1, (vi, vj) =0 when i� j. (3.413)

We also note that

span{v1,	 , vk}= span{u1,	 , uk} (3.414)

for all 16 k6n.

3.4.3. Hilbert spaces, compact operators.
A Hilbert space is a special kind of abstract vector space.

A vector space is a set V with two operations defined: addition between elements of V and multiplication
between an element of V and a number α. These two operations share the properties of the same operations
on Rn and R:

i. There is an element 0∈ V such that 0+ v = v for all v ∈V ;

ii. u + v = v + u;



iii. (u +v)+ w = u+ (v +w);

iv. For each u∈V there is an element −u∈V such that u+ (−u)= 0.

v. 1 ·u =u for all u∈V ;

vi. (a+ b) u= a ·u+ b ·u;
vii. a (u+ v) = a ·u + b ·u;
viii. a (bu) = (a b) u.

Remark 3.24. The above is called “real” vector space since the scalars a, b ∈ R. We can replace R by
the complex numbers C or any other fields to obtain other types of vector spaces. Some of the following
definitions, in particular the definition of inner product, may need to be modified in those cases.

Example 3.25. The set of continuous functions with usual addition between functions and scalar-function
multiplication is a vector space.

Now we define a linear operator. A linear operator is a mapping L between two vector spaces V , W
satisfying

i. L[v +w] =L[v] +L[w];

ii. L[av] = aL[w].

Example 3.26. Let V be the set of continuously differentiable functions and W the set of continuous
functions, then L=

d

dx
is a linear operator from V to W .

Note that all we can do in an abstract vector space is linear algebra. Analysis is not possible because
there is no definition of convergence yet. To be able to discuss convergence, we need to introduce the idea
of “norm”. This leads to the definition of Banach space, to which Hilbert space is a special case. We jump
directly to this special case.

Definition 3.27. A Hilbert space H is an abstract vector space with an “inner product” defined. An inner
product is a bilinear form (·, ·):H ×H� R satisfying

i. (u, v)= (v, u);

ii. (a u+ b v, w)= a (u,w)+ b (v, w); (u, a v+ b w)= a (u, v) + b (u,w).

iii. (u, u) > 0, with equality if and only if u= 0.

Example 3.28. The set of all square integrable functions with inner product (u, v)=
∫

u v dx is a Hilbert
space.

With inner product comes the norm:

‖u‖6 (u, u)1/2. (3.415)

With norm comes convergence:

un� u if ‖un −u‖� 0. (3.416)

and boundedness of linear operators: L is bounded if there is K > 0 such that

‖Lu‖6K ‖u‖, ∀u∈H. (3.417)

With convergence comes the continuity of linear operators: A linear operator L on a Hilbert space H is
continuous if un� u then Lun� Lu.

Definition 3.29. (Compact operator) An operator on a Hilbert space L: H � H is compact if {un}
bounded � there is a subsequence unk

such that Lunk
converges.



Example 3.30. If H is finite-dimensional then all linear operators on it are compact; When H is infinite-
dimensional, there are non-compact linear operators. A paradigm example is the identity operator Lu= u.
Another is the shift operator:

(x1, x2,	 )� (0, x1, x2,	 ) (3.418)

on the Hilbert space of infinite dimensional vectors with inner product:

(x, y)=
∑

n=1

∞
xn yn. (3.419)

3.4.4. Higher dimensional Sturm-Liouville type theory.

In this section we try to prove the following properties of the eigenvalue problem

−∇ · (p∇u)+ q u=λu, α(x) u+ β(x)
∂u

∂n
= 0 on ∂Ω. (3.420)

a) There is at least one eigenvalue.

Define the energy functional E[u]: =(L[u], u) =
∫

p |∇u|2 + q u2 +
∫

∂Ω
p

α

β
u2.

We claim that,

λ1 =min
u� 0

(L[u], u)

(u, u)
. (3.421)

The fact that this minimum is attained requires knowledge of Sobolev spaces and is omitted. Now we
assume u1 is the minimizer, and try to show that it is an eigenfunction. Consider a small parametrized
perturbuation

(L[u+ s v], u+ s v)

(u+ s v, u+ s v)
=

(L[u], u) +2 s (L[u], v) + s2 (L[v], v)

(u, u)+ 2 s (u, v)+ s2 (v, v)
. (3.422)

Since s= 0 is a minimizer, taking derivative
d

ds
we reach

[2 (L[u], v) + 2 s (L[v], v)] [(u, u) + 2 s (u, v) + s2 (v, v)] − (L[u], u) + 2 s (L[u], v) + s2 (L[v],

v) [2 (u, v) +2 s (v, v)] = 0. (3.423)

Now set s= 0 we reach

(L[u], v) (u, u)= (L[u], u) (u, v)� (L[u1]−λ1u1, v) =0. (3.424)

Since this is true for all v, we conclude that L[u1] =λ1u1.

That λ1 is the smallest eigenvalue is trivial.

b) There are countably many eigenvalues which can be listed λ1<λ2<	 , and each eigenspace is finite
dimensional.

Note that we can obtain λ2, λ3,	 as follows:

λ2 = min
u⊥u1

(L[u], u)

(u, u)
, λ3 = min

u⊥u1,u2

(L[u], u)

(u, u)
(3.425)

Note that here it may happen that λ2 =λ1.

This way we obtain countably many eigenvalues.

To show that each eigenvalue is only repeated finitely many times we need to turn to the inverse
operator K =L−1 and try to show that the eigenspace of each of its eigenvalues is finite dimensional.
An important fact we have to use is that K is a compact operator. Thus we show: If K is compact
and λ is an eigenvalue, then there are only finitely many linearly independent eigenvectors. Assume
the contrary, then there is a sequence of linearly independent eigenvectors u1, u2,	 . Apply the Gram-
Schmidt orthogonalization procedure, we obtain v1, v2,	 such that

(vi, vj) = δij. (3.426)



Now it is easy to show that {Kvi} does not have any convergent subsequence. Contradiction.

To show that these are all the eigenvalues we only need to show that if any function f is
perpendicular to all these eigenfunctions, then f = 0, that is the eigenfunctions form a complete
set of the space L2(Ω).

c) The normalized eigenfunctions form a complete orthonormal set.

To do this we need to show first that λn� ∞. Assume the contrary, that is λn� λ∈R (note
that λn is increasing, so this is exactly the contrary to λn�∞). Take one eigenfunction un for each
λn and normalize it, we obtain a sequence {un} such that

(ui, uj) = δij , Kui =λi ui. (3.427)

Since λi� λ, there is N ∈N such that for all n>N , λ/2<λn 6λ. Then we have

‖Kui −Kuj‖2 = ‖Kui‖2 + ‖Kuj‖2>
λ2

2
(3.428)

which contradicts the compactness of K.

Now note that if u⊥u1,	 , uN, then we have

(L[u], u) >λN (u, u)� ‖u‖6
1

λN
(L[u], u). (3.429)

But this leads to contradiction unless (L[u], u)=∞!

Remark 3.31. We notice that the convergence proof seems simpler than in the 1D case. The reason is that
here we only proved the convergence in L2 norm instead of uniform convergence.

Exercises.

Exercise 3.20. Prove that for a linear operator, the following are equivalent:

a) It is continuous;

b) It is continuous at 0;

c) It is bounded.

Exercise 3.21. Let H be a finite dimensional Hilbert space, and L is a linear operator L:H� H. Prove that

a) L is bounded.

b) L is compact.

Exercise 3.22. Construct a sequence fn(x)� 0 for every x∈R, but ‖fn‖=
( ∫

R
f(x)2 dx

)

1/2 = 1 for all n.

Exercise 3.23. Let V be a linear vector space. A norm ‖·‖ is a mapping V �R satisfying

a) For any v ∈V , ‖v‖>0, and ‖v‖= 0� v = 0.

b) For any v ∈V and a∈R, ‖a v‖= |a| ‖v‖.

c) For any u, v ∈V , ‖u+ v‖6‖u‖+ ‖v‖.

Prove that

‖v‖6 sup
x∈[a,b]

|f(x)| (3.430)

is a norm on V = {f(x): [a, b]�RN f(x) isbounded}. Then show that this norm does not come from an inner product, that

is there can be no inner product that ‖v‖2=(v, v). (Hint: Show that if (·, ·) is an inner product, then (u+v, u+v)+(u−v,

u − v)= 2 (u, u)+ 2 (v, v).)

Exercise 3.24. Recall the Legendre’s polynomials are eigenfunctions of

(1− x2) y ′′− 2 x y ′+ λ y = 0, − 1 < x < 1 (3.431)

satisfying: Pm(x) is a polynomial of degree m.

Prove: If we take um(x) = xm and apply Gram-Schmidt orthogonalization to them using inner product (u, v) =
∫

−1

1
u(x) v(x) dx, the resulting orthonormal set is {am Pm(x)}, where am =

(

∫

−1

1
[Pm(x)]2 dx

)

−1/2
.



3.5. Problems.

3.5.1. Frobenius theory of power series solutions.
One way to understand a general linear second order equation

y ′′ + p(x) y ′+ q(x) y=0 (3.432)

is through the power series method, which in its simplest form works as follows:

1. Write y=
∑

n=0
∞

an (x− x0)
n,

2. Substitute this y into the equation, obtain formulas for an.

3. Study the resulting infinite series
∑

n=0
∞

an (x− x0)
n (now all an’s are known).

However, this simple approach only works when both p(x) and q(x) are analytic at x0 (such x0 is
called “ordinary”). Recall that a function f(x) is analytic at a point x0 if there is ρ> 0 such that

f(x)= Its Taylor expansion at x0 ∀|x−x0|< ρ. (3.433)

All infinitely differentiable (at x0) functions have a Taylor expansion, but not all infinitely differentiable

functions are analytic, as can be seen from the example f(x) =

{

e−1/x x> 0
0 x6 0

whose Taylor expansion at

x0 = 0 is

0 +0 ·x+
0

2
·x2 +

0

6
·x3 +
 = 0� f(x) (3.434)

for every x> 0.
When p(x), q(x) are not both analytic at x0 (in the following for simplicity of presentation we set x0 =0

when writing expansions), the point x0 is called “singular”. the power series method can still be adapted to
work when x0 is “regular singular”, that is (remember we set x0 = 0 when writing formulas)

p(x)x, q(x)x2 (3.435)

are analytic. In other words p(x) has a pole of order at most 1, and q(x) has a pole of order at most 2.
The following theorem guaranteed that the power series method still works as long as the starting ansatz is
changed to

y= xν
∑

n=0

∞
an (x− x0)

n (3.436)

where ν may be complex.

Theorem 3.32. (Fuchs) x0 is regular singular� There is ρ∈R, ρ> 0, such that for all solutions y(x)
of ( 3.432), limx� x0

(x− x0)
ρ y(x) =0.

Proof.

• � . This part is relatively easy (but tedious). One just needs to start from the ansatz (3.436) and
solve the equation, that is figuring out ν as well as all an’s, and then prove convergence of the resulting
series solution. The details can be found in any elementary ODE book such as the textbooks for Math
334 and Math 201 here at UA.

• � . We need to show that if there is ρ> 0 such that limx� 0x
ρ y(x)= 0 for all solutions y(x), then

p(x) x, q(x)x2 are analytic. This part is a bit tricky. The outline of the proof is as follows.

1. First show the existence of a solution y(x)=xrϕ(x) where ϕ(x) is analytic.
To do this, let y1, y2 be linearly independent solutions. Then if we continue them along

circles around x0, the resulting functions Y1, Y2, which still solve the equation, can be
represented as

Y1 =αy1 + β y2; Y2 = γ y1 + δ y2. (3.437)

Thus for any solution y= c y1 + d y2, after such continuation we get

Y =

[(

α β

γ δ

)(

c

d

)]

·
(

y1
y2

)

. (3.438)



Now let
(

c

d

)

be an eigenvector, then

Y =λ y (3.439)

after one round of continuation. Take r1 by setting

e2πir1 =λ. (3.440)

Note that we need to show λ� 0 through showing α δ− β γ � 0.
Thus

y= xr1 ϕ0 (3.441)

where ϕ0 is single valued. As limx� 0x
ρ y(x)=0 ϕ0 can have at most a pole at x=0 which gives

y= xrϕ (3.442)

for some r∈C.

2. Now we denote the above solution by y1. And obtain y2 through reduction of order. We will get

y2(x) = y1(x) [a log x+xsψ(x)] (3.443)

where a is a constant and ψ is single valued analytic except at x=0. Similar to ϕ we see that
ψ has at most a pole.

3. Now recall that

p(x)=
y1
′′ y2− y2

′′ y1
y1 y2

′ − y2 y1
′ ; q(x)=−y1

′′

y1
− p

y1
′

y1
(3.444)

We obtain the desired result.

�
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