Math 436 Midterm Solution

Oct. 18, 2012 12:30pm - 1:50pm Total 50 Pts.
NAME: ID \#:

Problem 1. (10 pts) Let c, κ be constants, $\kappa>0$. Design a random walk model which leads to the equation

$$
\begin{equation*}
u_{t}+c u_{x}=\kappa u_{x x} \tag{1}
\end{equation*}
$$

then obtain Duhamel's principle for the corresponding nonhomogeneous equation

$$
\begin{equation*}
u_{t}+c u_{x}=\kappa u_{x x}+f(x, t) \tag{2}
\end{equation*}
$$

Solution. Consider a random walk with probability p moving left and $q=1-p$ moving right, with spatial step size h and time step size τ. Then we have

$$
\begin{equation*}
u(x, t+\tau)=p u(x+h, t)+q u(x-h, t) \tag{3}
\end{equation*}
$$

Taylor expansion leads to

$$
\begin{equation*}
u+u_{t} \tau+o(\tau)=p\left[u+u_{x} h+\frac{1}{2} u_{x x} h^{2}+o\left(h^{2}\right)\right]+q\left[u-u_{x} h+\frac{1}{2} u_{x x} h^{2}+o\left(h^{2}\right)\right] \tag{4}
\end{equation*}
$$

which simplifies to

$$
\begin{equation*}
u_{t}+\frac{q-p}{\tau} h u_{x}=\frac{h^{2}}{2 \tau} u_{x x}+o\left(\frac{h^{2}}{\tau}\right)+o(1) \tag{5}
\end{equation*}
$$

If we take $\frac{h^{2}}{2 \tau} \longrightarrow \kappa$ and $\frac{q-p}{\tau} h \longrightarrow c$, we reach the equation

$$
\begin{equation*}
u_{t}+c u_{x}=\kappa u_{x x} \tag{6}
\end{equation*}
$$

For the Duhamel's principle, we consider the situation that at location x, after time t, the probability is increased by $\tau f(x, t)$. Then the equation becomes

$$
\begin{equation*}
u_{t}+c u_{x}=\kappa u_{x x}+f(x, t) \tag{7}
\end{equation*}
$$

Thus the Duhamel's principle should read:

$$
\begin{equation*}
u(x, t)=U(x, t)+\int_{0}^{t} v(x, t ; s) \mathrm{d} s \tag{8}
\end{equation*}
$$

where $U(x, t)$ solves

$$
\begin{equation*}
u_{t}+c u_{x}=\kappa u_{x x}, \quad u(x, 0)=u_{0}(x) \tag{9}
\end{equation*}
$$

and $v(x, t ; s)$ solves

$$
\begin{equation*}
v_{t}+c v_{x}=\kappa v_{x x}, \quad v(x, s ; s)=f(x, s) \tag{10}
\end{equation*}
$$

Problem 2. (10 pts) Solve the initial value problem

$$
\begin{equation*}
x u_{x}+y u_{y}=x e^{-u}, \quad u=0 \text { on } y=x^{2} . \tag{11}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
\frac{\mathrm{d} x}{x}=\frac{\mathrm{d} y}{y}=\frac{\mathrm{d} u}{x e^{-u}} \tag{12}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
y \mathrm{~d} x-x \mathrm{~d} y=0 \Longrightarrow \mathrm{~d}(y / x)=0 \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{d} x=\frac{\mathrm{d} u}{e^{-u}}=\mathrm{d}\left(e^{u}\right) \Longrightarrow \mathrm{d}\left(e^{u}-x\right)=0 \tag{14}
\end{equation*}
$$

So the general solution reads

$$
\begin{equation*}
e^{u}=x+f(y / x) \tag{15}
\end{equation*}
$$

where f is an arbitrary function.
Now apply the initial condition:

$$
\begin{equation*}
e^{0}=x+f\left(x^{2} / x\right)=x+f(x) \Longrightarrow f(x)=1-x . \tag{16}
\end{equation*}
$$

Therefore the solution is

$$
\begin{equation*}
e^{u}=x+[1-y / x] \tag{17}
\end{equation*}
$$

or

$$
\begin{equation*}
u=\ln [x+1-y / x] . \tag{18}
\end{equation*}
$$

Problem 3. (10 pts) Construct entropy solution to the conservation law

$$
u_{t}+\left(\frac{u^{2}}{2}\right)_{x}=0, \quad u(x, 0)=g(x)= \begin{cases}0 & x<-1 \tag{19}\\ x+1 & -1 \leqslant x \leqslant 0 \\ 1-x & 0<x \leqslant 1 \\ 0 & x>1\end{cases}
$$

What is the limiting function $v(x):=\lim _{t \longrightarrow \infty} u(x, t)$?
Solution. Drawing characteristics we see that the first singularity appears at $x=1, t=1$. A shock emanates from that point, with speed determined by

$$
\begin{equation*}
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{1}{2} \frac{x+1}{t+1} \Longrightarrow x+1=C \sqrt{t+1} \tag{20}
\end{equation*}
$$

Since it passes $x=t=1$, we have $C=1$. So the shock is

$$
\begin{equation*}
x+1=\sqrt{t+1} \tag{21}
\end{equation*}
$$

The solution reads

$$
u(x, t)= \begin{cases}0 & x<-1 \tag{22}\\ \frac{x+1}{t+1} & -1<x<t, t \leqslant 1 \\ \frac{\text { and }-1<x<\sqrt{t+1}-1, t>1}{\frac{x-1}{t-1}} & t<x \leqslant 1,0<t \leqslant 1 \\ 0 & x>1, t \leqslant 1 \text { and } x>\sqrt{t+1}-1, t>1\end{cases}
$$

The limit is $v(x)=0$.

Remark 1. How to get formulas for the solution.
Characteristics starting from $-1 \leqslant x \leqslant 0$ has speed: $\frac{\mathrm{d} x}{\mathrm{~d} t}=g\left(x_{0}\right)=x_{0}+1$. Therefore the equations for the characteristics are $x=x_{0}+\left(x_{0}+1\right) t$. Thus the solution in this region is

$$
\begin{equation*}
u\left(x_{0}+\left(x_{0}+1\right) t, t\right)=u(x, t)=g\left(x_{0}\right) \tag{23}
\end{equation*}
$$

To find $u(x, t)$, we need to represent x_{0} using x, t.

$$
\begin{equation*}
x=x_{0}+\left(x_{0}+1\right) t \Longrightarrow x_{0}=\frac{x-t}{t+1} \Longrightarrow u(x, t)=g\left(x_{0}\right)=\frac{x+1}{t+1} . \tag{24}
\end{equation*}
$$

Problem 4. (10 pts) Find the general solution to the following equation:

$$
\begin{equation*}
3 u_{x x}+10 u_{x y}+3 u_{y y}=0 \tag{25}
\end{equation*}
$$

Solution. We have

$$
\begin{equation*}
3(\mathrm{~d} y)^{2}-10(\mathrm{~d} x)(\mathrm{d} y)+3(\mathrm{~d} x)^{2}=0 \Longrightarrow(3 \mathrm{~d} y-\mathrm{d} x)(\mathrm{d} y-3 \mathrm{~d} x)=0 \tag{26}
\end{equation*}
$$

This leads to

$$
\begin{equation*}
\mathrm{d}(3 y-x)=\mathrm{d}(y-3 x)=0 \tag{27}
\end{equation*}
$$

Therefore the change of variables should be

$$
\begin{equation*}
\xi=3 y-x, \quad \eta=y-3 x . \tag{28}
\end{equation*}
$$

As this equation is hyperbolic, we know that this change of variables leads to

$$
\begin{equation*}
u_{\xi \eta}=\text { lower order terms. } \tag{29}
\end{equation*}
$$

Since the change of variables is linear, and in the original equation there is no lower order term, we conclude that the transformed equation must be

$$
\begin{equation*}
u_{\xi \eta}=0 . \tag{30}
\end{equation*}
$$

The general solution is then

$$
\begin{equation*}
u(\xi, \eta)=f(\xi)+g(\eta) \tag{31}
\end{equation*}
$$

which translates to

$$
\begin{equation*}
u(x, y)=f(3 y-x)+g(y-3 x) \tag{32}
\end{equation*}
$$

Problem 5. (10 pts) Consider the linear equation

$$
\begin{equation*}
a(x, y) u_{x}+b(x, y) u_{y}=c(x, y) u+d(x, y), \quad u(x, 0)=g(x) \tag{33}
\end{equation*}
$$

with a, b, c, d smooth functions.
a) Introduce a definition for "weak solution" to allow discontinuous solutions.
b) Suppose u is a "weak solution" that is smooth away from a curve Γ. Show that u satisfies the equation in classical sense away from Γ.
c) Suppose u has jump discontinuity along Γ. What is the condition that Γ must satisfy?

Solution. Weak solution

$$
\begin{equation*}
\iint u(a \phi)_{x}+u\left(b \phi_{y}\right)-c u \phi-d \phi \mathrm{~d} x \mathrm{~d} y+\int g b \phi \mathrm{~d} x=0 . \tag{34}
\end{equation*}
$$

Let Ω_{1}, Ω_{2} be the two domains on both sides of Γ. Gauss' Theorem gives

$$
\begin{equation*}
\int_{\Gamma}\left[u\binom{a}{b}\right] \phi \cdot \boldsymbol{n} \mathrm{d} s=0 \tag{35}
\end{equation*}
$$

As a, b are smooth, this reduces to

$$
\begin{equation*}
\int_{\Gamma}[u] \phi\left[\binom{a}{b} \cdot \boldsymbol{n}\right]=0 \Longrightarrow\binom{a}{b} \cdot \boldsymbol{n}=0 \tag{36}
\end{equation*}
$$

which means Γ has to be a characteristic curve.

