Math 436 Fall 2012 Homework 6 Solutions

Due Dec. 4 in Class

Note. All problem numbers refer to "Updated" version of lecture note.

- Ex. 3.22. Construct a sequence $f_{n}(x) \longrightarrow 0$ for every $x \in \mathbb{R}$, but $\left\|f_{n}\right\|=$ $\left(\int_{\mathbb{R}} f(x)^{2} \mathrm{~d} x\right)^{1 / 2}=1$ for all n.

Solution. Take

$$
f_{n}(x)=\left\{\begin{array}{ll}
1 & x \in(n, n+1) \tag{1}\\
0 & \text { elsewhere }
\end{array} .\right.
$$

- Ex. 3.23. Let V be a linear vector space. A norm $\|\cdot\|$ is a mapping $V \mapsto \mathbb{R}$ satisfying
a) For any $v \in V,\|v\| \geqslant 0$, and $\|v\|=0 \Longleftrightarrow v=0$.
b) For any $v \in V$ and $a \in \mathbb{R},\|a v\|=|a|\|v\|$.
c) For any $u, v \in V,\|u+v\| \leqslant\|u\|+\|v\|$.

Prove that

$$
\begin{equation*}
\|v\|:=\sup _{x \in[a, b]}|f(x)| \tag{2}
\end{equation*}
$$

is a norm on $V=\{f(x):[a, b] \mapsto \mathbb{R} \mid f(x)$ is bounded $\}$. Then show that this norm does not come from an inner product, that is there can be no inner product that $\|v\|^{2}=(v, v)$. (Hint: Show that if (\cdot, \cdot) is an inner product, then $(u+v, u+v)+(u-v$, $u-v)=2(u, u)+2(v, v)$.

Proof. a) - c) are quite trivial so omitted.
To see that the norm does not come from an inner product, we first prove that if (\cdot, \cdot) is an inner product, then $(u+v, u+v)+(u-v, u-v)=2(u, u)+2(v, v)$. To see this, simply use the linearity of inner product:

$$
\begin{align*}
(u+v, u+v)+(u-v, u-v)= & (u, u)+(v, u)+(u, v)+(v, v) \\
& +(u, u)-(v, u)-(u, v)+(v, v) \\
= & 2(u, u)+2(v, v) \tag{3}
\end{align*}
$$

Now all we need to do is find $f(x), g(x)$ such that

$$
\begin{equation*}
\|f+g\|^{2}+\|f-g\|^{2} \neq 2\left(\|f\|^{2}+\|g\|^{2}\right) . \tag{4}
\end{equation*}
$$

For example we can take

$$
f(x)=\left\{\begin{array}{ll}
1 & x \in(0,1) \tag{5}\\
0 & \text { elsewhere }
\end{array} \quad \text { and } \quad g(x)=\left\{\begin{array}{ll}
1 & x \in(1,2) \\
0 & \text { elsewhere }
\end{array} .\right.\right.
$$

- Ex. 4.4. Consider the linear ODE system

$$
\begin{equation*}
\dot{\boldsymbol{x}}=A(t) \boldsymbol{x}, \quad \boldsymbol{x}(0)=\boldsymbol{x}_{0} . \tag{6}
\end{equation*}
$$

Explain why in general

$$
\begin{equation*}
\exp \left[\int_{0}^{t} A(s) \mathrm{d} s\right] \boldsymbol{x}_{0} \tag{7}
\end{equation*}
$$

is not a solution.
Solution. Denote $B(t):=\int_{0}^{t} A(s) \mathrm{d} s$. Then we have $B^{\prime}(t)=A(t)$. Now calculate

$$
\begin{align*}
\frac{\mathrm{d}}{\mathrm{~d} t}\left(e^{B(t)} \boldsymbol{x}_{0}\right) & =\left(\frac{\mathrm{d}}{\mathrm{~d} t} e^{B(t)}\right) \boldsymbol{x}_{0} \\
& =\left[\frac{\mathrm{d}}{\mathrm{~d} t}\left(I+B(t)+\frac{B(t)^{2}}{2}+\cdots\right)\right] \boldsymbol{x}_{0} \\
& =\left[B^{\prime}(t)+\frac{B^{\prime}(t) B(t)+B(t) B^{\prime}(t)}{2}+\cdots\right] \boldsymbol{x}_{0} \\
& =\left[A(t)+\frac{A(t) B(t)+B(t) A(t)}{2}+\cdots\right] \boldsymbol{x}_{0} \tag{8}
\end{align*}
$$

As $B(t) A(t) \neq A(t) B(t)$ in general, we cannot write the above as

$$
\begin{equation*}
A(t)[\cdots] \tag{9}
\end{equation*}
$$

not to say

$$
\begin{equation*}
A(t) e^{B(t)} \boldsymbol{x}_{0} \tag{10}
\end{equation*}
$$

- Ex. 4.5. Analyze the well/ill-posedness of

$$
\begin{equation*}
u_{x x}+u_{t t}+u_{t}=0 \tag{11}
\end{equation*}
$$

using normal modes analysis.
Solution. Substitute

$$
\begin{equation*}
u=a(k) e^{i k x+\lambda(k) t} \tag{12}
\end{equation*}
$$

into the equation, we have

$$
\begin{equation*}
-k^{2}+\lambda(k)^{2}+\lambda(k)=0 \tag{13}
\end{equation*}
$$

which gives

$$
\begin{equation*}
\lambda(k)=\frac{-1 \pm \sqrt{1+4 k^{2}}}{2} \tag{14}
\end{equation*}
$$

We have

$$
\begin{equation*}
\Omega=\sup _{k} \Re \lambda(k)=\infty \tag{15}
\end{equation*}
$$

so the problem is ill-posed.

